EP1678778A2 - Proton-conducting polymer membrane containing polymers with sulfonic acid groups that are covalently bonded to aromatic groups, membrane electrode unit, and use thereof in fuel cells - Google Patents

Proton-conducting polymer membrane containing polymers with sulfonic acid groups that are covalently bonded to aromatic groups, membrane electrode unit, and use thereof in fuel cells

Info

Publication number
EP1678778A2
EP1678778A2 EP04764851A EP04764851A EP1678778A2 EP 1678778 A2 EP1678778 A2 EP 1678778A2 EP 04764851 A EP04764851 A EP 04764851A EP 04764851 A EP04764851 A EP 04764851A EP 1678778 A2 EP1678778 A2 EP 1678778A2
Authority
EP
European Patent Office
Prior art keywords
group
acid groups
divalent
membrane
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04764851A
Other languages
German (de)
French (fr)
Inventor
Joachim Kiefer
Oemer Uensal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Fuel Cell Research GmbH
Original Assignee
Pemeas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pemeas GmbH filed Critical Pemeas GmbH
Publication of EP1678778A2 publication Critical patent/EP1678778A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2385/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Derivatives of such polymers
    • C08J2385/02Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Derivatives of such polymers containing phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a proton-conducting polymer membrane containing polymers with sulfonic acid groups covalently bonded to aromatic groups, which can be used in a variety of ways due to its excellent chemical and thermal properties and is particularly suitable as a polymer electrolyte membrane (PEM) in so-called PEM fuel cells. Furthermore, the present invention relates to membrane-electrode units which comprise the polymer electrolyte membrane.
  • PEM polymer electrolyte membrane
  • a fuel cell usually contains an electrolyte and two electrodes separated by the electrolyte.
  • one of the two electrodes is supplied with a fuel, such as hydrogen gas or a methanol-water mixture, and the other electrode with an oxidizing agent, such as oxygen gas or air, and chemical energy from the fuel oxidation is thereby converted directly into electrical energy. Protons and electrons are formed in the oxidation reaction.
  • the electrolyte is for hydrogen ions, i.e. Protons, but not permeable to reactive fuels such as hydrogen gas or methanol and oxygen gas.
  • a fuel cell generally has several individual cells, so-called MEEs (membrane electrode assemblies), each of which contains an electrolyte and two electrodes separated by the electrolyte.
  • MEEs membrane electrode assemblies
  • Solids such as polymer electrolyte membranes or liquids such as phosphoric acid are used as the electrolyte for the fuel cell.
  • Polymer electrolyte membranes have recently attracted attention as electrolytes for fuel cells. In principle, one can differentiate between two categories of polymer membranes.
  • the first category includes cation exchange membranes consisting of a polymer structure which contains covalently bound acid groups, preferably sulfonic acid groups.
  • the sulfonic acid group changes into an anion with the release of a hydrogen ion and therefore conducts protons.
  • the mobility of the proton and thus the proton conductivity is directly linked to the water content. Due to the very good miscibility of methanol and water, such cation exchange membranes have a high methanol permeability and are therefore unsuitable for applications in a direct methanol fuel cell. If the membrane dries out, for example as a result of high temperature, the conductivity of the membrane and consequently the performance of the fuel cell decrease drastically.
  • the operating temperatures of fuel cells containing such Cation exchange membranes are thus limited to the boiling point of the water.
  • the humidification of the fuels represents a major technical challenge for the use of polymer electrolyte membrane fuel cells (PEMBZ), in which conventional, sulfonated membranes such as National are used.
  • PEMBZ polymer electrolyte membrane fuel cells
  • perfluorosulfonic acid polymers are used as materials for polymer electrolyte membranes.
  • the perfluorosulfonic acid polymer (such as National) generally has a perfluorocarbon backbone, such as a copolymer of tetrafluoroethylene and trifluorovinyl, and a side chain attached thereto with a sulfonic acid group, such as a side chain with a sulfonic acid group attached to a perfluoroalkylene group.
  • the cation exchange membranes are preferably organic polymers with covalently bonded acid groups, in particular sulfonic acid. Methods for sulfonating polymers are described in F. Kucera et. al. Polymer Engineering and Science 1988, Vol. 38, No 5, 783-792.
  • cation exchange membranes which have gained commercial importance for use in fuel cells are listed below: The most important representative is the perfluorosulfonic acid polymer National ® (US 3692569). This polymer can be brought into solution as described in US Pat. No. 4,453,991 and then used as an ionomer. Cation exchange membranes are also obtained by filling a porous support material with such an ionomer. Expanded Teflon is preferred as the carrier material (US 5635041).
  • Another perfluorinated cation exchange membrane can be prepared as described in US5422411 by copolymerization from trifluorostyrene and sulfonyl-modified trifuorostyrene.
  • Composite membranes consisting of a porous carrier material, in particular expanded Teflon, filled with ionomers consisting of such sulfonyl-modified trifluorostyrene copolymers are described in US5834523.
  • US6110616 describes copolymers of butadiene and styrene and their subsequent sulfonation for the production of cation exchange membranes for fuel cells.
  • Another class of partially fluorinated cation exchange membranes can be made by radiation grafting and subsequent sulfonation.
  • a grafting reaction is preferably carried out on a previously irradiated polymer film with styrene.
  • the sulfonation of the side chains then takes place in a subsequent sulfonation reaction.
  • Crosslinking can also be carried out at the same time as the grafting and the mechanical properties can thus be changed.
  • acid-base blend membranes are known which are produced as described in DE19817374 or WO 01/18894 by mixtures of sulfonated polymers and basic polymers.
  • a cation exchange membrane known from the prior art can be mixed with a high-temperature stable polymer.
  • the production and properties of cation exchange membranes consisting of blends of sulfonated PEK and a) polysulfones (DE4422158), b) aromatic polyamides (42445264) or c) polybenzimidazole (DE19851498) are described.
  • Sulfonated polybenzimidazoles are also known from the literature.
  • Staiti et al P. Staiti in J. Membr. Sei. 188 (2001) 71 have described the preparation and properties of sulfonated polybenzimidazoles. It was not possible to carry out the sulfonation on the polymer in the solution. When the sulfonating agent is added to the PBI / DMAc solution, the polymer precipitates. For the sulfonation, a PBI film was first produced and this was immersed in a dilute sulfuric acid. For sulfonation, the samples were then treated at temperatures of approx. 475 ° C for 2 minutes.
  • the sulfonated PBI membranes only have a maximum conductivity of 7.5 * 10 "5 S / cm at a temperature of 160 ° C.
  • the maximum ion exchange capacity is 0.12 meq / g. It has also been shown that such sulfonated PBI membranes are not are suitable for use in a fuel cell.
  • polymer membranes are known from WO 00/22684, which have a porous material.
  • the water content of the membrane is preferably 20 to 100% by weight, based on the dry weight of the membrane. Accordingly, the proton conductivity is determined by the water content.
  • the disadvantage of all of these cation exchange membranes is the fact that the membrane has to be moistened, the operating temperature is limited to 100 ° C. and the membranes have a high methanol permeability.
  • the cause of these disadvantages is the conductivity mechanism of the membrane, in which the transport of the protons is coupled to the transport of the water molecule. This is called the "vehicle mechanism" (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641).
  • polymer electrolyte membranes with complexes of basic polymers and strong acids have been developed.
  • WO96 / 13872 and the corresponding US Pat. No. 5,525,436 describe a process for producing a proton-conducting polymer electrolyte membrane, in which a basic polymer, such as polybenzimidazole, is treated with a strong acid, such as phosphoric acid, sulfuric acid, etc.
  • the mineral acid usually concentrated phosphoric acid
  • the polymer serves as a carrier for the electrolyte consisting of the highly concentrated phosphoric acid.
  • the polymer membrane fulfills further essential functions, in particular it must have high mechanical stability and serve as a separator for the two fuels mentioned at the beginning.
  • CO arises as a by-product in the reforming of the hydrogen-rich gas from carbon-containing compounds, such as natural gas, methanol or gasoline, or as an intermediate in the direct oxidation of methanol.
  • the CO content of the fuel must be less than 100 ppm at temperatures ⁇ 100 ° C. At temperatures in the range of 150-200 °, however, 10,000 ppm CO or more can also be tolerated (NJ Bjerrum et. Al. Journal of Applied Electrochemistry, 2001, 31, 773-779).
  • a great advantage of fuel cells is the fact that the energy of the fuel is converted directly into electrical energy and heat during the electrochemical reaction. Water forms as a reaction product on the cathode. Heat is therefore a by-product of the electrochemical reaction.
  • the heat must be dissipated to prevent the system from overheating. Additional, energy-consuming devices are then required for cooling, which further reduce the overall electrical efficiency of the fuel cell.
  • the heat can be used efficiently using existing technologies such as heat exchangers.
  • High temperatures are aimed at to increase efficiency. If the operating temperature is above 100 ° C and the temperature difference between the ambient temperature and the operating temperature is large, it will be possible to cool the fuel cell system more efficiently or to use small cooling surfaces and to dispense with additional devices compared to fuel cells which, due to the membrane humidification, are below 100 ° C must be operated.
  • DMBZ direct methanol fuel cell
  • the present invention is therefore based on the object of providing a novel polymer electrolyte membrane which achieves the objects set out above.
  • a membrane according to the invention should be able to be produced inexpensively and simply.
  • the conductivity should be achieved without additional humidification, especially at high temperatures.
  • the membrane should have a high mechanical stability in relation to its performance.
  • a polymer electrolyte membrane should be made available that can be used in many different fuel cells.
  • the membrane is said to be particularly suitable for fuel cells that use pure hydrogen and numerous carbon-containing fuels, in particular natural gas, gasoline, methanol and biomass, as energy sources.
  • the membrane should be able to be used in a hydrogen fuel cell and in a direct methanol fuel cell (DMBZ).
  • DMBZ direct methanol fuel cell
  • the operating temperature should be able to be extended from ⁇ 20 ° C to 200 ° C without reducing the service life of the fuel cell very much.
  • a polymer electrolyte membrane should be created which has a high mechanical stability, for example a high modulus of elasticity, a high tensile strength and a high fracture toughness.
  • the present invention relates to a proton-conducting polymer membrane containing polymers with sulfonic acid groups covalently bonded to aromatic groups and polymers comprising phosphonic acid groups obtainable by polymerizing monomers comprising phosphonic acid groups
  • preferred proton-conducting polymer membranes can be obtained by a process comprising the steps
  • step B) applying a layer using the mixture according to step A) on a support
  • step B Polymerization of the monomers comprising phosphonic acid groups present in the sheet-like structure obtainable according to step B).
  • preferred proton-conducting polymer membranes are obtainable by a process comprising the steps I) swelling of a polymer film, the polymer film comprising polymer with aromatic sulfonic acid groups, with a liquid containing monomers comprising phosphonic acid groups, and
  • Swelling means an increase in weight of the film of at least 3% by weight.
  • the swelling is preferably at least 5%, particularly preferably at least 10%.
  • Determination of the swelling Q is determined gravimetrically from the mass of the film before swelling m 0 and the mass of the film after the polymerization according to step B), m 2 .
  • Q (m 2 -m 0 ) / m 0 x 100
  • the swelling is preferably carried out at a temperature above 0 ° C., in particular between room temperature (20 ° C.) and 180 ° C. in a liquid which preferably contains monomers comprising at least 5% by weight of phosphonic acid groups. Furthermore, the swelling can also be carried out at elevated pressure. The limits result from economic considerations and technical possibilities.
  • the polymer film used for swelling generally has a thickness in the range from 5 to 3000 ⁇ m, preferably 10 to 1500 ⁇ m and particularly preferably.
  • the production of such films from polymers is generally known, some of which are commercially available.
  • the term polymer film means that the film to be used for swelling comprises polymers with aromatic sulfonic acid groups, wherein this film can contain further generally customary additives.
  • the liquid containing monomers comprising phosphonic acid groups can be a solution, wherein the liquid can also contain suspended and / or dispersed constituents.
  • the viscosity of the liquid which contains monomers comprising phosphonic acid groups can be in a wide range, solvents being added or the temperature being increased in order to adjust the viscosity.
  • the dynamic viscosity is preferably in the range from 0.1 to 10000 mPa * s, in particular 0.2 to 2000 mPa * s, these values being able to be measured, for example, in accordance with DIN 53015.
  • a membrane according to the invention exhibits a high temperature over a wide temperature range
  • a membrane according to the invention shows a relatively high mechanical stability.
  • a membrane according to the invention can be produced simply and inexpensively. Furthermore, these membranes have a surprisingly long service life. Furthermore, a fuel cell that is equipped with a membrane according to the invention can also be operated at low temperatures, for example at 20 ° C., without the service life of the fuel cell being greatly reduced thereby.
  • a membrane according to the invention exhibits a high conductivity over a wide temperature range, which is also achieved without additional moistening. Furthermore, a fuel cell that is equipped with a membrane according to the invention can also be operated at low temperatures, for example at 80 ° C., without the service life of the fuel cell being greatly reduced thereby.
  • a polymer electrolyte membrane according to the invention has a very low methanol permeability and is particularly suitable for use in a DMBZ. This enables permanent operation of a fuel cell with a variety of fuels such as hydrogen, natural gas, gasoline, methanol or biomass.
  • membranes of the present invention show high mechanical stability, in particular high modulus of elasticity, high tensile strength and high fracture toughness. Furthermore, these membranes have a surprisingly long service life.
  • Monomers comprising phosphonic acid groups are known in the art. These are compounds which have at least one carbon-carbon double bond and at least one phosphonic acid group.
  • the two carbon atoms which form the carbon-carbon double bond preferably have at least two, preferably 3, bonds to groups which lead to a slight steric hindrance of the double bond.
  • These groups include hydrogen atoms and halogen atoms, especially fluorine atoms.
  • the polymer comprising phosphonic acid groups results from the polymerization product which is obtained by polymerizing the monomer comprising phosphonic acid groups alone or with further monomers and / or crosslinking agents.
  • the monomer comprising phosphonic acid groups can comprise one, two, three or more carbon-carbon double bonds. Furthermore, the monomer comprising phosphonic acid groups may contain one, two, three or more phosphonic acid groups.
  • the monomer comprising phosphonic acid groups contains 2 to 20, preferably 2 to 10, carbon atoms.
  • the monomer comprising phosphonic acid groups used to prepare the polymers comprising phosphonic acid groups is preferably a compound of the formula
  • R denotes a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, the above radicals in turn being halogen, -OH, COOZ, -CN, NZ 2 can be substituted,
  • Z independently of one another is hydrogen, C1-C15-al yl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, it being possible for the above radicals in turn to be substituted with halogen, -OH, -CN, and x is a whole Number 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 means y an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 and / or of the formula x (Z 2 0 3 P) -R- "R— (P0 3 Z 2 ) x where
  • A represents a group of the formulas COOR 2 , CN, CONR 2 2 , OR 2 and / or R 2 , wherein R 2 is hydrogen, a C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group means, where the above radicals may in turn be substituted with halogen, -OH, COOZ, -CN, NZ 2 R is a bond, a divalent C1-C15-alkylene group, divalent C1-C15-alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20- aryl or heteroaryl group, where the above radicals can in turn be substituted with halogen, -OH, COOZ, -CN, NZ 2 , Z independently of one another hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group
  • the preferred monomers comprising phosphonic acid groups include alkenes which have phosphonic acid groups, such as ethenephosphonic acid, propenephosphonic acid, butenephosphonic acid; Acrylic acid and / or methacrylic acid compounds which have phosphonic acid groups, such as, for example, 2-phosphonomethyl-acrylic acid, 2-phosphonomethyl-methacrylic acid, 2-phosphonomethyl-acrylic acid amide and 2-phosphonomethyl-methacrylic acid amide.
  • vinylphosphonic acid ethenephosphonic acid
  • Aldrich or Clahant GmbH is particularly preferably used.
  • a preferred vinylphosphonic acid has a purity of more than 70%, in particular 90% and particularly preferably more than 97% purity.
  • the monomers comprising phosphonic acid groups can also be used in the form of derivatives which can subsequently be converted into the acid, the conversion to the acid also being able to take place in the polymerized state.
  • derivatives include in particular the salts, the esters, the amides and the halides of the monomers comprising phosphonic acid groups.
  • the mixture produced in step A) or the liquid used in step I) preferably comprises at least 20% by weight, in particular at least 30% by weight and particularly preferably at least 50% by weight, based on the total weight of the mixture, comprising phosphonic acid groups monomers.
  • the mixture produced in step A) or the liquid used in step I) can additionally contain further organic and / or inorganic solvents.
  • the organic solvents include in particular polar aprotic solvents such as dimethyl sulfoxide (DMSO), esters such as ethyl acetate and polar protic solvents such as alcohols such as ethanol, propanol, isopropanol and / or butanol.
  • the inorganic solvents include in particular water, phosphoric acid and polyphosphoric acid.
  • the solubility of polymers which are formed, for example, in step B) can be improved by adding the organic solvent.
  • the content of monomers comprising phosphonic acid groups in such solutions is generally at least 5% by weight, preferably at least 10% by weight, particularly preferably between 10 and 97% by weight.
  • compositions containing monomers comprising sulfonic acid groups can be used to prepare the polymers comprising phosphonic acid groups.
  • Monomers comprising sulfonic acid groups are known in the art. These are compounds which have at least one carbon-carbon double bond and at least one sulfonic acid group.
  • the two carbon atoms which form the carbon-carbon double bond preferably have at least two, preferably 3, bonds to groups which lead to a slight steric hindrance of the double bond.
  • These groups include hydrogen atoms and halogen atoms, especially fluorine atoms.
  • the polymer comprising sulfonic acid groups results from the polymerization product which is obtained by polymerization of the monomer comprising sulfonic acid groups alone or with further monomers and / or crosslinking agents.
  • the monomer comprising sulfonic acid groups can comprise one, two, three or more carbon-carbon double bonds. Furthermore, the monomer comprising sulfonic acid groups may contain one, two, three or more sulfonic acid groups.
  • the monomer comprising sulfonic acid groups contains 2 to 20, preferably 2 to 10, carbon atoms.
  • the monomer comprising sulfonic acid groups is preferably a compound of the formula wherein
  • R denotes a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, the above radicals in turn being halogen, -OH, COOZ, -CN, NZ 2 can be substituted,
  • Z independently of one another denotes hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, it being possible for the above radicals themselves to be substituted by halogen, -OH, -CN, and x is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 means y an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10
  • R denotes a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, the above radicals in turn being halogen, -OH, COOZ, -CN, NZ 2 can be substituted,
  • Z independently of one another denotes hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, it being possible for the above radicals themselves to be substituted by halogen, -OH, -CN, and x is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 means
  • A represents a group of the formulas COOR 2 , CN, CONR 2 2 , OR 2 and / or R 2 , wherein R 2 is hydrogen, a C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group means, where the above radicals in turn can be substituted with halogen, -OH, COOZ, -CN, NZ 2 R is a bond, a divalent C1-C15-alkylene group, divalent C1-C15-alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20- Aryl or heteroaryl group, where the above radicals can in turn be substituted with halogen, -OH, COOZ, -CN, NZ 2 , Z independently of one another hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20 -Aryl or heteroaryl group
  • the preferred monomers comprising sulfonic acid groups include alkenes which have sulfonic acid groups, such as ethene sulfonic acid, propene sulfonic acid, butene sulfonic acid; Acrylic acid and / or methacrylic acid compounds that have sulfonic acid groups, such as 2-sulfonomethyl-acrylic acid, 2-sulfonomethyl-methacrylic acid, 2-sulfonomethyl-acrylic acid amide and 2-sulfonomethyl-methacrylic acid amide.
  • vinyl sulfonic acid ethene sulfonic acid
  • Aldrich or Clariant GmbH is particularly preferably used.
  • a preferred vinyl sulfonic acid has a purity of more than 70%, in particular 90% and particularly preferably more than 97% purity.
  • the monomers comprising sulfonic acid groups can also be used in the form of derivatives which can subsequently be converted into the acid, the conversion to the acid also being able to take place in the polymerized state.
  • derivatives include in particular the salts, the esters, the amides and the halides of the monomers comprising sulfonic acid groups.
  • the weight ratio of monomers comprising sulfonic acid groups to monomers comprising phosphonic acid groups can be in the range from 100: 1 to 1: 100, preferably 10: 1 to 1:10 and particularly preferably 2: 1 to 1: 2.
  • monomers capable of crosslinking can be used in the production of the polymer membrane. These monomers can be added to the composition according to step A). In addition, the monomers capable of crosslinking can also be applied to the flat structure according to step B). Furthermore, these monomers can be added to the liquid in accordance with step l).
  • the monomers capable of crosslinking are, in particular, compounds which have at least 2 carbon-carbon double bonds. Dienes, trienes, tetraenes, dimethylacrylates, trimethylacrylates, tetramethylacrylates, diacrylates, triacrylates, tetraacrylates are preferred.
  • R is a C1-C15-alkyl group, C5-C20-aryl or heteroaryl group, NR ' , -S0 2 , PR ' , Si (R ' ) 2 , where the above radicals can in turn be substituted, R ' independently of one another hydrogen, a C1-C15 alkyl group, C1-C15 alkoxy group, C5-C20 aryl or heteroaryl group and n is at least 2.
  • the substituents of the above radical R are preferably halogen, hydroxyl, carboxy, carboxyl, carboxyl esters, nitriles, amines, silyl, siloxane radicals.
  • crosslinkers are allyl methacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetra- and polyethylene glycol dimethacrylate, 1, 3-butanediol dimethacrylate, glycerol dimethacrylate, diurethane dimethacrylate, trimethylolpropane trimethacrylate, epoxy acrylates, for example Ebacryl, N ', N-methylenebisacrylamide, carbinol, butadiene, isoprene, chloroprene, divinylbenzene and / or bisphenol A dimethylacrylate.
  • Ebacryl N ', N-methylenebisacrylamide
  • carbinol, butadiene isoprene, chloroprene, divinylbenzene and / or bisphenol A dimethylacrylate.
  • crosslinking agents are optional, these compounds usually being in the range between 0.05 to 30% by weight, preferably 0.1 to 20% by weight, particularly preferably 1 and 10% by weight, based on the weight of the Monomers comprising phosphonic acid groups can be used.
  • the composition produced according to step A) or the polymer film used in step I) comprises at least one polymer with aromatic sulfonic acid groups.
  • Aromatic sulfonic acid groups are groups in which the sulfonic acid group (-S0 3 H) is covalently bound to an aromatic or heteroaromatic group.
  • the aromatic group may be part of the backbone of the polymer or part of a side group, with polymers having aromatic groups in the main chain being preferred.
  • the sulfonic acid groups can often also be used in the form of the salts.
  • derivatives for example esters, in particular methyl or ethyl esters, or halides of the sulfonic acids which are converted into the sulfonic acid during operation of the membrane.
  • Aromatic or heteroaromatic groups preferred according to the invention are derived from benzene, naphthalene, biphenyl, diphenyl ether, diphenylmethane, diphenyldimethylmethane, bisphenone, diphenylsulfone, thiophene, furan, pyrrole, thiazole, oxazole, imidazole, isothiazole, Isoxazole, pyrazole, 1, 3,4-oxadiazole, 2,5-diphenyl-1, 3,4-oxadiazole, 1, 3,4-thiadiazole, 1, 3,4-triazole, 2,5-diphenyl-1, 3,4-triazole, 1, 2,5-triphenyl-1, 3,4-triazole, 1, 2,4-oxadiazole, 1, 2,4-thiadiazole, 1, 2,4-triazole, 1, 2, 3-thazole, 1, 2,3,4-tetrazole, benzo [b] thiophene
  • substitution pattern is arbitrary, in the case of phenylene, for example, can be ortho-, meta- and para-phenylene. Particularly preferred groups are derived from benzene and biphenylene, which may also be substituted.
  • Preferred alkyl groups are short-chain alkyl groups with 1 to 4 carbon atoms, such as. B. methyl, ethyl, n- or i-propyl and t-butyl groups.
  • Preferred aromatic groups are phenyl or naphthyl groups.
  • the alkyl groups and the aromatic groups can be substituted.
  • the polymers modified with sulfonic acid groups preferably have a sulfonic acid group content in the range from 0.5 to 3 meq / g, preferably 0.5 to 2 meq / g. This value is determined via the so-called ion exchange capacity (IEC).
  • IEC ion exchange capacity
  • the sulfonic acid groups are converted into the free acid.
  • the polymer is treated with acid in a known manner, excess acid being removed by washing.
  • the sulfonated polymer is first treated in boiling water for 2 hours. Excess water is then dabbed off and the sample is dried for 15 hours at 160 ° C. in a vacuum drying cabinet at p ⁇ 1 mbar. Then the dry weight of the membrane is determined.
  • the polymer dried in this way is then dissolved in DMSO at 80 ° C. for 1 hour. The solution is then titrated with 0.1 M NaOH.
  • the ion exchange capacity (IEC) is then calculated from the consumption of the acid up to the equivalent point and the dry weight.
  • Polymers with sulfonic acid groups covalently bonded to aromatic groups are known in the art.
  • polymers with aromatic sulfonic acid groups can be produced by sulfonation of polymers. Methods for sulfonating polymers are described in F. Kucera et. al. Polymer Engineering and Science 1988, Vol. 38, No 5, 783-792. The sulfonation conditions can be selected so that a low degree of sulfonation is produced (DE-A-19959289).
  • polystyrene derivatives With regard to polymers with aromatic sulfonic acid groups, the aromatic radicals of which are part of the side group, reference is made in particular to polystyrene derivatives.
  • US-A-6110616 describes copolymers of butadiene and styrene and their subsequent sulfonation for use in fuel cells.
