EP1676290A1 - Electron gun with a focusing anode, forming a window for said gun and application thereof to irradiation and sterilization - Google Patents

Electron gun with a focusing anode, forming a window for said gun and application thereof to irradiation and sterilization

Info

Publication number
EP1676290A1
EP1676290A1 EP04805233A EP04805233A EP1676290A1 EP 1676290 A1 EP1676290 A1 EP 1676290A1 EP 04805233 A EP04805233 A EP 04805233A EP 04805233 A EP04805233 A EP 04805233A EP 1676290 A1 EP1676290 A1 EP 1676290A1
Authority
EP
European Patent Office
Prior art keywords
anode
cathode
electron gun
electrons
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04805233A
Other languages
German (de)
French (fr)
Inventor
Michel Roche
Philippe Fontcuberta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Getinge Life Science France SAS
Original Assignee
La Calhene SA
Physique and Industrie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by La Calhene SA, Physique and Industrie filed Critical La Calhene SA
Publication of EP1676290A1 publication Critical patent/EP1676290A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/087Particle radiation, e.g. electron-beam, alpha or beta radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J33/00Discharge tubes with provision for emergence of electrons or ions from the vessel; Lenard tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/23Containers, e.g. vials, bottles, syringes, mail

Definitions

  • the present invention relates to an electron gun whose anode is transparent to electrons and constitutes a window of this gun. It applies in particular: - to the polymerization of products such as paints, varnishes and glues for example, - to the irradiation of surfaces, - to the sterilization of objects, in particular packaging components, such as as stoppers, capsules, bottles, preforms, jars, thermoforming films, sealing films (films used to close off certain containers) and flexible unitary or loop bags for example, - by welding by electron bombardment, food decontamination treatment and - heat treatments such as quenching and amorphization for example. More generally, the invention can be used for all applications of ionization using low energy, provided in focused form, ionization of the kind that can be achieved by laser. STATE OF THE PRIOR ART Reference is made to the following documents:
  • CA 1 118 180 A “Process and apparatus for cold-cathode electron-beam generation for sterilization of surfaces and similar applications”, invention of Richard N. Cheever
  • Document [1] describes an electron gun with a cold cathode. This gun has a conductive window which constitutes the anode of the gun and which the electrons pass through to irradiate the surface of an object or to sterilize it.
  • Document [2] describes a printer comprising an electron gun and several windows formed by curved metal plates, which are transparent to electrons. We therefore know how to obtain an electron beam in the atmosphere, outside the enclosure of the electron gun which generates this beam. As the interior of this enclosure is under vacuum, the window through which the electron beam passes must resist atmospheric pressure. This problem arises particularly when one wants to extract low energy electrons (less than or equal to 500 keV) from the enclosure, since the window must then be very thin.
  • the aim of the present invention is to remedy the above drawbacks. It relates to an electron gun, more particularly a gun capable of supplying a low energy electron beam (less than or equal to 500 keV), this gun comprising a curved window, which is transparent to the electrons, resists pressure atmospheric and serves as both an anode and a focusing electrode.
  • this gun exploits the optical properties of curved surfaces: it uses the curvature that is given to the window anode (so that it resists atmospheric pressure), in cooperation with an equally curved cathode.
  • the present invention relates to an electron gun comprising: - a sealed enclosure, intended to be vacuum (“evacuated”), a cathode which is placed in the enclosure and has an emitting face, capable of emitting electrons, an anode constituting a sealed window, formed opposite this emitting face in one of the walls of the enclosure, and capable of letting the electrons emitted by this emitting face, and polarization means (“biasing means ”) to establish, between the anode and the cathode, a voltage capable of accelerating these electrons towards the anode, the electrons thus accelerated forming a beam which crosses the anode, this electron gun being characterized in that the anode and the emitting face each have a curvature, the curvature of the anode allowing it to resist a pressure difference between the interior and the exterior of the enclosure and being able to cooperate with the curvature of the emitting face to focus the electron beam outside the enclosure.
  • the voltage established between the anode and the cathode is capable of communicate to electrons an energy less than or equal to 500 keV.
  • the emitting face of the cathode comprises an emitting layer, capable of emitting electrons when it is heated, the electron gun further comprising means for heating the cathode and therefore of this emitting layer.
  • these heating means comprise a filament capable of emitting electrons when it is heated and of bombarding the cathode with these electrons, the cathode and therefore the emitting layer thus being heated by electron bombardment .
  • the anode and the emitting face of the cathode form portions of concentric spheres or portions of coaxial cylinders of revolution.
  • the anode preferably comprises a thin metal sheet whose thickness can be less than 50 micrometers.
  • the polarization means are provided for establishing a pulsed voltage between the anode and the cathode, with a view to an acceleration of the electrons in pulsed mode.
  • the biasing means are provided for bringing the cathode to a high voltage drawn negative with respect to the anode, the latter being grounded, and these biasing means comprise: - auxiliary means, capable of supplying a negative pulsed voltage, and - a transformer which is capable of transforming this negative pulsed voltage into the negative pulsed high voltage, this transformer comprising a primary winding, which is connected to the auxiliary means, and a secondary winding which comprises three electrical conductors, two of these conductors being provided for heating the filament and the polarization of this filament relative to the cathode, so that the electrons emitted by the filament reach this cathode, the third conductor being provided to bring the cathode to the high pulsed negative voltage.
  • the anode is provided with cooling means.
  • These cooling means preferably comprise means for projecting a gas onto at least part of the periphery of the anode.
  • the present invention also relates to an installation for electronically irradiating at least one object, this installation comprising means for irradiating this object with a focused electron beam, installation in which the means for irradiating comprise the electron gun subject of the invention.
  • the present invention further relates to an installation for electronic sterilization of objects, in particular packaging components, this installation comprising means for irradiating these objects with a focused electron beam, installation in which the irradiation means comprise the electron gun object of the invention.
  • FIG. 1 is a view in schematic longitudinal section of a particular embodiment of the electron gun object of the invention
  • - Figure 2 shows the variations, as a function of time t, of a high pulsed voltage Va that can be applied to the cathode of the electron gun of Figure 1, to accelerate the electrons emitted by this cathode
  • - Figure 3 schematically illustrates the acceleration in diode mode that allows this electron gun of Figure 1
  • Figure 4 is a diagram of means power supply of the electron gun of Figure 1
  • - Figure 5 schematically illustrates an application of an electron gun according to the invention, to the sterilization of a packaging film llage
  • - Figure 6 schematically illustrates an application of an electron gun according to the invention, to the sterilization of packaging components, such as capsules or stoppers
  • FIGS. 7 and 8 schematically
  • the electron gun according to the invention which is schematically represented in section in FIG. 1, comprises a sealed enclosure 2, which is under vacuum, as well as an anode 4 and a cathode 6.
  • the latter is placed in the enclosure 2 and has an emitting face 8, capable of emitting electrons.
  • the anode 4 is formed in one of the walls of the enclosure, opposite this emitting face 8, and constitutes a sealed window, transparent to electrons. Thus it lets through those which are emitted by the emitting face.
  • the electron gun further comprises electrical supply means 10 making it possible to establish, between the anode 4 and the cathode 6, a voltage Va of acceleration, towards the anode, of the electrons emitted by the cathode.
  • the anode 4 is grounded and the voltage Va is a negative pulsed high voltage which is applied to the cathode.
  • the electrons thus accelerated form a beam 12 which passes through the anode 4 and is found outside the enclosure 2, that is to say in the air.
  • the anode 4 and the emitting face 8 each have a curvature. The curvature of the anode allows it to resist the pressure difference between the interior of the enclosure, which is under vacuum, and the exterior of this enclosure, which is at atmospheric pressure.
  • the curvature of the anode cooperates with that of the emitting face to focus the electron beam 12 outside the enclosure.
  • the focusing zone 14, to which we will return later, is punctual or straight.
  • the enclosure 2 seals the vacuum, more specifically the secondary vacuum in the example, and comprises a first metallic part 16, substantially cylindrical, for example made of stainless steel, which is grounded and supports the anode 4 , and a second metallic part 20, substantially annular, which is connected to the cathode 6 and therefore to the negative pulsed high voltage Va.
