EP1678060A1 - Passenger conveyor drive monitoring arrangement with brake actuation - Google Patents
Passenger conveyor drive monitoring arrangement with brake actuationInfo
- Publication number
- EP1678060A1 EP1678060A1 EP03779401A EP03779401A EP1678060A1 EP 1678060 A1 EP1678060 A1 EP 1678060A1 EP 03779401 A EP03779401 A EP 03779401A EP 03779401 A EP03779401 A EP 03779401A EP 1678060 A1 EP1678060 A1 EP 1678060A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wheels
- drive
- assembly
- rotating
- rotating member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B29/00—Safety devices of escalators or moving walkways
- B66B29/005—Applications of security monitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B23/00—Component parts of escalators or moving walkways
- B66B23/02—Driving gear
- B66B23/028—Driving gear with separate drive chain or belt that engages directly the carrying surface chain
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B25/00—Control of escalators or moving walkways
- B66B25/006—Monitoring for maintenance or repair
Definitions
- This invention generally relates to passenger conveyor drive systems. More particularly, this invention relates to an arrangement for monitoring the operative condition of a passenger conveyor drive system and for actuating a brake as may be needed.
- Escalator systems typically include a chain of steps that moves along a loop to carry passengers between landings in different levels of a building, for example.
- escalator systems include at least one drive machine that propels the steps in the desired direction.
- a drive sprocket engages a step chain, which is associated with the steps to cause the desired step movement.
- Other passenger conveyors have similar or identical arrangements although the steps may move passengers horizontally. More recently, new drive arrangements have been proposed or introduced.
- escalator safety codes require brake actuation in the event of a damaged or failing drive arrangement and new drive systems require new techniques for appropriately actuating a brake.
- This invention addresses the need for monitoring the condition of a drive assembly and actuating a brake as may be needed in a passenger conveyor drive arrangement that includes a drive member for moving the step chain.
- this invention is a drive assembly monitoring technique that utilizes relative speeds of sheaves or sprockets as an indication of the condition of the drive assembly.
- One example drive assembly includes a plurality of drive wheels.
- a drive member such as a belt is associated with each drive wheel.
- Each drive member follows a path around the associated drive wheel and at least one deflection wheel.
- a monitor device is associated with selected wheels to provide an indication of relative rotation between the selected wheels. In one example, when there is a difference in the speed of rotation of the selected wheels, the monitor device provides an indication of such relative rotation and facilitates actuating a brake to prevent the steps from moving.
- the relative rotation between the sheaves indicates a broken drive member.
- One example monitor device includes a first rotating member that is coupled to rotate with the first one of the selected wheels.
- a second rotating member is coupled to rotate with a second one of the selected wheels.
- the first and second rotating members begin in a first axial position and remain in that position while the selected wheels rotate at the same speed.
- At least one of the rotating members moves to a second position responsive to relative rotation between the selected wheels.
- the rotating member moves axially relative to the other rotating member when there is a speed difference between the sheaves and, therefore, the rotating members.
- that movement in one example operates an actuator that, in turn, actuates a brake associated with the escalator system.
- Figure 1 schematically illustrates, in perspective view, selected portions of an escalator system including a drive assembly designed according to an embodiment of this invention.
- Figure 2 is a perspective, schematic illustration of an example drive assembly designed according to an embodiment of this invention.
- Figure 3 illustrates, in somewhat more detail, selected portions of the embodiment of Figure 2.
- Figure 4 shows the embodiment of Figure 3 in a second operating position.
- Figure 5 is a perspective, schematic illustration of another example drive assembly designed according to an embodiment of this invention.
- FIG. 1 schematically shows an escalator system 20 having a plurality of steps 22 that move between landings 24 and 26 in a generally known manner.
- the steps 22 follow a track (not illustrated) that is supported as part of an escalator truss structure 28.
- a step chain 30 includes a plurality of links 32 that are associated with the steps 22 so that movement of the step chain 30 causes movement of the steps 22.
- a drive assembly 40 includes a drive member 42 that interacts with the links 32 of the step chain 30 to cause the desired movement of the steps 22.
- the drive member 42 in one example is a polyurethane belt having reinforcing members such as steel cords.