  • perfluorinated polymers as described in US-A-5422411 can be prepared by copolymerization from trifluorostyrene and sulfonyl-modified trifuorostyrene.
  • abile thermoplastics are ADtemperaturst 'used which have sulfonic acid groups attached to aromatic groups.
  • such polymers have aromatic groups in the main chain.
  • sulfonated polyether ketones DE-A-4219077, WO96 / 01177
  • sulfonated polysulfones J. Membr. Sei. 83 (1993) p.211
  • sulfonated polyphenylene sulfide DE-A-19527435
  • polymers set out above with sulfonic acid groups bonded to aromatics can be used individually or as a mixture, with particular preference being given to mixtures which have polymers with aromatics in the main chain.
  • the molecular weight of the polymers with sulfonic acid groups bonded to aromatics can, depending on the type of polymer and its processability, be in wide ranges.
  • the weight average molecular weight M w is preferably in the range from 5,000 to 10,000,000, in particular 10,000 to 1,000,000, particularly preferably 15,000 to 50,000.
  • polymers having sulfonic acid groups bonded to aromatics and having a low polydispersity index M w / M n have.
  • the polydispersity index is preferably in the range 1 to 5, in particular 1 to 4.
  • the weight ratio of polymer with monomers covalently bonded to aromatic groups to monomers comprising phosphonic acid groups is in the range from 0.1 to 50, preferably from 0.2 to 20, particularly preferably from 1 to 10.
  • a further polymer can be added to the composition produced in step A) or the liquid used in step I) which does not comprise any sulfonic acid groups bound to aromatics.
  • This polymer can be dissolved, dispersed or suspended, among other things.
  • the preferred polymers include polyolefins such as poly (chloroprene),
  • Polyacetylene polyphenylene, poly (p-xylylene), polyarylmethylene, polystyrene, polymethylstyrene,
  • Polyvinyl alcohol polyvinyl acetate, polyvinyl ether, polyvinylamine, poly (N-vinylacetamide),
  • Polyvinylimidazole Polyvinyl carbazole, polyvinyl pyrrolidone, polyvinyl pyridine, polyvinyl chloride,
  • Polyvinylidene chloride polytetrafluoroethylene, polyvinyl difluoride, polyhexafluoropropylene,
  • Polychlorotrifluoroethylene polyvinyl fluoride, polyvinylidene fluoride, polyacrolein, polyacrylamide,
  • Polyacetal polyoxymethylene, polyether, polypropylene oxide, polyepichlorohydrin,
  • Polyester in particular polyhydroxyacetic acid, polyethylene terephthalate,
  • Polymeric C-S bonds in the main chain for example polysulfide ether,
  • Polyphenylene sulfide polyether sulfone, polysulfone, polyether ether sulfone, polyaryl ether sulfone,
  • Polyphenylene sulfone polyphenylene sulfide sulfone, poly (phenylisulfide-1,4-phenylene;
  • Polyimines polyisocyanides, polyether brain.
  • Polyetherimides poly (trifluoromethyl bis (phthalimide) phenyl, polyaniline, polyaramides, polyamides, polyhydrazides, polyurethanes,
  • Liquid crystalline polymers especially Vectra as well
  • Inorganic polymers for example polysilanes, polycarbosilanes, polysiloxanes,
  • Polysilicic acid Polysilicates, silicones, polyphosphazenes and polythiazyl.
  • polymers can be used individually or as a mixture of two, three or more polymers.
  • Polymers which contain at least one nitrogen atom, oxygen atom and / or sulfur atom in a repeating unit are particularly preferred.
  • Particularly preferred are polymers which contain at least one aromatic ring with at least one nitrogen, oxygen and / or sulfur heteroatom per repeating unit.
  • Polymers based on polyazoles are particularly preferred within this group. These basic polyazole polymers contain at least one aromatic ring with at least one nitrogen heteroatom per repeat unit.
  • the aromatic ring is preferably a five- or six-membered ring with one to three nitrogen atoms, which can be fused to another ring, in particular another aromatic ring.
  • Polymers based on polyazole generally contain recurring azole units of the general formula (I) and / or (II) and / or (III) and / or (IV) and / or (V) and / or (VI) and / or ( VII) and / or (VIII) and / or (IX) and / or (X) and / or (XI) and / or (XII) and / or (XIII) and / or (XIV) and / or (XV) and / or (XVI) and / or (XVI) and / or (XVII) and / or (XVIII) and / or (XIX) and / or (XX) and / or (XXI) and / or (XVIII) and / or (XIX) and / or (XX) and / or (XXI) and / or (XXII) and / or (XXII))
  • Ar are the same or different and for a tetra-bonded aromatic or heteroaromatic group, which can be mono- or polynuclear
  • Ar 1 are the same or different and for a divalent aromatic or heteroaromatic group, which can be mono- or polynuclear
  • Ar 2 are the same or different
  • Ar 3 are the same or different for a two or three-membered aromatic or heteroaromatic group, which may be mono- or polynuclear, and for a tridentic aromatic or heteroaromatic group, which may be single or polynuclear
  • Ar 4 are the same or different and for a three-membered aromatic or heteroaromatic group which may be mono- or polynuclear
  • Ar 5 are the same or different and for a tetra-aromatic or heteroaromatic group which may be mono- or polynuclear
  • Ar 6 are the same or different and for a divalent aromatic or heteroaromatic group, which can be mononuclear or polynuclear
  • Aromatic or heteroaromatic groups preferred according to the invention are derived from benzene, naphthalene, biphenyl, diphenyl ether, diphenylmethane, diphenyldimethylmethane, bisphenone, diphenylsulfone, thiophene, furan, pyrrole, thiazole, oxazole, imidazole, isothiazole, isoxazole, 3,4-oxazole, pyrazole , 2,5-diphenyl-1, 3,4-oxadiazoI, 1, 3,4-thiadiazole, 1, 3,4-triazole, 2,5-diphenyI-1, 3,4-triazole, 1, 2.5 -Triphenyl-1, 3,4-triazole, 1, 2,4-oxadiazole, 1, 2,4-thiadiazole, 1, 2,4-triazole, 1, 2,3-triazole, 1, 2,3,4 -Tetrazole, Benzo [b] thioph
  • the substitution pattern of Ar 1 , Ar 4 , Ar 6 , Ar 7 , Ar 8 , Ar 9 , Ar 10 , Ar 11 is arbitrary, in the case of phenylene, for example, Ar 1 , Ar 4 , Ar 6 , Ar 7 , Ar 8 , Ar 9 , Ar 10 , Ar 11 are ortho-, meta- and para-phenylene. Particularly preferred groups are derived from benzene and biphenylene, which may also be substituted.
  • Preferred alkyl groups are short-chain alkyl groups with 1 to 4 carbon atoms, such as. B. methyl, ethyl, n- or i-propyl and t-butyl groups.
  • Preferred aromatic groups are phenyl or naphthyl groups.
  • the alkyl groups and the aromatic groups can be substituted.
  • Preferred substituents are halogen atoms such as. B. fluorine, amino groups, hydroxyl groups or short-chain alkyl groups such as. B. methyl or ethyl groups.
  • the polyazoles can also have different recurring units which differ, for example, in their X radical. However, it preferably has only the same X radicals in a recurring unit.
  • polyazole polymers are polyimidazoles, polybenzthiazoles, polybenzoxazoles, polyoxadiazoles, polyquinoxaiines, polythiadiazoles poly (pyridines), poly (pyrimidines), and poly (tetrazapyrenes).
  • the polymer containing recurring azole units is a copolymer or a blend which contains at least two units of the formulas (I) to (XXII) which differ from one another.
  • the polymers can be present as block copolymers (diblock, triblock), statistical copolymers, periodic copolymers and / or alternating polymers.
  • the polymer containing recurring azole units is a polyazole which contains only units of the formula (I) and / or (II).
  • the number of repeating azole units in the polymer is preferably an integer greater than or equal to 10.
  • Particularly preferred polymers contain at least 00 repeating azole units.
  • polymers containing recurring benzimidazole units are preferred.
  • Some examples of the extremely useful polymers containing recurring benzimidazole units are represented by the following formulas:
  • n and m is an integer greater than or equal to 10, preferably greater than or equal to 100.
  • polyazole polymers are polyimidazoles, polybenzimidazole ether ketone, polybenzthiazoles, polybenzoxazoles, polytriazoles, polyoxadiazoles, polythiadiazoles, polypyrazoles, polyquinoxalines, poly (pyridines), poly (pyrimidines), and poly (tetrazapyrenes).
  • Preferred polyazoles are distinguished by a high molecular weight. This applies in particular to the polybenzimidazoles. Measured as intrinsic viscosity, this is preferably at least 0.2 dl / g, preferably 0.7 to 10 dl / g, in particular 0.8 to 5 dl / g.
  • Celazole from Celanese is particularly preferred.
  • the properties of the polymer film and polymer membrane can be improved by sieving the starting polymer, as described in German patent application No. 10129458.1.
  • the mixture produced in step A) or the liquid used in step I) can additionally contain further organic and / or inorganic solvents.
  • the organic solvents include in particular polar aprotic solvents such as dimethyl sulfoxide (DMSO), esters such as ethyl acetate and polar protic solvents such as alcohols such as ethanol, propanol, isopropanol and / or butanol.
  • the inorganic solvents include in particular water, phosphoric acid and polyphosphoric acid. These can have a positive impact on processability. For example, the rheology of the solution can be improved; so that it can be extruded or crocheted more easily.
  • fillers in particular proton-conducting fillers, and additional acids can also be added to the membrane.
  • Such substances preferably have an intrinsic conductivity at 100 ° C. of at least 10 "6 S / cm, in particular 10 " 5 S / cm.
  • the addition can take place, for example, in step A) and / or step B) or step I).
  • these additives if they are in liquid form, can also be added after the polymerization in step C) or step II).
  • Non-limiting examples of proton-conducting fillers are:
  • Sulfates such as: CsHS0 4 , Fe (S0 4 ) 2 , (NH 4 ) 3 H (S0 4 ) 2 , LiHS0 4 , NaHS0 4 , KHS0 4 , RbS0 4 , LiN 2 H 5 S0 4 , NH 4 HS0 4 , phosphates like Zr 3 (P0 4 ) 4 , Zr (HP0 4 ) 2 , HZr 2 (P0 4 ) 3 , U0 2 P0 4 .3H 2 0, H 8 U0 2 P0 4 , Ce (HP0 4 ) 2 ,.
  • Oxides such as Al 2 0 3 , Sb 2 0 5 , Th0 2 , Sn0 2 , Zr0 2 , Mo0 3
  • Silicates such as zeolites, zeolites (NH 4 +), layered silicates, framework silicates, H-natrolites, H-mordenites, NH 4 -analyses, NH 4 -sodalites, NH 4 -galates, H-montmorillonites, acids such as HCI0 4 , SbF 5 Fillers such as carbides, in particular SiC, Si 3 N 4 , fibers, in particular glass fibers, glass powders and / or polymer fibers, preferably based on polyazoles.
  • additives can be present in the proton-conducting polymer membrane in customary amounts, but the positive properties, such as high conductivity, long service life and high mechanical stability of the membrane, should not be adversely affected by the addition of too large amounts of additives, generally including Membrane after the polymerization in step C) or step II) at most 80% by weight, preferably at most 50% by weight and particularly preferably at most 20% by weight of additives.
  • this membrane can also contain perfluorinated sulfonic acid additives (preferably 0.1-20% by weight, preferably 0.2-15% by weight, very preferably 0.2-10% by weight). These additives improve performance, increase proximity to the cathode to increase oxygen solubility and diffusion, and decrease the absorption of phosphoric acid and phosphate to platinum.
  • perfluorinated sulfonic acid additives preferably 0.1-20% by weight, preferably 0.2-15% by weight, very preferably 0.2-10% by weight.
  • Non-limiting examples of perfluorinated suifonic acid additives are: trifluomethanesulfonic acid, Kaliumtrifluormethansuifonat, sodium trifluoromethanesulfonate, lithium, Ammoniumtrifluormethansulfonat, Kaliumperfluorohexansulfonat, Natriumperfluorohexansulfonat perfluorohexanesulphonate, lithium, ammonium perfluorohexanesulphonate, perfluorohexanesulphonic acid, potassium nonafluorobutanesulphonate, Natriumnonafluorbutansulfonat, Lithiumnonafluorbutansulfonat, Ammoniumnonafluorbutansulfonat, Cäsiumnonafluorbutansulf onate, triethylammonium perfluorohexasulfonate and perflurosulfoimide.
  • Suitable carriers are all carriers which are inert under the conditions. These carriers include, in particular, films made from polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyhexafluoropropylene, copolymers of PTFE with hexafluoropropylene, polyimides, polyphenylene sulfides (PPS) and polypropylene (PP).
  • PET polyethylene terephthalate
  • PTFE polytetrafluoroethylene
  • PTFE polyhexafluoropropylene
  • copolymers of PTFE with hexafluoropropylene polyimides
  • PPS polyphenylene sulfides
  • PP polypropylene
  • the thickness of the flat structure according to step B) is preferably between 10 and 4000 ⁇ m, preferably between 15 and 3500 ⁇ m, in particular between 20 and 3000 ⁇ m, particularly preferably between 30 and 1500 ⁇ m and very particularly preferably between 50 and 1200 ⁇ m.
  • the polymerization of the monomers comprising phosphonic acid groups in step C) or step II) is preferably carried out by free radicals.
  • the radical formation can take place thermally, photochemically, chemically and / or electrochemically.
  • a starter solution containing at least one substance capable of forming radicals can be added to the mixture after the mixture has been heated in accordance with step A). Furthermore, a starter solution can be applied to the flat structure obtained after step B). This can be done by means of measures known per se (e.g. spraying, dipping, etc.) which are known from the prior art. If the membrane is made by swelling, a starter solution can be added to the liquid. This can also be applied to the flat structure after swelling.
  • Suitable radical formers include azo compounds, peroxy compounds, persulfate compounds or azoamidines.
  • Non-limiting examples include dibenzoyl peroxide, dicumyl peroxide, cumene hydroperoxide, diisopropyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, Dikaliumpersulfat, ammonium peroxydisulfate, 2,2'-azobis (2-methylpropionitrile) (AIBN), 2,2 'azobis- (isobutterklamidin ) hydrochloride, benzpinakoi, dibenzyl derivatives, methyl ethylene ketone peroxide, 1, 1-azobiscyclohexane carbonitrile, methyl ethyl ketone peroxide, acetylacetone peroxide, dilauryl peroxide, didecanoyiperoxide, tert-butyl per-2-ethylhexanoate,
  • radical formers can also be used which form radicals when irradiated.
  • the preferred compounds include ⁇ , ⁇ -diethoxyacetophenone (DEAP, Upjon Corp), n-butylbenzoin ether (®Trigonal-14, AKZO) and 2,2-dimethoxy-2-phenylacetophenone ( ⁇ Igacure 651) and 1-benzoylcyclohexanol ( ⁇ Igacure 184), bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (®lrgacure 819) and 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-phenylpropan-1-one ( ⁇ Irgacure 2959), each from Ciba Geigy Corp. are commercially available.
  • Free radical generator added.
  • the amount of radical generator can be varied depending on the desired degree of polymerization.
  • IR InfraRot, ie light with a wavelength of more than 700 nm
  • NIR Near IR, ie light with a wavelength in the range from approx. 700 to 2000 nm or an energy in the range of approx. 0.6 to 1.75 eV).
  • the polymerization can also be carried out by exposure to UV light with a wavelength of less than 400 nm.
  • This polymerization method is known per se and is described, for example, in Hans Joerg Elias, Macromolecular Chemistry, ⁇ .auflage, Volume 1, p.492-511; D.R. Arnold, N.C. Baird, J.R. Bolton, J.C. D. Brand, P.W. M Jacobs, P.de Mayo, W.R. Ware, Photochemistry-An Introduction, Academic Press, New York and M.K. Mishra, Radical Photopolymerization of Vinyl Monomers, J. Macromol. Sci.-Revs. Macromol. Chem. Phys. C22 (1982-1983) 409.
  • a membrane is irradiated with a radiation dose in the range from 1 to 300 kGy, preferably from 3 to 250 kGy and very particularly preferably from 20 to 200 kGy.
  • the polymerization of the monomers comprising phosphonic acid groups in step C) or step II) is preferably carried out at temperatures above room temperature (20 ° C.) and below 200 ° C., in particular at temperatures between 40 ° C. and 150 ° C., particularly preferably between 50 ° C. and 120 ° C.
  • the polymerization is preferably carried out under normal pressure, but can also be carried out under the action of pressure.
  • the polymerization leads to a solidification of the flat structure, this solidification being able to be followed by microhardness measurement.
  • the increase in hardness due to the polymerization is preferably at least 20%, based on the hardness of the sheet-like structure obtained in step B).
  • the membranes have high mechanical stability. This size results from the hardness of the membrane, which is determined by means of microhardness measurement according to DIN 50539.
  • the membrane is successively loaded with a Vickers diamond within 20 s up to a force of 3 mN and the depth of penetration is determined.
  • the hardness at room temperature is at least 0.01 N / mm 2 , preferably at least 0.1 N / mm 2 and very particularly. preferably at least 1 N / mm 2 , without this being intended to impose a restriction.
  • the force is then kept constant at 3 mN for 5 s and the creep is calculated from the penetration depth.
  • the creep CHU 0.003 / 20/5 under these conditions is less than 20%, preferably less than 10% and very particularly preferably less than 5%.
  • the module determined by means of microhardness measurement YHU is at least 0.5 MPa, in particular at least 5 MPa and very particularly preferably at least 10 MPa, without any intention that this should impose a restriction.
  • the flat structure which is obtained after the polymerization is a self-supporting membrane.
  • the degree of polymerization is preferably at least 2, in particular at least 5, particularly preferably at least 30 repeat units, in particular at least 50 repeat units, very particularly preferably at least 100 repeat units.
  • M n the number average molecular weight
  • the proportion by weight of monomers comprising phosphonic acid groups and of radical initiators is kept constant in comparison with the ratios of the manufacture of the membrane.
  • the conversion achieved in a comparative polymerization is preferably greater than or equal to 20%, in particular greater than or equal to 40% and particularly preferably greater than or equal to 75%, based on the monomers comprising phosphonic acid groups used.
  • the polymers comprising phosphonic acid groups contained in the membrane preferably have a broad molecular weight distribution.
  • the polymers comprising phosphonic acid groups can have a polydispersity M w / M n in the range from 1 to 20, particularly preferably from 3 to 10.
  • the water content of the proton-conducting membrane is preferably at most 15% by weight, particularly preferably at most 10% by weight and very particularly preferably at most 5% by weight.
  • preferred membranes comprise portions of polymers comprising low molecular weight phosphonic acid groups.
  • the polymerization in step C) or step II) can lead to a decrease in the layer thickness.
  • the thickness of the self-supporting membrane is preferably between 15 and 1000 ⁇ m, preferably between 20 and 500 ⁇ m, in particular between 30 and 250 ⁇ m.
  • the membrane obtained in step C) or step II) is preferably self-supporting, ie it can be detached from the support without damage and then, if necessary, processed further directly.
  • the membrane can be crosslinked thermally, photochemically, chemically and / or electrochemically on the surface. This hardening of the membrane surface additionally improves the properties of the membrane.
  • the membrane can be heated to a temperature of at least 150 ° C., preferably at least 200 ° C. and particularly preferably at least 250 ° C.
  • the thermal crosslinking is preferably carried out in the presence of oxygen.
  • the oxygen concentration in this process step is usually in the range from 5 to 50% by volume, preferably 10 to 40% by volume, without any intention that this should impose a restriction.
  • Another method is radiation with ⁇ , ⁇ and / or electron beams.
  • the radiation dose is preferably between 5 and 250 kGy, in particular 10 to 200 kGy. Irradiation can take place in air or under inert gas. This improves the performance properties of the membrane, in particular its durability.
  • the duration of the crosslinking reaction can be in a wide range. In general, this reaction time is in the range from 1 second to 10 hours, preferably 1 minute to 1 hour, without this being intended to impose any restriction.
  • the membrane comprises at least 3% by weight, preferably at least 5% by weight and particularly preferably at least 7% by weight, of phosphorus (as an element), based on the total weight of the membrane.
  • the proportion of phosphorus can be determined using an elementary analysis.
  • the membrane is dried at 110 ° C. for 3 hours in a vacuum (1 mbar).
  • the polymers comprising phosphonic acid groups preferably have a phosphonic acid group content of at least 5 meq / g, particularly preferably at least 10 meq / g. This value is determined via the so-called ion exchange capacity (IEC).
  • IEC ion exchange capacity
  • the phosphonic acid groups are converted into the free acid, the measurement being carried out before polymerization of the monomers comprising phosphonic acid groups he follows.
  • the sample is then titrated with 0.1 M NaOH.
  • the ion exchange capacity (IEC) is then calculated from the consumption of the acid up to the equivalent point and the dry weight.
  • the polymer membrane according to the invention has improved material properties compared to the previously known doped polymer membranes. In particular, they already show an intrinsic conductivity in comparison with known undoped polymer membranes. This is due in particular to the presence of polymers containing phosphonic acid groups.
  • the polymer membrane according to the invention has improved material properties compared to the previously known doped polymer membranes. In particular, they perform better than known doped polymer membranes. This is due in particular to an improved proton conductivity. At temperatures of 120 ° C., this is at least 1 mS / cm, preferably at least 2 mS / cm, in particular at least 5 mS / cm, preferably measured without humidification.
  • the membranes show a high conductivity even at a temperature of 70 ° C.
  • the conductivity depends, among other things, on the sulfonic acid group content of the membrane. The higher this proportion, the better the conductivity at low temperatures.
  • a membrane according to the invention can be moistened at low temperatures.
  • the compound used as an energy source for example hydrogen
  • the water formed by the reaction is sufficient to achieve humidification.
  • the specific conductivity is measured by means of impedance spectroscopy in a 4-pole arrangement in potentiostatic mode and using platinum electrodes (wire, 0.25 mm diameter). The distance between the current-consuming electrodes is 2 cm.
  • the spectrum obtained is evaluated using a simple model consisting of a parallel arrangement of an ohmic resistance and a capacitor.
  • the sample cross-section of the phosphoric acid-doped membrane is measured immediately before the sample assembly. To measure the temperature dependency, the measuring cell is brought to the desired temperature in an oven and controlled via a Pt-100 thermocouple positioned in the immediate vicinity of the sample. After reaching the temperature, the sample is kept at this temperature for 10 minutes before starting the measurement.
  • the passage current density when operating with 0.5 M methanol solution and 90 ° C. in a so-called liquid direct methanol fuel cell is preferably less than 100 mA / cm 2 , in particular less than 70 mA / cm 2, particularly preferably less than 50 mA / cm 2 and very particularly preferably less than 10 mA / cm 2 .
  • the passage current density when operating with a 2 M methanol solution and 160 ° C in a so-called gaseous Direct methanol fuel cell preferably less than 100 mA / cm 2 , in particular less than 50 mA / cm 2, very particularly preferably less than 10 mA / cm 2 .
  • the amount of carbon dioxide released at the cathode is measured by means of a CO 2 sensor. From the value of the C0 2 amount thus obtained, as from P. Zelenay, SC Thomas, S. Gottesfeld in S. Gottesfeld, TF filler "Proton Conducting Membrane Fuel Cells II" ECS Proc. Vol. 98-27 p. 300 -308, the passage current density is calculated.
  • the intrinsically conductive polymer membranes according to the invention include use in fuel cells, in electrolysis, in capacitors and in battery systems. Because of their property profile, the polymer membranes can preferably be used in fuel cells, in particular in DMBZ fuel cells (direct methanol fuel cell).
  • the present invention also relates to a membrane electrode unit which has at least one polymer membrane according to the invention.
  • the membrane electrode assembly has a high performance even with a low content of catalytically active substances, such as platinum, ruthenium or palladium.
  • catalytically active substances such as platinum, ruthenium or palladium.
  • gas diffusion layers provided with a catalytically active layer can be used.
  • the gas diffusion layer generally shows electron conductivity.
  • Flat, electrically conductive and acid-resistant structures are usually used for this. These include, for example, carbon fiber papers, graphitized carbon fiber papers, carbon fiber fabrics, graphitized carbon fiber fabrics and / or flat structures which have been made conductive by adding carbon black.
  • the catalytically active layer contains a catalytically active substance.
  • a catalytically active substance include noble metals, in particular platinum, palladium, rhodium, iridium and / or ruthenium. These substances can also be used with one another in the form of alloys. Furthermore, these substances can also be used in alloys with base metals, such as Cr, Zr, Ni, Co and / or Ti. In addition, the oxides of the aforementioned noble metals and / or base metals can also be used.
  • the catalytically active compounds are used in the form of particles which preferably have a size in the range from 1 to 1000 nm, in particular 10 to 200 nm and preferably 20 to 100 nm.
  • the catalytically active layer can contain conventional additives. These include fluoropolymers such as polytetrafluoroethylene (PTFE) and surface-active substances.
  • fluoropolymers such as polytetrafluoroethylene (PTFE) and surface-active substances.
  • PTFE polytetrafluoroethylene
  • the weight ratio of fluoropolymer to catalyst material is greater than 0.1, this ratio preferably being in the range from 0.2 to 0.6.
  • the catalyst layer has a thickness in the range from 1 to 1000 ⁇ m, in particular from 5 to 500, preferably from 10 to 300 ⁇ m.
  • This value represents an average value that can be determined by measuring the layer thickness in the cross section of images that can be obtained with a scanning electron microscope (SEM).
  • the noble metal content of the catalyst layer is 0.1 to 10.0 mg / cm 2 , preferably 0.2 to 6.0 mg / cm 2 and particularly preferably 0.3 to 3.0 mg / cm 2 , These values can be determined by elemental analysis of a flat sample.
  • a catalytically active layer can be applied to the membrane according to the invention and this can be connected to a gas diffusion layer.
  • the membrane formation can also take place directly on the electrode instead of on a support.
  • a membrane is also the subject of the present invention.
  • Another object of the present invention is an electrode with a proton-conducting polymer coating containing polymers with sulfonic acid residues which are bonded to aromatic groups, obtainable by a process comprising the steps
  • step B) Polymerization of the monomers comprising phosphonic acid groups present in the sheet-like structure obtainable according to step B)
  • all preferred embodiments of a self-supporting membrane also apply accordingly to a membrane applied directly to the electrode.
  • the coating has a thickness between 2 and 3000 ⁇ m, preferably between 2 and 2000 ⁇ m, in particular between 3 and 1500 ⁇ m, particularly preferably 5 to 500 ⁇ m and very particularly preferably between 10 to 200 ⁇ m, without this there should be a restriction.
  • the polymerization in step C) leads to a hardening of the coating.
  • the treatment is carried out until the coating has sufficient hardness to be able to be pressed into a membrane electrode assembly.
  • the hardness is sufficient if a membrane treated accordingly is self-supporting. In many cases, however, a lower hardness is sufficient.
  • the hardness determined in accordance with DIN 50539 is generally at least 1 mN / mm 2 , preferably at least 5 mN / mm 2 and very particularly preferably at least 50 mN / mm 2 , without any intention that this should impose a restriction.
  • An electrode coated in this way can be installed in a membrane-electrode unit, which may have at least one polymer membrane according to the invention.
  • a catalytically active layer can be applied to the membrane according to the invention and this can be connected to a gas diffusion layer.
  • a membrane is formed in accordance with steps A) to C) and the catalyst is applied.
  • the membrane according to steps A) to C) can also be formed on a support or a support film which already has the catalyst. After removing the carrier or the carrier film, the catalyst is on the membrane according to the invention.
  • the present invention also relates to a membrane-electrode unit which has at least one coated electrode and / or at least one polymer membrane according to the invention.