  • the anode 4 is made from a metal sheet to which we will return later. The edge of this sheet is immobilized between the metal part 16 and a substantially annular part 17.
  • This part 17 is tightened against the metal part 16 by screws 18.
  • a metal seal 19 for example made of indium, which is clamped with the metal sheet, between the latter and the metal part 16, as can be seen in FIG. 1.
  • the metal part 20 is closed by a flange 21 which constitutes the rear wall of the enclosure 2. It is opposite to the wall which carries the anode 4, or front wall. Screws 22 allow the clamp to be tightened
  • the gun of Figure 1 is intended to provide a pulsed low energy electron beam, not exceeding 500 keV. As a purely indicative and in no way limitative, a beam of 250 keV is produced, the power of which is 5 k.
  • the cathode 6 comprises a metal part 24, for example made of nickel, the side facing the anode constitutes the side 8 which emits the electrons.
  • a thin layer 26 a few tens of millimeters thick has been deposited on this face 8, which emits electrons when it is heated and which for example consists of a mixture of nickel powder and carbonate sintered barium.
  • Means 28 are provided for heating the part 24 and therefore for the layer 26. In the example, these are means for heating by bombardment.
  • electronic comprising a filament 30, for example made of tungsten, which emits electrons when heated.
  • Two sealed bushings 34 and 35, of the ceramic-metal type, are welded to the flange 21 and allow the electrical supply of the filament 30 respectively by means of metal rods
  • the filament 30, which is opposite part 24, is supported by ceramic screws such as screws 40 and 42, making it possible to electrically isolate the filament from the cathode.
  • This filament is of course continuous but, in Figure 1, only its two ends are visible, the rest extending "behind" the plane of the figure.
  • the cathode comprises another piece 44 of stainless steel, provided with vent holes 46 and fixed, on one side, to piece 24, for example by means of a spot weld 45 of TIG type. , and on the other side, to the flange 21.
  • the part 44 carries the ceramic screws such as the screws 40 and 42, is hollow and crossed by the rods 36 and 38 from which it is electrically insulated by a ceramic ring 48 , as can be seen in FIG. 1.
  • the electrical insulation of the filament 30 with respect to the cathode 6 and therefore with respect to the nickel part 24 makes it possible to apply, between the latter and the filament, a voltage of suitable polarity to bombard and therefore heat the part 24 by the electrons emitted by the filament.
  • the latter is biased (“biased”) negatively, at -500 V, relative to the cathode.
  • the enclosure 2 comprises a third part 50, substantially in the form of a sleeve, which constitutes an electrical insulator supporting the high voltage and by means of which the parts 16 and 20 of the enclosure are made integral with one of the other.
  • a ceramic insulator for example alumina, is used.
  • solders 52 of the ceramic-metal type seal the connection between the insulator 50 and the metal parts 16 and 20.
  • the anode 4 and the face 8 of the piece 24 can respectively form portions of concentric spheres, in which case the zone 14 of focus of the electron beam 12 is punctual, or portions of coaxial cylinders of revolution, in which case this zone is rectilinear (and parallel to the common axis) cylinders, this axis then being perpendicular to the plane of Figure 1).
  • the electron-emitting layer 26 stops a little before the edge of the part 24 so as to accelerate the electron beam 12 only in an area where the electric field, generated in the accelerator space (that is to say the space between the anode and the cathode) by the application of the voltage Va, is not affected by edge effects.
  • the focusing of the electron beam 12 is essentially carried out by the convergence of the electric field lines in this accelerator space where, preferably, the field hardly exceeds 160 kV / c.
  • a beam of 250 keV is created by providing a distance of 1.5 cm between the anode 4 and the cathode 6, hence an electric field which satisfies the above condition.
  • the anode 4 consists of a thin metal sheet, preferably made of titanium or aluminum. In fact, the lower the energy sought for the electron beam, the thinner this sheet must be.
  • a sheet is preferably used whose thickness is less than 50 micrometers.
  • the anode 4 constituting the window of the barrel of FIG. 1, is provided with means 54 allowing air to be projected onto at least part of the periphery of this window, for example over half or even all of this periphery , to cool the window.
  • these means 54 comprise an inlet 56 for compressed air on the desired peripheral part, this inlet 56 being supplied with compressed air by means symbolized by the arrows 58. It is preferable to filter very carefully the air that is sent to the periphery of the anode to prevent dust from being there.
  • the electron gun of FIG. 1 can also be equipped with suction means (not shown) making it possible to cool the anode with a quasi-controlled atmosphere (for example a nitrogen atmosphere), with a view to d '' avoid the formation of ozone (dangerous gas) during the operation of the electron gun.
  • a vacuum is made in enclosure 2: a secondary vacuum is established there, that is to say a pressure less than or equal to 10 "5 Pa.
  • This vacuum can be maintained “statically” in the enclosure, provided that only “ultra-vacuum” techniques are used and that degassing is prolonged at high temperature, for example at 300 ° C, when establishing the secondary vacuum in the enclosure, then placing a getter (not shown) in the enclosure to maintain the secondary vacuum thus obtained.
  • this secondary vacuum can be established in enclosure 2 and then maintain it in a way "Dynamic", for example by means of an ion pump 60.
  • the electron gun of FIG. 1 substantially forms a cylinder 400 mm long and 50 mm in diameter.
  • a preferred embodiment of the electron gun, object of the invention is based on two principles, namely acceleration in pulsed mode and acceleration in "diode" mode.
  • the electron gun of Figure 1 is an example of this preferred embodiment.
  • the electron acceleration voltage is applied for only one small fraction of the time of use of the barrel, preferably 1 thousandth of this time.
  • this voltage is applied for 2 ⁇ s with a repetition rate of 500 Hz, but of course the current will have to be 1000 times higher and therefore be 10 A.
  • This has the advantage of reducing the constraints of electrical insulation which are much less severe when the pulse is short (the probability of breakdown ("breakdown") varying as the square root of the time of application of the voltage). This results in a reduction in dimensions and costs both of high voltage generators and of the electron gun.
  • FIG. 2 shows the variations, as a function of time t, of a negative pulsed high voltage Va which can be applied to the cathode of an electron gun according to the invention, for example the gun of FIG. 1 , to accelerate the electrons emitted by this cathode.
  • Vm the minimum (negative) value of this voltage Va.
  • Vm is therefore the value of the voltage which is applied to the cathode, only during a fraction of the time of use of the gun and periodically.
  • Diode this is the simplest possible way of accelerating the electrons: the latter are accelerated between a hot cathode 62 and an anode 64 which are schematically represented in FIG. 3 (and correspond respectively to cathode 6 and at anode 4 of the example in FIG. 1).
  • FIG. 4 schematically illustrates an example of the means 10 for powering the electron gun of FIG. 1.
  • These means 10 make it possible both to apply the high negative pulsed voltage Va to the cathode 6, to polarize the filament 30 by relative to this cathode and to heat this filament, the anode 4 being grounded.
  • These means 10 comprise a transformer 72 which makes it possible to obtain the high negative pulsed voltage.
  • This transformer 72 is essentially characterized by very high electrical insulation, which can advantageously be produced by oil, and by a low leakage inductance. The latter is necessary for obtaining fairly steep rising edges for the output pulse, the duration of these rising edges being by example equal to 1 microsecond, so that the time of application of the high voltage proper on the electron gun can be reduced to the maximum and be for example equal to a few microseconds.
  • the secondary winding 74 of this transformer 72 is wound by means of a cable 76 with three electrical conductors so that one can not only apply the high voltage to the cathode but also, from the ground potential, ensure the heating the filament 30 and applying, between this filament and the cathode 6, a negative voltage Vf allowing the filament to be polarized negatively with respect to the cathode, in order to heat the latter by electron bombardment, at a high temperature, for example of the order 800 ° C.
  • the voltage Vf thus makes it possible to control the temperature of the cathode 6. This temperature itself conditions the emissivity of the cathode.
