EP1686264A1 - Verdichter mit Linearantrieb - Google Patents

Verdichter mit Linearantrieb Download PDF

Info

Publication number
EP1686264A1
EP1686264A1 EP05026866A EP05026866A EP1686264A1 EP 1686264 A1 EP1686264 A1 EP 1686264A1 EP 05026866 A EP05026866 A EP 05026866A EP 05026866 A EP05026866 A EP 05026866A EP 1686264 A1 EP1686264 A1 EP 1686264A1
Authority
EP
European Patent Office
Prior art keywords
compressor
discharge
shell
absorbing unit
vibration absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05026866A
Other languages
English (en)
French (fr)
Other versions
EP1686264B1 (de
Inventor
Jong Jin Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of EP1686264A1 publication Critical patent/EP1686264A1/de
Application granted granted Critical
Publication of EP1686264B1 publication Critical patent/EP1686264B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0033Pulsation and noise damping means with encapsulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0044Pulsation and noise damping means with vibration damping supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • F16F15/073Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs using only leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • F05B2260/964Preventing, counteracting or reducing vibration or noise by damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/22Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2238/00Type of springs or dampers
    • F16F2238/02Springs
    • F16F2238/022Springs leaf-like, e.g. of thin, planar-like metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Definitions

  • the present invention relates to a linear compressor and, more particularly, to a linear compressor wherein a vibration absorbing unit is mounted at the outside of a compressor shell and is enclosed by a protective cover, whereby the size of the shell can be reduced while achieving effective protection of the vibration absorbing unit from exterior force, resulting in improved durability and reliability of the compressor.
  • a linear compressor is an apparatus to introduce, compress, and discharge fluid while linearly reciprocating a piston inside a cylinder using a linear driving force of a linear motor.
  • a conventional linear compressor comprises a compression unit having a piston and a cylinder mounted in a shell to compress fluid, and a linear motor having a stator and a mover to linearly reciprocate the piston in the cylinder.
  • the cylinder has a cylindrical structure opened at opposite ends thereof. Thereby, the piston is inserted into the cylinder through one of the open ends. At the other end of the cylinder is provided a discharge cover to discharge the fluid compressed by the piston therethrough. A compression chamber is defined between the piston and the discharge cover.
  • a discharge valve is elastically supported at the discharge cover to open or close the compression chamber.
  • the stator of the liner motor includes an outer core, an inner core inwardly spaced apart from the outer core to have a predetermined gap therebetween, a bobbin mounted in the outer core, and a coil wound around the bobbin.
  • the mover of the linear motor includes a magnet to be linearly reciprocated using a magnetic force produced in the vicinity of the coil, and a magnet frame to transmit the linear reciprocating movement of the magnet to the piston.
  • the magnet is mounted to one side of the magnet frame, and the piston is fixed to the other side of the magnet frame.
  • the linear reciprocating movement of the magnet is transmitted to the piston through the magnet frame, allowing the piston to be linearly reciprocated inside the cylinder.
  • the conventional linear compressor has a problem in that all elements thereof, including fluid compression elements, supporting elements, and vibration attenuating elements, are mounted in the shell, making it impossible to reduce the size of the linear compressor.
  • the vibration attenuating elements are mounted at the outside of the shell, they are subjected to damage and malfunction under the influence of exterior impurities or shock, resulting in deterioration of durability and reliability of the compressor.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a linear compressor wherein a vibration absorbing unit is mounted at the outside of a compressor shell to be enclosed by a protective cover, whereby the size of the shell can be reduced while improved durability and reliability of the compressor.