Abstract

Disclosed is a proton-conducting polymer membrane containing polymers with sulfonic acid groups that are covalently bonded to aromatic groups and polymers which comprise phosphonic acid groups and are obtained by polymerizing monomers encompassing phosphonic acid groups.

Description

Beschreibungdescription
Protonenleitende Polymermembran enthaltend Polymere mit an aromatische Gruppen kovalent gebundene Sulfonsäuregruppen, Membran-Elektoden-Einheit und deren Anwendung in BrennstoffzellenProton-conducting polymer membrane containing polymers with sulfonic acid groups covalently bonded to aromatic groups, membrane-electrode unit and their use in fuel cells
Die vorliegende Erfindung betrifft eine protonenleitende Polymermembran enthaltend Polymere mit an aromatische Gruppen kovalent gebundene Sulfonsäuregruppen, die aufgrund ihrer hervorragenden chemischen und thermischen Eigenschaften vielfältig eingesetzt werden kann und sich insbesondere als Polymer-Elektrolyt-Membran (PEM) in sogenannten PEM-Brennstoffzellen eignet. Des weiteren betrifft die vorliegende-Erfindung Membran-EIektoden-Einheiten, die die Polymer-Elektrolyt-Membran umfassen.The present invention relates to a proton-conducting polymer membrane containing polymers with sulfonic acid groups covalently bonded to aromatic groups, which can be used in a variety of ways due to its excellent chemical and thermal properties and is particularly suitable as a polymer electrolyte membrane (PEM) in so-called PEM fuel cells. Furthermore, the present invention relates to membrane-electrode units which comprise the polymer electrolyte membrane.
Eine Brennstoffzelle enthält üblicherweise einen Elektrolyten und zwei durch den Elektrolyten getrennte Elektroden. Im. Fall einer Brennstoffzelle wird einer der beiden Elektroden ein Brennstoff, wie Wasserstoffgas oder ein Methanol-Wasser-Gemisch, und der anderen Elektrode ein Oxidationsmittel, wie Sauerstoffgas oder Luft, zugeführt und dadurch chemische Energie aus der Brennstoffoxidation direkt in elektrische Energie umgewandelt. Bei der Oxidationsreaktion werden Protonen und Elektronen gebildet.A fuel cell usually contains an electrolyte and two electrodes separated by the electrolyte. In the case of a fuel cell, one of the two electrodes is supplied with a fuel, such as hydrogen gas or a methanol-water mixture, and the other electrode with an oxidizing agent, such as oxygen gas or air, and chemical energy from the fuel oxidation is thereby converted directly into electrical energy. Protons and electrons are formed in the oxidation reaction.
Der Elektrolyt ist für Wasserstoffionen, d.h. Protonen, aber nicht für reaktive Brennstoffe wie das Wasserstoffgas oder Methanol und das Sauerstoffgas durchlässig.The electrolyte is for hydrogen ions, i.e. Protons, but not permeable to reactive fuels such as hydrogen gas or methanol and oxygen gas.
Eine Brennstoffzelle weist in der Regel mehrere Einzelzellen sogenannte MEE's (Membran- Elektroden-Einheit) auf, die jeweils einen Elektrolyten und zwei durch den Elektrolyten getrennte Elektroden enthalten.A fuel cell generally has several individual cells, so-called MEEs (membrane electrode assemblies), each of which contains an electrolyte and two electrodes separated by the electrolyte.
Als Elektrolyt für die Brennstoffzelle kommen Feststoffe wie Polymerelektrolytmembranen oder Flüssigkeiten wie Phosphorsäure zur Anwendung. In jüngster Zeit haben Polymerelektrolytmembranen als Elektrolyte für Brennstoffzellen Aufmerksamkeit erregt. Prinzipiell kann man zwischen 2 Kategorien von Polymermembranen unterscheiden.Solids such as polymer electrolyte membranes or liquids such as phosphoric acid are used as the electrolyte for the fuel cell. Polymer electrolyte membranes have recently attracted attention as electrolytes for fuel cells. In principle, one can differentiate between two categories of polymer membranes.
Zu der ersten Kategorie gehören Kationenaustauschermembranen bestehend aus einem Polymergerüst welches kovalent gebunden Säuregruppen, bevorzugt Sulfonsäuregruppen enthält. Die Sulfonsäuregruppe geht unter Abgabe eines Wasserstoffions in ein Anion über und leitet daher Protonen. Die Beweglichkeit des Protons und damit die Protonenleitfähigkeit ist dabei direkt an den Wassergehalt verknüpft. Durch die sehr gute Mischbarkeit von Methanol und Wasser weisen solche Kationenaustauschermembranen eine hohe Methanolpermeabilität auf und sind deshalb für Anwendungen in einer Direkt-Methanol- Brennstoffzelle ungeeignet. Trocknet die Membran, z.B. in Folge hoher Temperatur, aus, so nimmt die Leitfähigkeit der Membran und folglich die Leistung der Brennstoffzelle drastisch ab. Die Betriebstemperaturen von Brennstoffzellen enthaltend solche Kationenaustauschermembranen ist somit auf die Siedetemperatur des Wassers beschränkt. Die Befeuchtung der Brennstoffe stellt eine große technische Herausforderung für den Einsatz von Polymerelektrolytmembranbrennstoffzellen (PEMBZ) dar, bei denen konventielle, sulfonierte Membranen wie z.B. Nation verwendet werden.The first category includes cation exchange membranes consisting of a polymer structure which contains covalently bound acid groups, preferably sulfonic acid groups. The sulfonic acid group changes into an anion with the release of a hydrogen ion and therefore conducts protons. The mobility of the proton and thus the proton conductivity is directly linked to the water content. Due to the very good miscibility of methanol and water, such cation exchange membranes have a high methanol permeability and are therefore unsuitable for applications in a direct methanol fuel cell. If the membrane dries out, for example as a result of high temperature, the conductivity of the membrane and consequently the performance of the fuel cell decrease drastically. The operating temperatures of fuel cells containing such Cation exchange membranes are thus limited to the boiling point of the water. The humidification of the fuels represents a major technical challenge for the use of polymer electrolyte membrane fuel cells (PEMBZ), in which conventional, sulfonated membranes such as Nation are used.
So verwendet man als Materialien für Polymerelektrolytmembranen beispielsweise Perfluorsulfonsäurepolymere. Das Perfluorsulfonsäurepolymer (wie z.B. Nation) weist im allgemeinen ein Perfluorkohlenwasserstoffgerüst auf, wie ein Copolymer aus Tetrafluorethylen und Trifluorvinyl, und eine daran gebundene Seitenkette mit einer Sulfonsäuregruppe, wie eine Seitenkette mit einer an eine Perfluoralkylengruppe gebundenen Sulfonsäuregruppe.For example, perfluorosulfonic acid polymers are used as materials for polymer electrolyte membranes. The perfluorosulfonic acid polymer (such as Nation) generally has a perfluorocarbon backbone, such as a copolymer of tetrafluoroethylene and trifluorovinyl, and a side chain attached thereto with a sulfonic acid group, such as a side chain with a sulfonic acid group attached to a perfluoroalkylene group.
Bei den Kationenaustauschermembranen handelt es sich vorzugsweise um organische Polymere mit kovalent gebundenen Säuregruppen, insbesondere Sulfonsäure. Verfahren zur Sulfonierung von Polymeren sind in F. Kucera et. al. Polymer Engineering and Science1988, Vol. 38, No 5, 783-792 beschrieben.The cation exchange membranes are preferably organic polymers with covalently bonded acid groups, in particular sulfonic acid. Methods for sulfonating polymers are described in F. Kucera et. al. Polymer Engineering and Science 1988, Vol. 38, No 5, 783-792.
Im Folgenden sind die wichtigsten Typen von Kationenaustauschmembranen aufgeführt die zum Einsatz in Brennstoffzellen kommerzielle Bedeutung erlangt haben: Der wichtigste Vertreter ist das Perfluorosulfonsäurepolymer Nation® (US 3692569). Dieses Polymer kann wie in US 4453991 beschrieben in Lösung gebracht und dann als lonomer eingesetzt werden. Kationenaustauschermembranen werden auch erhalten durch Füllen eines porösen Trägermaterials mit einem solchen lonomer. Als Trägermaterial wird dabei expandiertes Teflon bevorzugt (US 5635041).The most important types of cation exchange membranes which have gained commercial importance for use in fuel cells are listed below: The most important representative is the perfluorosulfonic acid polymer Nation ® (US 3692569). This polymer can be brought into solution as described in US Pat. No. 4,453,991 and then used as an ionomer. Cation exchange membranes are also obtained by filling a porous support material with such an ionomer. Expanded Teflon is preferred as the carrier material (US 5635041).
Eine weitere perfluorinierte Kationenaustauschermembran kann wie in US5422411 beschrieben durch Copolymerisation aus Trifluorostyrol und sulfonylmodifiziertem Trifuorostyrol hergestellt werden. Kompositmembranen bestehend aus einem porösen Trägermaterial, insbesondere expandiertes Teflon, gefüllt mit lonomeren bestehend aus solchen sulfonylmodifizierten Trifluorostyrol-Copolymeren sind in US5834523 beschrieben. US6110616 beschreibt Copolymere aus Butadien und Styrol und deren anschließende Sulfonierung zur Herstellung von Kationenaustauschermembranen für Brennstoffzellen.Another perfluorinated cation exchange membrane can be prepared as described in US5422411 by copolymerization from trifluorostyrene and sulfonyl-modified trifuorostyrene. Composite membranes consisting of a porous carrier material, in particular expanded Teflon, filled with ionomers consisting of such sulfonyl-modified trifluorostyrene copolymers are described in US5834523. US6110616 describes copolymers of butadiene and styrene and their subsequent sulfonation for the production of cation exchange membranes for fuel cells.
Eine weitere Klasse von teilfluorierten Kationenaustauschermembranen kann durch Strahlenpfropfen und nachfolgende Sulfonierung hergestellt werden. Dabei wird wie in EP667983 oder DE19844645 beschrieben an einem zuvor bestrahlten Poiymerfiim eine Pfropfungsreaktion vorzugsweise mit Styrol durchgeführt. In einer nachfolgenden Sulfonierungsreaktion erfolgt dann die Sulfonierung der Seitenketten. Gleichzeitig mit der Pfropfung kann auch eine Vernetzung durchgeführt und somit die mechanischen Eigenschaften verändert werden.Another class of partially fluorinated cation exchange membranes can be made by radiation grafting and subsequent sulfonation. As described in EP667983 or DE19844645, a grafting reaction is preferably carried out on a previously irradiated polymer film with styrene. The sulfonation of the side chains then takes place in a subsequent sulfonation reaction. Crosslinking can also be carried out at the same time as the grafting and the mechanical properties can thus be changed.
Neben obigen Membranen wurde eine weitere Klasse nichtfluorierter Membranen durch Sulfonierung von hochtemperaturstabilen Thermoplasten entwickelt. So sind Membranen aus sulfonierten Polyetherketonen (DE4219077, EP96/01177), sulfoniertem Polysulfon (J. Membr. Sei. 83 (1993) p.211) oder sulfoniertem Polyphenylensulfid (DE19527435) bekannt, lonomere hergestellt aus sulfonierten Polyetherketonen sind in WO 00/15691 beschrieben.In addition to the above membranes, another class of non-fluorinated membranes has been developed by sulfonation of high-temperature stable thermoplastics. That's what membranes are like from sulfonated polyether ketones (DE4219077, EP96 / 01177), sulfonated polysulfone (J. Membr. Sei. 83 (1993) p.211) or sulfonated polyphenylene sulfide (DE19527435) are known, ionomers prepared from sulfonated polyether ketones are described in WO 00/15691.
Desweiteren sind Säure-Base-Blendmembranen bekannt, die wie in DE19817374 oder WO 01/18894 beschrieben durch Mischungen von sulfonierten Polymeren und basischen Polymeren hergestellt werden.Furthermore, acid-base blend membranes are known which are produced as described in DE19817374 or WO 01/18894 by mixtures of sulfonated polymers and basic polymers.
Zur weiteren Verbesserung der Membraneigenschaften kann eine aus dem Stand der Technik bekannte Kationenaustauschermembran mit einem hochtemperaturstabilen Polymer gemischt werden. Die Herstellung und Eigenschaften von Kationenaustauschermembranen bestehend aus Blends aus sulfoniertem PEK und a) Polysulfonen (DE4422158), b) aromatischen Polyamiden (42445264) oder c) Polybenzimidazol (DE19851498) sind beschrieben.To further improve the membrane properties, a cation exchange membrane known from the prior art can be mixed with a high-temperature stable polymer. The production and properties of cation exchange membranes consisting of blends of sulfonated PEK and a) polysulfones (DE4422158), b) aromatic polyamides (42445264) or c) polybenzimidazole (DE19851498) are described.
Auch sulfonierte Polybenzimidazole sind bereits aus der Literatur bekannt.Sulfonated polybenzimidazoles are also known from the literature.
So beschreibt US-A-4634530) eine Sulfonierung einer undotierten Polybenzimidazol-Folie mit einem Sulfonierungsmittel wie Schwefelsäure oder Oleum im Temperaturbereich bisThus US-A-4634530) describes sulfonation of an undoped polybenzimidazole film with a sulfonating agent such as sulfuric acid or oleum in the temperature range up to
100°C.100 ° C.
Des weiteren haben Staiti et al (P. Staiti in J. Membr. Sei. 188 (2001) 71) die Herstellung und Eigenschaften von sulfoniertem Polybenzimidazole beschrieben. Dazu war es nicht möglich die Sulfonierung an dem Polymer in der Lösung vorzunehmen. Bei Zugabe des Sulfonierungsmittels zu der PBI/DMAc Lösung fällt das Polymer aus. Zur Sulfonierung wurde zunächst ein PBI-Film hergestellt und dieser in eine verdünnte Schwefelsäure getaucht. Zur Sulfonierung wurden die Proben dann bei Temperaturen von ca. 475°C während 2 Minuten behandelt. Die sulfonierten PBI Membranen besitzen nur eine maximale Leitfähigkeit von 7,5*10"5 S/cm bei einer Temperatur von 160°C. Die maximale lonenaustauschkapazität beträgt 0,12 meq/g. Es wurde ebenfalls gezeigt, dass solchermaßen sulfonierte PBI Membranen nicht für den Einsatz in einer Brennstoffzelle geeignet sind.Furthermore, Staiti et al (P. Staiti in J. Membr. Sei. 188 (2001) 71) have described the preparation and properties of sulfonated polybenzimidazoles. It was not possible to carry out the sulfonation on the polymer in the solution. When the sulfonating agent is added to the PBI / DMAc solution, the polymer precipitates. For the sulfonation, a PBI film was first produced and this was immersed in a dilute sulfuric acid. For sulfonation, the samples were then treated at temperatures of approx. 475 ° C for 2 minutes. The sulfonated PBI membranes only have a maximum conductivity of 7.5 * 10 "5 S / cm at a temperature of 160 ° C. The maximum ion exchange capacity is 0.12 meq / g. It has also been shown that such sulfonated PBI membranes are not are suitable for use in a fuel cell.
Die Herstellung von sulfoalkylierten PBI Membranen durch die Umsetzung eines hydroxyethyl-modifizierten PBI mit einem Sulton ist in US-A-4997892 beschrieben. Basierend auf dieser Technologie können sulfopropylierte PBI Membranen hergestelltten werden (Sanui et al in Polym. Adv. Techn. 11 (2000) 544). Die Protonenleitfähigkeit solcher Membranen liegt bei 10"3 S/Cm und ist somit für Anwendungen in Brennstoffzellen, bei denen 0,1 S/cm angestrebt sind, zu niedrig.The production of sulfoalkylated PBI membranes by the reaction of a hydroxyethyl-modified PBI with a sulton is described in US-A-4997892. Based on this technology, sulfopropylated PBI membranes can be produced (Sanui et al in Polym. Adv. Techn. 11 (2000) 544). The proton conductivity of such membranes is 10 "3 S / cm and is therefore too low for applications in fuel cells in which 0.1 S / cm are aimed for.
Darüber hinaus sind aus WO 00/22684 Polymermembranen bekannt, die ein poröses Material aufweisen. Der Wassergehalt der Membran beträgt vorzugsweise 20 bis 100 Gew.-%, bezogen auf das Trockengewicht der Membran. Dementsprechend wird die Protonenleitfähigkeit durch den Wassergehalt bestimmt. Nachteil all dieser Kationenaustauschermembranen ist die Tatsache, dass die Membran befeuchtet werden muss, die Betriebstemperatur auf 100°C beschränkt ist, und die Membranen eine hohe Methanolpermeabilität aufweisen. Ursache für diese Nachteile ist der Leitfähigkeitsmechanismus der Membran, bei der der Transport der Protonen an den Transport des Wassermoleküls gekoppelt ist. Dies bezeichnet man als „Vehicle- Mechanismus" (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641).In addition, polymer membranes are known from WO 00/22684, which have a porous material. The water content of the membrane is preferably 20 to 100% by weight, based on the dry weight of the membrane. Accordingly, the proton conductivity is determined by the water content. The disadvantage of all of these cation exchange membranes is the fact that the membrane has to be moistened, the operating temperature is limited to 100 ° C. and the membranes have a high methanol permeability. The cause of these disadvantages is the conductivity mechanism of the membrane, in which the transport of the protons is coupled to the transport of the water molecule. This is called the "vehicle mechanism" (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641).
Als zweite Kategorie sind Polymerelektrolytmembranen mit Komplexen aus basischen Polymeren und starken Säuren entwickelt worden. So beschreibt WO96/13872 und die korrespondierende US-PS 5,525,436 ein Verfahren zur Herstellung einer protonenleitenden Polymerelektrolytmembranen, bei dem ein basisches Polymer, wie Polybenzimidazol, mit einer starken Säure, wie Phosphorsäure, Schwefelsäure usw., behandelt wird.As a second category, polymer electrolyte membranes with complexes of basic polymers and strong acids have been developed. For example, WO96 / 13872 and the corresponding US Pat. No. 5,525,436 describe a process for producing a proton-conducting polymer electrolyte membrane, in which a basic polymer, such as polybenzimidazole, is treated with a strong acid, such as phosphoric acid, sulfuric acid, etc.
In J. Electrochem. Soc, Band 142, Nr. 7, 1995, S. L121-L123 wird die Dotierung eines Polybenzimidazols in Phosphorsäure beschrieben.In J. Electrochem. Soc, Volume 142, No. 7, 1995, p. L121-L123 describes the doping of a polybenzimidazole in phosphoric acid.
Bei den im Stand der Technik bekannten, basischen Polymermembranen wird die - zum Erzielen der erforderlichen Protonenleitfähigkeit - eingesetzte Mineralsäure (meist konzentrierte Phosphorsäure) üblicherweise nach der Formgebung der Polyazolfolie beigefügt. Das Polymer dient dabei als Träger für den Elektrolyten bestehend aus der hochkonzentrierten Phosphorsäure. Die Polymermembran erfüllt dabei weitere wesentliche Funktionen insbesondere muss sie eine hohe mechanische Stabilität aufweisen und als Separator für die beiden eingangs genannten Brennstoffe dienen.In the basic polymer membranes known in the prior art, the mineral acid (usually concentrated phosphoric acid) used to achieve the required proton conductivity is usually added after the shaping of the polyazole film. The polymer serves as a carrier for the electrolyte consisting of the highly concentrated phosphoric acid. The polymer membrane fulfills further essential functions, in particular it must have high mechanical stability and serve as a separator for the two fuels mentioned at the beginning.
Wesentliche Vorteile einer solchen Phosphorsäure dotierten Membran ist die Tatsache, dass eine Brennstoffzelle, bei der eine derartige Polymerelektrolytmembran eingesetzt wird, bei Temperaturen oberhalb 100°C ohne eine sonst notwendige Befeuchtung der Brennstoffe betrieben werden kann. Dies liegt in der Eigenschaft der Phosphorsäure begründet die Protonen ohne zusätzliches Wasser mittels des sog. Grotthus Mechanismus transportieren zu können (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641 ).Significant advantages of such a membrane doped with phosphoric acid is the fact that a fuel cell in which such a polymer electrolyte membrane is used can be operated at temperatures above 100 ° C. without the fuels otherwise having to be moistened. This is due to the property of phosphoric acid that the protons can be transported without additional water using the so-called Grotthus mechanism (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641).
Durch die Möglichkeit des Betriebes bei Temperaturen oberhalb 100°C ergeben sich weitere Vorteile für das Brennstoffzellensystem. Zum Einen wird die Empfindlichkeit des Pt- Katalysators gegenüber Gasverunreinigungen, insbesondere CO, stark verringert. CO entsteht als Nebenprodukt bei der Reformierung des wasserstoffreichen Gases aus Kohlenstoffhaltigen Verbindungen, wie z.B. Erdgas, Methanol oder Benzin oder auch als Zwischenprodukt bei der direkten Oxidation von Methanol. Typischerweise muss der CO- Gehalt des Brennstoffes bei Temperaturen <100°C kleiner als 100 ppm sein. Bei Temperaturen im Bereich 150-200° können jedoch auch 10000 ppm CO oder mehr toleriert werden (N. J. Bjerrum et. al. Journal of Applied Electrochemistry, 2001 ,31 , 773-779). Dies führt zu wesentlichen Vereinfachungen des vorgeschalteten Reformierungsprozesses und somit zu Kostensenkungen des gesamten Brennstoffzellensystems. Ein großer Vorteil von Brennstoffzellen ist die Tatsache, dass bei der elektrochemischen Reaktion die Energie des Brennstoffes direkt in elektrische Energie und Wärme umgewandelt wird. Als Reaktionsprodukt entsteht dabei an der Kathode Wasser. Als Nebenprodukt bei der elektrochemischen Reaktion entsteht also Wärme. Für Anwendungen bei denen nur der Strom zum Antrieb von Elektromotoren genutzt wird, wie z.B. für Automobilanwendungen, oder als vielfältiger Ersatz von Batteriesystemen muss die Wärme abgeführt werden, um ein Überhitzen des Systems zu vermeiden. Für die Kühlung werden dann zusätzliche, Energie verbrauchende Geräte notwendig, die den elektrischen Gesamt- Wirkungsgrad der Brennstoffzelle weiter verringern. Für stationäre Anwendungen wie zur zentralen oder dezentralen Erzeugung von Strom und Wärme lässt sich die Wärme effizient durch vorhandene Technologien wie z.B. Wärmetauscher nutzen. Zur Steigerung der Effizienz werden dabei hohe Temperaturen angestrebt. Liegt die Betriebstemperatur oberhalb 100°C und ist die Temperaturdifferenz zwischen der Umgebungstemperatur und der Betriebstemperatur groß, so wird es möglich das Brennstoffzellensystem effizienter zu kühlen beziehungsweise kleine Kühlflächen zu verwenden und auf zusätzliche Geräte zu verzichten im Vergleich zu Brennstoffzellen, die aufgrund der Membranbefeuchtung bei unter 100°C betrieben werden müssen.The possibility of operating at temperatures above 100 ° C results in further advantages for the fuel cell system. On the one hand, the sensitivity of the Pt catalyst to gas impurities, especially CO, is greatly reduced. CO arises as a by-product in the reforming of the hydrogen-rich gas from carbon-containing compounds, such as natural gas, methanol or gasoline, or as an intermediate in the direct oxidation of methanol. Typically, the CO content of the fuel must be less than 100 ppm at temperatures <100 ° C. At temperatures in the range of 150-200 °, however, 10,000 ppm CO or more can also be tolerated (NJ Bjerrum et. Al. Journal of Applied Electrochemistry, 2001, 31, 773-779). This leads to significant simplifications of the upstream reforming process and thus to cost reductions for the entire fuel cell system. A great advantage of fuel cells is the fact that the energy of the fuel is converted directly into electrical energy and heat during the electrochemical reaction. Water forms as a reaction product on the cathode. Heat is therefore a by-product of the electrochemical reaction. For applications in which only the electricity is used to drive electric motors, such as for automotive applications, or as a versatile replacement for battery systems, the heat must be dissipated to prevent the system from overheating. Additional, energy-consuming devices are then required for cooling, which further reduce the overall electrical efficiency of the fuel cell. For stationary applications such as the central or decentralized generation of electricity and heat, the heat can be used efficiently using existing technologies such as heat exchangers. High temperatures are aimed at to increase efficiency. If the operating temperature is above 100 ° C and the temperature difference between the ambient temperature and the operating temperature is large, it will be possible to cool the fuel cell system more efficiently or to use small cooling surfaces and to dispense with additional devices compared to fuel cells which, due to the membrane humidification, are below 100 ° C must be operated.
Neben diesen Vorteilen weist ein solches Brennstoffzellensystem jedoch auch Nachteile auf. So ist die Haltbarkeit von Phosphorsäure dotierten Membranen relativ begrenzt. Hierbei wird die Lebensdauer insbesondere durch einen Betrieb der Brennstoffzelle unterhalb von 100°C, beispielsweise bei 80°C deutlich herabgesetzt. In' diesem Zusammenhang ist jedoch festzuhalten, dass beim An- und Herunterfahren der Brennstoffzelle die Zelle bei diesen Temperaturen betrieben werden muss.In addition to these advantages, such a fuel cell system also has disadvantages. The durability of membranes doped with phosphoric acid is relatively limited. Here, the service life is significantly reduced, in particular by operating the fuel cell below 100 ° C., for example at 80 ° C. In 'this context, however, it should be noted that during startup and shutdown of the fuel cell, the cell must be operated at these temperatures.
Darüber hinaus ist die Leistungsfähigkeit, beispielsweise die Leitfähigkeit von bekannten Membranen noch zu verbessern.In addition, the performance, for example the conductivity of known membranes, is still to be improved.
Weiterhin ist die mechanische Stabilität von bekannten Hochtemperaturmembranen mit hoher Leitfähigkeit noch zu verbessern.Furthermore, the mechanical stability of known high-temperature membranes with high conductivity can still be improved.
Weiterhin können die bekannten mit Phosphorsäure dotierten Membranen nicht in der sogenannten Direkt-Methanol-Brennstoffzelle (DMBZ) eingesetzt werden. Derartige Zellen sind jedoch von besonderem Interesse, da ein Methanol-Wasser-Gemisch als Brennstoff eingesetzt wird. Wird eine bekannte Membran auf Basis von Phosphorsäure verwendet, so versagt die Brennstoffzelle nach einer recht kurzen Zeit.Furthermore, the known membranes doped with phosphoric acid cannot be used in the so-called direct methanol fuel cell (DMBZ). Such cells are of particular interest, however, because a methanol-water mixture is used as fuel. If a known membrane based on phosphoric acid is used, the fuel cell will fail after a very short time.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine neuartige Polymerelektrolytmembran bereitzustellen, die die zuvor dargelegten Aufgaben löst. Insbesondere soll eine erfindungsgemäße Membran kostengünstig und einfach hergestellt werden können. Darüber hinaus war es mithin Aufgabe der vorliegenden Erfindung Polymerelektrolytmembranen zu schaffen, die eine hohe Leistungsfähigkeit, insbesondere eine hohe Leitfähigkeit über einen weiten Temperaturbereich zeigen. Hierbei sollte die Leitfähigkeit, insbesondere bei hohen Temperaturen ohne eine zusätzliche Befeuchtung erzielt werden. Hierbei soll die Membran eine, in Relation zur ihrer Leistungsfähigkeit, hohe mechanische Stabilität aufweisen.The present invention is therefore based on the object of providing a novel polymer electrolyte membrane which achieves the objects set out above. In particular, a membrane according to the invention should be able to be produced inexpensively and simply. In addition, it was therefore an object of the present invention to provide polymer electrolyte membranes which have high performance, in particular show high conductivity over a wide temperature range. The conductivity should be achieved without additional humidification, especially at high temperatures. The membrane should have a high mechanical stability in relation to its performance.
Weiterhin sollte eine Polymerelektrolytmembran zur Verfügung gestellt werden, die in vielen verschiedenen Brennstoffzellen eingesetzt werden kann. So soll sich die Membran insbesondere für Brennstoffzellen eignen, die reinen Wasserstoff sowie zahlreiche kohlenstoffhaltige Brennstoffe insbesondere Erdgas, Benzin, Methanol und Biomasse als Energiequelle nutzen. Insbesondere soll die Membran in einer Wasserstoffbrennstoffzelle und in einer Direkt-Methanol-Brennstoffzelle (DMBZ) eingesetzt werden können.Furthermore, a polymer electrolyte membrane should be made available that can be used in many different fuel cells. The membrane is said to be particularly suitable for fuel cells that use pure hydrogen and numerous carbon-containing fuels, in particular natural gas, gasoline, methanol and biomass, as energy sources. In particular, the membrane should be able to be used in a hydrogen fuel cell and in a direct methanol fuel cell (DMBZ).
Des weiteren soll die Betriebstemperatur von <20°C bis auf 200°C ausgeweitet werden können, ohne dass die Lebensdauer der Brennstoffzelle sehr stark herabgesetzt werden würde.Furthermore, the operating temperature should be able to be extended from <20 ° C to 200 ° C without reducing the service life of the fuel cell very much.