  • the transformer 72 is controlled by an asymmetrical bridge 80 which is connected to the primary winding 78 of this transformer and designed to supply the latter with a negative pulsed voltage which the transformer converts into a negative pulsed high voltage.
  • This asymmetrical bridge 80 comprises two switching transistors 82 and 84 and two diodes 86 and 88, these diodes and transistors being arranged as seen in FIG. 4. The two diodes 86 and 88 allow the demagnetization of the transformer 72.
  • the two transistors 82 and 84 are preferably IGBT transistors, that is to say bipolar insulated gate transistors.
  • the transistors 82 and 84 are controlled by means not shown, making it possible to obtain the desired pulsation for the voltage. These means are for example optocoupled "driver" type integrated circuits.
  • the asymmetrical bridge 80 is supplied by a capacitor 90, under a supply voltage which is obtained by rectification of the three-phase sector 92 by means of a Graetz bridge shown diagrammatically by the rectangle 94.
  • the bridge is supplied asymmetrical 80 by a capacitor whose capacity is worth a few hundred microfarads, under a voltage of the order of 500 V, which is obtained by rectification of the three-phase sector by means of the Graetz bridge.
  • the supply means 10 also include another transformer 96, the primary winding of which is connected to the single-phase sector 98 (220 V-50 Hz). This transformer 96 allows the heating of the filament 30 by means of an alternating current whose frequency is for example 50 Hz, and the intensity 5A, and under a voltage which is worth for example 6 V.
  • the electrical supply means 10 further comprise a generator 100 designed to supply a DC voltage which ensures the temperature control of the cathode 6.
  • This DC voltage can, for example, be adjustable between 100 V and 500 V.
  • the cathode 6 is preferably used in saturated mode.
  • the density of the current which can be extracted from the accelerator space space between the cathode and the anode only depends on the temperature of this cathode.
  • the current delivered by the electron gun is only controlled by means of this DC voltage.
  • This voltage can optionally be controlled by a servo loop (not shown), from the reading of the current I delivered in a negative high voltage pulse supplied to the cathode.
  • the conductors 102 and 104 respectively connect the two terminals of the filament 30 to the two terminals of the secondary winding of the transformer 96.
  • the generator 100 is mounted between the ground and the end of the conductor 102 which is located on the side of the transformer 96.
  • the ends of the conductor 106 are respectively connected to the cathode 6 and to the ground.
  • a hot cathode corresponds to a preferred embodiment of the invention
  • the latter is not limited to such use:
  • other types of cathodes can be used in a barrel electrons according to the invention, for example a cold cathode, capable of emitting electrons by field effect.
  • the invention is not limited to the supply of an electron beam of at most 500 keV: higher energies are possible in the invention, by adapting the polarization of the cathode relative to the anode of an electron gun according to the invention.
  • the invention is designed for the supply of an electron beam in the air, it goes without saying that an electron gun according to the invention can be used to provide such a beam in a vacuum .
  • FIG. 5 schematically illustrates an application of the invention to the sterilization of a packaging film 108, for example a thermoforming film or a sealing film. This film 108 is tensioned and moved
  • rollers 110 by means not shown, from a reel 112 on which it is wound.
  • the film 108 penetrates and moves in an aseptic enclosure 114 which is put under overpressure by means not shown.
  • An electron gun 116 according to the invention, provided with pumping means 118 and polarization means 120, is provided at the entrance to the aseptic enclosure 114 to sterilize the film 108 by an electron beam 122 supplied by the barrel 116, before the penetration of the film into the enclosure.
  • the barrel is arranged so as to focus the beam on the film 108.
  • FIG. 6 schematically illustrates another application of the invention to the sterilization of packaging components 124, such as capsules or stoppers for example.
  • components 124 are pushed by a sterile air jet (symbolized by the arrow F3) and from means not shown, in a vertical pipe 126 in which the components fall by gravity.
  • This pipe 126 is connected to an aseptic enclosure 128 which is put under overpressure by means not shown.
  • the components 124 are seized by mechanical means, symbolized by the rectangle 130, and brought by these means to other members, not shown, provided for use of the components in the enclosure.
  • An electron gun 116 according to the invention is also provided, before the enclosure 128, for sterilizing the components 124 before their entry into this enclosure, by means of the focused electron beam 122 supplied by this gun.
  • FIG. 7 Several electron guns in accordance with the invention can be coupled to treat, without penetration, the surface of objects whose shapes can be complex. This is schematically illustrated by Figures 7 and 8.
  • Figures 7 and 8 We see in Figure 7 three electron guns according to the invention 132a, 132b and 132c, which are placed at 120 ° from each other. The intersection of the electron beams, which are respectively emitted by these guns, covers an area 134 in which an object 136 of complex shape is placed, the surface of which is to be treated by electronic irradiation.
  • FIG. 7 three electron guns according to the invention 132a, 132b and 132c, which are placed at 120 ° from each other.
  • the intersection of the electron beams, which are respectively emitted by these guns covers an area 134 in which an object 136 of complex shape is placed, the surface of which is to be treated by electronic irradiation.
  • each of the electron guns 132a, 132b or 132c emits a beam 138a, 138b or 138c, the divergence of which, from the corresponding focal zone, is not too great, so as not to not irradiate the other two guns.
  • the electron guns 132a, 132b and 132c are provided with pumping means 140. They are also provided with control means 142 allowing the guns to simultaneously emit pulsed beams of electrons.
  • two electron guns according to the invention 144a and 144b which are placed opposite one another so as to be able to irradiate an area between these two guns.
  • An object 146 is placed in this zone, approximately equidistant from the two guns, so as to be able to process the two sides of the object respectively by the two electron beams 148a and 148b emitted by the guns.
  • the electron guns 144a and 144b are provided with pumping means 150. They are also provided with control means 152 allowing the guns to simultaneously emit pulsed beams of electrons. These means 152 are activated only when the object 146 is interposed between the two guns, so that one of them is not damaged by the beam emitted by the other and vice versa.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

The invention relates to an electron gun with a focusing anode, forming a window for said gun and the application thereof to irradiation and sterilization. Said gun comprises a vacuum chamber (2) which contains a cathode (6), having an electron-emitter face (8) and an electron-transparent anode (4), formed in one of the chamber walls. The anode is curved in order to resist the pressure difference between the inside and outside of the chamber. The emitter face is also curved and cooperates with the anode to focus the electrons outside of the chamber.

Description

CANON A ELECTRONS A ANODE FOCALISANTE, FORMANT UNE FENÊTRE DE CE CANON, APPLICATION Â L'IRRADIATION ET Â LA STÉRILISATION DESCRIPTION ELECTRON CANON WITH FOCUSING ANODE, FORMING A WINDOW OF THIS CANON, APPLICATION TO IRRADIATION AND STERILIZATION DESCRIPTION
DOMAINE TECHNIQUE La présente invention concerne un canon à électrons dont l'anode est transparente aux électrons et constitue une fenêtre de ce canon. Elle s'applique notamment : - à la polymérisation de produits tels que les peintures, les vernis et les colles par exemple, - à l'irradiation de surfaces, - à la stérilisation d'objets, en particulier de composants d'emballages, tels que les bouchons, les capsules, les bouteilles, les préformes, les pots, les films de thermoformage, les films d'operculage (films servant à obturer certains conteneurs) et les poches souples unitaires ou en boucles par exemple, - à la soudure par bombardement électronique, au traitement de décontamination des aliments et - aux traitements thermiques tels que la trempe et l' amorphisation par exemple. Plus généralement, l'invention est utilisable pour toutes les applications de l'ionisation mettant en œuvre une faible énergie, apportée sous forme focalisée, ionisation du genre de celle que l'on peut réaliser par laser. ETAT DE LA TECHNIQUE ANTERIEURE On se reportera aux documents suivants :TECHNICAL FIELD The present invention relates to an electron gun whose anode is transparent to electrons and constitutes a window of this gun. It applies in particular: - to the polymerization of products such as paints, varnishes and glues for example, - to the irradiation of surfaces, - to the sterilization of objects, in particular packaging components, such as as stoppers, capsules, bottles, preforms, jars, thermoforming films, sealing films (films used to close off certain containers) and flexible unitary or loop bags for example, - by welding by electron bombardment, food decontamination treatment and - heat treatments such as quenching and amorphization for example. More generally, the invention can be used for all applications of ionization using low energy, provided in focused form, ionization of the kind that can be achieved by laser. STATE OF THE PRIOR ART Reference is made to the following documents:
[1] CA 1 118 180 A, « Process and apparatus for cold-cathode electron-beam génération for sterilization of surfaces and similar applications », invention de Richard N. Cheever[1] CA 1 118 180 A, “Process and apparatus for cold-cathode electron-beam generation for sterilization of surfaces and similar applications”, invention of Richard N. Cheever
[2] US 4 721 967 A, « électron gun printer having window sealing conductive plates », invention de Michel Roche.[2] US 4,721,967 A, "electron gun printer having window sealing conductive plates", invention of Michel Roche.