  • a linear compressor comprising: a shell formed with an inlet port and an outlet port; a linear motor mounted in the shell and adapted to generate a linear movement force; a cylinder mounted in the shell; a piston connected to the linear motor and adapted to compress fluid while being linearly reciprocated in the cylinder; a vibration absorbing unit mounted at the outside of the shell to absorb vibration; and a protector mounted around the vibration absorbing unit to protect the vibration absorbing unit.
  • the protector may be a protective cover configured to enclose the vibration absorbing unit and coupled to the shell.
  • the protective cover may have a cylindrical shape opened at one end thereof, the open end of the protective cover being coupled to the shell.
  • the protective cover may be formed with a plurality of heat-discharge openings to discharge internal heat to the outside.
  • the plurality of heat-discharge openings may be spaced apart from one another by a predetermined distance, and each may have a slit shape.
  • the linear compressor may further comprise:
  • the protective cover may be perforated with a pipe hole for the penetration of the discharge pipe.
  • the vibration absorbing unit may be coupled to the discharge cover.
  • the vibration absorbing unit may include: a boss member connected to the discharge cover; a mass member outwardly spaced apart from the boss member; and a plurality of plate springs to connect the boss member to the mass member.
  • the mass member may have a circular ring shape.
  • a vibration absorbing unit is mounted at the outside of a compressor shell. This has the effect of reducing the number of elements mounted in the shell as well as the size of the shell, resulting in a reduced compressor size.
  • FIG. 1 is a longitudinal sectional view illustrating the interior structure of a linear compressor according to the present invention.
  • FIG. 2 is a schematic side sectional view of the linear compressor of FIG. 1.
  • the linear compressor comprises a shell 50 having an inlet port 51 and an outlet port 52 formed at different locations thereof, a linear motor 60 mounted in the shell 50 to generate a linear movement force, a cylinder 70 mounted in the shell 50, a piston 71 connected to the linear motor 60 to be linearly reciprocated in the cylinder 70 to thereby compress fluid, a vibration absorbing unit 80 mounted at the outside of the shell 50 to absorb vibration of the shell 50, and a protector configured to enclose the vibration absorbing unit 80 to protect the vibration absorbing unit 80 from exterior force.
  • a discharge unit assembly 90 is mounted in front of the outlet port 52 of the shell 50 so that the fluid, compressed in the cylinder 70, is discharged out of the cylinder 70 through the discharge unit assembly 90.
  • the shell 50 has a cylindrical shape, and is formed at front and rear surface thereof with the outlet port 52 and the inlet port 51, respectively.
  • a suction pipe 53 is inserted through the inlet port 51 to introduce exterior fluid into the shell 50.
  • the linear motor 60 is generally divided into a stator and a mover.
  • the stator includes an outer core 61 in the form of a stack, an inner core 62 also in the form of a stack, the inner core 62 being inwardly spaced apart from the outer core 61 to have a predetermined gap therebetween, and a coil 63 mounted in the outer core 61 to produce a magnetic field.
  • the mover includes a magnet 64 located between the outer core 61 and the inner core 62 and adapted to be linearly moved using a magnetic force produced in the vicinity of the coil 63, and a magnet frame 65 connected to both the magnet 64 and the piston 71 to transmit the linear movement force of the magnet 64 to the piston 71.
  • the cylinder 70 is directly mounted to an inner wall surface of the shell 50. Specifically, the cylinder 70 is located in the shell 50 at the outlet port 52.
  • the cylinder 70 has a cylindrical structure opened at opposite ends thereof.
  • a compression chamber C is defined in the cylinder 70 between the piston 71 and the discharge unit assembly 90.
  • a spring support 74 is coupled to a rear end of the piston 71, and main springs 75 are mounted between opposite surfaces of the spring support 74 and the shell 50 to elastically support the piston 71.
  • the piston 71 is internally formed with a suction channel 72 into which the fluid from the suction pipe 53 is introduced. Also, a plurality of suction ports 73 are defined adjacent to a front end of the piston 71, and a suction valve 76 is mounted to the front end of the piston 71 to open or close the plurality of suction ports 73.
  • a muffler 54 is coupled behind the piston 71 to communicate with the suction pipe 53.
  • the muffler 54 serves to attenuate suction noise of the fluid.