Des weiteren sollte eine Polymerelektrolytmembran geschaffen werden, die eine hohe mechanische Stabilität, beispielsweise einen hohen E-Modul, eine hohe Reißfestigkeit und eine hohe Bruchzähigkeit aufweist. Furthermore, a polymer electrolyte membrane should be created which has a high mechanical stability, for example a high modulus of elasticity, a high tensile strength and a high fracture toughness.
Gelöst werden diese Aufgaben durch eine protonenleitende Polymermembran mit allen Merkmalen des Anspruchs 1.These tasks are solved by a proton-conducting polymer membrane with all the features of claim 1.
Gegenstand der vorliegenden Erfindung ist eine protonenleitende Polymermembran enthaltend Polymere mit an aromatische Gruppen kovalent gebundene Sulfonsäuregruppen und Phosphonsäuregruppen umfassende Polymere erhältlich durch Polymerisation von Phosphonsäuregruppen umfassenden MonomerenThe present invention relates to a proton-conducting polymer membrane containing polymers with sulfonic acid groups covalently bonded to aromatic groups and polymers comprising phosphonic acid groups obtainable by polymerizing monomers comprising phosphonic acid groups
Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung sind bevorzugte protonenleitende Polymermembran erhältlich durch ein Verfahren umfassend die SchritteAccording to a particular embodiment of the present invention, preferred proton-conducting polymer membranes can be obtained by a process comprising the steps
A) Herstellung einer Mischung umfassend Phosphonsäuregruppen umfassende Monomere und mindestens ein Polymer mit aromatischen Sulfonsäuregruppen,A) Preparation of a mixture comprising monomers comprising phosphonic acid groups and at least one polymer with aromatic sulfonic acid groups,
B) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) auf einem Träger,B) applying a layer using the mixture according to step A) on a support,
C) Polymerisation der in dem flächigen Gebilde erhältlich gemäß Schritt B) vorhandenen Phosphonsäuregruppen umfassende Monomere.C) Polymerization of the monomers comprising phosphonic acid groups present in the sheet-like structure obtainable according to step B).
Gemäß einem besonderen Aspekt der vorliegenden Erfindung sind bevorzugte protonenleitende Polymermembran erhältlich durch ein Verfahren umfassend die Schritte I) Quellen einer Polymerfolie, wobei die Polymerfolie Polymer mit aromatischen Sulfonsäuregruppen umfasst, mit einer Flüssigkeit, die Phosphonsäuregruppen umfassende Monomere enthält undAccording to a particular aspect of the present invention, preferred proton-conducting polymer membranes are obtainable by a process comprising the steps I) swelling of a polymer film, the polymer film comprising polymer with aromatic sulfonic acid groups, with a liquid containing monomers comprising phosphonic acid groups, and
II) Polymerisation mindestens eines Teils der Phosphonsäuregruppen umfassenden Monomeren, die in Schritt I) in die Polymerfolie eingebracht wurden.II) Polymerization of at least some of the monomers comprising phosphonic acid groups, which were introduced into the polymer film in step I).
Als Quellung wird eine Gewichtszunahme der Folie von mindestens 3 Gew.-% verstanden. Bevorzugt beträgt die Quellung mindestens 5 %, besonders bevorzugt mindestens 10%.Swelling means an increase in weight of the film of at least 3% by weight. The swelling is preferably at least 5%, particularly preferably at least 10%.
Bestimmung der Quellung Q wird gravimetrisch bestimmt aus der Masse des Filmes vor der Quellung m0 und der Masse des Filmes nach der Polymerisation gemäß Schritt B), m2. Q = (m2-m0)/m0 x 100Determination of the swelling Q is determined gravimetrically from the mass of the film before swelling m 0 and the mass of the film after the polymerization according to step B), m 2 . Q = (m 2 -m 0 ) / m 0 x 100
Die Quellung erfolgt vorzugsweise bei einer Temperatur oberhalb 0°C, insbesondere zwischen Raumtemperatur (20°C) und 180°C in einer Flüssigkeit, die vorzugsweise mindestens 5 Gew.-% Phosphonsäuregruppen umfassende Monomere enthält. Des weiteren kann die Quellung auch bei erhöhtem Druck durchgeführt werden. Hierbei ergeben sich die Grenzen aus wirtschaftlichen Überlegungen und technischen Möglichkeiten.The swelling is preferably carried out at a temperature above 0 ° C., in particular between room temperature (20 ° C.) and 180 ° C. in a liquid which preferably contains monomers comprising at least 5% by weight of phosphonic acid groups. Furthermore, the swelling can also be carried out at elevated pressure. The limits result from economic considerations and technical possibilities.
Die zur Quellung eingesetzte Polymerfolie weist im allgemeinen eine Dicke im Bereich von 5 bis 3000μm, vorzugsweise 10 bis 1500 μm und besonders bevorzugt auf. Die Herstellung derartiger Folien aus Polymeren ist im allgemeinen bekannt, wobei diese teilweise kommerziell erhältlich sind. Der Begriff Polymerfolie bedeutet, dass die zum Quellen einzusetzende Folie Polymere mit aromatischen Sulfonsäuregruppen umfasst, wobei diese Folie weitere allgemein übliche Additive enthalten kann.The polymer film used for swelling generally has a thickness in the range from 5 to 3000 μm, preferably 10 to 1500 μm and particularly preferably. The production of such films from polymers is generally known, some of which are commercially available. The term polymer film means that the film to be used for swelling comprises polymers with aromatic sulfonic acid groups, wherein this film can contain further generally customary additives.
Die Flüssigkeit, die Phosphonsäuregruppen umfassende Monomere enthält, kann eine Lösung darstellen, wobei die Flüssigkeit auch suspendierte und/oder dispergierte Bestandteile enthalten kann. Die Viskosität der Flüssigkeit, die Phosphonsäuregruppen umfassende Monomere enthält, kann in weiten Bereichen liegen, wobei zur Einstellung der Viskosität eine Zugabe von Lösungsmitteln oder eine Temperaturerhöhung erfolgen kann. Vorzugsweise liegt die dynamische Viskosität im Bereich von 0,1 bis 10000 mPa*s, insbesondere 0,2 bis 2000 mPa*s, wobei diese Werte beispielsweise gemäß DIN 53015 gemessen werden können.The liquid containing monomers comprising phosphonic acid groups can be a solution, wherein the liquid can also contain suspended and / or dispersed constituents. The viscosity of the liquid which contains monomers comprising phosphonic acid groups can be in a wide range, solvents being added or the temperature being increased in order to adjust the viscosity. The dynamic viscosity is preferably in the range from 0.1 to 10000 mPa * s, in particular 0.2 to 2000 mPa * s, these values being able to be measured, for example, in accordance with DIN 53015.
Eine erfindungsgemäße Membran zeigt über einen großen Temperaturbereich eine hoheA membrane according to the invention exhibits a high temperature over a wide temperature range
Leitfähigkeit, die auch ohne eine zusätzliche Befeuchtung erzielt wird. Hierbei zeigt eine erfindungsgemäße Membran eine relativ hohe mechanische Stabilität.Conductivity that is also achieved without additional humidification. Here, a membrane according to the invention shows a relatively high mechanical stability.
Des weiteren kann eine erfindungsgemäße Membran einfach und kostengünstig hergestellt werden. Des weiteren zeigen diese Membranen eine überraschend lange Lebensdauer. Des weiteren kann eine Brennstoffzelle, die mit einer erfindungsgemäßen Membran ausgestattet ist, auch bei tiefen Temperaturen, beispielsweise bei 20°C betrieben werden, ohne dass hierdurch die Lebensdauer der Brennstoffzelle sehr stark herabgesetzt wird.Furthermore, a membrane according to the invention can be produced simply and inexpensively. Furthermore, these membranes have a surprisingly long service life. Furthermore, a fuel cell that is equipped with a membrane according to the invention can also be operated at low temperatures, for example at 20 ° C., without the service life of the fuel cell being greatly reduced thereby.
Eine erfindungsgemäße Membran zeigt über einen großen Temperaturbereich eine hohe Leitfähigkeit, die auch ohne eine zusätzliche Befeuchtung erzielt wird. Des weiteren kann eine Brennstoffzelle, die mit einer erfindungsgemäßen Membran ausgestattet ist, auch bei tiefen Temperaturen, beispielsweise bei 80°C betrieben werden, ohne dass hierdurch die Lebensdauer der Brennstoffzelle sehr stark herabgesetzt wird.A membrane according to the invention exhibits a high conductivity over a wide temperature range, which is also achieved without additional moistening. Furthermore, a fuel cell that is equipped with a membrane according to the invention can also be operated at low temperatures, for example at 80 ° C., without the service life of the fuel cell being greatly reduced thereby.
Eine erfindungsgemäße Polymerelektrolytmembran besitzt eine sehr geringe Methanolpermeabilität und eignet sich insbesondere für den Einsatz in einer DMBZ. Somit ist ein dauerhafter Betrieb einer Brennstoffzelle mit einer Vielzahl von Brennstoffen wie Wasserstoff, Erdgas, Benzin, Methanol oder Biomasse möglich.A polymer electrolyte membrane according to the invention has a very low methanol permeability and is particularly suitable for use in a DMBZ. This enables permanent operation of a fuel cell with a variety of fuels such as hydrogen, natural gas, gasoline, methanol or biomass.
Darüber hinaus zeigen Membranen der vorliegenden Erfindung eine hohe mechanische Stabilität, insbesondere einen hohen E-Modul, eine hohe Reißfestigkeit und eine hohe Bruchzähigkeit. Des weiteren zeigen diese Membranen eine überraschend lange Lebensdauer.In addition, membranes of the present invention show high mechanical stability, in particular high modulus of elasticity, high tensile strength and high fracture toughness. Furthermore, these membranes have a surprisingly long service life.
Phosphonsäuregruppen umfassende Monomere sind in der Fachwelt bekannt Es handelt sich hierbei um Verbindungen, die mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung und mindestens eine Phosphonsäuregruppe aufweisen. Vorzugsweise weisen die zwei Kohlenstoffatome, die Kohlenstoff-Kohlenstoff-Doppelbindung bilden, mindestens zwei, vorzugsweise 3 Bindungen zu Gruppen auf, die zu einer geringen sterischen Hinderung der Doppelbindung führen. Zu diesen Gruppen gehören unter anderem Wasserstoffatome und Halogenatome, insbesondere Fluoratome. Im Rahmen der vorliegenden Erfindung ergibt sich das Phosphonsäuregruppen umfassende Polymer aus dem Polymerisationsprodukt, das durch Polymerisation des Phosphonsäuregruppen umfassenden Monomers allein oder mit weiteren Monomeren und/oder Vernetzern erhalten wird.Monomers comprising phosphonic acid groups are known in the art. These are compounds which have at least one carbon-carbon double bond and at least one phosphonic acid group. The two carbon atoms which form the carbon-carbon double bond preferably have at least two, preferably 3, bonds to groups which lead to a slight steric hindrance of the double bond. These groups include hydrogen atoms and halogen atoms, especially fluorine atoms. In the context of the present invention, the polymer comprising phosphonic acid groups results from the polymerization product which is obtained by polymerizing the monomer comprising phosphonic acid groups alone or with further monomers and / or crosslinking agents.
Das Phosphonsäuregruppen umfassende Monomer kann ein, zwei, drei oder mehr Kohlenstoff-Kohlenstoff-Doppelbindungen umfassen. Des weiteren kann das Phosphonsäuregruppen umfassende Monomer ein, zwei, drei oder mehr Phosphonsäuregruppen enthalten.The monomer comprising phosphonic acid groups can comprise one, two, three or more carbon-carbon double bonds. Furthermore, the monomer comprising phosphonic acid groups may contain one, two, three or more phosphonic acid groups.
Im allgemeinen enthält das Phosphonsäuregruppen umfassende Monomer 2 bis 20, vorzugsweise 2 bis 10 Kohlenstoffatome. Bei dem zur Herstellung der Phosphonsäuregruppen umfassenden Polymere verwendeten Phosphonsäuregruppen umfassenden Monomer handelt es sich vorzugsweise um Verbindungen der FormelIn general, the monomer comprising phosphonic acid groups contains 2 to 20, preferably 2 to 10, carbon atoms. The monomer comprising phosphonic acid groups used to prepare the polymers comprising phosphonic acid groups is preferably a compound of the formula
^r ^-R— (P03Z2)x ^ r ^ -R— (P0 3 Z 2 ) x
worinwherein
R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1-C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5-C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,R denotes a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, the above radicals in turn being halogen, -OH, COOZ, -CN, NZ 2 can be substituted,
Z unabhängig voneinander Wasserstoff, C1-C15-Al ylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet y eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet und/oder der Formel x(Z203P)-R- "R— (P03Z2)x worinZ independently of one another is hydrogen, C1-C15-al yl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, it being possible for the above radicals in turn to be substituted with halogen, -OH, -CN, and x is a whole Number 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 means y an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 and / or of the formula x (Z 2 0 3 P) -R- "R— (P0 3 Z 2 ) x where
R eine Bindung, eine zweibindige C1 -C15-Alkylengruppe, zweibindige C1 -C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5-C20-Aryl- . oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet und/oder der Formel R-(P03Z2)x =K A worinR is a bond, a divalent C1 -C15 alkylene group, divalent C1 -C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20-aryl-. or heteroaryl group, where the above radicals can in turn be substituted with halogen, -OH, COOZ, -CN, NZ 2 , Z independently of one another hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, where the above radicals can in turn be substituted with halogen, -OH, -CN, and x denotes an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 and / or the Formula R- (P0 3 Z 2 ) x = KA where
A eine Gruppe der Formeln COOR2, CN, CONR2 2, OR2 und/oder R2 darstellt, worin R2 Wasserstoff, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1-C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5-C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet.A represents a group of the formulas COOR 2 , CN, CONR 2 2 , OR 2 and / or R 2 , wherein R 2 is hydrogen, a C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group means, where the above radicals may in turn be substituted with halogen, -OH, COOZ, -CN, NZ 2 R is a bond, a divalent C1-C15-alkylene group, divalent C1-C15-alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20- aryl or heteroaryl group, where the above radicals can in turn be substituted with halogen, -OH, COOZ, -CN, NZ 2 , Z independently of one another hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, where the above radicals can in turn be substituted by halogen, -OH, -CN, and x denotes an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
Zu den bevorzugten Phosphonsäuregruppen umfassenden Monomeren gehören unter anderem Alkene, die Phosphonsäuregruppen aufweisen, wie Ethenphosphonsäure, Propenphosphonsäure, Butenphosphonsäure; Acrylsäure- und/oder Methacrylsäure- Verbindungen, die Phosphonsäuregruppen aufweisen, wie beispielsweise 2-Phosphonomethyl-acrylsäure, 2-Phosphonomethyl-methacrylsäure, 2-Phosphonomethyl- acrylsäureamid und 2-Phosphonomethyl-methacrylsäureamid.The preferred monomers comprising phosphonic acid groups include alkenes which have phosphonic acid groups, such as ethenephosphonic acid, propenephosphonic acid, butenephosphonic acid; Acrylic acid and / or methacrylic acid compounds which have phosphonic acid groups, such as, for example, 2-phosphonomethyl-acrylic acid, 2-phosphonomethyl-methacrylic acid, 2-phosphonomethyl-acrylic acid amide and 2-phosphonomethyl-methacrylic acid amide.
Besonders bevorzugt wird handelsübliche Vinylphosphonsäure (Ethenphosphonsäure), wie diese beispielsweise von der Firma Aldrich oder Clahant GmbH erhältlich ist, eingesetzt. Eine bevorzugte Vinylphosphonsäure weist eine Reinheit von mehr als 70%, insbesondere 90 % und besonders bevorzugt mehr als 97% Reinheit auf.Commercial vinylphosphonic acid (ethenephosphonic acid), as is available, for example, from Aldrich or Clahant GmbH, is particularly preferably used. A preferred vinylphosphonic acid has a purity of more than 70%, in particular 90% and particularly preferably more than 97% purity.
Die Phosphonsäuregruppen umfassenden Monomere können des weiteren auch in Form von Derivaten eingesetzt werden, die anschließend in die Säure überführt werden können, wobei die Überführung zur Säure auch in polymerisiertem Zustand erfolgen kann. Zu diesen Derivaten gehören insbesondere die Salze, die Ester, die Amide und die Halogenide der Phosphonsäuregruppen umfassenden Monomere.The monomers comprising phosphonic acid groups can also be used in the form of derivatives which can subsequently be converted into the acid, the conversion to the acid also being able to take place in the polymerized state. These derivatives include in particular the salts, the esters, the amides and the halides of the monomers comprising phosphonic acid groups.
Die in Schritt A) hergestellte Mischung oder die in Schritt I) verwendete Flüssigkeit umfasst vorzugsweise mindestens 20 Gew.-%, insbesondere mindestens 30 Gew.-% und besonders bevorzugt mindestens 50 Gew.-%, bezogen auf das Gesamtgewicht der Mischung, Phosphonsäuregruppen umfassende Monomere.The mixture produced in step A) or the liquid used in step I) preferably comprises at least 20% by weight, in particular at least 30% by weight and particularly preferably at least 50% by weight, based on the total weight of the mixture, comprising phosphonic acid groups monomers.
Die in Schritt A) hergestellte Mischung oder die in Schritt I) eingesetzt Flüssigkeit kann zusätzlich noch weitere organische und/oder anorganische Lösungsmittel enthalten. Zu den organischen Lösungsmitteln gehören insbesondere polar aprotische Lösungsmittel, wie Dimethylsulfoxid (DMSO), Ester, wie Ethylacetat, und polar protische Lösungsmittel, wie Alkohole, wie Ethanol, Propanol, Isopropanol und/oder Butanol. Zu den anorganischen Lösungsmittel zählen insbesondere Wasser, Phosphorsäure und Polyphosphorsäure.The mixture produced in step A) or the liquid used in step I) can additionally contain further organic and / or inorganic solvents. The organic solvents include in particular polar aprotic solvents such as dimethyl sulfoxide (DMSO), esters such as ethyl acetate and polar protic solvents such as alcohols such as ethanol, propanol, isopropanol and / or butanol. The inorganic solvents include in particular water, phosphoric acid and polyphosphoric acid.
Diese können die Verarbeitbarkeit positiv beeinflussen. Insbesondere kann durch Zugabe des organischen Lösungsmittels die Löslichkeit von Polymeren verbessert werden, die beispielsweise in Schritt B) gebildet werden. Der Gehalt an Phosphonsäuregruppen umfassenden Monomeren in solchen Lösungen beträgt im allgemeinen mindestens 5 Gew.-%, vorzugsweise mindestens 10 Gew.-%, besonders bevorzugt zwischen 10 und 97 Gew.-%.These can have a positive impact on processability. In particular, the solubility of polymers which are formed, for example, in step B) can be improved by adding the organic solvent. The content of monomers comprising phosphonic acid groups in such solutions is generally at least 5% by weight, preferably at least 10% by weight, particularly preferably between 10 and 97% by weight.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung können zur Herstellung der Phosphonsäuregruppen umfassenden Polymere Zusammensetzungen verwendet werden, die Sulfonsäuregruppen umfassende Monomere enthalten.According to a particular aspect of the present invention, compositions containing monomers comprising sulfonic acid groups can be used to prepare the polymers comprising phosphonic acid groups.
Sulfonsäuregruppen umfassende Monomere sind in der Fachwelt bekannt. Es handelt sich hierbei um Verbindungen, die mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung und mindestens eine Sulfonsäuregruppe aufweisen. Vorzugsweise weisen die zwei Kohlenstoffatome, die Kohlenstoff-Kohlenstoff-Doppelbindung bilden, mindestens zwei, vorzugsweise 3 Bindungen zu Gruppen auf, die zu einer geringen sterischen Hinderung der Doppelbindung führen. Zu diesen Gruppen gehören unter anderem Wasserstoffatome und Halogenatome, insbesondere Fluoratome. Im Rahmen der vorliegenden Erfindung ergibt sich das Sulfonsäuregruppen umfassende Polymer aus dem Polymerisationsprodukt, das durch Polymerisation des Sulfonsäuregruppen umfassenden Monomers allein oder mit weiteren Monomeren und/oder Vernetzern erhalten wird.Monomers comprising sulfonic acid groups are known in the art. These are compounds which have at least one carbon-carbon double bond and at least one sulfonic acid group. The two carbon atoms which form the carbon-carbon double bond preferably have at least two, preferably 3, bonds to groups which lead to a slight steric hindrance of the double bond. These groups include hydrogen atoms and halogen atoms, especially fluorine atoms. In the context of the present invention, the polymer comprising sulfonic acid groups results from the polymerization product which is obtained by polymerization of the monomer comprising sulfonic acid groups alone or with further monomers and / or crosslinking agents.
Das Sulfonsäuregruppen umfassende Monomer kann ein, zwei, drei oder mehr Kohlenstoff- Kohlenstoff-Doppelbindungen umfassen. Des weiteren kann das Sulfonsäuregruppen umfassende Monomer ein, zwei, drei oder mehr Sulfonsäuregruppen enthalten.The monomer comprising sulfonic acid groups can comprise one, two, three or more carbon-carbon double bonds. Furthermore, the monomer comprising sulfonic acid groups may contain one, two, three or more sulfonic acid groups.
Im allgemeinen enthält das Sulfonsäuregruppen umfassende Monomer 2 bis 20, vorzugsweise 2 bis 10 Kohlenstoffatome.In general, the monomer comprising sulfonic acid groups contains 2 to 20, preferably 2 to 10, carbon atoms.
Bei dem Sulfonsäuregruppen umfassenden Monomer handelt es sich vorzugsweise um Verbindungen der Formel worinThe monomer comprising sulfonic acid groups is preferably a compound of the formula wherein
R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1-C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5-C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,R denotes a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, the above radicals in turn being halogen, -OH, COOZ, -CN, NZ 2 can be substituted,
Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet y eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutetZ independently of one another denotes hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, it being possible for the above radicals themselves to be substituted by halogen, -OH, -CN, and x is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 means y an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10
und/oder der Formel worinand / or the formula wherein
R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1-C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5-C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,R denotes a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, the above radicals in turn being halogen, -OH, COOZ, -CN, NZ 2 can be substituted,
Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutetZ independently of one another denotes hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, it being possible for the above radicals themselves to be substituted by halogen, -OH, -CN, and x is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 means
und/oder der Formel R-(S03Z)x and / or the formula R- (S0 3 Z) x
A worinA wherein
A eine Gruppe der Formeln COOR2, CN, CONR2 2, OR2 und/oder R2 darstellt, worin R2 Wasserstoff, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1-C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5-C20-Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1 -C15-Alkylgruppe, C1 -C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet.A represents a group of the formulas COOR 2 , CN, CONR 2 2 , OR 2 and / or R 2 , wherein R 2 is hydrogen, a C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group means, where the above radicals in turn can be substituted with halogen, -OH, COOZ, -CN, NZ 2 R is a bond, a divalent C1-C15-alkylene group, divalent C1-C15-alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20- Aryl or heteroaryl group, where the above radicals can in turn be substituted with halogen, -OH, COOZ, -CN, NZ 2 , Z independently of one another hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20 -Aryl or heteroaryl group, where the above radicals may in turn be substituted with halogen, -OH, -CN, and x denotes an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
Zu den bevorzugten Sulfonsäuregruppen umfassenden Monomeren gehören unter anderem Alkene, die Sulfonsäuregruppen aufweisen, wie Ethensulfonsäure, Propensulfonsäure, Butensulfonsäure; Acrylsäure- und/oder Methacrylsäure-Verbindungen, die Sulfonsäuregruppen aufweisen, wie beispielsweise 2-Sulfonomethyl-acrylsäure, 2-Sulfonomethyl-methacrylsäüre, 2-Sulfonomethyl-acrylsäureamid und 2-Sulfonomethyl- methacrylsäureamid.The preferred monomers comprising sulfonic acid groups include alkenes which have sulfonic acid groups, such as ethene sulfonic acid, propene sulfonic acid, butene sulfonic acid; Acrylic acid and / or methacrylic acid compounds that have sulfonic acid groups, such as 2-sulfonomethyl-acrylic acid, 2-sulfonomethyl-methacrylic acid, 2-sulfonomethyl-acrylic acid amide and 2-sulfonomethyl-methacrylic acid amide.
Besonders bevorzugt wird handelsübliche Vinylsulfonsäure (Ethensulfonsäure), wie diese beispielsweise von der Firma Aldrich oder Clariant GmbH erhältlich ist, eingesetzt. Eine bevorzugte Vinylsulfonsäure weist eine Reinheit von mehr als 70%, insbesondere 90 % und besonders bevorzugt mehr als 97% Reinheit auf.Commercial vinyl sulfonic acid (ethene sulfonic acid), as is available, for example, from Aldrich or Clariant GmbH, is particularly preferably used. A preferred vinyl sulfonic acid has a purity of more than 70%, in particular 90% and particularly preferably more than 97% purity.
Die Sulfonsäuregruppen umfassenden Monomere können des weiteren auch in Form voη Derivaten eingesetzt werden, die anschließend in die Säure überführt werden können, wobei die Überführung zur Säure auch in polymerisiertem Zustand erfolgen kann. Zu diesen Derivaten gehören insbesondere die Salze, die Ester, die Amide und die Halogenide der Sulfonsäuregruppen umfassenden Monomere.The monomers comprising sulfonic acid groups can also be used in the form of derivatives which can subsequently be converted into the acid, the conversion to the acid also being able to take place in the polymerized state. These derivatives include in particular the salts, the esters, the amides and the halides of the monomers comprising sulfonic acid groups.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung kann das Gewichtsverhältnis von Sulfonsäuregruppen umfassenden Monomeren zu Phosphonsäuregruppen umfassenden Monomeren im Bereich von 100:1 bis 1 :100, vorzugsweise 10:1 bis 1:10 und besonders bevorzugt 2:1 bis 1 :2 liegen.According to a particular aspect of the present invention, the weight ratio of monomers comprising sulfonic acid groups to monomers comprising phosphonic acid groups can be in the range from 100: 1 to 1: 100, preferably 10: 1 to 1:10 and particularly preferably 2: 1 to 1: 2.
In einer weiteren Ausführungsform der Erfindung können bei der Herstellung der Polymermembran zur Vernetzung befähigte Monomere eingesetzt werden. Diese Monomere können der Zusammensetzung gemäß Schritt A) beigefügt werden. Darüber hinaus können die zur Vernetzung befähigten Monomere auch auf das flächige Gebildes gemäß Schritt B) aufgebracht werden. Des weiteren können diese Monomere der Flüssigkeit gemäß Schritt l) zugebenen werden.In a further embodiment of the invention, monomers capable of crosslinking can be used in the production of the polymer membrane. These monomers can be added to the composition according to step A). In addition, the monomers capable of crosslinking can also be applied to the flat structure according to step B). Furthermore, these monomers can be added to the liquid in accordance with step l).
Bei den zur Vernetzung befähigten Monomeren handelt es sich insbesondere um Verbindungen, die mindestens 2 Kohlenstoff-Kohlenstoff Doppelbindungen aufweisen. Bevorzugt werden Diene, Triene, Tetraene, Dimethylacrylate, Trimethylacrylate, Tetramethylacrylate, Diacrylate, Triacrylate, Tetraacrylate.The monomers capable of crosslinking are, in particular, compounds which have at least 2 carbon-carbon double bonds. Dienes, trienes, tetraenes, dimethylacrylates, trimethylacrylates, tetramethylacrylates, diacrylates, triacrylates, tetraacrylates are preferred.
Besonders bevorzugt sind Diene, Triene, Tetraene der FormelDienes, trienes and tetraenes of the formula are particularly preferred
Dimethylacrylate, Trimethylycrylate, Tetramethylacrylate der FormelDimethylacrylates, Trimethylycrylate, Tetramethylacrylate of the formula