- the drive member 42 comprises a chain.
- the drive member 42 will be referred to as a belt.
- the belt 42 preferably is toothed and follows a path defined by a drive wheel 44 and a deflection wheel 46.
- a machine (i.e., motor and brake) 48 causes movement of the drive wheel 44, which propels the belt 42 around the path and, in turn, propels the step chain 30 and steps 22 in the desired manner.
- the wheels 44, 46 comprise sprockets.
- the wheels comprise grooved sheaves.
- FIG. 2 schematically illustrates an example drive assembly 40 having two drive members 42. Each drive member 42 is associated with a step chain 30 on the opposite lateral sides of the steps 22.
- a machine 48 is associated with each of the drive wheels 44 and the corresponding belts 42.
- Figure 2 schematically shows a monitor device 50 that monitors an operating condition of the drive assembly 40.
- the monitor device 50 is capable of providing information regarding a condition of the belts 42, such as when one or both of the belts 42 breaks.
- the monitor device 50 includes a first rotating member 52 that rotates with a shaft 54, which rotates with the deflection wheel 46.
- a second rotating member 56 rotates in unison with a shaft 58, which rotates with the other deflection wheel 46. At least one of the rotating members 52, 56 is associated with a brake actuator 60 that operates to actuate a brake 62:
- the actuator 60 and brake 62 are schematically shown and comprise known components.
- the brake 62 may be part of the machine brake or an auxiliary, emergency stopping brake, depending on the needs of a particular situation.
- the actuator 60 may be electric, cable-based or some combination of these. Those skilled in the art who have the benefit of this description will be able to arrange braking components as needed to meet the needs of their particular situation.
- the first rotating member 52 of the example monitoring device 50 is a bushing that rotates with the shaft 54, in unison with rotation of the deflection wheel 46.
- An engaging surface 64 on the bushing 52 cooperates with a corresponding engaging surface 66 on the second rotating member 56, which also is a bushing in this example.
- the first rotating member 52 is biased toward the second rotating member 56 such that the engaging surfaces 64 and 66 are aligned as shown in Figure 3.
- the engaging surfaces 64 and 66 are at least partially arranged at an oblique angle relative to the axis of rotation of the rotating members 52 and 56.
- a spring 68 biases the first rotating member 52 toward the second rotating member 56.
- the two deflection wheels 46 will rotate at the same speed because the drive wheels 44 are moving synchronously driving the belts 42 in unison. Under such conditions, the first and second rotating members remain in the first position shown in Figure 3. In the event that one of the belts 42 becomes broken, for example, there will be a difference in the speed of rotation between the deflection wheels 46, because one of them will no longer be driven by the corresponding belt 42 and drive wheel 44. Under these conditions there is relative rotation between the first rotating member 52 and the second rotating member 56. The inclined engaging surfaces 64 and 66 therefore cause relative axial movement between the first rotating member 52 and the second rotating member 56.
- FIG. 4 One position is shown in Figure 4 where the relative rotation has caused axial movement of the first rotating member 52 relative to the sheave 46 and the second rotating member 56.
- axial movement provides an indication of a malfunction in at least part of the escalator drive system.
- a plate 70 is secured to rotate with the first rotating member 52.
- the plate 70 causes a follower 72 to move axially as part of the plate 70 is received within a groove 74 on the follower 72.
- One end 76 of the follower 72 is received to slide within a channel 78 formed on a support 80 as shown.
- the support 80 is secured to a selected portion of a drive assembly support structure 82 ( Figure 2), which is associated with the escalator truss 28 in a generally known manner.
- Figure 2 a drive assembly support structure 82
- the axial movement of the follower 72 can be appreciated by comparing the position of the follower 72 with the setting member 84 in Figure 3 and Figure 4. As the follower 72 moves away from the setting member 84, that provides an indication of a malfunction, such as a broken belt condition. In one example, as the follower 72 moves away from the setting member 84, that triggers the actuator 60 such as throwing a switch (not illustrated) or pulling upon a cable or linkage arrangement (not illustrated) to actuate the brake 62.