Le document [1] décrit un canon à électrons à cathode froide . Ce canon comporte une fenêtre conductrice qui constitue l'anode du canon et que traversent les électrons pour irradier la surface d'un objet ou stériliser ce dernier. Le document [2] décrit une imprimante comportant un canon à électrons et plusieurs fenêtres formées par des plaques métalliques courbes, qui sont transparentes aux électrons . On sait donc obtenir un faisceau d'électrons dans l'atmosphère, à l'extérieur de l'enceinte du canon à électrons qui engendre ce faisceau. Comme l'intérieur de cette enceinte est sous vide, la fenêtre que traverse le faisceau d'électrons doit résister à la pression atmosphérique. Ce problème se pose tout particulièrement lorsque l'on veut extraire des électrons de basse énergie (inférieure ou égale à 500 keV) de l'enceinte, puisque la fenêtre doit alors être très mince. Il faut alors lui donner une forme courbe, par exemple cylindrique mais de préférence sphérique . Cependant, un autre problême se pose : pour certaines irradiations par un faisceau d'électrons, il est intéressant que ce dernier soit focalisé. Cela est même indispensable dans certains cas où la géométrie du faisceau est importante pour irradier convenablement des objets, par exemple des capsules de bouteilles de lait, ou pour concentrer l'énergie du faisceau en un point afin d'atteindre les très fortes densités de puissance qui sont requises dans le cas d'un soudage, d'un découpage ou d'un traitement de surface. Mais on sait bien que, dans un canon à électrons classique, les éléments de focalisation, comme d'ailleurs les éléments de .déflexion et de transport du faisceau d'électrons, sont souvent très complexes et en tout cas encombrants.Document [1] describes an electron gun with a cold cathode. This gun has a conductive window which constitutes the anode of the gun and which the electrons pass through to irradiate the surface of an object or to sterilize it. Document [2] describes a printer comprising an electron gun and several windows formed by curved metal plates, which are transparent to electrons. We therefore know how to obtain an electron beam in the atmosphere, outside the enclosure of the electron gun which generates this beam. As the interior of this enclosure is under vacuum, the window through which the electron beam passes must resist atmospheric pressure. This problem arises particularly when one wants to extract low energy electrons (less than or equal to 500 keV) from the enclosure, since the window must then be very thin. It is necessary then give it a curved shape, for example cylindrical but preferably spherical. However, another problem arises: for certain irradiations by an electron beam, it is interesting that the latter is focused. This is even essential in certain cases where the geometry of the beam is important for irradiating objects properly, for example capsules of milk bottles, or for concentrating the energy of the beam at one point in order to achieve very high power densities. which are required in the case of welding, cutting or surface treatment. But it is well known that, in a conventional electron gun, the focusing elements, like besides the elements of . deflection and transport of the electron beam, are often very complex and in any case bulky.
EXPOSÉ DE L'INVENTION La présente invention a pour but de remédier aux inconvénients précédents . Elle a pour objet un canon à électrons, plus particulièrement un canon apte à fournir un faisceau d'électrons de basse énergie (inférieure ou égale à 500 keV) , ce canon comportant une fenêtre courbe, qui est transparente aux électrons, résiste à la pression atmosphérique et sert à la fois d'anode et d'électrode de focalisation. Pour cette focalisation, l'invention exploite les propriétés optiques des surfaces courbes : elle utilise la courbure que l'on donne à l'anode formant fenêtre (afin qu'elle résiste à la pression atmosphérique) , en coopération avec une cathode également courbe . De façon précise, la présente invention a pour objet un canon à électrons comprenant : - une enceinte étanche, prévue pour être sous vide (« evacuated ») , une cathode qui est placée dans l'enceinte et comporte une face émettrice, apte à émettre des électrons, une anode constituant une fenêtre étanche, formée en regard de cette face émettrice dans l'une des parois de l'enceinte, et apte à laisser passer les électrons émis par cette face émettrice, et des moyens de polarisation ("biasing means") pour établir, entre l'anode et la cathode, une tension apte à accélérer ces électrons vers l'anode, les électrons ainsi accélérés formant un faisceau qui traverse l'anode, ce canon à électrons étant caractérisé en ce que l'anode et la face émettrice présentent chacune une courbure, la courbure de l'anode lui permettant de résister à une différence de pression entre l'intérieur et l'extérieur de l'enceinte et étant apte à coopérer avec la courbure de la face émettrice pour focaliser le faisceau d'électrons à l'extérieur de l'enceinte. Selon un mode de réalisation préféré du canon à électrons objet de l'invention, la tension établie entre l'anode et la cathode est apte à communiquer aux électrons une énergie inférieure ou égale à 500 keV. De préférence, la face émettrice de la cathode comporte une couche émettrice, apte à émettre des électrons lorsqu'elle est chauffée, le canon à électrons comprenant en outre des moyens de chauffage de la cathode et donc de cette couche émettrice . Selon un mode de réalisation préféré de l'invention, ces moyens de chauffage comprennent un filament apte à émettre des électrons lorsqu'il est chauffé et à bombarder la cathode par ces électrons, la cathode et donc la couche émettrice étant ainsi chauffées par bombardement électronique. Selon un mode de réalisation particulier de l'invention, l'anode et la face émettrice de la cathode forment des portions de sphères concentriques ou des portions de cylindres de révolution coaxiaux. L'anode comprend de préférence une mince feuille métallique dont l'épaisseur peut être inférieure à 50 micromètres. Selon un mode de réalisation préféré du canon à électrons objet de l'invention, les moyens de polarisation sont prévus pour établir une tension puisée entre l'anode et la cathode, en vue d'une accélération des électrons en mode puisé. Dans ce cas, selon un mode de réalisation particulier correspondant au cas où les moyens de chauffage comprennent le filament, les moyens de polarisation sont prévus pour porter la cathode à une haute tension puisée négative par rapport à l'anode, cette dernière étant mise à la masse, et ces moyens de polarisation comprennent : - des moyens auxiliaires, aptes à fournir une tension puisée négative, et - un transformateur qui est apte à transformer cette tension puisée négative en la haute tension puisée négative, ce transformateur comprenant un enroulement primaire, qui est relié aux moyens auxiliaires, et un enroulement secondaire qui comporte trois conducteurs électriques, deux de ces conducteurs étant prévus pour le chauffage du filament et la polarisation de ce filament par rapport à la cathode, pour que les électrons émis par le filament atteignent cette cathode, le troisième conducteur étant prévu pour porter la cathode à la haute tension puisée négative. De préférence, l'anode est pourvue de moyens de refroidissement. Ces moyens de refroidissement comprennent de préférence des moyens de projection d'un gaz sur au moins une partie de la périphérie de l'anode. La présente invention concerne aussi une installation d'irradiation électronique d'au moins un objet, cette installation comprenant des moyens d'irradiation de cet objet par un faisceau d'électrons focalisé, installation dans laquelle les moyens d'irradiation comprennent le canon à électrons objet de l' invention. La présente invention concerne en outre une installation de stérilisation électronique d'objets, notamment de composants d'emballage, cette installation comprenant des moyens d'irradiation de ces objets par un faisceau d'électrons focalisé, installation dans laquelle les moyens d'irradiation comprennent le canon à électrons objet de l'invention.PRESENTATION OF THE INVENTION The aim of the present invention is to remedy the above drawbacks. It relates to an electron gun, more particularly a gun capable of supplying a low energy electron beam (less than or equal to 500 keV), this gun comprising a curved window, which is transparent to the electrons, resists pressure atmospheric and serves as both an anode and a focusing electrode. For this focusing, the invention exploits the optical properties of curved surfaces: it uses the curvature that is given to the window anode (so that it resists atmospheric pressure), in cooperation with an equally curved cathode. Specifically, the present