Diacrylate, Triacrylate, Tetraacrylate der Formel Diacrylates, triacrylates, tetraacrylates of the formula
worinwherein
R eine C1-C15-Alkylgruppe, C5-C20-Aryl oder Heteroarylgruppe, NR', -S02, PR', Si(R')2 bedeutet, wobei die vorstehenden Reste ihrerseits substituiert sein können, R' unabhängig voneinander Wasserstoff, eine C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, C5-C20-Aryl oder Heteroarylgruppe bedeutet und n mindestens 2 ist.R is a C1-C15-alkyl group, C5-C20-aryl or heteroaryl group, NR ' , -S0 2 , PR ' , Si (R ' ) 2 , where the above radicals can in turn be substituted, R ' independently of one another hydrogen, a C1-C15 alkyl group, C1-C15 alkoxy group, C5-C20 aryl or heteroaryl group and n is at least 2.
Bei den Substituenten des vorstehenden Restes R handelt es sich vorzugsweise um Halogen, Hydroxyl, Carboxy, Carboxyl, Carboxylester, Nitrile, Amine, Silyl, Siloxan Reste.The substituents of the above radical R are preferably halogen, hydroxyl, carboxy, carboxyl, carboxyl esters, nitriles, amines, silyl, siloxane radicals.
Besonders bevorzugte Vernetzer sind Allylmethacrylat, Ethylenglykoldimethacrylat, Diethylenglykoldimethacrylat, Triethylenglykoldimethacrylat, Tetra- und Polyethylenglykoldimethacrylat, 1 ,3-Butandioldimethacrylat, Glycerindimethacrylat, Diurethandimethacrylat, Trimethylpropantrimethacrylat, Epoxyacrylate, beispielsweise Ebacryl, N',N-Methylenbisacrylamid, Carbinol, Butadien, Isopren, Chloropren, Divinylbenzol und/oder Bisphenol-A-dimethylacrylat. Diese Verbindungen sind beispielsweise von Sartomer Company Exton, Pennsylvania unter den Bezeichnungen CN-120, CN104 und CN- 980 kommerziell erhältlich.Particularly preferred crosslinkers are allyl methacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetra- and polyethylene glycol dimethacrylate, 1, 3-butanediol dimethacrylate, glycerol dimethacrylate, diurethane dimethacrylate, trimethylolpropane trimethacrylate, epoxy acrylates, for example Ebacryl, N ', N-methylenebisacrylamide, carbinol, butadiene, isoprene, chloroprene, divinylbenzene and / or bisphenol A dimethylacrylate. These compounds are commercially available, for example, from Sartomer Company Exton, Pennsylvania under the designations CN-120, CN104 and CN-980.
Der Einsatz von Vernetzern ist optional, wobei diese Verbindungen üblich im Bereich zwischen 0,05 bis 30 Gew.-%, vorzugsweise 0,1 bis 20 Gew.-%, besonders bevorzugt 1 und 10 Gew.-%, bezogen auf das Gewicht der Phosphonsäuregruppen umfassenden Monomere, eingesetzt werden können.The use of crosslinking agents is optional, these compounds usually being in the range between 0.05 to 30% by weight, preferably 0.1 to 20% by weight, particularly preferably 1 and 10% by weight, based on the weight of the Monomers comprising phosphonic acid groups can be used.
Die gemäß Schritt A) hergestellte Zusammensetzung oder die in Schritt I) eingesetzte Polymerfolie umfasst mindestens ein Polymer mit aromatischen Sulfonsäuregruppen. Aromatische Sulfonsäuregruppen sind Gruppen, bei denen die Sulfonsäuregruppe (-S03H) kovalent an eine aromatischen oder heteroaromatischen Gruppe gebunden ist. Die aromatische Gruppe kann ein Teil der Hauptkette (back bone) des Polymeren oder ein Teil einer Seitengruppe sein, wobei Polymere mit aromatischen Gruppen in der Hauptkette bevorzugt sind. Die Sulfonsäuregruppen können vielfach auch in Form der Salze eingesetzt werden. Des weiteren können auch Derivate, beispielsweise Ester, insbesondere Methyloder Ethylester, oder Halogenide der Sulfonsäuren verwendet werden, die beim Betrieb der Membran in die Sulfonsäure umgesetzt werden.The composition produced according to step A) or the polymer film used in step I) comprises at least one polymer with aromatic sulfonic acid groups. Aromatic sulfonic acid groups are groups in which the sulfonic acid group (-S0 3 H) is covalently bound to an aromatic or heteroaromatic group. The aromatic group may be part of the backbone of the polymer or part of a side group, with polymers having aromatic groups in the main chain being preferred. The sulfonic acid groups can often also be used in the form of the salts. Furthermore, it is also possible to use derivatives, for example esters, in particular methyl or ethyl esters, or halides of the sulfonic acids which are converted into the sulfonic acid during operation of the membrane.
Erfindungsgemäß bevorzugte aromatische oder heteroaromatische Gruppen leiten sich von Benzol, Naphthalin, Biphenyl, Diphenylether, Diphenylmethan, Diphenyldimethylmethan, Bisphenon, Diphenylsulfon, Thiophen, Furan, Pyrrol, Thiazol, Oxazol, Imidazol, Isothiazol, Isoxazol, Pyrazol, 1 ,3,4-Oxadiazol, 2,5-Diphenyl-1 ,3,4-oxadiazol, 1 ,3,4-Thiadiazol, 1 ,3,4- Triazol, 2,5-Diphenyl-1 ,3,4-triazol, 1 ,2,5-Triphenyl-1 ,3,4-triazol, 1 ,2,4-Oxadiazol, 1 ,2,4- Thiadiazol, 1 ,2,4-Triazol, 1 ,2,3-Thazol, 1 ,2,3,4-Tetrazol, Benzo[b]thiophen, Benzo[b]furan, Indol, Benzo[c]thiophen, Benzo[c]furan, lsoindol, Benzoxazol, Benzothiazol, Benzimidazol, Benzisoxazol, Benzisothiazol, Benzopyrazol, Benzothiadiazol, Benzotriazol, Dibenzofuran, Dibenzothiophen, Carbazol, Pyridin, Bipyridin, Pyrazin, Pyrazol, Pyrimidin, Pyridazin, 1 ,3,5- Triazin, 1 ,2,4-Triazin, 1 ,2,4,5-Triazin, Tetrazin, Chinolin, Isochinolin, Chinoxalin, Chinazolin, Cinnolin, 1 ,8-Naphthyridin, 1 ,5-Naphthyridin, 1 ,6-Naphthyridin, 1 ,7-Naphthyhdin, Phthalazin, Pyridopyrimidin, Purin, Pteridin oder Chinolizin, 4H-Chinolizin, Diphenylether, Anthracen, Benzopyrrol, Benzooxathiadiazol, Benzooxadiazol, Benzopyridin, Benzopyrazin, Benzopyrazidin, Benzopyrimidin, Benzotriazin, Indolizin, Pyridopyridin, Imidazopyrimidin, Pyrazinopyrimidin, Carbazol, Aciridin, Phenazin, Benzochinolin, Phenoxazin, Phenothiazin, Acridizin, Benzopteridin, Phenanthrolin und Phenanthren ab, die gegebenenfalls auch substituiert sein können. Bevorzugte Substituenten sind Halogenatome wie z. B. Fluor, Aminogruppen, Hydroxygruppen oder Alkylgruppen.Aromatic or heteroaromatic groups preferred according to the invention are derived from benzene, naphthalene, biphenyl, diphenyl ether, diphenylmethane, diphenyldimethylmethane, bisphenone, diphenylsulfone, thiophene, furan, pyrrole, thiazole, oxazole, imidazole, isothiazole, Isoxazole, pyrazole, 1, 3,4-oxadiazole, 2,5-diphenyl-1, 3,4-oxadiazole, 1, 3,4-thiadiazole, 1, 3,4-triazole, 2,5-diphenyl-1, 3,4-triazole, 1, 2,5-triphenyl-1, 3,4-triazole, 1, 2,4-oxadiazole, 1, 2,4-thiadiazole, 1, 2,4-triazole, 1, 2, 3-thazole, 1, 2,3,4-tetrazole, benzo [b] thiophene, benzo [b] furan, indole, benzo [c] thiophene, benzo [c] furan, isoindole, benzoxazole, benzothiazole, benzimidazole, benzisoxazole, Benzisothiazole, benzopyrazole, benzothiadiazole, benzotriazole, dibenzofuran, dibenzothiophene, carbazole, pyridine, bipyridine, pyrazine, pyrazole, pyrimidine, pyridazine, 1, 3,5-triazine, 1, 2,4-triazine, 1, 2,4,5- Triazine, tetrazine, quinoline, isoquinoline, quinoxaline, quinazoline, cinnoline, 1, 8-naphthyridine, 1, 5-naphthyridine, 1, 6-naphthyridine, 1, 7-naphthyhdin, phthalazine, pyridopyrimidine, purine, pteridine or quinolizine, 4H- Quinolizine, diphenyl ether, anthracene, benzopyrrole, benzooxathiadiazole, benzooxadiazole, benzopyridine, benzopyrazine, benzopyrazidine, benzopyrimidine, benzotriazine, indolizine, pyridopyridine, Im idazopyrimidine, pyrazinopyrimidine, carbazole, aciridine, phenazine, benzoquinoline, phenoxazine, phenothiazine, acridizine, benzopteridine, phenanthroline and phenanthrene, which can optionally also be substituted. Preferred substituents are halogen atoms such as. B. fluorine, amino groups, hydroxy groups or alkyl groups.
Dabei ist das Substitionsmuster beliebig, im Falle vom Phenylen beispielsweise kann ortho-, meta- und para-Phenylen sein. Besonders bevorzugte Gruppen leiten sich von Benzol und Biphenylen, die gegebenenfalls auch substituiert sein können, ab.The substitution pattern is arbitrary, in the case of phenylene, for example, can be ortho-, meta- and para-phenylene. Particularly preferred groups are derived from benzene and biphenylene, which may also be substituted.
Bevorzugte Alkylgruppen sind kurzkettige Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, wie z. B. Methyl-, Ethyl-, n- oder i-Propyl- und t-Butyl-Gruppen.Preferred alkyl groups are short-chain alkyl groups with 1 to 4 carbon atoms, such as. B. methyl, ethyl, n- or i-propyl and t-butyl groups.
Bevorzugte aromatische Gruppen sind Phenyl- oder Naphthyl-Gruppen. Die Alkylgruppen und die aromatischen Gruppen können substituiert sein.Preferred aromatic groups are phenyl or naphthyl groups. The alkyl groups and the aromatic groups can be substituted.
Die mit Sulfonsäuregruppen modifizierten Polymere besitzen vorzugsweise einen Gehalt an Sulfonsäuregruppen im Bereich von 0,5 bis 3 meq/g, vorzugsweise 0,5 bis 2 meq/g. Dieser Wert wird über die sog. lonenaustauschkapazität (IEC) bestimmt.The polymers modified with sulfonic acid groups preferably have a sulfonic acid group content in the range from 0.5 to 3 meq / g, preferably 0.5 to 2 meq / g. This value is determined via the so-called ion exchange capacity (IEC).
Zur Messung der IEC werden die Sulfonsäuregruppen in die freie Säure überführt. Hierzu wird das Polymere auf bekannte Weise mit Säure behandelt, wobei überschüssige Säure durch Waschen entfernt wird. So wird das sulfonierte Polymer zunächst 2 Stunden in siedendem Wasser behandelt. Anschließend wird überschüssiges Wasser abgetupt und die Probe während 15 Stunden bei 160°C im Vakuumtrockenschrank bei p<1 mbar getrocknet. Dann wird das Trockengewicht der Membran bestimmt. Das so getrocknete Polymer wird dann in DMSO bei 80°C während 1h gelöst. Die Lösung wird anschließend mit 0,1 M NaOH titriert. Aus dem Verbrauch der Säure bis zum Equivalentpunkt und dem Trockengewicht wird dann die lonenaustauschkapazität (IEC) berechnet.To measure the IEC, the sulfonic acid groups are converted into the free acid. For this purpose, the polymer is treated with acid in a known manner, excess acid being removed by washing. The sulfonated polymer is first treated in boiling water for 2 hours. Excess water is then dabbed off and the sample is dried for 15 hours at 160 ° C. in a vacuum drying cabinet at p <1 mbar. Then the dry weight of the membrane is determined. The polymer dried in this way is then dissolved in DMSO at 80 ° C. for 1 hour. The solution is then titrated with 0.1 M NaOH. The ion exchange capacity (IEC) is then calculated from the consumption of the acid up to the equivalent point and the dry weight.
Polymere mit an aromatische Gruppen kovalent gebundene Sulfonsäuregruppen sind in der Fachwelt bekannt. So können Polymer mit aromatischen Sulfonsäuregruppen beispielsweise durch Sulfonierung von Polymeren hergestellt werden. Verfahren zur Sulfonierung von Polymeren sind in F. Kucera et. al. Polymer Engineering and Science1988, Vol. 38, No 5, 783-792 beschrieben. Hierbei können die Sulfonierungsbedingungen so gewählt werden, dass ein niedriger Sulfonierungsgrad entsteht (DE-A-19959289).Polymers with sulfonic acid groups covalently bonded to aromatic groups are known in the art. For example, polymers with aromatic sulfonic acid groups can be produced by sulfonation of polymers. Methods for sulfonating polymers are described in F. Kucera et. al. Polymer Engineering and Science 1988, Vol. 38, No 5, 783-792. The sulfonation conditions can be selected so that a low degree of sulfonation is produced (DE-A-19959289).
Im Hinblick auf Polymere mit aromatischen Sulfonsäuregruppen, deren aromatische Reste Teil der Seitengruppe sind, sei insbesondere auf Polystyrolderivate verwiesen. So beschreibt die Druckschrift US-A-6110616 Copolymere aus Butadien und Styrol und deren anschließende Sulfonierung zur Verwendung für Brennstoffzellen.With regard to polymers with aromatic sulfonic acid groups, the aromatic radicals of which are part of the side group, reference is made in particular to polystyrene derivatives. For example, US-A-6110616 describes copolymers of butadiene and styrene and their subsequent sulfonation for use in fuel cells.
Des weiteren können derartige Polymere auch durch Polyreaktionen von Monomeren erhalten werden, die Säuregruppen umfassen. So können perfluorinierte Polymere wie in US-A-5422411 beschrieben durch Copolymerisation aus Trifluorostyrol und sulfonylmodifiziertem Trifuorostyrol hergestellt werden.Furthermore, such polymers can also be obtained by polyreactions of monomers which comprise acid groups. Thus, perfluorinated polymers as described in US-A-5422411 can be prepared by copolymerization from trifluorostyrene and sulfonyl-modified trifuorostyrene.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung werden hochtemperaturst'abile Thermoplaste eingesetzt, die an aromatische Gruppen gebundene Sulfonsäuregruppen aufweisen. Im allgemeinen weisen derartige Polymere in der Hauptkette aromatische Gruppen auf. So sind sulfonierte Polyetherketone (DE-A-4219077, WO96/01177), sulfonierte Polysulfone (J. Membr. Sei. 83 (1993) p.211) oder sulfoniertes Polyphenylensulfid (DE-A-19527435) bevorzugt.In a particular aspect of the present invention abile thermoplastics are hochtemperaturst 'used which have sulfonic acid groups attached to aromatic groups. In general, such polymers have aromatic groups in the main chain. Thus, sulfonated polyether ketones (DE-A-4219077, WO96 / 01177), sulfonated polysulfones (J. Membr. Sei. 83 (1993) p.211) or sulfonated polyphenylene sulfide (DE-A-19527435) are preferred.
Die zuvor dargelegten Polymere mit an Aromaten gebundenen Sulfonsäuregruppen können einzeln oder als Mischung eingesetzt werden, wobei insbesondere Mischungen bevorzugt sind, die Polymere mit Aromaten in der Hauptkette aufweisen.The polymers set out above with sulfonic acid groups bonded to aromatics can be used individually or as a mixture, with particular preference being given to mixtures which have polymers with aromatics in the main chain.
Das Molekulargewicht der Polymere mit an Aromaten gebundenen Sulfonsäuregruppen kann, je nach Art des Polymeren sowie dessen Verarbeitbarkeit in weiten Bereichen liegen. Vorzugsweise liegt das Gewichtsmittel des Molekulargewichts Mw im Bereich von 5000 bis 10 000 000, insbesondere 10000 bis 1000 000, besonders bevorzugt 15 000 bis 50 000. Gemäß einem besonderen Aspekt der vorliegenden Erfindung werden Polymere mit an Aromaten gebundenen Sulfonsäuregruppen, die einen geringen Polydispersitätsindex Mw/Mn aufweisen. Vorzugsweise liegt der Polydispersitätsindex im Bereich 1 bis 5, insbesondere 1 bis 4.The molecular weight of the polymers with sulfonic acid groups bonded to aromatics can, depending on the type of polymer and its processability, be in wide ranges. The weight average molecular weight M w is preferably in the range from 5,000 to 10,000,000, in particular 10,000 to 1,000,000, particularly preferably 15,000 to 50,000. According to a particular aspect of the present invention, polymers having sulfonic acid groups bonded to aromatics and having a low polydispersity index M w / M n have. The polydispersity index is preferably in the range 1 to 5, in particular 1 to 4.
Zur Anwendung in Brennstoffzellen mit einer Dauergebrauchstemperatur oberhalb 100°C werden solche Polymere mit an aromatische Gruppen gebundene Sulfonsäuregruppen bevorzugt, die eine Glasübergangstemperatur oder Vicat-Erweichungstemperatur VST/A/50 von mindestens 100°C, bevorzugt mindestens 120°C und ganz besonders bevorzugt mindestens 150°C haben. Gemäß einem besonderen Aspekt der vorliegenden Erfindung liegt das Gewichtsverhältnis von Polymer mit an aromatische Gruppen kovalent gebundene Sulfonsäuregruppen zu Phosphonsäuregruppen umfassenden Monomeren im Bereich von 0,1 bis 50, vorzugsweise von 0,2 bis 20, besonders bevorzugt von 1 bis 10.For use in fuel cells with a continuous use temperature above 100 ° C, preference is given to those polymers having sulfonic acid groups bonded to aromatic groups which have a glass transition temperature or Vicat softening temperature VST / A / 50 of at least 100 ° C, preferably at least 120 ° C and very particularly preferably at least 150 ° C. According to a particular aspect of the present invention, the weight ratio of polymer with monomers covalently bonded to aromatic groups to monomers comprising phosphonic acid groups is in the range from 0.1 to 50, preferably from 0.2 to 20, particularly preferably from 1 to 10.
Der in Schritt A) erzeugten Zusammensetzung oder die in Schritt I) verwendete Flüssigkeit kann ein weiteres Polymer zugesetzt werden, das keine an Aromaten gebundene Sulfonsäuregruppen umfasst. Diese Polymer kann unter anderem gelöst, dispergiert oder suspendiert vorliegen.A further polymer can be added to the composition produced in step A) or the liquid used in step I) which does not comprise any sulfonic acid groups bound to aromatics. This polymer can be dissolved, dispersed or suspended, among other things.
Zu den bevorzugten Polymeren gehören unter anderem Polyolefine, wie Poly(chloropren),The preferred polymers include polyolefins such as poly (chloroprene),
Polyacetylen, Polyphenylen, Poly(p-xylylen), Poiyarylmethylen, Polystyrol, Polymethylstyrol,Polyacetylene, polyphenylene, poly (p-xylylene), polyarylmethylene, polystyrene, polymethylstyrene,
Polyvinylalkohol, Polyvinylacetat, Polyvinylether, Polyvinylamin, Poly(N-vinylacetamid),Polyvinyl alcohol, polyvinyl acetate, polyvinyl ether, polyvinylamine, poly (N-vinylacetamide),
Polyvinylimidazol, Polyvinylcarbazol, Polyvinylpyrrolidon, Polyvinylpyridin, Polyvinylchlorid,Polyvinylimidazole, polyvinyl carbazole, polyvinyl pyrrolidone, polyvinyl pyridine, polyvinyl chloride,
Polyvinylidenchlorid, Polytetrafluorethylen, Polyvinyldifluorid, Polyhexafluorpropylen,Polyvinylidene chloride, polytetrafluoroethylene, polyvinyl difluoride, polyhexafluoropropylene,
Polyethylen-tetrafluorethylen, Copolymere von PTFE mit Hexafluoropropylen, mitPolyethylene tetrafluoroethylene, copolymers of PTFE with hexafluoropropylene, with
Perfluorpropylvinylether, mit Trifluoronitrosomethan, mit Carbalkoxy-perfluoralkoxyvinylether,Perfluoropropyl vinyl ether, with trifluoronitrosomethane, with carbalkoxy-perfluoroalkoxy vinyl ether,
Polychlortrifluorethylen, Polyvinylfluorid, Polyvinylidenfluorid, Polyacrolein, Polyacrylamid,Polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, polyacrolein, polyacrylamide,
Polyacrylnitril, Polycyanacrylate, Polymethacrylimid, Cycloolefinische Copolymere, insbesondere aus Norbomen;Polyacrylonitrile, polycyanoacrylates, polymethacrylimide, cycloolefinic copolymers, in particular from norbomene;
Polymere mit C-O-Bindungen in der Hauptkette, beispielsweisePolymers with C-O bonds in the main chain, for example
Polyacetal, Polyoxymethylen, Polyether, Polypropylenoxid, Polyepichlorhydrin,Polyacetal, polyoxymethylene, polyether, polypropylene oxide, polyepichlorohydrin,
Polytetrahydrofuran, Polyphenylenoxid, Polyetherketon, Polyetheretherketon,Polytetrahydrofuran, polyphenylene oxide, polyether ketone, polyether ether ketone,
Polyetherketonketon, Polyetheretherketonketon, PolyetherketonetherketonketonPolyether ketone ketone, polyether ether ketone ketone, polyether ketone ether ketone ketone
, Polyester, insbesondere Polyhydroxyessigsäure, Polyethylenterephthalat,, Polyester, in particular polyhydroxyacetic acid, polyethylene terephthalate,
Polybutylenterephthalat, Polyhydroxybenzoat, Polyhydroxypropionsäure, Polypropionsäure,Polybutylene terephthalate, polyhydroxybenzoate, polyhydroxypropionic acid, polypropionic acid,
Polypivalolacton, Polycaprolacton, Furan-Harze, Phenol-Aryl-Harze, Polymalonsäure,Polypivalolactone, polycaprolactone, furan resins, phenol aryl resins, polymalonic acid,
Polycarbonat;polycarbonate;
Polymere C-S-Bindungen in der Hauptkette, beispielsweise Polysulfidether,Polymeric C-S bonds in the main chain, for example polysulfide ether,
Polyphenylensulfid, Polyethersulfon, Polysulfon, Polyetherethersulfon, Polyarlyethersulfon,Polyphenylene sulfide, polyether sulfone, polysulfone, polyether ether sulfone, polyaryl ether sulfone,
Polyphenylensulfon, Polyphenylensulfidsulfon, Poly(phenyIsulfid-1 ,4-phenylen;Polyphenylene sulfone, polyphenylene sulfide sulfone, poly (phenylisulfide-1,4-phenylene;
Polymere C-N-Bindungen in der Hauptkette, beispielsweisePolymeric C-N bonds in the main chain, for example
Polyimine, Polyisocyanide, Polyetherirnin.'Polyetherimide, Poly(trifluoro-methyl- bis(phthalimid)-phenyl, Polyanilin, Polyaramide, Polyamide, Polyhydrazide, Polyurethane,Polyimines, polyisocyanides, polyether brain. '' Polyetherimides, poly (trifluoromethyl bis (phthalimide) phenyl, polyaniline, polyaramides, polyamides, polyhydrazides, polyurethanes,
Polyimide, Polyazole, Polyazoletherketon, Polyhamstoffe, Polyazine;Polyimides, polyazoles, polyazole ether ketone, polyureas, polyazines;
Flüssigkristalline Polymere, insbesondere Vectra sowieLiquid crystalline polymers, especially Vectra as well
Anorganische Polymere, beispielsweise Polysilane, Polycarbosilane, Polysiloxane,Inorganic polymers, for example polysilanes, polycarbosilanes, polysiloxanes,
Polykieselsäure, Polysilikate, Silicone, Polyphosphazene und Polythiazyl.Polysilicic acid, polysilicates, silicones, polyphosphazenes and polythiazyl.
Diese Polymere können einzeln oder als Mischung von zwei, drei oder mehreren Polymeren eingesetzt werden. Besonders bevorzugt sind Polymere die mindestens ein Stickstoffatom, Sauerstoffatom und/oder Schwefelatom in einer Wiederholungseinheit enthalten. Insbesondere bevorzugt sind Polymere, die mindestens einen aromatischen Ring mit mindestens einem Stickstoff-, Sauerstoff- und/oder Schwefelheteroatom pro Wiederholungseinheit enthalten. Innerhalb dieser Gruppe sind insbesondere Polymere auf Basis von Polyazolen bevorzugt. Diese basischen Polyazol-Polymere enthalten mindestens einen aromatischen Ring mit mindestens einem Stickstoffheteroatom pro Wiederholungseinheit.These polymers can be used individually or as a mixture of two, three or more polymers. Polymers which contain at least one nitrogen atom, oxygen atom and / or sulfur atom in a repeating unit are particularly preferred. Particularly preferred are polymers which contain at least one aromatic ring with at least one nitrogen, oxygen and / or sulfur heteroatom per repeating unit. Polymers based on polyazoles are particularly preferred within this group. These basic polyazole polymers contain at least one aromatic ring with at least one nitrogen heteroatom per repeat unit.
Bei dem aromatischen Ring handelt es sich vorzugsweise um einen fünf- oder sechsgliedrigen Ring mit eins bis drei Stickstoffatomen, der mit einem anderen Ring, insbesondere einem anderen aromatischen Ring, anelliert sein kann.The aromatic ring is preferably a five- or six-membered ring with one to three nitrogen atoms, which can be fused to another ring, in particular another aromatic ring.
Polymere auf Basis von Polyazol enthalten im allgemeinen wiederkehrende Azoleinheiten der allgemeinen Formel (I) und/oder (II) und/oder (III) und/oder (IV) und/oder (V) und/oder (VI) und/oder (VII) und/oder (VIII) und/oder (IX) und/oder (X) und/oder (XI) und/oder (XII) und/oder (XIII) und/oder (XIV) und/oder (XV) und/oder (XVI) und/oder (XVI) und/oder (XVII) und/oder (XVIII) und/oder (XIX) und/oder (XX) und/oder (XXI) und/oder (XXII) Polymers based on polyazole generally contain recurring azole units of the general formula (I) and / or (II) and / or (III) and / or (IV) and / or (V) and / or (VI) and / or ( VII) and / or (VIII) and / or (IX) and / or (X) and / or (XI) and / or (XII) and / or (XIII) and / or (XIV) and / or (XV) and / or (XVI) and / or (XVI) and / or (XVII) and / or (XVIII) and / or (XIX) and / or (XX) and / or (XXI) and / or (XXII)
N-N (V) ^X^ n NN (V) ^ X ^ n
--Ar7-πrAr7- --Ar 7 - πr Ar 7 -
RR
worin wherein
Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar1 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar2 gleich oder verschieden sind und für eine zwei oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar3 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar4 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar5 gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar6 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar7 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar8 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar9 gleich oder verschieden sind und für eine zwei- oder drei- oder vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar10 gleich oder verschieden sind und für eine zwei- oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar11 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkemig sein kann, X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine Aminogruppe, die ein Wasserstoffatom, eine 1- 20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt R gleich oder verschieden für Wasserstoff, eine Alkylgruppe und eine aromatische Gruppe steht gleich oder verschieden für Wasserstoff, eine Alkylgruppe und eine aromatische Gruppe steht mit der Maßgabe, dass R in Formel XX eine divalente Gruppe ist, und n, m eine ganze Zahl größer gleich 10, bevorzugt größer gleich 100 ist.Ar are the same or different and for a tetra-bonded aromatic or heteroaromatic group, which can be mono- or polynuclear, Ar 1 are the same or different and for a divalent aromatic or heteroaromatic group, which can be mono- or polynuclear, Ar 2 are the same or different Ar 3 are the same or different for a two or three-membered aromatic or heteroaromatic group, which may be mono- or polynuclear, and for a tridentic aromatic or heteroaromatic group, which may be single or polynuclear, Ar 4 are the same or different and for a three-membered aromatic or heteroaromatic group which may be mono- or polynuclear, Ar 5 are the same or different and for a tetra-aromatic or heteroaromatic group which may be mono- or polynuclear, Ar 6 are the same or different and for a divalent aromatic or heteroaromatic group, which can be mononuclear or polynuclear, Ar 7 identical or ve are different and for a divalent aromatic or heteroaromatic group, which can be mono- or polynuclear, Ar 8 are the same or different and for a trivalent aromatic or heteroaromatic group, which can be mono- or polynuclear, Ar 9 are the same or different and for a bi- or tri- or tetra-bonded aromatic or heteroaromatic group, which may be mono- or polynuclear, Ar 10 are the same or different and, for a di- or tri-bonded aromatic or heteroaromatic group, which may be mono- or polynuclear, Ar 11 is the same or are different and for a divalent aromatic or heteroaromatic group, which may be mono- or polynuclear, X is the same or different and for oxygen, sulfur or an amino group which has a hydrogen atom, a group having 1-20 carbon atoms, preferably a branched or is not branched alkyl or alkoxy group, or an aryl group as a further radical R is identical or he is different from hydrogen, an alkyl group and an aromatic group is the same or different is hydrogen, an alkyl group and an aromatic group with the proviso that R in formula XX is a divalent group, and n, m is an integer greater than or equal to 10, is preferably greater than or equal to 100.
Erfindungsgemäß bevorzugte aromatische oder heteroaromatische Gruppen leiten sich von Benzol, Naphthalin, Biphenyl, Diphenylether, Diphenylmethan, Diphenyldimethylmethan, Bisphenon, Diphenylsulfon, Thiophen, Furan, Pyrrol, Thiazol, Oxazol, Imidazol, Isothiazol, Isoxazol, Pyrazol, 1 ,3,4-Oxadiazol, 2,5-Diphenyl-1 ,3,4-oxadiazoI, 1 ,3,4-Thiadiazol, 1 ,3,4- Triazol, 2,5-DiphenyI-1 ,3,4-triazol, 1 ,2,5-Triphenyl-1 ,3,4-triazol, 1 ,2,4-Oxadiazol, 1 ,2,4- Thiadiazol, 1 ,2,4-Triazol, 1 ,2,3-Triazol, 1 ,2,3,4-Tetrazol, Benzo[b]thiophen, Benzo[b]furan, Indol, Benzo[c]thiophen, Benzo[c]furan, Isoindol, Benzoxazol, Benzothiazol, Benzimidazol, Benzisoxazol, Benzisothiazol, Benzopyrazol, Benzothiadiazol, Benzotriazol, Dibenzofuran, Dibenzothiophen, Carbazol, Pyridin, Bipyridin, Pyrazin, Pyrazol, Pyrimidin, Pyridazin, 1 ,3,5- Triazin, ,2,4-Triazin, 1 ,2,4,5-Triazin, Tetrazin, Chinolin, Isochinolin, Chinoxalin, Chinazolin, Cinnolin, 1 ,8-Naphthyhdin, 1 ,5-Naphthyridin, 1 ,6-Naphthyridin, 1 ,7-Naphthyridin, Phthalazin, Pyridopyrimidin, Purin, Ptehdin oder Chinolizin, 4H-Chinolizin, Diphenylether, Anthracen, Benzopyrrol, Benzooxathiadiazol, Benzooxadiazol, Benzopyridin, Benzopyrazin, Benzopyrazidin, Benzopyrimidin, Benzotriazin, Indolizin, Pyridopyridin, Imidazopyrimidin, Pyrazinopyrimidin, Carbazol, Aciridin, Phenazin, Benzochinolin, Phenoxazin, Phenothiazin, Achdizin, Benzopteridin, Phenanthrolin und Phenanthren ab, die gegebenenfalls auch substituiert sein können.Aromatic or heteroaromatic groups preferred according to the invention are derived from benzene, naphthalene, biphenyl, diphenyl ether, diphenylmethane, diphenyldimethylmethane, bisphenone, diphenylsulfone, thiophene, furan, pyrrole, thiazole, oxazole, imidazole, isothiazole, isoxazole, 3,4-oxazole, pyrazole , 2,5-diphenyl-1, 3,4-oxadiazoI, 1, 3,4-thiadiazole, 1, 3,4-triazole, 2,5-diphenyI-1, 3,4-triazole, 1, 2.5 -Triphenyl-1, 3,4-triazole, 1, 2,4-oxadiazole, 1, 2,4-thiadiazole, 1, 2,4-triazole, 1, 2,3-triazole, 1, 2,3,4 -Tetrazole, Benzo [b] thiophene, Benzo [b] furan, Indole, benzo [c] thiophene, benzo [c] furan, isoindole, benzoxazole, benzothiazole, benzimidazole, benzisoxazole, benzisothiazole, benzopyrazole, benzothiadiazole, benzotriazole, dibenzofuran, dibenzothiophene, carbazole, pyridine, bipyridine, pyridine, pyridine, pyridine, pyrazine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyridine, pyrazine 1, 3,5-triazine,, 2,4-triazine, 1, 2,4,5-triazine, tetrazine, quinoline, isoquinoline, quinoxaline, quinazoline, cinnoline, 1, 8-naphthyhdin, 1, 5-naphthyridine, 1 , 6-naphthyridine, 1, 7-naphthyridine, phthalazine, pyridopyrimidine, purine, ptehdin or quinolizine, 4H-quinolizine, diphenyl ether, anthracene, benzopyrrole, benzooxathiadiazole, benzooxadiazole, benzopyridine, benzopyrazine, benzopyimididine, benzopyrazidine, , Pyrazinopyrimidine, carbazole, aciridine, phenazine, benzoquinoline, phenoxazine, phenothiazine, achdizine, benzopteridine, phenanthroline and phenanthrene, which can optionally also be substituted.