  • the discharge unit assembly 90 includes a discharge cover 91 mounted to an outer wall surface of the shell 50 and adapted to attenuate the flow rate of the fluid discharged from the outlet port 52, a discharge valve 92 located in the discharge cover 91 to come into close contact with the open end of the cylinder 70, the discharge valve 92 serving to open or close the compression chamber C, and a discharge spring 93 supported by the discharge cover 91 to elastically support the discharge valve 92.
  • the discharge cover 91 has a cap shape, and is coupled to the front surface of the shell 50.
  • a discharge pipe 94 is connected to a certain location of the discharge cover 91 to guide the fluid, discharged into the discharge cover 91, to the outside.
  • the vibration absorbing unit 80 is mounted to the discharge cover 91.
  • the vibration absorbing unit 80 includes a boss member 82 connected to the discharge cover 91 via connecting shaft 81, a mass member 83 radially spaced apart from the boss member 82 by a predetermined distance, and a plurality of plate springs 84 to connect the boss member 82 to the mass member 83.
  • the mass member 83 is a circular ring having a predetermined mass.
  • the plurality of plate springs 84 are provided to connect front and rear surfaces of the boss member 82 to front and rear surfaces of the mass member 83, respectively.
  • the plate springs 84 are fastened to the front and rear surfaces of the mass member 83 by means of bolts.
  • the protector is provided around the vibration absorbing unit 80 to protect the vibration absorbing unit 80 from exterior impurities or shock.
  • the protector is a protective cover 85 to enclose the vibration absorbing unit 80.
  • the protective cover 85 has a cylindrical shape opened at one end thereof. The open end of the protective cover 85 is coupled to the front surface of the shell 50.
  • the protective cover 85 is coupled to the front surface of the shell 50 by welding or using fasteners.
  • the protective cover 85 is perforated with a plurality of heat-discharge openings 87 to discharge internal heat of the protective cover 85 to the outside.
  • each of the heat-discharge openings 87 is perforated at lateral locations of the cylindrical protective cover 85 to be spaced apart from one another by a predetermined distance.
  • each of the heat-discharge openings 87 has an elongated slit shape.
  • At a certain location of the protective cover 85 is also perforated a pipe hole 86 so that the discharge pipe 94 protrudes out of the protective cover 85 through the pipe hole 86.
  • the magnet 64 is linearly reciprocated while interacting with the magnetic field produced in the vicinity of the coil 63.
  • the reciprocating movement of the magnet 64 is transmitted to the piston 71 via the magnet frame 65, allowing the piston 71 to be continuously linearly reciprocated in the cylinder 70.
  • the piston 71 acts to compress the fluid, introduced into the compression chamber C of the cylinder 70, and discharge the compressed fluid into the discharge cover 91.
  • the introduction, compression, and discharge of the fluid are continuously repeated so long as the piston 71 is linearly reciprocated.
  • the suction valve 76 is opened, allowing the fluid, in the suction channel 72 of the piston 71, to be introduced into the compression chamber C of the cylinder 70 through the suction ports 73.
  • the vibration absorbing unit 80 acts to absorb vibration transmitted thereto in an movement direction of the linear motor 60 and the piston 71.
  • the vibration transmitted in the movement direction of the piston 71 is absorbed by the plate springs 84.
  • the mass member 83 provided in the vibration absorbing unit 80 a characteristic frequency of the linear compressor is reduced, resulting in attenuation in the vibration of the linear compressor.
  • the vibration absorbing unit 80 is able to be safely protected from exterior impurities or shock.
  • a vibration absorbing unit is mounted at the outside of a compressor shell. This reduces the number of elements mounted in the shell, and consequently, the size of the shell, achieving a reduced compressor size.
  • the vibration absorbing unit is enclosed by a protective cover to be protected from exterior shock or impurities.
  • the vibration absorbing unit is free from damage or malfunction, resulting in improved durability and reliability of the compressor.
  • the protective cover is provided with a plurality of heat-discharge openings to discharge internal heat to the outside.
  • the linear compressor of the present invention has no risk of overheating during operation thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)
EP05026866A 2005-01-07 2005-12-08 Verdichter mit Linearantrieb Expired - Fee Related EP1686264B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050001817A KR100680205B1 (ko) 2005-01-07 2005-01-07 리니어 압축기