invention relates to an electron gun comprising: - a sealed enclosure, intended to be vacuum ("evacuated"), a cathode which is placed in the enclosure and has an emitting face, capable of emitting electrons, an anode constituting a sealed window, formed opposite this emitting face in one of the walls of the enclosure, and capable of letting the electrons emitted by this emitting face, and polarization means ("biasing means ") to establish, between the anode and the cathode, a voltage capable of accelerating these electrons towards the anode, the electrons thus accelerated forming a beam which crosses the anode, this electron gun being characterized in that the anode and the emitting face each have a curvature, the curvature of the anode allowing it to resist a pressure difference between the interior and the exterior of the enclosure and being able to cooperate with the curvature of the emitting face to focus the electron beam outside the enclosure. According to a preferred embodiment of the electron gun object of the invention, the voltage established between the anode and the cathode is capable of communicate to electrons an energy less than or equal to 500 keV. Preferably, the emitting face of the cathode comprises an emitting layer, capable of emitting electrons when it is heated, the electron gun further comprising means for heating the cathode and therefore of this emitting layer. According to a preferred embodiment of the invention, these heating means comprise a filament capable of emitting electrons when it is heated and of bombarding the cathode with these electrons, the cathode and therefore the emitting layer thus being heated by electron bombardment . According to a particular embodiment of the invention, the anode and the emitting face of the cathode form portions of concentric spheres or portions of coaxial cylinders of revolution. The anode preferably comprises a thin metal sheet whose thickness can be less than 50 micrometers. According to a preferred embodiment of the electron gun object of the invention, the polarization means are provided for establishing a pulsed voltage between the anode and the cathode, with a view to an acceleration of the electrons in pulsed mode. In this case, according to a particular embodiment corresponding to the case where the heating means comprise the filament, the biasing means are provided for bringing the cathode to a high voltage drawn negative with respect to the anode, the latter being grounded, and these biasing means comprise: - auxiliary means, capable of supplying a negative pulsed voltage, and - a transformer which is capable of transforming this negative pulsed voltage into the negative pulsed high voltage, this transformer comprising a primary winding, which is connected to the auxiliary means, and a secondary winding which comprises three electrical conductors, two of these conductors being provided for heating the filament and the polarization of this filament relative to the cathode, so that the electrons emitted by the filament reach this cathode, the third conductor being provided to bring the cathode to the high pulsed negative voltage. Preferably, the anode is provided with cooling means. These cooling means preferably comprise means for projecting a gas onto at least part of the periphery of the anode. The present invention also relates to an installation for electronically irradiating at least one object, this installation comprising means for irradiating this object with a focused electron beam, installation in which the means for irradiating comprise the electron gun subject of the invention. The present invention further relates to an installation for electronic sterilization of objects, in particular packaging components, this installation comprising means for irradiating these objects with a focused electron beam, installation in which the irradiation means comprise the electron gun object of the invention.
BRÈVE DESCRIPTION DES DESSINS La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés, sur lesquels : la figure 1 est une vue en coupe longitudinale schématique d'un mode de réalisation particulier du canon à électrons objet de l'invention, - la figure 2 montre les variations, en fonction du temps t, d'une haute tension puisée Va que l'on peut appliquer à la cathode du canon à électrons de la figure 1, pour accélérer les électrons émis par cette cathode, - la figure 3 illustre schématiquement l'accélération en mode diode que permet ce canon à électrons de la figure 1, la figure 4 est un schéma de moyens d'alimentation électrique du canon à électrons de la figure 1, - la figure 5 illustre schématiquement une application d'un canon à électrons conforme à l'invention, à la stérilisation d'un film d'emballage, - la figure 6 illustre schématiquement une application d'un canon à électrons conforme à l'invention, à la stérilisation de composants d'emballage, tels que des capsules ou des bouchons, et les figures 7 et 8 illustrent schématiquement d'autres applications de l'invention, au traitement d'objets dont les formes peuvent être complexes .BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be better understood on reading the description of exemplary embodiments given below, by way of purely indicative and in no way limitative, with reference to the appended drawings, in which: FIG. 1 is a view in schematic longitudinal section of a particular embodiment of the electron gun object of the invention, - Figure 2 shows the variations, as a function of time t, of a high pulsed voltage Va that can be applied to the cathode of the electron gun of Figure 1, to accelerate the electrons emitted by this cathode, - Figure 3 schematically illustrates the acceleration in diode mode that allows this electron gun of Figure 1, Figure 4 is a diagram of means power supply of the electron gun of Figure 1, - Figure 5 schematically illustrates an application of an electron gun according to the invention, to the sterilization of a packaging film llage, - Figure 6 schematically illustrates an application of an electron gun according to the invention, to the sterilization of packaging components, such as capsules or stoppers, and FIGS. 7 and 8 schematically illustrate other applications of the invention, to the treatment of objects whose shapes can be complex.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS Le canon à électrons conforme à l'invention, qui est schématiquement représenté en coupe sur la figure 1, comprend une enceinte étanche 2, qui est sous vide, ainsi qu'une anode 4 et une cathode 6. Cette dernière est placée dans l'enceinte 2 et comporte une face émettrice 8, apte à émettre des électrons. L'anode 4 est formée dans l'une des parois de l'enceinte, en regard de cette face émettrice 8, et constitue une fenêtre étanche, transparente aux électrons. Ainsi laisse-t-elle passer ceux qui sont émis par la face émettrice. Le canon à électrons comprend en outre des moyens d'alimentation électrique 10 permettant d'établir, entre l'anode 4 et la cathode 6, une tension Va d'accélération, vers l'anode, des électrons émis par la cathode. Dans l'exemple de la figure 1, l'anode 4 est mise à la masse et la tension Va est une haute tension puisée négative qui est appliquée à la cathode. Les électrons ainsi accélérés forment un faisceau 12 qui traverse l'anode 4 et se retrouve à l'extérieur de l'enceinte 2 c'est-à-dire dans l'air. Conformément à l'invention, l'anode 4 et la face émettrice 8 présentent chacune une courbure . La courbure de l'anode lui permet de résister à la différence de pression entre l'intérieur de l'enceinte, qui est sous vide, et l'extérieur de cette enceinte, qui est à la pression atmosphérique. De plus, la courbure de l'anode coopère avec celle de la face émettrice pour focaliser le faisceau d'électrons 12 à l'extérieur de l'enceinte. Dans l'exemple de la figure 1, la zone de focalisation 14, sur laquelle on reviendra par la suite, est ponctuelle ou rectiligne. L'enceinte 2 assure l'étanchéité au vide, plus précisément au vide secondaire dans l'exemple, et comprend une première partie métallique 16, sensiblement cylindrique, par exemple en acier inoxydable, qui est mise à la masse et supporte l'anode 4, et une deuxième partie métallique 20, sensiblement annulaire, qui est reliée à la cathode 6 et donc à la haute tension puisée négative Va. Dans l'exemple représenté, l'anode 4 est faite à partir d'une feuille métallique sur laquelle on reviendra par la suite. Le bord de cette feuille est immobilisé entre la partie métallique 16 et une pièce sensiblement annulaire 17. Cette pièce 17 est serrée contre la partie métallique 16 par des vis 18. Du côté de cette partie 16 et de la pièce 17, l'étanchéité de l'enceinte est obtenue au moyen d'un joint métallique 19 par exemple en indium, qui est