Dabei ist das Substitionsmuster von Ar1, Ar4, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11 beliebig, im Falle vom Phenylen beispielsweise kann Ar1, Ar4, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11 ortho-, meta- und para-Phenylen sein. Besonders bevorzugte Gruppen leiten sich von Benzol und Biphenylen, die gegebenenfalls auch substituiert sein können, ab.The substitution pattern of Ar 1 , Ar 4 , Ar 6 , Ar 7 , Ar 8 , Ar 9 , Ar 10 , Ar 11 is arbitrary, in the case of phenylene, for example, Ar 1 , Ar 4 , Ar 6 , Ar 7 , Ar 8 , Ar 9 , Ar 10 , Ar 11 are ortho-, meta- and para-phenylene. Particularly preferred groups are derived from benzene and biphenylene, which may also be substituted.
Bevorzugte Alkylgruppen sind kurzkettige Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, wie z. B. Methyl-, Ethyl-, n- oder i-Propyl- und t-Butyl-Gruppen.Preferred alkyl groups are short-chain alkyl groups with 1 to 4 carbon atoms, such as. B. methyl, ethyl, n- or i-propyl and t-butyl groups.
Bevorzugte aromatische Gruppen sind Phenyl- oder Naphthyl-Gruppen. Die Alkylgruppen und die aromatischen Gruppen können substituiert sein.Preferred aromatic groups are phenyl or naphthyl groups. The alkyl groups and the aromatic groups can be substituted.
Bevorzugte Substituenten sind Halogenatome wie z. B. Fluor, Aminogruppen, Hydroxygruppen oder kurzkettige Alkylgruppen wie z. B. Methyl- oder Ethylgruppen.Preferred substituents are halogen atoms such as. B. fluorine, amino groups, hydroxyl groups or short-chain alkyl groups such as. B. methyl or ethyl groups.
Bevorzugt sind Polyazole mit wiederkehrenden Einheiten der Formel (I) bei denen die Reste X innerhalb einer wiederkehrenden Einheit gleich sind.Preference is given to polyazoles having repeating units of the formula (I) in which the radicals X are the same within a repeating unit.
Die Polyazole können grundsätzlich auch unterschiedliche wiederkehrende Einheiten aufweisen, die sich beispielsweise in ihrem Rest X unterscheiden. Vorzugsweise jedoch weist es nur gleiche Reste X in einer wiederkehrenden Einheit auf.In principle, the polyazoles can also have different recurring units which differ, for example, in their X radical. However, it preferably has only the same X radicals in a recurring unit.
Weitere bevorzugte Polyazol-Polymere sind Polyimidazole, Polybenzthiazole, Polybenzoxazole, Polyoxadiazole, Pölyquinoxaiines, Polythiadiazole Poly(pyridine), Poly(pyrimidine), und Poly(tetrazapyrene).Other preferred polyazole polymers are polyimidazoles, polybenzthiazoles, polybenzoxazoles, polyoxadiazoles, polyquinoxaiines, polythiadiazoles poly (pyridines), poly (pyrimidines), and poly (tetrazapyrenes).
In einer weiteren Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Copolymer oder ein Blend, das mindestens zwei Einheiten der Formel (I) bis (XXII) enthält, die sich voneinander unterscheiden. Die Polymere können als Blockcopolymere (Diblock, Triblock), statistische Copolymere, periodische Copolymere und/oder alternierende Polymere vorliegen. In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Polyazol, das nur Einheiten der Formel (I) und/oder (II) enthält.In a further embodiment of the present invention, the polymer containing recurring azole units is a copolymer or a blend which contains at least two units of the formulas (I) to (XXII) which differ from one another. The polymers can be present as block copolymers (diblock, triblock), statistical copolymers, periodic copolymers and / or alternating polymers. In a particularly preferred embodiment of the present invention, the polymer containing recurring azole units is a polyazole which contains only units of the formula (I) and / or (II).
Die Anzahl der wiederkehrende Azoleinheiten im Polymer ist vorzugsweise eine ganze Zahl größer gleich 10. Besonders bevorzugte Polymere enthalten mindestens 00 wiederkehrende Azoleinheiten.The number of repeating azole units in the polymer is preferably an integer greater than or equal to 10. Particularly preferred polymers contain at least 00 repeating azole units.
Im Rahmen der vorliegenden Erfindung sind Polymere enthaltend wiederkehrenden Benzimidazoleinheiten bevorzugt. Einige Beispiele der äußerst zweckmäßigen Polymere enthaltend wiederkehrenden Benzimidazoleinheiten werden durch die nachfolgende Formeln wiedergegeben:In the context of the present invention, polymers containing recurring benzimidazole units are preferred. Some examples of the extremely useful polymers containing recurring benzimidazole units are represented by the following formulas:
HH
wobei n und m eine ganze Zahl größer gleich 10, vorzugsweise größer gleich 100 ist.where n and m is an integer greater than or equal to 10, preferably greater than or equal to 100.
Weitere bevorzugte Polyazol-Polymere sind Polyimidazole, Polybenzimidazoletherketon, Polybenzthiazole, Polybenzoxazole, Polytriazole, Polyoxadiazole, Polythiadiazole, Polypyrazole, Polyquinoxalines, Poly(pyridine), Poly(pyrimidine), und Poly(tetrazapyrene). Bevorzugte Polyazole zeichnen sich durch ein hohes Molekulargewicht aus. Dies gilt insbesondere für die Polybenzimidazole. Gemessen als Intrinsische Viskosität beträgt diese vorzugsweise mindestens 0,2 dl/g, bevorzugt 0,7 bis 10 dl/g, insbesondere 0,8 bis 5 dl/g.Further preferred polyazole polymers are polyimidazoles, polybenzimidazole ether ketone, polybenzthiazoles, polybenzoxazoles, polytriazoles, polyoxadiazoles, polythiadiazoles, polypyrazoles, polyquinoxalines, poly (pyridines), poly (pyrimidines), and poly (tetrazapyrenes). Preferred polyazoles are distinguished by a high molecular weight. This applies in particular to the polybenzimidazoles. Measured as intrinsic viscosity, this is preferably at least 0.2 dl / g, preferably 0.7 to 10 dl / g, in particular 0.8 to 5 dl / g.
Besonders bevorzugt ist Celazole der Fa. Celanese. Die Eigenschaften der Polymerfolie und Polymermembran können durch Sieben des Ausgangspolymers, wie in der deutschen Patentanmeldung Nr. 10129458.1 beschrieben, verbessert werden.Celazole from Celanese is particularly preferred. The properties of the polymer film and polymer membrane can be improved by sieving the starting polymer, as described in German patent application No. 10129458.1.
Die in Schritt A) hergestellte Mischung oder die in Schritt I) eingesetzte Flüssigkeit kann zusätzlich noch weitere organische und/oder anorganische Lösungsmittel enthalten. Zu den organischen Lösungsmitteln gehören insbesondere polar aprotische Lösungsmittel, wie Dimethylsulfoxid (DMSO), Ester, wie Ethylacetat, und polar protische Lösungsmittel, wie Alkohole, wie Ethanol, Propanol, Isopropanol und/oder Butanol. Zu den anorganischen Lösungsmittel zählen insbesondere Wasser, Phosphorsäure und Polyphosphorsäure. Diese können die Verarbeitbarkeit positiv beeinflussen. So kann beispielsweise die Rheologie der Lösung verbessert werden; so dass diese leichter extrudiert oder geräkelt werden kann.The mixture produced in step A) or the liquid used in step I) can additionally contain further organic and / or inorganic solvents. The organic solvents include in particular polar aprotic solvents such as dimethyl sulfoxide (DMSO), esters such as ethyl acetate and polar protic solvents such as alcohols such as ethanol, propanol, isopropanol and / or butanol. The inorganic solvents include in particular water, phosphoric acid and polyphosphoric acid. These can have a positive impact on processability. For example, the rheology of the solution can be improved; so that it can be extruded or crocheted more easily.
Zur weiteren Verbesserung der anwendungstechnischen Eigenschaften können der Membran zusätzlich noch Füllstoffe, insbesondere protonenleitende Füllstoffe, sowie zusätzliche Säuren zugesetzt werden. Derartige Stoffe weisen vorzugsweise eine Eigenleitfähigkeit bei 100°C mindestens 10"6 S/cm, insbesondere 10"5 S/cm auf. Die Zugabe kann beispielsweise bei Schritt A) und/oder Schritt B) bzw. Schritt I) erfolgen. Des weiteren können diese Additive, falls diese in flüssiger Form vorliegen, auch nach der Polymerisation gemäß Schritt C) bzw. Schritt II) beigefügt werden.To further improve the application properties, fillers, in particular proton-conducting fillers, and additional acids can also be added to the membrane. Such substances preferably have an intrinsic conductivity at 100 ° C. of at least 10 "6 S / cm, in particular 10 " 5 S / cm. The addition can take place, for example, in step A) and / or step B) or step I). Furthermore, these additives, if they are in liquid form, can also be added after the polymerization in step C) or step II).
Nicht limitierende Beispiele für Protonenleitende Füllstoffe sindNon-limiting examples of proton-conducting fillers are
Sulfate wie: CsHS04, Fe(S04)2, (NH4)3H(S04)2, LiHS04, NaHS04, KHS04, RbS04, LiN2H5S04, NH4HS04, Phosphate wie Zr3(P04)4, Zr(HP04)2, HZr2(P04)3, U02P04.3H20, H8U02P04, Ce(HP04)2, . Ti(HP04)2, KH2PQ4, NaH2P04, LiH2P04, NH4H2P04, CsH2P04, CaHP04, MgHP04, HSbP2Oδ, HSb3P20ι , H5Sb5P2O20, Polysäure wie H3PW1204o.nH20 (n=21-29), H3SiW12O40.nH2O (n=21-29), HxW03, HSbW06, H3PMo12O40, H2Sb40n, HTaW06, HNb03, HTiNb05, HTiTa05, HSbTe06, H5Ti4Og, HSb03, H2Mo04 Selenite und Arsenide wie (NH4)3H(Se04)2, U02As04, (NH4)3H(Se04)2, KH2As04, Cs3H(Se04)2, Rb3H(Se04)2, Phosphide wie ZrP, TiP, HfPSulfates such as: CsHS0 4 , Fe (S0 4 ) 2 , (NH 4 ) 3 H (S0 4 ) 2 , LiHS0 4 , NaHS0 4 , KHS0 4 , RbS0 4 , LiN 2 H 5 S0 4 , NH 4 HS0 4 , phosphates like Zr 3 (P0 4 ) 4 , Zr (HP0 4 ) 2 , HZr 2 (P0 4 ) 3 , U0 2 P0 4 .3H 2 0, H 8 U0 2 P0 4 , Ce (HP0 4 ) 2 ,. Ti (HP0 4 ) 2 , KH 2 PQ 4 , NaH 2 P0 4 , LiH 2 P0 4 , NH 4 H 2 P0 4 , CsH 2 P0 4 , CaHP0 4 , MgHP0 4 , HSbP 2 O δ , HSb 3 P 2 0ι , H 5 Sb 5 P 2 O 20 , polyacid such as H 3 PW 12 0 4 or nH 2 0 (n = 21-29), H 3 SiW 12 O 40 .nH 2 O (n = 21-29), H x W0 3 , HSbW0 6 , H 3 PMo 12 O 40 , H 2 Sb 4 0n, HTaW0 6 , HNb0 3 , HTiNb0 5 , HTiTa0 5 , HSbTe0 6 , H 5 Ti 4 O g , HSb0 3 , H 2 Mo0 4 Selenite and arsenides such as (NH 4 ) 3 H (Se0 4 ) 2 , U0 2 As0 4 , (NH 4 ) 3 H (Se0 4 ) 2 , KH 2 As0 4 , Cs 3 H (Se0 4 ) 2 , Rb 3 H ( Se0 4 ) 2 , phosphides such as ZrP, TiP, HfP
Oxide wie Al203, Sb205, Th02, Sn02, Zr02, Mo03 Oxides such as Al 2 0 3 , Sb 2 0 5 , Th0 2 , Sn0 2 , Zr0 2 , Mo0 3
Silikate wie Zeolithe, Zeolithe(NH4+), Schichtsilikate, Gerüstsilikate, H-Natrolite, H- Mordenite, NH4-Analcine, NH4-Sodalite, NH4-Gallate, H-Montmorillonite Säuren wie HCI04, SbF5 Füllstoffe wie Carbide, insbesondere SiC, Si3N4, Fasern, insbesondere Glasfasern, Glaspulvern und/oder Polymerfasern, bevorzugt auf Basis von Polyazolen.Silicates such as zeolites, zeolites (NH 4 +), layered silicates, framework silicates, H-natrolites, H-mordenites, NH 4 -analyses, NH 4 -sodalites, NH 4 -galates, H-montmorillonites, acids such as HCI0 4 , SbF 5 Fillers such as carbides, in particular SiC, Si 3 N 4 , fibers, in particular glass fibers, glass powders and / or polymer fibers, preferably based on polyazoles.
Diese Additive können in der protonenleitenden Polymermembran in üblichen Mengen enthalten sein, wobei jedoch die positiven Eigenschaften, wie hohe Leitfähigkeit, hohe Lebensdauer und hohe mechanische Stabilität der Membran durch Zugabe von zu großen Mengen an Additiven nicht allzu stark beeinträchtigt werden sollten, im allgemeinen umfaßt die Membran nach der Polymerisation gemäß Schritt C) bzw. Schritt II) höchstens 80 Gew.-%, vorzugsweise höchstens 50 Gew.-% und besonders bevorzugt höchstens 20 Gew.-% Additive.These additives can be present in the proton-conducting polymer membrane in customary amounts, but the positive properties, such as high conductivity, long service life and high mechanical stability of the membrane, should not be adversely affected by the addition of too large amounts of additives, generally including Membrane after the polymerization in step C) or step II) at most 80% by weight, preferably at most 50% by weight and particularly preferably at most 20% by weight of additives.
Als weiteres kann diese Membran auch perfluorierte Sulfonsäure-Additive (vorzugsweise 0,1-20 Gew.-%, bevorzugt 0,2-15 Gew.-%, ganz bevorzugt 0,2- 10 Gew.-%) enthalten. Diese Additive führen zur Leistungsverbesserung, in der Nähe der Kathode zur Erhöhung der Sauerstofflöslichkeit und Sauerstoffdiffusion und zur Verringerung der Absorption von Phosphorsäure und Phosphat zu Platin. (Eiectroiyte additives for phosphoric acid fuel cells. Gang, Xiao; Hjuler, H. A.; Olsen, O; Berg, R. W.; Bjerrum, N. J.. Chem. Dep. A, Tech. Univ. Denmark, Lyngby, Den. J. Electrochem. Soc. (1993), 140(4), 896-902 und Perfluorosulfonimide as an additive in phosphoric acid fuel cell. Razaq, M.; Razaq, A.; Yeager, E.; DesMarteau, Darryl D.; Singh, S. Gase Cent. Electrochem. Sei., Gase West. Reserve Univ., Cleveland, OH, USA. J. Electrochem. Soc. (1989), 136(2), 385-90.) Nicht limitierende Beispiele für perfluorierte Suifonsäureadditive sind: Trifluomethansulfonsäure, Kaliumtrifluormethansuifonat, Natriumtrifluormethansulfonat, Lithiumtrifluormethansulfonat, Ammoniumtrifluormethansulfonat, Kaliumperfluorohexansulfonat, Natriumperfluorohexansulfonat, Lithiumperfluorohexansulfonat, Ammoniumperfluorohexansulfonat, Perfluorohexansulfonsäure, Kaliumnonafluorbutansulfonat, Natriumnonafluorbutansulfonat, Lithiumnonafluorbutansulfonat, Ammoniumnonafluorbutansulfonat, Cäsiumnonafluorbutansulfonat, Triethylammoniumperfluorohexasulfonat und Perflurosulfoimide.Furthermore, this membrane can also contain perfluorinated sulfonic acid additives (preferably 0.1-20% by weight, preferably 0.2-15% by weight, very preferably 0.2-10% by weight). These additives improve performance, increase proximity to the cathode to increase oxygen solubility and diffusion, and decrease the absorption of phosphoric acid and phosphate to platinum. (Eiectroiyte additives for phosphoric acid fuel cells. Gang, Xiao; Hjuler, HA; Olsen, O; Berg, RW; Bjerrum, NJ. Chem. Dep. A, Tech. Univ. Denmark, Lyngby, Den. J. Electrochem. Soc . (1993), 140 (4), 896-902 and Perfluorosulfonimide as an additive in phosphoric acid fuel cell. Razaq, M .; Razaq, A .; Yeager, E .; DesMarteau, Darryl D .; Singh, S. Gase Cent. Electrochem. Sei., Gase West. Reserve Univ., Cleveland, OH, USA. J. Electrochem. Soc. (1989), 136 (2), 385-90.) Non-limiting examples of perfluorinated suifonic acid additives are: trifluomethanesulfonic acid, Kaliumtrifluormethansuifonat, sodium trifluoromethanesulfonate, lithium, Ammoniumtrifluormethansulfonat, Kaliumperfluorohexansulfonat, Natriumperfluorohexansulfonat perfluorohexanesulphonate, lithium, ammonium perfluorohexanesulphonate, perfluorohexanesulphonic acid, potassium nonafluorobutanesulphonate, Natriumnonafluorbutansulfonat, Lithiumnonafluorbutansulfonat, Ammoniumnonafluorbutansulfonat, Cäsiumnonafluorbutansulf onate, triethylammonium perfluorohexasulfonate and perflurosulfoimide.
Die Bildung des flächigen Gebildes gemäß Schritt B) erfolgt mittels an sich bekannter Maßnahmen (Gießen, Sprühen, Rakeln, Extrusion) die aus dem Stand der Technik zur Polymerfilm-Herstellung bekannt sind. Als Träger sind alle unter den Bedingungen als inert zu bezeichnenden Träger geeignet. Zu diesen Trägern gehören insbesondere Folien aus Polyethylenterephthalat (PET), Polytetrafluorethylen (PTFE), Polyhexafluorpropylen, Copolymere von PTFE mit Hexafluoropropylen, Polyimiden, Polyphenylensulfiden (PPS) und Polypropylen (PP).The formation of the flat structure according to step B) takes place by means of measures known per se (casting, spraying, knife coating, extrusion) which are known from the prior art for polymer film production. Suitable carriers are all carriers which are inert under the conditions. These carriers include, in particular, films made from polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyhexafluoropropylene, copolymers of PTFE with hexafluoropropylene, polyimides, polyphenylene sulfides (PPS) and polypropylene (PP).
Die Dicke des flächigen Gebildes gemäß Schritt B) beträgt vorzugsweise zwischen 10 und 4000 μm, vorzugsweise zwischen 15 und 3500 μm, insbesondere zwischen 20 und 3000 μm, besonders bevorzugt zwischen 30 und 1500μm und ganz besonders bevorzugt zwischen 50 und 1200 μm.The thickness of the flat structure according to step B) is preferably between 10 and 4000 μm, preferably between 15 and 3500 μm, in particular between 20 and 3000 μm, particularly preferably between 30 and 1500 μm and very particularly preferably between 50 and 1200 μm.
Die Polymerisation der Phosphonsäuregruppen umfassenden Monomere in Schritt C) bzw. Schritt II) erfolgt vorzugsweise radikalisch. Die Radikalbildung kann thermisch, photochemisch, chemisch und/oder elektrochemisch erfolgen.The polymerization of the monomers comprising phosphonic acid groups in step C) or step II) is preferably carried out by free radicals. The radical formation can take place thermally, photochemically, chemically and / or electrochemically.
Beispielsweise kann eine Starterlösung, die mindestens eine zur Bildung von Radikalen befähigte Substanz enthält, nach der Erwärmung der Mischung gemäß Schritt A) der Mischung beigefügt werden. Des weiteren eine Starterlösung auf das nach Schritt B) erhaltene flächige Gebilde aufgebracht werden. Dies kann mittels an sich bekannter Maßnahmen (z.B. Sprühen, Tauchen etc.) die aus dem Stand der Technik bekannt sind, erfolgen. Bei Herstellung der Membran durch Quellen kann der Flüssigkeit eine Starterlösung beigefügt werden. Diese kann auch nach dem Quellen auf das flächige Gebild aufgebracht werden.For example, a starter solution containing at least one substance capable of forming radicals can be added to the mixture after the mixture has been heated in accordance with step A). Furthermore, a starter solution can be applied to the flat structure obtained after step B). This can be done by means of measures known per se (e.g. spraying, dipping, etc.) which are known from the prior art. If the membrane is made by swelling, a starter solution can be added to the liquid. This can also be applied to the flat structure after swelling.
Geeignete Radikalbildner sind unter anderem Azoverbindungen, Peroxyverbindungen, Persulfatverbindungen oder Azoamidine. Nicht limitierende Beispiele sind Dibenzoylperoxid, Dicumolperoxid, Cumolhydroperoxid, Diisopropylperoxidicarbonat, Bis(4-t- butylcyclohexyl)peroxidicarbonat, Dikaliumpersulfat, Ammoniumperoxidisulfat, 2,2'-Azobis(2- methylpropionitril) (AIBN), 2,2'-Azobis-(isobuttersäureamidin)hydrochIorid, Benzpinakoi, Dibenzylderivate, Methylethylenketonperoxid, 1 ,1-Azobiscyclohexancarbonitril, Methylethylketonperoxid, Acetylacetonperoxid, Dilaurylperoxid, Didecanoyiperoxid, tert- Butylper-2-ethylhexanoat, Ketonperoxid, Methylisobutylketonperoxid, Cyclohexanonperoxid, Dibenzoylperoxid, tert.-Butylperoxybenzoat, tert.-Butylperoxyisopropylcarbonat, 2,5-Bis(2- ethylhexanoyl-peroxy)-2,5-dimethylhexan, tert.-Butylperoxy-2-ethyIhexanoat, tert.- Butylperoxy-3,5,5-trimethylhexanoat, tert.-Butylperoxyisobutyrat, tert.-Butylperoxyacetat, Dicumylperoxid, 1 ,1-Bis(tert.-butylperoxy)cyclohexan, 1 ,1-Bis(tert.-butylperoxy)3,3,5- trimethylcyclohexan, Cumylhydroperoxid, tert.-Butylhydroperoxid, Bis(4-tert.-butylcyclohexyl)peroxydicarbonat, sowie die von der Firma DuPont unter dem Namen ®Vazo, beispielsweise ®Vazo V50 und ®Vazo WS erhältlichen Radikalbildner.Suitable radical formers include azo compounds, peroxy compounds, persulfate compounds or azoamidines. Non-limiting examples include dibenzoyl peroxide, dicumyl peroxide, cumene hydroperoxide, diisopropyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, Dikaliumpersulfat, ammonium peroxydisulfate, 2,2'-azobis (2-methylpropionitrile) (AIBN), 2,2 'azobis- (isobuttersäureamidin ) hydrochloride, benzpinakoi, dibenzyl derivatives, methyl ethylene ketone peroxide, 1, 1-azobiscyclohexane carbonitrile, methyl ethyl ketone peroxide, acetylacetone peroxide, dilauryl peroxide, didecanoyiperoxide, tert-butyl per-2-ethylhexanoate, ketone peroxide, methyl isobutyl ketone peroxy peroxy, oxychloride, cyclohexyl peroxyl peroxyl, oxychloride, 2-ethylhexanoate, peroxide, cyclobutyl peroxide, , 5-bis (2-ethylhexanoyl-peroxy) -2,5-dimethylhexane, tert-butyl peroxy-2-ethylhexanoate, tert-butyl peroxy-3,5,5-trimethyl hexanoate, tert-butyl peroxy-isobutyrate, tert-butyl peroxy acetate, Dicumyl peroxide, 1, 1-bis (tert-butylperoxy) cyclohexane, 1, 1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane, cumyl hydroperoxide, tert-butyl hydroperoxide, bis (4-tert-bu tylcyclohexyl) peroxydicarbonate, as well as the radical formers available from DuPont under the name ®Vazo, for example ®Vazo V50 and ®Vazo WS.
Des weiteren können auch Radikalbildner eingesetzt werden, die bei Bestrahlung Radikale bilden. Zu den bevorzugten Verbindungen gehören unter anderem α,α-Diethoxyacetophenon (DEAP, Upjon Corp), n-Butylbenzoinether (®Trigonal-14, AKZO) und 2,2-Dimethoxy- 2-phenylacetophenon (©Igacure 651) und 1-Benzoylcyclohexanol (©Igacure 184), Bis(2,4,6- trimethylbenzoyl)-phenylphosphinoxid (®lrgacure 819) und 1-[4-(2-Hydroxyethoxy)phenyl]-2- hydroxy-2-phenylpropan-1-on (©Irgacure 2959), die jeweils von der Fa. Ciba Geigy Corp. kommerziell erhältlich sind.Furthermore, radical formers can also be used which form radicals when irradiated. The preferred compounds include α, α-diethoxyacetophenone (DEAP, Upjon Corp), n-butylbenzoin ether (®Trigonal-14, AKZO) and 2,2-dimethoxy-2-phenylacetophenone (© Igacure 651) and 1-benzoylcyclohexanol ( © Igacure 184), bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (®lrgacure 819) and 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-phenylpropan-1-one (© Irgacure 2959), each from Ciba Geigy Corp. are commercially available.
Üblicherweise werden zwischen 0,0001 und 5 Gew.-%, insbesondere 0,01 bis 3 Gew.-% (bezogen auf das Gewicht der Phosphonsäuregruppen umfassenden Monomere) an Radikalbildner zugesetzt. Die Menge an Radikalbildner kann je nach gewünschten Polymerisationsgrad variiert werden.Usually between 0.0001 and 5% by weight, in particular 0.01 to 3% by weight (based on the weight of the monomers comprising phosphonic acid groups) is added Free radical generator added. The amount of radical generator can be varied depending on the desired degree of polymerization.
Die Polymerisation kann auch durch Einwiren von IR bzw. NIR (IR = InfraRot, d. h. Licht mit einer Wellenlänge von mehr als 700 nm; NIR = Nahes IR, d. h. Licht mit einer Wellenlänge im Bereich von ca. 700 bis 2000 nm bzw. einer Energie im Bereich von ca. 0.6 bis 1.75 eV) erfolgen.The polymerization can also be carried out by exposure to IR or NIR (IR = InfraRot, ie light with a wavelength of more than 700 nm; NIR = Near IR, ie light with a wavelength in the range from approx. 700 to 2000 nm or an energy in the range of approx. 0.6 to 1.75 eV).
Die Polymerisation kann auch durch Einwirken von UV-Licht mit einer Wellenlänge von weniger als 400 nm erfolgen. Diese Polymerisationsmethode ist an sich bekannt und beispielsweise in Hans Joerg Elias, Makromolekulare Chemie, δ.Auflage, Band 1 , s.492-511 ; D. R. Arnold, N. C. Baird, J. R. Bolton, J. C. D. Brand, P. W. M Jacobs, P.de Mayo, W. R. Ware, Photochemistry-An Introduction, Academic Press , New York und M.K.Mishra, Radical Photopolymerization of Vinyl Monomers, J. Macromol. Sci.-Revs. Macromol. Chem. Phys. C22(1982-1983) 409 beschrieben.The polymerization can also be carried out by exposure to UV light with a wavelength of less than 400 nm. This polymerization method is known per se and is described, for example, in Hans Joerg Elias, Macromolecular Chemistry, δ.auflage, Volume 1, p.492-511; D.R. Arnold, N.C. Baird, J.R. Bolton, J.C. D. Brand, P.W. M Jacobs, P.de Mayo, W.R. Ware, Photochemistry-An Introduction, Academic Press, New York and M.K. Mishra, Radical Photopolymerization of Vinyl Monomers, J. Macromol. Sci.-Revs. Macromol. Chem. Phys. C22 (1982-1983) 409.
Die Polymerisation kann auch durch Einwirken von ß-,γ- und/oder Elektronen Strahlen erzielt werden. Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung wird eine Membran mit einer Strahlungsdosis im Bereich von 1 bis 300 kGy, bevorzugt von 3 bis 250 kGy und ganz besonders bevorzugt von 20 bis 200 kGy bestrahlt.The polymerization can also be achieved by the action of β, γ and / or electron beams. According to a particular embodiment of the present invention, a membrane is irradiated with a radiation dose in the range from 1 to 300 kGy, preferably from 3 to 250 kGy and very particularly preferably from 20 to 200 kGy.
Die Polymerisation der Phosphonsäuregruppen umfassenden Monomere in Schritt C) bzw. Schritt II) erfolgt vorzugsweise bei Temperaturen oberhalb Raumtemperatur (20°C) und kleiner 200°C, insbesondere bei Temperaturen zwischen 40°C und 150°C, besonders bevorzugt zwischen 50°C und 120°C. Die Polymerisation erfolgt vorzugsweise unter Normaldruck, kann aber auch unter Einwirkung von Druck erfolgen. Die Polymerisation führt zu einer Verfestigung des flächigen Gebildes, wobei diese Verfestigung durch Mikrohärtemessung verfolgt werden kann. Vorzugsweise beträgt die durch die Polymerisation bedingte Zunahme der Härte mindestens 20%, bezogen auf die Härte des in Schritt B) erhaltenen flächigen Gebildes.The polymerization of the monomers comprising phosphonic acid groups in step C) or step II) is preferably carried out at temperatures above room temperature (20 ° C.) and below 200 ° C., in particular at temperatures between 40 ° C. and 150 ° C., particularly preferably between 50 ° C. and 120 ° C. The polymerization is preferably carried out under normal pressure, but can also be carried out under the action of pressure. The polymerization leads to a solidification of the flat structure, this solidification being able to be followed by microhardness measurement. The increase in hardness due to the polymerization is preferably at least 20%, based on the hardness of the sheet-like structure obtained in step B).
Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung weisen die Membranen eine hohe mechanische Stabilität auf. Diese Größe ergibt sich aus der Härte der Membran, die mittels Mikrohärtemessung gemäss DIN 50539 bestimmt wird. Dazu wird die Membran mit einem Vickersdiamant innerhalb von 20 s sukzessive bis zu einer Kraft von 3 mN belastet und die Eindringtiefe bestimmt. Demnach beträgt die Härte bei Raumtemperatur mindestens 0,01 N/mm2, bevorzugt mindestens 0,1 N /mm2 und ganz besonders. bevorzugt mindestens 1 N /mm2, ohne dass hierdurch eine Beschränkung erfolgen soll. In der Folge wird die Kraft während 5 s konstant bei 3 mN gehalten und das Kriechen aus der Eindringtiefe berechnet. Bei bevorzugten Membranen beträgt das Kriechen CHU 0,003/20/5 unter diesen Bedingungen weniger als 20%, bevorzugt weniger als 10% und ganz besonders bevorzugt weniger als 5%. Der mittels Mikrohärtemessung bestimmte Modul beträgt YHU mindestens 0,5 MPa, insbesondere mindestens 5 MPa und ganz besonders bevorzugt mindestens 10 MPa, ohne dass hierdurch eine Beschränkung erfolgen soll.According to a special embodiment of the present invention, the membranes have high mechanical stability. This size results from the hardness of the membrane, which is determined by means of microhardness measurement according to DIN 50539. For this purpose, the membrane is successively loaded with a Vickers diamond within 20 s up to a force of 3 mN and the depth of penetration is determined. Accordingly, the hardness at room temperature is at least 0.01 N / mm 2 , preferably at least 0.1 N / mm 2 and very particularly. preferably at least 1 N / mm 2 , without this being intended to impose a restriction. The force is then kept constant at 3 mN for 5 s and the creep is calculated from the penetration depth. In preferred membranes, the creep CHU 0.003 / 20/5 under these conditions is less than 20%, preferably less than 10% and very particularly preferably less than 5%. The module determined by means of microhardness measurement YHU is at least 0.5 MPa, in particular at least 5 MPa and very particularly preferably at least 10 MPa, without any intention that this should impose a restriction.