Publications (2)

Publication Number Publication Date
EP1686264A1 true EP1686264A1 (de) 2006-08-02
EP1686264B1 EP1686264B1 (de) 2008-02-06

Family

ID=36013392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05026866A Expired - Fee Related EP1686264B1 (de) 2005-01-07 2005-12-08 Verdichter mit Linearantrieb

Country Status (6)

Country Link
US (1) US20060153712A1 (de)
EP (1) EP1686264B1 (de)
JP (1) JP4890841B2 (de)
KR (1) KR100680205B1 (de)
CN (1) CN100445556C (de)
DE (1) DE602005004644T2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009076734A1 (en) * 2007-12-18 2009-06-25 Whirlpool S.A. Arrangement and process for mounting a resonant spring in a refrigeration compressor
WO2009054635A3 (en) * 2007-10-24 2010-04-29 Lg Electronics, Inc. Linear compressor
WO2013010237A1 (en) * 2011-07-21 2013-01-24 Whirlpool S.A. Linear compressor

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864002B1 (ko) * 2007-12-18 2008-10-17 서영파일테크 주식회사 방진형 장착수단을 구비한 펌프
KR101681588B1 (ko) 2010-07-09 2016-12-01 엘지전자 주식회사 왕복동식 압축기
EP2910782B1 (de) * 2012-09-03 2019-07-10 LG Electronics Inc. Kolbenkompressor und verfahren zur ansteuerung davon
CN104653430B (zh) * 2013-11-25 2017-05-03 青岛海尔智能技术研发有限公司 通过气缸固定内定子的线性压缩机
CN105987113B (zh) * 2015-02-09 2018-11-13 珠海格力电器股份有限公司 弹簧支撑件、动子组件、泵体结构及压缩机
KR102238339B1 (ko) * 2016-05-03 2021-04-09 엘지전자 주식회사 리니어 압축기
CN108425826B (zh) * 2016-07-21 2020-04-28 陕西仙童科技有限公司 一种新型气缸活塞组件及无油润滑方法
US10465671B2 (en) * 2017-02-23 2019-11-05 Haier Us Appliance Solutions, Inc. Compressor with a discharge muffler
KR102257642B1 (ko) * 2019-07-05 2021-05-31 엘지전자 주식회사 리니어 압축기
CN112129012A (zh) * 2020-08-31 2020-12-25 同济大学 一种密闭振子、制冷机和压缩机
CN112097430A (zh) * 2020-08-31 2020-12-18 同济大学 一种低噪声冰箱
US11530695B1 (en) 2021-07-01 2022-12-20 Haier Us Appliance Solutions, Inc. Suction muffler for a reciprocating compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994253A2 (de) * 1998-10-13 2000-04-19 Matsushita Electric Industrial Co., Ltd. Linearkompressor
WO2002086321A1 (en) * 2001-04-23 2002-10-31 Empresa Brasileira De Compressores S.A. - Embraco Linear compressor
EP1450472A1 (de) * 2002-10-16 2004-08-25 Matsushita Refrigeration Company Linearmotor und diesen verwendender linear-kompressor
WO2004081379A2 (en) * 2003-03-11 2004-09-23 Lg Electronics Inc. Reciprocating compressor having vibration attenuating supporting unit
EP1553294A2 (de) * 2004-01-06 2005-07-13 Lg Electronics Inc. Linearkompressor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187058A (en) * 1978-06-22 1980-02-05 Universal Security Instruments, Inc. Portable air compressor
AU681825B2 (en) * 1995-05-31 1997-09-04 Sawafuji Electric Co., Ltd. Vibrating compressor
JP2000120536A (ja) 1998-10-15 2000-04-25 Matsushita Refrig Co Ltd 振動式圧縮機
BR0010430A (pt) * 1999-08-19 2002-01-08 Lg Electronics Inc Compressor linear
KR100374827B1 (ko) * 2000-08-22 2003-03-04 엘지전자 주식회사 극저온 냉동기의 진동 흡수장치
US6467276B2 (en) * 2000-02-17 2002-10-22 Lg Electronics Inc. Pulse tube refrigerator
JP2002115653A (ja) * 2000-10-04 2002-04-19 Twinbird Corp 圧縮機
KR100397556B1 (ko) * 2001-03-23 2003-09-17 주식회사 엘지이아이 왕복동식 압축기
KR100386275B1 (ko) * 2001-03-28 2003-06-02 엘지전자 주식회사 왕복동식 압축기의 스프링 지지구조
KR100386508B1 (ko) * 2001-04-06 2003-06-09 주식회사 엘지이아이 왕복동식 압축기의 흡입가스 안내 시스템
KR100406305B1 (ko) * 2001-07-14 2003-11-19 삼성전자주식회사 리니어 압축기
JP4149147B2 (ja) * 2001-07-19 2008-09-10 松下電器産業株式会社 リニア圧縮機
KR100442389B1 (ko) * 2001-11-23 2004-07-30 엘지전자 주식회사 왕복동식 압축기
KR100521096B1 (ko) * 2003-06-04 2005-10-17 삼성전자주식회사 리니어 압축기
CN100404837C (zh) * 2003-09-25 2008-07-23 珍巴多工业股份有限公司 斯特林循环发动机
KR100529934B1 (ko) * 2004-01-06 2005-11-22 엘지전자 주식회사 외부 방진 구조를 갖는 리니어 압축기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994253A2 (de) * 1998-10-13 2000-04-19 Matsushita Electric Industrial Co., Ltd. Linearkompressor
WO2002086321A1 (en) * 2001-04-23 2002-10-31 Empresa Brasileira De Compressores S.A. - Embraco Linear compressor
EP1450472A1 (de) * 2002-10-16 2004-08-25 Matsushita Refrigeration Company Linearmotor und diesen verwendender linear-kompressor
WO2004081379A2 (en) * 2003-03-11 2004-09-23 Lg Electronics Inc. Reciprocating compressor having vibration attenuating supporting unit
EP1553294A2 (de) * 2004-01-06 2005-07-13 Lg Electronics Inc. Linearkompressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054635A3 (en) * 2007-10-24 2010-04-29 Lg Electronics, Inc. Linear compressor
US8678788B2 (en) 2007-10-24 2014-03-25 Lg Electronics Inc. Linear compressor
WO2009076734A1 (en) * 2007-12-18 2009-06-25 Whirlpool S.A. Arrangement and process for mounting a resonant spring in a refrigeration compressor
US8360749B2 (en) 2007-12-18 2013-01-29 Whirlpool S.A. Arrangement and process for mounting a resonant spring in a refrigeration compressor
WO2013010237A1 (en) * 2011-07-21 2013-01-24 Whirlpool S.A. Linear compressor