serré avec la feuille métallique, entre cette dernière et la partie métallique 16, comme on le voit sur la figure 1. La partie métallique 20 est fermée par une bride 21 qui constitue la paroi arrière de l'enceinte 2. Elle est opposée à la paroi qui porte l'anode 4, ou paroi avant. Des vis 22 permettent de serrer la brideDETAILED DESCRIPTION OF PARTICULAR EMBODIMENTS The electron gun according to the invention, which is schematically represented in section in FIG. 1, comprises a sealed enclosure 2, which is under vacuum, as well as an anode 4 and a cathode 6. The latter is placed in the enclosure 2 and has an emitting face 8, capable of emitting electrons. The anode 4 is formed in one of the walls of the enclosure, opposite this emitting face 8, and constitutes a sealed window, transparent to electrons. Thus it lets through those which are emitted by the emitting face. The electron gun further comprises electrical supply means 10 making it possible to establish, between the anode 4 and the cathode 6, a voltage Va of acceleration, towards the anode, of the electrons emitted by the cathode. In the example in FIG. 1, the anode 4 is grounded and the voltage Va is a negative pulsed high voltage which is applied to the cathode. The electrons thus accelerated form a beam 12 which passes through the anode 4 and is found outside the enclosure 2, that is to say in the air. According to the invention, the anode 4 and the emitting face 8 each have a curvature. The curvature of the anode allows it to resist the pressure difference between the interior of the enclosure, which is under vacuum, and the exterior of this enclosure, which is at atmospheric pressure. In addition, the curvature of the anode cooperates with that of the emitting face to focus the electron beam 12 outside the enclosure. In the example of FIG. 1, the focusing zone 14, to which we will return later, is punctual or straight. The enclosure 2 seals the vacuum, more specifically the secondary vacuum in the example, and comprises a first metallic part 16, substantially cylindrical, for example made of stainless steel, which is grounded and supports the anode 4 , and a second metallic part 20, substantially annular, which is connected to the cathode 6 and therefore to the negative pulsed high voltage Va. In the example shown, the anode 4 is made from a metal sheet to which we will return later. The edge of this sheet is immobilized between the metal part 16 and a substantially annular part 17. This part 17 is tightened against the metal part 16 by screws 18. On the side of this part 16 and of the part 17, the sealing of the enclosure is obtained by means of a metal seal 19, for example made of indium, which is clamped with the metal sheet, between the latter and the metal part 16, as can be seen in FIG. 1. The metal part 20 is closed by a flange 21 which constitutes the rear wall of the enclosure 2. It is opposite to the wall which carries the anode 4, or front wall. Screws 22 allow the clamp to be tightened
21 contre la partie métallique 20. Du côté de cette partie 20, l'étanchéité de l'enceinte est obtenue au moyen d'un autre joint métallique 23 par exemple en indium, qui est serré entre la partie métallique 20 et la bride 21, comme on le voit sur la figure 1. Le canon de la figure 1 est prévu pour fournir un faisceau d'électrons puisé de basse énergie, ne dépassant pas 500 keV. À titre purement indicatif et nullement limitatif, on produit un faisceau de 250 keV, dont la puissance vaut 5 k . La cathode 6 comprend une pièce métallique 24, par exemple en nickel, dont la face tournée vers l'anode constitue la face 8 qui émet les électrons.21 against the metal part 20. On the side of this part 20, the enclosure is sealed by means of another metal seal 23, for example made of indium, which is clamped between the metal part 20 and the flange 21, as seen in Figure 1. The gun of Figure 1 is intended to provide a pulsed low energy electron beam, not exceeding 500 keV. As a purely indicative and in no way limitative, a beam of 250 keV is produced, the power of which is 5 k. The cathode 6 comprises a metal part 24, for example made of nickel, the side facing the anode constitutes the side 8 which emits the electrons.
Pour ce faire, on a déposé sur cette face 8 une mince couche 26 de quelques dizaines de millimètres d'épaisseur, qui émet des électrons lorsqu'elle est chauffée et qui est par exemple constituée d'un mélange de poudre de nickel et de carbonate de baryum fritte. Â titre purement indicatif et nullement limitatif, on utilise de 5% à 10% de BaC03 en volume, que l'on fritte à 1000°C sous atmosphère d'hydrogène. On prévoit des moyens 28 de chauffage de la pièce 24 et donc de la couche 26. Dans l'exemple, ce sont des moyens de chauffage par bombardement électronique, comprenant un filament 30, par exemple en tungstène, qui émet des électrons lorsqu'il est chauffé. Deux traversées étanches 34 et 35, du type céramique-métal, sont soudées sur la bride 21 et permettent l'alimentation électrique du filament 30 respectivement par l'intermédiaire de tiges métalliquesTo do this, a thin layer 26 a few tens of millimeters thick has been deposited on this face 8, which emits electrons when it is heated and which for example consists of a mixture of nickel powder and carbonate sintered barium. As a purely indicative and in no way limitative, 5% to 10% of BaCO 3 by volume is used, which is sintered at 1000 ° C. under a hydrogen atmosphere. Means 28 are provided for heating the part 24 and therefore for the layer 26. In the example, these are means for heating by bombardment. electronic, comprising a filament 30, for example made of tungsten, which emits electrons when heated. Two sealed bushings 34 and 35, of the ceramic-metal type, are welded to the flange 21 and allow the electrical supply of the filament 30 respectively by means of metal rods
36 et 38, comme on le voit sur la figure 1. Le filament 30, qui est en regard de la pièce 24, est supporté par des vis en céramique telles que les vis 40 et 42, permettant d'isoler électriquement le filament de la cathode. Ce filament est bien entendu continu mais, sur la figure 1, seules ses deux extrémités sont visibles, le reste s ' étendant "derrière" le plan de la figure. Comme on le voit, la cathode comprend une autre pièce 44 en acier inoxydable, pourvue de trous d'évent 46 et fixée, d'un côté, à la pièce 24, par exemple au moyen d'une soudure par points 45 de type TIG, et de l'autre côté, à la bride 21. La pièce 44 porte les vis en céramique telles que les vis 40 et 42, est creuse et traversée par les tiges 36 et 38 dont elle est électriquement isolée par une bague en céramique 48, comme on le voit sur la figure 1. L'isolation électrique du filament 30 par rapport à la cathode 6 et donc par rapport à la pièce 24 en nickel permet d'appliquer, entre cette dernière et le filament, une tension de polarité convenable pour bombarder et donc chauffer la pièce 24 par les électrons émis par le filament. Dans l'exemple, ce dernier est polarisé (« biased ») négativement, à -500 V, par rapport à la cathode . L'enceinte 2 comporte une troisième partie 50, sensiblement en forme de manchon, qui constitue un isolateur électrique supportant la haute tension et par l'intermédiaire de laquelle les parties 16 et 20 de l'enceinte sont rendues solidaires l'une de l'autre. On utilise de préférence un isolateur en céramique, par exemple en alumine. Aux deux extrémités de cet isolateur, des brasures 52 de type céramique-métal assurent l'étanchéité de la liaison entre l'isolateur 50 et les parties métalliques 16 et 20. Dans l'exemple, l'anode 4 et la face 8 de la pièce 24 peuvent respectivement former des portions de sphères concentriques, auquel cas la zone 14 de focalisation du faisceau d'électrons 12 est ponctuelle, ou des portions de cylindres de révolution coaxiaux, auquel cas cette zone est rectiligne (et parallèle à l'axe commun des cylindres, cet axe étant alors perpendiculaire au plan de la figure 1) . Comme on le voit sur la figure 1, la couche émettrice d'électrons 26 s'arrête un peu avant le bord de la pièce 24 afin de n'accélérer le faisceau d'électrons 12 que dans une zone où le champ électrique, engendré dans l'espace accélérateur (c'est- à-dire l'espace compris entre l'anode et la cathode) par l'application de la tension Va, n'est pas affecté par des effets de bord. La focalisation du faisceau d'électrons 12 s'effectue essentiellement par la convergence des lignes de champ électrique dans cet espace accélérateur où, de préférence, le champ ne dépasse guère 160 kV/c . À titre purement indicatif et nullement limitatif, on crée un faisceau de 250 keV en prévoyant une distance de 1,5 cm entre l'anode 4 et la cathode 6, d'où un champ électrique qui satisfait à la condition ci- dessus . L'anode 4 