- the actuator 60 such as throwing a switch (not illustrated) or pulling upon a cable or linkage arrangement (not illustrated) to actuate the brake 62.
- the monitoring device 50 provides an indication of a malfunction in the drive assembly, which normally has both belts 42 and all four sheaves 44, 46 rotating at the same speed. In the event that there is any relative rotation between them (i.e., a speed difference between at least two selected wheels), that is an indication of a malfunction in the drive assembly, which may be used to actuate a brake, if desired.
- the example embodiment of Figure 2 is useful for indicating when one of the belts 42 becomes broken or damaged, for example.
- the modified rotating member 56' includes a follower portion 90 that is associated with a connector 92, which causes the follower portion 90 to rotate at the same speed as a pulley 94 associated with a synchronizer bar 96 that rotates in unison with the drive wheels 44.
- the follower portion 90 comprises a groove on the second rotating member 56.
- the follower portion 90 comprises a separate sheave that is arranged to rotate in unison with at least one of the rotating members 52, 56'.
- a single second rotating member 56' is associated with two first rotating members 52 A and 52B.
- Each of the first rotating members 52 A, 52B are associated with a respective one of the deflection wheels 46 to rotate in unison with the associated sheave.
- the second rotating member 56' will rotate relative to the corresponding first rotating member 52 (A or B) causing at least one of the rotating members to move axially as described above. This results in operating the actuator mechanism 60, which in turn may operate a brake as needed.
- the embodiment of Figure 5 allows for separately monitoring each belt 42 or both belts 42 using a single monitoring device arrangement.
- Another example embodiment includes dedicated first rotating members 52 and second rotating members 56 associated with each deflection wheel 46 and a synchronizing arrangement to cause the rotating members to rotate in unison and at the same speed as the drive wheels 44 under normal operating conditions.
Landscapes
- Escalators And Moving Walkways (AREA)
- Braking Arrangements (AREA)
Abstract
Description
Claims
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2003/034258 WO2005051811A1 (en) | 2003-10-29 | 2003-10-29 | Passenger conveyor drive monitoring arrangement with brake actuation |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1678060A1 true EP1678060A1 (en) | 2006-07-12 |
EP1678060A4 EP1678060A4 (en) | 2009-07-22 |
EP1678060B1 EP1678060B1 (en) | 2011-05-04 |
Family
ID=34632373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03779401A Expired - Lifetime EP1678060B1 (en) | 2003-10-29 | 2003-10-29 | Passenger conveyor drive monitoring arrangement with brake actuation |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP1678060B1 (en) |
JP (1) | JP4783148B2 (en) |
CN (1) | CN1860074B (en) |
AT (1) | ATE508079T1 (en) |
AU (1) | AU2003285085A1 (en) |
DE (1) | DE60337037D1 (en) |
HK (1) | HK1098443A1 (en) |
WO (1) | WO2005051811A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE502006005978D1 (en) | 2006-04-25 | 2010-03-11 | Busch Dieter & Co Prueftech | Method for monitoring the torsional strength of a shaft |
CN101264843B (en) * | 2008-03-05 | 2010-06-02 | 上海中业电梯有限公司 | Escalator operation safety monitoring method and device |
US11230459B2 (en) | 2020-06-26 | 2022-01-25 | Otis Elevator Company | Belt-driven escalator |
EP3929138A1 (en) * | 2020-06-26 | 2021-12-29 | Otis Elevator Company | Belt-driven escalator |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1610428A (en) * | 1922-08-30 | 1926-12-14 | Otis Elevator Co | Safety device for escalators |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS45757Y1 (en) * | 1966-03-16 | 1970-01-13 | ||
JPS5823823Y2 (en) * | 1978-10-31 | 1983-05-21 | 三菱電機株式会社 | passenger conveyor equipment |
GB8602846D0 (en) * | 1986-02-05 | 1986-03-12 | Fletcher Sutcliffe Wild Ltd | Belt conveyor drive system |
MY106142A (en) * | 1990-02-20 | 1995-03-31 | Toshiba Kk | Man conveyor. |