Also Published As

Publication number Publication date
DE602005004644T2 (de) 2009-01-29
JP4890841B2 (ja) 2012-03-07
JP2006189038A (ja) 2006-07-20
CN1800640A (zh) 2006-07-12
KR100680205B1 (ko) 2007-02-08
KR20060081481A (ko) 2006-07-13
EP1686264B1 (de) 2008-02-06
DE602005004644D1 (de) 2008-03-20
US20060153712A1 (en) 2006-07-13
CN100445556C (zh) 2008-12-24

Similar Documents

Publication Publication Date Title
EP1686264B1 (de) Verdichter mit Linearantrieb
CN110360081B (zh) 线性压缩机
US7585161B2 (en) Compressor
US6860725B2 (en) Suction gas guiding system for reciprocating compressor
US11248594B2 (en) Linear compressor
JP2005195023A (ja) 外部防振構造を有するリニア圧縮機
KR100442389B1 (ko) 왕복동식 압축기
KR102390176B1 (ko) 리니어 압축기
EP3473855B1 (de) Linearverdichter
EP4027012B1 (de) Linearverdichter
KR100748979B1 (ko) 리니어 모터의 고정자
CN110234875A (zh) 线性压缩机
KR102424602B1 (ko) 리니어 압축기
KR100314059B1 (ko) 리니어 압축기의 흡입소음기 구조
KR102458151B1 (ko) 리니어 압축기
KR100527587B1 (ko) 왕복동식 압축기의 소음저감구조
EP3587814B1 (de) Linearverdichter
KR102369191B1 (ko) 리니어 압축기
US11781540B2 (en) Linear compressor
EP4023884B1 (de) Linearverdichter
KR102443707B1 (ko) 리니어 압축기
CN115342042B (zh) 压缩机
KR20180091451A (ko) 리니어 압축기
KR20200042219A (ko) 리니어 압축기
KR20060039176A (ko) 압축기

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20070201

AKX Designation fees paid

Designated state(s): DE FR NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR NL

REF Corresponds to:

Ref document number: 602005004644

Country of ref document: DE

Date of ref document: 20080320

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20081219

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081211

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081230

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701