Je nach gewünschten Polymerisationsgrad ist das flächige Gebilde, welches nach der Polymerisation erhalten wird, eine selbsttragende Membran. Bevorzugt beträgt der Polymerisationsgrad mindestens 2, insbesondere mindestens 5, besonders bevorzugt mindestens 30 Wiederholeinheiten, insbesondere mindestens 50 Wiederholeinheiten, ganz besonders bevorzugt mindestens 100 Wiederholeinheiten. Dieser Polymerisationsgrad bestimmt sich über das Zahlenmittel des Molekulargewichts Mn, das durch GPC-Methoden ermittelt werden kann. Aufgrund der Probleme die in der Membran enthaltenen Phosphonsäuregruppen umfassenden Polymere ohne Abbau zu isolieren, wird dieser Wert anhand einer Probe bestimmt, die durch Polymerisation von Phosphonsäuregruppen umfassenden Monomeren ohne Zusatz von Polymer durchgeführt wird. Hierbei wird der Gewichtsanteil an Phosphonsäuregruppen umfassenden Monomere und an Radikalstarter im Vergleich zu den Verhältnissen der Herstellung der Membran konstant gehalten. Der Umsatz, der bei einer Vergleichspolymerisation erzielt wird, ist vorzugsweise größer oder gleich 20%, insbesondere größer oder gleich 40% und besonders bevorzugt größer oder gleich 75%, bezogen auf die eingesetzten Phosphonsäuregruppen umfassenden Monomere.Depending on the desired degree of polymerization, the flat structure which is obtained after the polymerization is a self-supporting membrane. The degree of polymerization is preferably at least 2, in particular at least 5, particularly preferably at least 30 repeat units, in particular at least 50 repeat units, very particularly preferably at least 100 repeat units. This degree of polymerization is determined by the number average molecular weight M n , which can be determined by GPC methods. Because of the problems of isolating the polymers comprising phosphonic acid groups contained in the membrane without degradation, this value is determined on the basis of a sample which is carried out by polymerizing monomers comprising phosphonic acid groups without addition of polymer. The proportion by weight of monomers comprising phosphonic acid groups and of radical initiators is kept constant in comparison with the ratios of the manufacture of the membrane. The conversion achieved in a comparative polymerization is preferably greater than or equal to 20%, in particular greater than or equal to 40% and particularly preferably greater than or equal to 75%, based on the monomers comprising phosphonic acid groups used.
Die in der Membran enthaltenen Phosphonsäuregruppen umfassenden Polymere weisen vorzugsweise eine breite Molekulargewichtsverteilung auf. So können die Phosphonsäuregruppen umfassenden Polymere eine Polydispersität Mw/Mn im Bereich von 1 bis 20, besonders bevorzugt von 3 bis 10 aufweisen.The polymers comprising phosphonic acid groups contained in the membrane preferably have a broad molecular weight distribution. The polymers comprising phosphonic acid groups can have a polydispersity M w / M n in the range from 1 to 20, particularly preferably from 3 to 10.
Der Wassergehalt der protonenleitenden Membran beträgt vorzugsweise höchstens 15 Gew.-%, besonders bevorzugt höchstens 10 Gew.-% und ganz besonders bevorzugt höchstens 5 Gew.-%.The water content of the proton-conducting membrane is preferably at most 15% by weight, particularly preferably at most 10% by weight and very particularly preferably at most 5% by weight.
In diesem Zusammenhang kann angenommen werden, dass die Leitfähigkeit der Membran auf dem Grotthus-Mechanismus beruhen kann, wodurch das System keine zusätzliche Befeuchtung benötigt. Dementsprechend umfassen bevorzugte Membranen Anteile an niedermolekularen Phosphonsäuregruppen umfassenden Polymere. So kann der Anteil an Phosphonsäuregruppen umfassenden Polymeren mit einem Polymerisationsgrad im Bereich von 2 bis 20 bevorzugt mindestens 10 Gew.-%, besonders bevorzugt mindestens 20 Gew.-% betragen, bezogen auf das Gewicht der Phosphonsäuregruppen umfassenden Polymere.In this context it can be assumed that the conductivity of the membrane can be based on the Grotthus mechanism, which means that the system does not require additional moistening. Accordingly, preferred membranes comprise portions of polymers comprising low molecular weight phosphonic acid groups. Thus, the proportion of polymers comprising phosphonic acid groups with a degree of polymerization in the range from 2 to 20, preferably at least 10% by weight, particularly preferably at least 20% by weight, based on the weight of the polymers comprising phosphonic acid groups.
Die Polymerisation in Schritt C) bzw. Schritt II) kann zu einer Abnahme der Schichtdicke führen. Vorzugsweise beträgt die Dicke der selbsttragenden Membran zwischen 15 und 1000 μm, vorzugsweise zwischen 20 und 500 μm, insbesondere zwischen 30 und 250 μm. Vorzugsweise ist die gemäß Schritt C) bzw. Schritt II) erhaltene Membran selbsttragend, d.h. sie kann vom Träger ohne Beschädigung gelöst und anschließend gegebenenfalls direkt weiterverarbeitet werden.The polymerization in step C) or step II) can lead to a decrease in the layer thickness. The thickness of the self-supporting membrane is preferably between 15 and 1000 μm, preferably between 20 and 500 μm, in particular between 30 and 250 μm. The membrane obtained in step C) or step II) is preferably self-supporting, ie it can be detached from the support without damage and then, if necessary, processed further directly.
Im Anschluss an die Polymerisation gemäß Schritt C) bzw. Schritt II) kann die Membran thermisch, photochemisch, chemisch und/oder elektrochemisch an der Oberfläche vernetzt werden. Diese Härtung der Membranoberfläche verbessert die Eigenschaften der Membran zusätzlich.Following the polymerization in step C) or step II), the membrane can be crosslinked thermally, photochemically, chemically and / or electrochemically on the surface. This hardening of the membrane surface additionally improves the properties of the membrane.
Gemäß einem besonderen Aspekt kann die Membran auf eine Temperatur von mindestens 150°C, vorzugsweise mindestens 200°C und besonders bevorzugt mindestens 250°C erwärmt werden. Vorzugsweise erfolgt die thermische Vernetzung in Gegenwart von Sauerstoff. Die Sauerstoffkonzentration liegt bei diesem Verfahrensschritt üblich im Bereich von 5 bis 50 Vol.-%, vorzugsweise 10 bis 40 Vol.-%, ohne dass hierdurch eine Beschränkung erfolgen soll.According to a particular aspect, the membrane can be heated to a temperature of at least 150 ° C., preferably at least 200 ° C. and particularly preferably at least 250 ° C. The thermal crosslinking is preferably carried out in the presence of oxygen. The oxygen concentration in this process step is usually in the range from 5 to 50% by volume, preferably 10 to 40% by volume, without any intention that this should impose a restriction.
Die Vernetzung kann auch durch Einwirken von IR bzw. NIR (IR = InfraRot, d. h. Licht mit einer Wellenlänge von mehr als 700 nm; NIR = Nahes IR, d. h. Licht mit einer Wellenlänge im Bereich von ca. 700 bis 2000 nm bzw. einer Energie im Bereich von ca. 0.6 bis 1.75 eV) und/oder UV-Licht erfolgen. Eine weitere Methode ist die Bestrahlung mit ß-,γ- und/oder Elektronen Strahlen. Die Strahlungsdosis beträgt hierbei vorzugsweise zwischen 5 und 250 kGy, insbesondere 10 bis 200 kGy. Die Bestrahlung kann an Luft oder unter Inertgas erfolgen. Hierdurch werden die Gebrauchseigenschaften der Membran, insbesondere deren Haltbarkeit verbessert.The crosslinking can also be effected by the action of IR or NIR (IR = InfraRot, ie light with a wavelength of more than 700 nm; NIR = Near IR, ie light with a wavelength in the range from approx. 700 to 2000 nm or an energy in the range of approx. 0.6 to 1.75 eV) and / or UV light. Another method is radiation with β, γ and / or electron beams. The radiation dose is preferably between 5 and 250 kGy, in particular 10 to 200 kGy. Irradiation can take place in air or under inert gas. This improves the performance properties of the membrane, in particular its durability.
Je nach gewünschtem Vernetzungsgrad kann die Dauer der Vernetzungsreaktion in einem weiten Bereich liegen. Im allgemeinen liegt diese Reaktionszeit im Bereich von 1 Sekunde bis 10 Stunden, vorzugsweise 1 Minute bis 1 Stunde, ohne dass hierdurch eine Beschränkung erfolgen soll.Depending on the desired degree of crosslinking, the duration of the crosslinking reaction can be in a wide range. In general, this reaction time is in the range from 1 second to 10 hours, preferably 1 minute to 1 hour, without this being intended to impose any restriction.
Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung umfasst die Membran mindestens 3 Gew.-%, vorzugsweise mindestens 5 Gew.-% und besonders bevorzugt mindestens 7 Gew.-% Phosphor (als Element), bezogen auf das Gesamtgewicht der Membran. Der Anteil an Phosphor kann über eine Elementaranalyse bestimmt werden. Hierzu wird die Membran bei 110°C für 3 Stunden im Vakuum (1 mbar) getrocknet.According to a particular embodiment of the present invention, the membrane comprises at least 3% by weight, preferably at least 5% by weight and particularly preferably at least 7% by weight, of phosphorus (as an element), based on the total weight of the membrane. The proportion of phosphorus can be determined using an elementary analysis. For this purpose, the membrane is dried at 110 ° C. for 3 hours in a vacuum (1 mbar).
Die Phosphonsäuregruppen umfassenden Polymere weist vorzugsweise einen Gehalt an Phosphonsäuregruppen von mindestens 5 meq/g, besonders bevorzugt mindestens 10 meq/g auf. Dieser Wert wird über die sog. lonenaustauschkapazität (IEC) bestimmt.The polymers comprising phosphonic acid groups preferably have a phosphonic acid group content of at least 5 meq / g, particularly preferably at least 10 meq / g. This value is determined via the so-called ion exchange capacity (IEC).
Zur Messung der IEC werden die Phosphonsäuregruppen in die freie Säure überführt, wobei die Messung vor Polymerisation der Phosphonsäuregruppen umfassenden Monomere erfolgt. Die Probe wird anschließend mit 0,1 M NaOH titriert. Aus dem Verbrauch der Säure bis zum Equivalentpunkt und dem Trockengewicht wird dann die lonenaustauschkapazität (IEC) berechnet.To measure the IEC, the phosphonic acid groups are converted into the free acid, the measurement being carried out before polymerization of the monomers comprising phosphonic acid groups he follows. The sample is then titrated with 0.1 M NaOH. The ion exchange capacity (IEC) is then calculated from the consumption of the acid up to the equivalent point and the dry weight.
Die erfindungsgemäße Polymermembran weist verbesserte Materialeigenschaften gegenüber den bisher bekannten dotierten Polymermembranen auf. Insbesondere zeigen sie im Vergleich mit bekannten undotierten Polymermembranen bereits eine intrinsische Leitfähigkeit. Diese begründet sich insbesondere durch vorhandenen Phosphonsäuregruppen enthaltenden Polymere.The polymer membrane according to the invention has improved material properties compared to the previously known doped polymer membranes. In particular, they already show an intrinsic conductivity in comparison with known undoped polymer membranes. This is due in particular to the presence of polymers containing phosphonic acid groups.
Die erfindungsgemäße Pqlymermembran weist verbesserte Materialeigenschaften gegenüber den bisher bekannten dotierten Polymermembranen auf. Insbesondere zeigen sie im Vergleich mit bekannten dotierten Polymermembranen bessere Leistungen. Diese begründet sich insbesondere durch eine verbesserte Protonenleitfähigkeit. Diese beträgt bei Temperaturen von 120°C mindestens 1 mS/cm, vorzugsweise mindestens 2 mS/cm, insbesondere mindestens 5 mS/cm, vorzugsweise gemessen ohne Befeuchtung.The polymer membrane according to the invention has improved material properties compared to the previously known doped polymer membranes. In particular, they perform better than known doped polymer membranes. This is due in particular to an improved proton conductivity. At temperatures of 120 ° C., this is at least 1 mS / cm, preferably at least 2 mS / cm, in particular at least 5 mS / cm, preferably measured without humidification.
Desweiteren zeigen die Membranen auch bei einer Temperatur von 70°C eine hohe Leitfähigkeit. Die Leitfähigkeit ist unter anderem abhängig vom Sulfonsäuregruppengehalt der Membran. Je höher dieser Anteil, desto besser die Leitfähigkeit bei tiefen Temperaturen. Hierbei kann eine erfindungsgemäße Membran bei geringen Temperaturen befeuchtet werden. Hierzu kann beispielsweise die als Energiequelle eingesetzte Verbindung, beispielsweise Wasserstoff, mit einem Anteil an Wasser versehen werden. In vielen Fällen genügt jedoch auch das durch die Reaktion gebildete Wasser, um eine Befeuchtung zu erzielen.Furthermore, the membranes show a high conductivity even at a temperature of 70 ° C. The conductivity depends, among other things, on the sulfonic acid group content of the membrane. The higher this proportion, the better the conductivity at low temperatures. Here, a membrane according to the invention can be moistened at low temperatures. For this purpose, for example, the compound used as an energy source, for example hydrogen, can be provided with a proportion of water. In many cases, however, the water formed by the reaction is sufficient to achieve humidification.
Die spezifische Leitfähigkeit wird mittels Impedanzspektroskopie in einer 4-Pol-Anordnung im potentiostatischen Modus und unter Verwendung von Platinelektroden (Draht, 0,25 mm Durchmesser) gemessen. Der Abstand zwischen den stromabnehmenden Elektroden beträgt.2 cm. Das erhaltene Spektrum wird mit einem einfachen Modell bestehend aus einer parallelen Anordnung eines ohm'schen Widerstandes und eines Kapazitators ausgewertet. Der Probenquerschnitt der phosphorsäuredotierten Membran wird unmittelbar vor der Probenmontage gemessen. Zur Messung der Temperaturabhängigkeit wird die Messzelle in einem Ofen auf die gewünschte Temperatur gebracht und über eine in unmittelbarer Probennähe positioniertes Pt-100 Thermoelement geregelt. Nach Erreichen der Temperatur wird die Probe vor dem Start der Messung 10 Minuten auf dieser Temperatur gehalten.The specific conductivity is measured by means of impedance spectroscopy in a 4-pole arrangement in potentiostatic mode and using platinum electrodes (wire, 0.25 mm diameter). The distance between the current-consuming electrodes is 2 cm. The spectrum obtained is evaluated using a simple model consisting of a parallel arrangement of an ohmic resistance and a capacitor. The sample cross-section of the phosphoric acid-doped membrane is measured immediately before the sample assembly. To measure the temperature dependency, the measuring cell is brought to the desired temperature in an oven and controlled via a Pt-100 thermocouple positioned in the immediate vicinity of the sample. After reaching the temperature, the sample is kept at this temperature for 10 minutes before starting the measurement.
Die Durchtritts-Stromdichte beträgt bei Betrieb mit 0,5 M Methanollösung und 90°C in einer so genannten flüssigen Direktmethanolbrennstoffzelle vorzugsweise weniger als 100 mA/cm2, insbesondere weniger als 70 mA/cm2 besonders bevorzugt weniger als 50 mA/cm2 und ganz besonders bevorzugt weniger als 10 mA/cm2. Die Durchtritts-Stromdichte beträgt bei Betrieb mit einer 2 M Methanollösung und 160°C in einer so genannten gasförmigen Direktmethanolbrennstoffzelle vorzugsweise weniger als 100 mA/cm2, insbesondere weniger als 50 mA/cm2 ganz besonders bevorzugt weniger als 10 mA/cm2.The passage current density when operating with 0.5 M methanol solution and 90 ° C. in a so-called liquid direct methanol fuel cell is preferably less than 100 mA / cm 2 , in particular less than 70 mA / cm 2, particularly preferably less than 50 mA / cm 2 and very particularly preferably less than 10 mA / cm 2 . The passage current density when operating with a 2 M methanol solution and 160 ° C in a so-called gaseous Direct methanol fuel cell preferably less than 100 mA / cm 2 , in particular less than 50 mA / cm 2, very particularly preferably less than 10 mA / cm 2 .
Zur Bestimmung der Durchtritts-Stromdichte (cross over current density) wird die Kohlendioxidmenge, die an der Kathode freigesetzt wird, mittels eines C02-Sensors gemessen. Aus dem so erhaltenen Wert der C02-Menge wird, wie von P. Zelenay, S.C. Thomas, S. Gottesfeld in S. Gottesfeld, T.F. Füller „Proton Conducting Membrane Fuel Cells II" ECS Proc. Vol. 98-27 S. 300-308 beschrieben, die Durchtritts-Stromdichte berechnet.To determine the cross-over current density, the amount of carbon dioxide released at the cathode is measured by means of a CO 2 sensor. From the value of the C0 2 amount thus obtained, as from P. Zelenay, SC Thomas, S. Gottesfeld in S. Gottesfeld, TF filler "Proton Conducting Membrane Fuel Cells II" ECS Proc. Vol. 98-27 p. 300 -308, the passage current density is calculated.
Zu möglichen Einsatzgebieten der erfindungsgemäßen intrinsich leitfähigen Polymermembranen gehören unter anderem die Verwendung in Brennstoffzellen, bei der Elektrolyse, in Kondensatoren und in Batteriesystemen. Aufgrund ihres Eigenschaftsprofils können die Polymermembranen vorzugsweise in Brennstoffzellen, insbesondere in DMBZ- Brennstoffzellen (Direkt-Methanol-Brennstoffzelle), verwendet werden.Possible areas of application of the intrinsically conductive polymer membranes according to the invention include use in fuel cells, in electrolysis, in capacitors and in battery systems. Because of their property profile, the polymer membranes can preferably be used in fuel cells, in particular in DMBZ fuel cells (direct methanol fuel cell).
Die vorliegende Erfindung betrifft auch eine Membran-Elektroden-Einheit, die mindestens eine erfindungsgemäße Polymermembran aufweist. Die Membran-Elektroden-Einheit weist eine hohe Leistungsfähigkeit auch bei einem geringen Gehalt an katalytisch aktiven Substanzen, wie beispielsweise Platin, Ruthenium oder Palladium, auf. Hierzu können mit einer katalytisch aktiven Schicht versehene Gasdiffusionslagen eingesetzt werden.The present invention also relates to a membrane electrode unit which has at least one polymer membrane according to the invention. The membrane electrode assembly has a high performance even with a low content of catalytically active substances, such as platinum, ruthenium or palladium. For this purpose, gas diffusion layers provided with a catalytically active layer can be used.
Die Gasdiffusionslage zeigt im allgemeinen eine Elektronenleitfähigkeit. Üblich werden hierfür flächige, elektrisch leitende und säureresistente Gebilde eingesetzt. Zu diesen gehören beispielsweise Kohlefaser-Papiere, graphitisierte Kohlefaser-Papiere, Kohlefasergewebe, graphitisierte Kohlefasergewebe und/oder flächige Gebilde, die durch Zugabe von Ruß leitfähig gemacht wurden.The gas diffusion layer generally shows electron conductivity. Flat, electrically conductive and acid-resistant structures are usually used for this. These include, for example, carbon fiber papers, graphitized carbon fiber papers, carbon fiber fabrics, graphitized carbon fiber fabrics and / or flat structures which have been made conductive by adding carbon black.
Die katalytisch aktive Schicht enthält eine katalytisch aktive Substanz. Zu diesen gehören unter anderem Edelmetalle, insbesondere Platin, Palladium, Rhodium, Iridium und/oder Ruthenium. Diese Substanzen können auch in Form von Legierungen unter einander eingesetzt werden. Des weiteren können diese Substanzen auch in Legierung mit unedlen Metallen, wie beispielsweise Cr, Zr, Ni, Co und/oder Ti verwendet werden. Darüber hinaus können auch die Oxide der zuvor genannten Edelmetalle und/oder unedlen Metalle eingesetzt werden.The catalytically active layer contains a catalytically active substance. These include noble metals, in particular platinum, palladium, rhodium, iridium and / or ruthenium. These substances can also be used with one another in the form of alloys. Furthermore, these substances can also be used in alloys with base metals, such as Cr, Zr, Ni, Co and / or Ti. In addition, the oxides of the aforementioned noble metals and / or base metals can also be used.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung werden die katalytisch aktiven Verbindungen in Form von Partikeln eingesetzt, die vorzugsweise eine Größe im Bereich von 1 bis 1000 nm, insbesondere 10 bis 200 nm und bevorzugt 20 bis 100 nm aufweisen.According to a particular aspect of the present invention, the catalytically active compounds are used in the form of particles which preferably have a size in the range from 1 to 1000 nm, in particular 10 to 200 nm and preferably 20 to 100 nm.
Des weiteren kann die katalytisch aktive Schicht übliche Additive enthalten. Hierzu gehören unter anderem Fluorpolymere wie z.B. Polytetrafluorethylen (PTFE) und oberflächenaktive Substanzen. Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung ist das Gewichtsverhältnis von Fluorpolymer zu Katalysatormaterial, umfassend mindestens ein Edelmetall und gegebenenfalls ein oder mehrere Trägermaterialien, größer als 0,1 , wobei dieses Verhältnis vorzugsweise im Bereich von 0,2 bis 0,6 liegt.Furthermore, the catalytically active layer can contain conventional additives. These include fluoropolymers such as polytetrafluoroethylene (PTFE) and surface-active substances. According to a particular embodiment of the present invention, the weight ratio of fluoropolymer to catalyst material, comprising at least one noble metal and optionally one or more support materials, is greater than 0.1, this ratio preferably being in the range from 0.2 to 0.6.
Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung weist die Katalysatorschicht eine Dicke im Bereich von 1 bis 1000 μm, insbesondere von 5 bis 500, vorzugsweise von 10 bis 300 μm auf. Dieser Wert stellt einen Mittelwert dar, der durch Messung der Schichtdicke im Querschnitt von Aufnahmen bestimmt werden kann, die mit einem Rasterelektronenmikroskop (REM) erhalten werden können.According to a particular embodiment of the present invention, the catalyst layer has a thickness in the range from 1 to 1000 μm, in particular from 5 to 500, preferably from 10 to 300 μm. This value represents an average value that can be determined by measuring the layer thickness in the cross section of images that can be obtained with a scanning electron microscope (SEM).
Nach einer besonderen Ausführungsform der vorliegenden Erfindung beträgt der Edelmetallgehalt der Katalysatorschicht 0,1 bis 10,0 mg/cm2, vorzugsweise 0,2 bis 6,0 mg/cm2 und besonders bevorzugt 0,3 bis 3,0 mg/cm2. Diese Werte können durch Elementaranalyse einer flächigen Probe bestimmt werden.According to a particular embodiment of the present invention, the noble metal content of the catalyst layer is 0.1 to 10.0 mg / cm 2 , preferably 0.2 to 6.0 mg / cm 2 and particularly preferably 0.3 to 3.0 mg / cm 2 , These values can be determined by elemental analysis of a flat sample.
Für weitere Informationen über Membran-Elektroden-Einheiten wird auf die Fachliteratur, insbesondere auf die Patentanmeldungen WO 01/18894 A2, DE 195 09 748, DE 195 09 749, WO 00/26982, WO 92/15121 und DE 197 57 492 verwiesen. Die in den vorstehend genannten Literaturstellen enthaltene Offenbarung hinsichtlich des Aufbaues und der Herstellung von Membran-Elektroden-Einheiten, sowie der zu wählenden Elektroden , Gasdiffusionslagen und Katalysatoren ist auch Bestandteil der Beschreibung.For further information on membrane electrode assemblies, reference is made to the specialist literature, in particular to patent applications WO 01/18894 A2, DE 195 09 748, DE 195 09 749, WO 00/26982, WO 92/15121 and DE 197 57 492. The disclosure contained in the above-mentioned references with regard to the construction and manufacture of membrane electrode assemblies, and the electrodes, gas diffusion layers and catalysts to be selected, is also part of the description.
In einer weiteren Variante kann auf die erfindungsgemäße Membran eine katalytisch aktive Schicht aufgebracht werden und diese mit einer Gasdiffusionslage verbunden werden.In a further variant, a catalytically active layer can be applied to the membrane according to the invention and this can be connected to a gas diffusion layer.
In einer Variante der vorliegenden Erfindung kann die Membranbifdung anstelle auf einem Träger auch direkt auf der Elektrode erfolgen. Auch eine solche Membran ist Gegenstand der vorliegenden Erfindung.In a variant of the present invention, the membrane formation can also take place directly on the electrode instead of on a support. Such a membrane is also the subject of the present invention.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Elektrode mit einer protonenleitenden Polymerbeschichtung enthaltend Polymere mit Sulfonsäureresten, die an aromatische Gruppen gebunden sind, erhältlich durch ein Verfahren umfassend die SchritteAnother object of the present invention is an electrode with a proton-conducting polymer coating containing polymers with sulfonic acid residues which are bonded to aromatic groups, obtainable by a process comprising the steps
A) Herstellung einer Mischung umfassend Phosphonsäuregruppen umfassende Monomere und mindestens ein Polymer mit aromatischen Sulfonsäuregruppen,A) Preparation of a mixture comprising monomers comprising phosphonic acid groups and at least one polymer with aromatic sulfonic acid groups,
B) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) auf einer ' Elektrode,B) applying a layer using the mixture from step A) on a 'electrode,
C) Polymerisation der in dem flächigen Gebilde erhältlich gemäß Schritt B) vorhandenen Phosphonsäuregruppen umfassenden Monomere. Der Vollständigkeit halber sei festgehalten, dass sämtliche bevorzugten Ausführungsformen einer selbsttragenden Membran entsprechend auch für eine unmittelbar auf die Elektrode aufgebrachte Membran gelten.C) Polymerization of the monomers comprising phosphonic acid groups present in the sheet-like structure obtainable according to step B) For the sake of completeness, it should be noted that all preferred embodiments of a self-supporting membrane also apply accordingly to a membrane applied directly to the electrode.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung hat die Beschichtung eine Dicke zwischen 2 und 3000 μm, vorzugsweise zwischen 2 und 2000 μm, insbesondere zwischen 3 und 1500 μm, besonders bevorzugt 5 bis 500 μm und ganz besonders bevorzugt zwischen 10 bis 200μm, ohne dass hierdurch eine Beschränkung erfolgen soll.According to a particular aspect of the present invention, the coating has a thickness between 2 and 3000 μm, preferably between 2 and 2000 μm, in particular between 3 and 1500 μm, particularly preferably 5 to 500 μm and very particularly preferably between 10 to 200 μm, without this there should be a restriction.
Die Polymerisation gemäß Schritt C) führt zu einer Härtung der Beschichtung. Hierbei erfolgt die Behandlung solange, bis die Beschichtung eine genügende Härte aufweist, um zu einer Membran-Elektroden-Einheit verpresst werden zu können. Eine genügende Härte ist gegeben, wenn eine entsprechend behandelte Membran selbsttragend ist. In vielen Fällen genügt jedoch eine geringere Härte. Die gemäß DIN 50539 (Mikrohärtemessung) bestimmte Härte beträgt im allgemeinen mindestens 1 mN/mm2, bevorzugt mindestens 5 mN/mm2 und ganz besonders bevorzugt mindestens 50 mN/mm2, ohne dass hierdurch eine Beschränkung erfolgen soll.The polymerization in step C) leads to a hardening of the coating. The treatment is carried out until the coating has sufficient hardness to be able to be pressed into a membrane electrode assembly. The hardness is sufficient if a membrane treated accordingly is self-supporting. In many cases, however, a lower hardness is sufficient. The hardness determined in accordance with DIN 50539 (microhardness measurement) is generally at least 1 mN / mm 2 , preferably at least 5 mN / mm 2 and very particularly preferably at least 50 mN / mm 2 , without any intention that this should impose a restriction.
Eine derartig beschichtete Elektrode kann in einer Membran-Elektroden-Einheit, die gegebenenfalls mindestens eine erfindungsgemäße Polymermembran aufweist, eingebaut werden.An electrode coated in this way can be installed in a membrane-electrode unit, which may have at least one polymer membrane according to the invention.
In einer weiteren Variante kann auf die erfindungsgemäße Membran eine katalytisch aktive Schicht aufgebracht werden und diese mit einer Gasdiffusionslage verbunden werden. Hierzu wird gemäß den Schritten A) bis C) eine Membran gebildet und der Katalysator aufgebracht. Auch diese Gebilde sind Gegenstand der vorliegenden Erfindung.In a further variant, a catalytically active layer can be applied to the membrane according to the invention and this can be connected to a gas diffusion layer. For this purpose, a membrane is formed in accordance with steps A) to C) and the catalyst is applied. These structures are also the subject of the present invention.
Darüber hinaus kann die Bildung der Membran gemäß den Schritten A) bis C) auch auf einem Träger oder einer Trägerfolie erfolgen, die bereits den Katalysator aufweist. Nach Entfernen des Trägers bzw. der Trägerfolie befindet sich der Katalysator auf der erfindungsgemäßen Membran. Auch diese Gebilde sind Gegenstand der vorliegenden Erfindung.In addition, the membrane according to steps A) to C) can also be formed on a support or a support film which already has the catalyst. After removing the carrier or the carrier film, the catalyst is on the membrane according to the invention. These structures are also the subject of the present invention.
Ebenfalls Gegenstand der vorliegenden Erfindung ist eine Membran-Elektroden-Einheit, die mindestens eine beschichtete Elektrode und/oder mindestens eine erfindungsgemäße Polymermembran aufweist. The present invention also relates to a membrane-electrode unit which has at least one coated electrode and / or at least one polymer membrane according to the invention.