US5076568A (en) * | 1990-07-26 | 1991-12-31 | Xerox Corporation | Damping servo-motor control |
JPH04191289A (en) * | 1990-11-27 | 1992-07-09 | Hitachi Building Syst Eng & Service Co Ltd | Monitor for passenger conveyor |
JP3061484B2 (en) * | 1992-09-07 | 2000-07-10 | 株式会社東芝 | Control device of man conveyor |
CN2229917Y (en) * | 1993-09-16 | 1996-06-26 | 苏州迅达电梯有限公司 | Device for monitoring and controlling working condition and trouble of escalator |
CN1086673C (en) * | 1996-09-03 | 2002-06-26 | 奥蒂斯电梯公司 | Handrail drive for passenger conveyor |
CN2375603Y (en) * | 1999-06-11 | 2000-04-26 | 承德特种输送机实业有限公司 | Double-motor driving electric controller for conveyer line |
-
2003
- 2003-10-29 AU AU2003285085A patent/AU2003285085A1/en not_active Abandoned
- 2003-10-29 AT AT03779401T patent/ATE508079T1/en not_active IP Right Cessation
- 2003-10-29 EP EP03779401A patent/EP1678060B1/en not_active Expired - Lifetime
- 2003-10-29 JP JP2005510949A patent/JP4783148B2/en not_active Expired - Fee Related
- 2003-10-29 WO PCT/US2003/034258 patent/WO2005051811A1/en active Application Filing
- 2003-10-29 DE DE60337037T patent/DE60337037D1/en not_active Expired - Lifetime
- 2003-10-29 CN CN2003801106234A patent/CN1860074B/en not_active Expired - Fee Related
-
2007
- 2007-05-03 HK HK07104709.7A patent/HK1098443A1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1610428A (en) * | 1922-08-30 | 1926-12-14 | Otis Elevator Co | Safety device for escalators |
Non-Patent Citations (1)
Title |
---|
See also references of WO2005051811A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP1678060A4 (en) | 2009-07-22 |
CN1860074A (en) | 2006-11-08 |
EP1678060B1 (en) | 2011-05-04 |
CN1860074B (en) | 2010-06-02 |
AU2003285085A1 (en) | 2005-06-17 |
JP4783148B2 (en) | 2011-09-28 |
DE60337037D1 (en) | 2011-06-16 |
JP2007521207A (en) | 2007-08-02 |
ATE508079T1 (en) | 2011-05-15 |
WO2005051811A1 (en) | 2005-06-09 |
HK1098443A1 (en) | 2007-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7497315B2 (en) | Escalator drive system failure detection and brake activation | |
US7954620B2 (en) | Passenger conveyor handrail drive control strategy | |
EP1042210A2 (en) | Traction elevator system having multiple machines | |
CN111824918A (en) | Method and passenger conveyor | |
EP1678060B1 (en) | Passenger conveyor drive monitoring arrangement with brake actuation | |
US6296080B1 (en) | Variable traction mechanism for rotary actuated overspeed safety device | |
US7219784B2 (en) | Belt drive assembly for a passenger conveyor | |
US20070000753A1 (en) | Passenger conveyor drive monitoring arrangement with brake actuation | |
US20100018810A1 (en) | Elevator apparatus | |
US7419033B2 (en) | Emergency brake device for elevator | |
JPH1121061A (en) | Passenger conveyor device | |
JPH07157265A (en) | Safety device for passenger conveyer | |
JP2006036397A (en) | Passenger conveyor device | |
CN114426236B (en) | Emergency stop device and elevator | |
WO2019043284A1 (en) | A passenger conveyor | |
WO2004071860A1 (en) | Auxiliary brake system for passenger conveyor systems | |
JP2008273665A (en) | Inclined passenger conveyor | |
JPH07277656A (en) | Safety device of passenger conveyer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060427 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ROBKE, THORSTEN Inventor name: HAME, MARKUS Inventor name: STUFFEL, ANDREAS |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20090618 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60337037 Country of ref document: DE Date of ref document: 20110616 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60337037 Country of ref document: DE Effective date: 20110616 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110805 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60337037 Country of ref document: DE Effective date: 20120207 Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20111029 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111029 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130501 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60337037 Country of ref document: DE Effective date: 20130501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110504 |