est constituée d'une mince feuille métallique, de préférence en titane ou en aluminium. En fait, plus l'énergie recherchée pour le faisceau d'électrons est faible, plus cette feuille doit être mince. Pour un faisceau ne dépassant pas 500 keV, on utilise de préférence une feuille dont l'épaisseur est inférieure à 50 micromètres. Dans le canon à électrons de la figure 1, on peut par exemple utiliser une feuille en titane, de forme sphérique et de rayon de courbure égal à 35 mm, dont l'épaisseur est avantageusement comprise entre 10 μm et 15 μm. L'anode 4, constituant la fenêtre du canon de la figure 1, est pourvue de moyens 54 permettant de projeter de l'air sur au moins une partie de la périphérie de cette fenêtre, par exemple sur la moitié voire la totalité de cette périphérie, afin de refroidir la fenêtre. Comme on le voit, ces moyens 54 comprennent une arrivée 56 d'air comprimé sur la partie périphérique souhaitée, cette arrivée 56 étant alimentée en air comprimé par des moyens symbolisés par les flèches 58. Il est préférable de filtrer très soigneusement l'air que l'on envoie à la périphérie de l'anode pour éviter que des poussières ne s'y trouvent. En effet, ces poussières pourraient aller se coller sur l'anode où elles seraient chauffées par le faisceau d'électrons et pourraient alors provoquer le percement de 1 ' anode . Le canon à électrons de la figure 1 peut également être équipé de moyens d'aspiration (non représentés) permettant d'effectuer le refroidissement de l'anode avec une atmosphère quasi-contrôlée (par exemple une atmosphère d'azote), en vue d'éviter la formation d'ozone (gaz dangereux) lors du fonctionnement du canon à électrons. Par ailleurs, avant de faire fonctionner le canon de la figure 1, on fait le vide dans l'enceinte 2 : on y établit un vide secondaire, c'est-à-dire une pression inférieure ou égale à 10"5 Pa. Ce vide peut être maintenu de façon « statique » dans l'enceinte, à condition de n'employer que des techniques « d'ultra-vide » et d'effectuer un dégazage prolongé à haute température, par exemple à 300°C, lors de l'établissement du vide secondaire dans l'enceinte, puis de disposer un getter (non représenté) dans l'enceinte pour y maintenir le vide secondaire ainsi obtenu. En variante, on peut établir ce vide secondaire dans l'enceinte 2 puis le maintenir de façon « dynamique », par exemple au moyen d'une pompe ionique 60. A titre purement indicatif et nullement limitatif, le canon à électrons de la figure 1 forme sensiblement un cylindre de 400 mm de long et 50 mm de diamètre . Un mode de réalisation préféré du canon à électrons, objet de l'invention, est fondé sur deux principes, à savoir l'accélération en mode puisé et l'accélération en mode « diode ». Le canon à électrons de la figure 1 est un exemple de ce mode de réalisation préféré . En ce qui concerne l'accélération en mode puisé, au lieu d'appliquer une tension permanente d'accélération des électrons à un canon débitant un faible courant électronique, par exemple 10 mA, on applique la tension d'accélération des électrons pendant seulement une faible fraction du temps d'utilisation du canon, de préférence 1 millième de ce temps. Par exemple, on applique cette tension pendant 2 μs avec un taux de répétition de 500 Hz, mais bien entendu le courant devra être 1000 fois plus élevé et donc valoir 10 A. Cela présente l'avantage de réduire les contraintes d' isolation électrique qui sont beaucoup moins sévères lorsque l'impulsion est courte (la probabilité de claquage ("breakdown" ) variant comme la racine carré du temps d'application de la tension). Il en résulte une réduction des encombrements et des coûts aussi bien des générateurs de haute tension que du canon à électrons . Par ailleurs, la compacité de ce canon présente de nombreux avantages complémentaires, notamment la réduction des volumes de blindage. La figure 2 montre les variations, en fonction du temps t, d'une haute tension puisée négative Va que l'on peut appliquer à la cathode d'un canon à électrons conforme à l'invention, par exemple le canon de la figure 1, pour accélérer les électrons émis par cette cathode. On note Vm la valeur minimale (négative) de cette tension Va. Vm est donc la valeur de la tension que l'on applique à la cathode, seulement pendant une fraction du temps d'utilisation du canon et de façon périodique . En ce qui concerne l'accélération en mode36 and 38, as can be seen in FIG. 1. The filament 30, which is opposite part 24, is supported by ceramic screws such as screws 40 and 42, making it possible to electrically isolate the filament from the cathode. This filament is of course continuous but, in Figure 1, only its two ends are visible, the rest extending "behind" the plane of the figure. As can be seen, the cathode comprises another piece 44 of stainless steel, provided with vent holes 46 and fixed, on one side, to piece 24, for example by means of a spot weld 45 of TIG type. , and on the other side, to the flange 21. The part 44 carries the ceramic screws such as the screws 40 and 42, is hollow and crossed by the rods 36 and 38 from which it is electrically insulated by a ceramic ring 48 , as can be seen in FIG. 1. The electrical insulation of the filament 30 with respect to the cathode 6 and therefore with respect to the nickel part 24 makes it possible to apply, between the latter and the filament, a voltage of suitable polarity to bombard and therefore heat the part 24 by the electrons emitted by the filament. In the example, the latter is biased (“biased”) negatively, at -500 V, relative to the cathode. The enclosure 2 comprises a third part 50, substantially in the form of a sleeve, which constitutes an electrical insulator supporting the high voltage and by means of which the parts 16 and 20 of the enclosure are made integral with one of the other. Preferably a ceramic insulator, for example alumina, is used. At the two ends of this insulator, solders 52 of the ceramic-metal type seal the connection between the insulator 50 and the metal parts 16 and 20. In the example, the anode 4 and the face 8 of the piece 24 can respectively form portions of concentric spheres, in which case the zone 14 of focus of the electron beam 12 is punctual, or portions of coaxial cylinders of revolution, in which case this zone is rectilinear (and parallel to the common axis) cylinders, this axis then being perpendicular to the plane of Figure 1). As can be seen in FIG. 1, the electron-emitting layer 26 stops a little before the edge of the part 24 so as to accelerate the electron beam 12 only in an area where the electric field, generated in the accelerator space (that is to say the space between the anode and the cathode) by the application of the voltage Va, is not affected by edge effects. The focusing of the electron beam 12 is essentially carried out by the convergence of the electric field lines in this accelerator space where, preferably, the field hardly exceeds 160 kV / c. As a purely indicative and in no way limitative, a beam of 250 keV is created by providing a distance of 1.5 cm between the anode 4 and the cathode 6, hence an electric field which satisfies the above condition. The anode 4 consists of a thin metal sheet, preferably made of titanium or aluminum. In fact, the lower the energy sought for the electron beam, the thinner this sheet must be. For a beam not exceeding 500 keV, a sheet is preferably used whose thickness is less than 50 micrometers. In the electron gun of Figure 1, one can for example use a titanium sheet, spherical in shape and with a radius of curvature equal to 35 mm, the thickness of which is advantageously between 10 μm and 15 μm. The anode 4, constituting the window of the barrel of FIG. 1, is provided with means 54 allowing air to be projected onto at least part of the periphery of this window, for example over half or even all of this periphery , to cool the window. As can be seen, these means 54 comprise an inlet 56 for compressed air on the desired peripheral part, this inlet 56 being supplied with compressed air by means symbolized by the arrows 58. It is preferable to filter very carefully the air that is sent to the periphery of the anode to prevent dust from being there. Indeed, this dust could stick to the anode where it would be heated by the electron beam and could then cause the anode to pierce. The electron gun of FIG. 1 can also be equipped with suction means (not shown) making it possible to cool the anode with a quasi-controlled atmosphere (for example a nitrogen atmosphere), with a view to d '' avoid the formation of ozone (dangerous gas) during the operation of the electron gun. Furthermore, before operating the barrel of FIG. 1, a vacuum is made in enclosure 2: a secondary vacuum is established there, that is to say a pressure less than or equal