Claims

Patentansprüche claims
1. Protonenleitende Polymermembran enthaltend Polymere mit an aromatische Gruppen kovalent gebundene Sulfonsäuregruppen und Phosphonsäuregruppen umfassende Polymere erhältlich durch Polymerisation von Phosphonsäuregruppen umfassenden Monomeren.1. Proton-conducting polymer membrane containing polymers with sulfonic acid groups covalently bonded to aromatic groups and polymers comprising phosphonic acid groups obtainable by polymerizing monomers comprising phosphonic acid groups.
2. Protonenleitende Polymermembran gemäß Anspruch 1 , erhältlich durch ein Verfahren umfassend die Schritte A) Herstellung einer Mischung umfassend Phosphonsäuregruppen umfassende Monomere und mindestens ein Polymer mit aromatischen Sulfonsäuregruppen, B) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) auf einem Träger, C) Polymerisation der in dem flächigen Gebilde erhältlich gemäß Schritt B) vorhandenen Phosphonsäuregruppen umfassenden Monomere.2. Proton-conducting polymer membrane according to claim 1, obtainable by a process comprising the steps A) preparation of a mixture comprising monomers comprising phosphonic acid groups and at least one polymer with aromatic sulfonic acid groups, B) applying a layer using the mixture according to step A) on a support, C ) Polymerization of the monomers comprising phosphonic acid groups present in the sheet-like structure obtainable according to step B).
3. Protonenleitende Polymermembran gemäß Anspruch 1 , erhältlich durch ein Verfahren umfassend die Schritte I) Quellen einer Polymerfolie, wobei die Polymerfolie Polymer mit aromatischen Sulfonsäuregruppen umfasst, mit einer Flüssigkeit, die Phosphonsäuregruppen umfassende Monomere enthält, und II) Polymerisation mindestens eines Teils der Phosphonsäuregruppen umfassenden Monomeren, die in Schritt I) in die Polymerfolie eingebracht wurden.3. The proton-conducting polymer membrane according to claim 1, obtainable by a process comprising the steps I) swelling a polymer film, the polymer film comprising polymer with aromatic sulfonic acid groups, with a liquid which contains monomers comprising phosphonic acid groups, and II) polymerizing at least part of the phosphonic acid groups Monomers that were introduced into the polymer film in step I).
4. Membran gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Herstellung der Phosphonsäuregruppen umfassenden Polymere ein Phosphonsäuregruppen umfassendes Monomer der Formel4. Membrane according to one of the preceding claims, characterized in that for the preparation of the polymers comprising phosphonic acid groups, a monomer of the formula comprising phosphonic acid groups
^ - R— (P03Z2)x worin R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1-C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5-C20- Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet y eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet und/oder der Formel worin R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1-C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5-C20- Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet und/oder der Formel R-(P03Z2)x =< A worin A eine Gruppe der Formeln COOR2, CN, CONR2 2, OR2 und/oder R2 darstellt, worin R2 Wasserstoff, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1-C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5-C20- Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können, Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet, eingesetzt wird.^ - R— (P0 3 Z 2 ) x where R is a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, the above radicals in turn can be substituted with halogen, -OH, COOZ, -CN, NZ 2 , Z independently of one another denotes hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, the above radicals in turn may be substituted with halogen, -OH, -CN, and x is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, y is an integer 1, 2, 3, 4, 5 , 6, 7, 8, 9 or 10 means and / or the formula in which R denotes a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, the above radicals in turn having halogen, -OH, COOZ, -CN, NZ 2 can be substituted, Z is independently hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, the above radicals in turn being substituted by halogen, -OH, -CN can and x is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 and / or the formula R- (P0 3 Z 2 ) x = <A where A is a group of the formulas COOR 2 , CN, CONR 2 2 , OR 2 and / or R 2 , wherein R 2 is hydrogen, a C1-C15 alkyl group, C1-C15 alkoxy group, ethyleneoxy group or C5-C20 aryl or heteroaryl group, the above radicals in turn can be substituted with halogen, -OH, COOZ, -CN, NZ 2 R can be a bond, a double-bonded C1-C15-alk ylene group, divalent C1-C15-alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, where the above radicals can in turn be substituted with halogen, -OH, COOZ, -CN, NZ 2 , Z independently of one another hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, it being possible for the above radicals in turn to be substituted with halogen, -OH, -CN, and x is an integer 1, 2, 3 , 4, 5, 6, 7, 8, 9 or 10 means is used.
Membran gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Herstellung der Phosphonsäuregruppen umfassenden Polymere ein Sulfonsäuregruppen umfassendes Monomer der Formel worin R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1-C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5-C20- Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,Membrane according to one of the preceding claims, characterized in that for the preparation of the polymers comprising phosphonic acid groups, a monomer of the formula comprising sulfonic acid groups wherein R denotes a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, the above radicals in turn having halogen, -OH, COOZ, -CN, NZ 2 can be substituted,
Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet y eine ganze Zahl 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet und/oder der FormelZ is independently hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, where the above radicals can in turn be substituted with halogen, -OH, -CN, and x is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 y means an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 and / or of the formula
worin wherein
R eine Bindung, eine zweibindige C1-C15-AIkylengruppe, zweibindige C1-C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5-C20- Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,R denotes a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, the above radicals in turn having halogen, -OH, COOZ, -CN, NZ 2 can be substituted,
Z unabhängig voneinander Wasserstoff, C1-C15-Alkylgruppe, C1-C15- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 bedeutet und/oder der Formel R-(S03Z)x =\ A worinZ independently of one another denotes hydrogen, C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, where the above radicals can in turn be substituted by halogen, -OH, -CN, and x is an integer 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 and / or of the formula R- (S0 3 Z) x = \ A wherein
A eine Gruppe der Formeln COOR2, CN, CONR2 2, OR2 und/oder R2 darstellt, worin R2 Wasserstoff, eine C1-C15-Alkylgruppe, C1-C15-Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein könnenA represents a group of the formulas COOR 2 , CN, CONR 2 2 , OR 2 and / or R 2 , wherein R 2 is hydrogen, a C1-C15-alkyl group, C1-C15-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group means, where the above radicals themselves can be substituted with halogen, -OH, COOZ, -CN, NZ 2
R eine Bindung, eine zweibindige C1-C15-Alkylengruppe, zweibindige C1-C15- Alkylenoxygruppe, beispielsweise Ethylenoxygruppe oder zweibindige C5-C20- Aryl- oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, COOZ, -CN, NZ2 substituiert sein können,R denotes a bond, a divalent C1-C15 alkylene group, divalent C1-C15 alkyleneoxy group, for example ethyleneoxy group or divalent C5-C20 aryl or heteroaryl group, the above radicals in turn having halogen, -OH, COOZ, -CN, NZ 2 can be substituted,
Z unabhängig voneinander Wasserstoff, C1 -C15-Alkylgruppe, C1 -C 5- Alkoxygruppe, Ethylenoxygruppe oder C5-C20-Aryl oder Heteroarylgruppe bedeutet, wobei die vorstehenden Reste ihrerseits mit Halogen, -OH, -CN, substituiert sein können und x eine ganze Zahl 1, 2, 3, 4, Z independently of one another denotes hydrogen, C1-C15-alkyl group, C1-C5-alkoxy group, ethyleneoxy group or C5-C20-aryl or heteroaryl group, where the above radicals can in turn be substituted by halogen, -OH, -CN, and x an integer 1, 2, 3, 4,
5, 6, 7, 8, 9 oder 10 bedeutet, eingesetzt wird.5, 6, 7, 8, 9 or 10 means is used.
6. Membran gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Herstellung der Phosphonsäuregruppen umfassenden Polymere zur Vernetzung befähigte Monomere eingesetzt werden, die mindestens 2 Kohlenstoff- Kohlenstoff Doppelbindungen aufweisen.6. Membrane according to one of the preceding claims, characterized in that for the preparation of the polymers comprising phosphonic acid groups, capable monomers are used for crosslinking, which have at least 2 carbon-carbon double bonds.
7. Membran gemäß einem der vorhergehenden Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die in Schritt A) erzeugte Mischung oder die in Schritt I) verwendete Flüssigkeit zusätzlich dispergiertes und/oder suspendiertes Polymer enthält.7. Membrane according to one of the preceding claims 2 to 6, characterized in that the mixture produced in step A) or the liquid used in step I) additionally contains dispersed and / or suspended polymer.
8. Membran gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer mit aromatischen Sulfonsäuregruppen ausgewählt ist aus sulfonierte Polyetherketone, sulfonierte Polysulfone oder sulfoniertes Polyphenylensulfid.8. Membrane according to one of the preceding claims, characterized in that the polymer with aromatic sulfonic acid groups is selected from sulfonated polyether ketones, sulfonated polysulfones or sulfonated polyphenylene sulfide.
9. Membran gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Gehalt an Sulfonsäuregruppen des Polymers aromatischen Sulfonsäuregruppen im Bereich von 0,5 bis 3 meq/g liegt.9. Membrane according to one of the preceding claims, characterized in that the content of sulfonic acid groups in the polymer aromatic sulfonic acid groups is in the range from 0.5 to 3 meq / g.
10. Membran gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Molekulargewicht des Polymers aromatischen Sulfonsäuregruppen im Bereich von ... bis ... liegt.10. Membrane according to one of the preceding claims, characterized in that the molecular weight of the polymer is aromatic sulfonic acid groups in the range from ... to ....
11. Membran gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Polymermembran durch Einwirkung von Sauerstoff vernetzt wird.11. Membrane according to one of the preceding claims, characterized in that the polymer membrane is crosslinked by the action of oxygen.
12. Membran gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Polymermembran eine Dicke zwischen 15 und 3000 μm hat.12. Membrane according to one of the preceding claims, characterized in that the polymer membrane has a thickness between 15 and 3000 microns.
13. Elektrode mit einer protonenleitenden Polymerbeschichtung enthaltend Polymere mit an aromatische Gruppen kovalent gebundene Sulfonsäuregruppen erhältlich durch ein Verfahren umfassend die Schritte13. Electrode with a proton-conducting polymer coating containing polymers with sulfonic acid groups covalently bonded to aromatic groups, obtainable by a process comprising the steps
A) Herstellung einer Mischung umfassend Phosphonsäuregruppen umfassende Monomere und mindestens ein Polymer mit aromatischen Sulfonsäuregruppen,A) Preparation of a mixture comprising monomers comprising phosphonic acid groups and at least one polymer with aromatic sulfonic acid groups,
B) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) auf einer Elektrode,B) applying a layer using the mixture according to step A) on an electrode,
C) Polymerisation der in dem flächigen Gebilde erhältlich gemäß Schritt B) vorhandenen Phosphonsäuregruppen umfassende Monomere. C) Polymerization of the monomers comprising phosphonic acid groups present in the sheet-like structure obtainable in step B).
14. Elektrode gemäß Anspruch 13, wobei die Beschichtung eine Dicke zwischen 2 und 3000 μm hat.14. The electrode of claim 13, wherein the coating has a thickness between 2 and 3000 microns.
15. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode und mindestens eine Membran gemäß einem oder mehreren der Ansprüche 1 bis 10.15. membrane-electrode assembly containing at least one electrode and at least one membrane according to one or more of claims 1 to 10.
16. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode gemäß Anspruch 13 oder 14 und mindestens eine Membran gemäß einem oder mehreren der Ansprüche 1 bis 12.16. membrane electrode assembly containing at least one electrode according to claim 13 or 14 and at least one membrane according to one or more of claims 1 to 12.
17. Brennstoffzelle enthaltend eine oder mehrere Membran-Elektroden-Einheiten gemäß Anspruch 15 oder 16. 17. A fuel cell containing one or more membrane electrode assemblies according to claim 15 or 16.
EP04764851A 2003-09-04 2004-09-04 Proton-conducting polymer membrane containing polymers with sulfonic acid groups that are covalently bonded to aromatic groups, membrane electrode unit, and use thereof in fuel cells Withdrawn EP1678778A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10340927A DE10340927A1 (en) 2003-09-04 2003-09-04 Proton-conducting polymer membrane comprising polymers having covalently bonded to aromatic groups sulfonic acid groups, membrane-electrode unit and their application in fuel cells
PCT/EP2004/009900 WO2005024988A2 (en) 2003-09-04 2004-09-04 Proton-conducting polymer membrane containing polymers with sulfonic acid groups that are covalently bonded to aromatic groups, membrane electrode unit, and use thereof in fuel cells

Publications (1)

Publication Number Publication Date
EP1678778A2 true EP1678778A2 (en) 2006-07-12

Family

ID=34223365

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04764851A Withdrawn EP1678778A2 (en) 2003-09-04 2004-09-04 Proton-conducting polymer membrane containing polymers with sulfonic acid groups that are covalently bonded to aromatic groups, membrane electrode unit, and use thereof in fuel cells

Country Status (5)

Country Link
US (1) US20070055045A1 (en)
EP (1) EP1678778A2 (en)
JP (1) JP2007504616A (en)
DE (1) DE10340927A1 (en)
WO (1) WO2005024988A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361832A1 (en) * 2003-12-30 2005-07-28 Celanese Ventures Gmbh Proton-conducting membrane and its use
DE10361932A1 (en) 2003-12-30 2005-07-28 Celanese Ventures Gmbh Proton-conducting membrane and its use
DE102005020604A1 (en) * 2005-05-03 2006-11-16 Pemeas Gmbh Fuel cells with lower weight and volume
DE102005052378A1 (en) * 2005-10-31 2007-05-03 Pemeas Gmbh Production of high-mol. wt. polymer with phosphonic acid groups for use in membrane-electrolyte units for fuel cells, involves radical polymerisation of unsaturated monomers with phosphonic acid groups
WO2007082526A2 (en) 2006-01-23 2007-07-26 Between Lizenz Gmbh Electrolyte containing phosphonic acid
US20080233455A1 (en) * 2007-03-21 2008-09-25 Valadoula Deimede Proton conductors based on aromatic polyethers and their use as electolytes in high temperature pem fuel cells
US20080317946A1 (en) * 2007-06-21 2008-12-25 Clearedge Power, Inc. Fuel cell membranes, gels, and methods of fabrication
US8119294B2 (en) * 2007-11-19 2012-02-21 Clearedge Power, Inc. System and method for operating a high temperature fuel cell as a back-up power supply with reduced performance decay
CN107431223B (en) * 2015-04-14 2021-05-07 洛克希德马丁能量有限公司 Flow battery balancing cell with bipolar membrane and method of use thereof

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692569A (en) * 1970-02-12 1972-09-19 Du Pont Surface-activated fluorocarbon objects
US4634530A (en) * 1980-09-29 1987-01-06 Celanese Corporation Chemical modification of preformed polybenzimidazole semipermeable membrane
US4453991A (en) * 1981-05-01 1984-06-12 E. I. Du Pont De Nemours And Company Process for making articles coated with a liquid composition of perfluorinated ion exchange resin
US4997892A (en) * 1989-11-13 1991-03-05 Hoechst Celanese Corp. Sulfalkylation of hydroxyethylated polybenzimidazole polymers
CH691209A5 (en) * 1993-09-06 2001-05-15 Scherrer Inst Paul Manufacturing process for a polymer electrolyte and electrochemical cell with this polymer electrolyte.
US5834523A (en) * 1993-09-21 1998-11-10 Ballard Power Systems, Inc. Substituted α,β,β-trifluorostyrene-based composite membranes
US5422411A (en) * 1993-09-21 1995-06-06 Ballard Power Systems Inc. Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membranes formed therefrom
US5468574A (en) * 1994-05-23 1995-11-21 Dais Corporation Fuel cell incorporating novel ion-conducting membrane
US5525436A (en) * 1994-11-01 1996-06-11 Case Western Reserve University Proton conducting polymers used as membranes
US5547551A (en) * 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
DE19509749C2 (en) * 1995-03-17 1997-01-23 Deutsche Forsch Luft Raumfahrt Process for producing a composite of electrode material, catalyst material and a solid electrolyte membrane
DE19509748C2 (en) * 1995-03-17 1997-01-23 Deutsche Forsch Luft Raumfahrt Process for producing a composite of electrode material, catalyst material and a solid electrolyte membrane
DE19632285A1 (en) * 1996-08-09 1998-02-19 Hoechst Ag Proton conductor with a temperature resistance in a wide range and good proton conductivities
CA2300934C (en) * 1997-08-29 2008-08-26 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
JPH11111310A (en) * 1997-09-30 1999-04-23 Aisin Seiki Co Ltd Solid polymer electrolyte film for fuel cell and manufacture thereof
US6110616A (en) * 1998-01-30 2000-08-29 Dais-Analytic Corporation Ion-conducting membrane for fuel cell
DE19817374A1 (en) * 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Acid base polymer blends and membranes useful as polymer electrolyte membranes in fuel cells, pervaporation and reverse osmosis
DE19851498A1 (en) * 1998-11-09 2000-07-06 Aventis Res & Tech Gmbh & Co Polymer composition, membrane containing these, process for their preparation and their use
US7550216B2 (en) * 1999-03-03 2009-06-23 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
US6517962B1 (en) * 1999-08-23 2003-02-11 Ballard Power Systems Inc. Fuel cell anode structures for voltage reversal tolerance
JP3656244B2 (en) * 1999-11-29 2005-06-08 株式会社豊田中央研究所 High durability solid polymer electrolyte, electrode-electrolyte assembly using the high durability solid polymer electrolyte, and electrochemical device using the electrode-electrolyte assembly
DE19959289A1 (en) * 1999-12-09 2001-06-13 Axiva Gmbh Process for the production of sulfonated aromatic polymers and use of the process products for the production of membranes
GB0006428D0 (en) * 2000-03-17 2000-05-03 Johnson Matthey Plc Electrochemical cell
GB0006429D0 (en) * 2000-03-17 2000-05-03 Johnson Matthey Plc Electrochemical cell
JP3607862B2 (en) * 2000-09-29 2005-01-05 株式会社日立製作所 Fuel cell
CN100358938C (en) * 2000-11-13 2008-01-02 东洋纺织株式会社 Polybenzole compound having sulfo group and/or phosphono group, resin composition containing same, molded resin, solid polymer electrotyte film, solid electrolyte film/electrode catalyst layer ...
JP2002146016A (en) * 2000-11-15 2002-05-22 Toyobo Co Ltd Ion-conductive polyazole containing phosphonic acid group
US20020127474A1 (en) * 2001-01-09 2002-09-12 E.C.R.-Electro-Chemical Research Ltd. Proton-selective conducting membranes
DE10148131B4 (en) * 2001-09-28 2010-07-01 Gkss-Forschungszentrum Geesthacht Gmbh Process for the preparation of a polymer, polymer and proton conductive membrane for electrochemical applications
TWI309252B (en) * 2002-01-15 2009-05-01 Sumitomo Chemical Co Polymer electrolyte composition and uses thereof
DE10213540A1 (en) * 2002-03-06 2004-02-19 Celanese Ventures Gmbh Solution from vinylphosphonic acid, process for producing a polymer electrolyte membrane from polyvinylphosphaonic acid and its use in fuel cells
DE10220818A1 (en) * 2002-05-10 2003-11-20 Celanese Ventures Gmbh Process for producing a grafted polymer electrolyte membrane and its use in fuel cells
CA2494530A1 (en) * 2002-08-02 2004-02-19 Pemeas Gmbh Proton-conducting polymer membrane comprising a polymer with sulphonic acid groups and use thereof in fuel cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005024988A2 *

Also Published As

Publication number Publication date
WO2005024988A2 (en) 2005-03-17
US20070055045A1 (en) 2007-03-08
WO2005024988A3 (en) 2005-11-03
JP2007504616A (en) 2007-03-01
DE10340927A1 (en) 2005-03-31

Similar Documents

Publication Publication Date Title
EP1483316B1 (en) Proton conducting electrolyte membrane having reduced methanol permeability and the use thereof in fuel cells
EP1488473B1 (en) Mixture comprising phosphonic acid containing vinyl, polymer electrolyte membranes comprising polyvinylphosphonic acid and the use thereof in fuel cells
EP1506591B1 (en) Polymer electrolyte membrane, method for the production thereof, and application thereof in fuel cells
EP1527494B1 (en) Proton-conducting polymer membrane comprising a polymer with sulphonic acid groups and use thereof in fuel cells
WO2003074596A1 (en) Proton conducting electrolyte membrane for use in high temperatures and the use thereof in fuel cells
EP1485427B1 (en) Mixture comprising sulphonic acid containing vinyl, polymer electrolyte membrane comprising polyvinylsulphonic acid and the use thereof in fuel cells
WO2003096464A2 (en) Grafted polymer electrolyte membrane, method for the production thereof, and application thereof in fuel cells
WO2004015802A1 (en) Proton-conducting polymer membrane comprising a polymer with phosphonic acid groups and use thereof in fuel cells
WO2007048636A2 (en) Membrane for fuel cells, containing polymers comprising phosphonic acid groups and/or sulfonic acid groups, membrane electrode units and the use thereof in fuel cells
EP1927151B1 (en) Method for conditioning membrane-electrode-units for fuel cells
EP1771911B1 (en) Improved membrane electrode assemblies and highly durable fuel cells
EP1678778A2 (en) Proton-conducting polymer membrane containing polymers with sulfonic acid groups that are covalently bonded to aromatic groups, membrane electrode unit, and use thereof in fuel cells
DE10340928A1 (en) Proton-conducting polymer membrane coated with a catalyst layer containing polymers comprising phosphonous acid groups, membrane-electrode assembly and their application in fuel cells
EP1955400A1 (en) Improved membrane-electrode assemblies and long-life fuel cells
EP1676333A1 (en) Proton-conducting polymer membrane comprising at least one porous carrier material, and use thereof in fuel cells
DE102005057644A1 (en) New functionalized polyazole containing repeating imidazole units useful in the application of polymer electrolyte membrane fuel cells
DE10210499A1 (en) A proton conducting electrolyte membrane production obtainable by swelling of a polymer film with a vinylsulfonic acid containing liquid and polymerization of the vinyl-containing sulfonic acid useful in fuel cell production
WO2005111123A1 (en) Anisotropic shaped bodies, method for the production and utilization of anisotropic shaped bodies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060503

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070418

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF FUEL CELL GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF FUEL CELL RESEARCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121228