to 10 "5 Pa. This vacuum can be maintained “statically” in the enclosure, provided that only “ultra-vacuum” techniques are used and that degassing is prolonged at high temperature, for example at 300 ° C, when establishing the secondary vacuum in the enclosure, then placing a getter (not shown) in the enclosure to maintain the secondary vacuum thus obtained. Alternatively, this secondary vacuum can be established in enclosure 2 and then maintain it in a way "Dynamic", for example by means of an ion pump 60. As a purely indicative and in no way limitative, the electron gun of FIG. 1 substantially forms a cylinder 400 mm long and 50 mm in diameter. A preferred embodiment of the electron gun, object of the invention, is based on two principles, namely acceleration in pulsed mode and acceleration in "diode" mode. The electron gun of Figure 1 is an example of this preferred embodiment. With regard to acceleration in pulsed mode, instead of applying a permanent electron acceleration voltage to a gun delivering a low electronic current, for example 10 mA, the electron acceleration voltage is applied for only one small fraction of the time of use of the barrel, preferably 1 thousandth of this time. For example, this voltage is applied for 2 μs with a repetition rate of 500 Hz, but of course the current will have to be 1000 times higher and therefore be 10 A. This has the advantage of reducing the constraints of electrical insulation which are much less severe when the pulse is short (the probability of breakdown ("breakdown") varying as the square root of the time of application of the voltage). This results in a reduction in dimensions and costs both of high voltage generators and of the electron gun. Furthermore, the compactness of this gun has many additional advantages, in particular the reduction in shielding volumes. FIG. 2 shows the variations, as a function of time t, of a negative pulsed high voltage Va which can be applied to the cathode of an electron gun according to the invention, for example the gun of FIG. 1 , to accelerate the electrons emitted by this cathode. We denote by Vm the minimum (negative) value of this voltage Va. Vm is therefore the value of the voltage which is applied to the cathode, only during a fraction of the time of use of the gun and periodically. Regarding mode acceleration
« diode », il s'agit de la façon la plus simple possible d'accélérer les électrons : ces derniers sont accélérés entre une cathode chaude 62 et une anode 64 qui sont schématiquement représentées sur la figure 3 (et correspondent respectivement à la cathode 6 et à l'anode 4 de l'exemple de la figure 1) . On voit également des moyens 66 permettant d'appliquer la tension Va à la cathode 62, l'anode 64 étant à la masse. Si l'on ajoute à ce mode d'accélération le fait que l'anode joue également le rôle d'une fenêtre nécessaire à la sortie des électrons à l'atmosphère, ceci avec une « étendue de faisceau » bien contrôlée et adaptée à une majorité de cas d'utilisation, on mesure la simplicité du canon à électrons obtenu. En effet, par rapport à un accélérateur d'électrons classique, on élimine les éléments de focalisation, de déflexion et de transport du faisceau d'électrons, éléments qui sont souvent très complexes et en tout cas encombrants. Comme on l'a déjà mentionné, l'anode présente une courbure (dans le sens concave pour un observateur placé du côté de l'atmosphère) qui est nécessaire pour supporter la pression atmosphérique malgré la finesse de cette anode et que l'on utilise également pour réaliser la focalisation du faisceau d'électrons 68 (figure 3) directement dans l'espace accélérateur et de manière que la zone focale 70 soit extérieure au canon à électrons. La figure 4 illustre schématiquement un exemple des moyens 10 d'alimentation électrique du canon à électrons de la figure 1. Ces moyens 10 permettent à la fois d'appliquer la haute tension puisée négative Va à la cathode 6, de polariser le filament 30 par rapport à cette cathode et de chauffer ce filament, l'anode 4 étant à la masse. Ces moyens 10 comprennent un transformateur 72 qui permet d'obtenir la haute tension puisée négative. Ce transformateur 72 se caractérise essentiellement par une isolation électrique très poussée, qui peut être avantageusement réalisée par de l'huile, et par une faible inductance de fuite. Cette dernière est nécessaire à l'obtention de fronts de montée assez raides pour l'impulsion de sortie, la durée de ces fronts de montée étant par exemple égale à 1 microseconde, pour que le temps d'application de la haute tension proprement dite sur le canon à électrons puisse être réduit au maximum et soit par exemple égal à quelques microsecondes. L'enroulement secondaire 74 de ce transformateur 72 est bobiné au moyen d'un câble 76 à trois conducteurs électriques de façon que l'on puisse non seulement appliquer la haute tension à la cathode mais encore, depuis le potentiel de la masse, assurer le chauffage du filament 30 et appliquer, entre ce filament et la cathode 6, une tension négative Vf permettant de polariser négativement le filament par rapport à la cathode, pour chauffer cette dernière par bombardement électronique, à une température élevée, par exemple de l'ordre de 800°C. La tension Vf permet ainsi de contrôler la température de la cathode 6. Cette température conditionne elle-même l'émissivité de la cathode. Il convient de noter que toutes ces commandes, à savoir les commandes d'application de la haute tension puisée à la cathode, de chauffage du filament et de polarisation du filament par rapport à la cathode, sont effectuées très simplement à partir du potentiel de la masse en dépit de la présence d'impulsions de très haute tension. Le transformateur 72 est commandé par un pont asymétrique 80 qui est relié à l'enroulement primaire 78 de ce transformateur et prévu pour fournir à celui-ci une tension puisée négative que le transformateur convertit en haute tension puisée négative. Ce pont asymétrique 80 comprend deux transistors de commutation 82 et 84 et deux diodes 86 et 88, ces diodes et transistors étant agencés comme on le voit sur la figure 4. Les deux diodes 86 et 88 permettent la démagnétisation du transformateur 72. Les deux transistors 82 et 84 sont de préférence des transistors IGBT, c'est-à-dire des transistors bipolaires à porte isolée. De plus, les transistors 82 et 84 sont commandés par des moyens non représentés, permettant d'obtenir la pulsation souhaitée pour la tension. Ces moyens sont par exemple des circuits intégrés de type « driver » optocouplés . Le pont asymétrique 80 est alimenté par un condensateur 90, sous une tension d'alimentation qui est obtenue par redressement du secteur triphasé 92 au moyen d'un pont de Graetz schématisé par le rectangle 94. A titre d'exemple, on alimente le pont asymétrique 80 par un condensateur dont la capacité vaut quelques centaines de microfarads, sous une tension de l'ordre de 500 V, qui est obtenue par redressement du secteur triphasé au moyen du pont de Graetz . Les moyens d'alimentation 10 comprennent également un autre transformateur 96 dont l'enroulement primaire est relié au secteur monophasé 98 (220 V-50 Hz) . Ce transformateur 96 permet le chauffage du filament 30 au moyen d'un courant alternatif dont la fréquence vaut par exemple 50 Hz, et l'intensité 5A, et sous une tension qui vaut par exemple 6 V. Les moyens d'alimentation électriques 10 comprennent en outre un générateur 100 prévu pour fournir une tension continue qui assure le contrôle de la température de la cathode 6. Cette tension continue peut, par exemple, être réglable entre 100 V et 500 V. La cathode 6 est de préférence utilisée en mode saturé. Dans ce cas, la densité du courant qui peut être extrait de l'espace accélérateur (espace compris entre la cathode et l'anode) ne dépend que de la température de cette cathode. Ainsi, le courant débité par le canon à électrons est uniquement contrôlé au moyen de cette tension continue. Cette tension peut éventuellement être contrôlée par une boucle d'asservissement (non représentée) , à partir de la lecture du courant I débité dans une impulsion de haute tension négative fournie à la cathode . Donnons maintenant des précisions sur l'enroulement secondaire du transformateur 72. Le câble 76, à partir duquel est formé cet enroulement, comprend trois conducteurs 102, 104 et 106 qui sont électriquement isolés les uns des autres. Les conducteurs 102 et 104 relient respectivement les deux bornes du filament 30 aux deux bornes de l'enroulement secondaire du transformateur 96 . De plus, le générateur 100 est monté entre la masse et l'extrémité du conducteur 102 qui est située du côté du transformateur 96. En outre, les extrémités du conducteur 106 sont respectivement reliées à la cathode 6 et à la masse. Bien que le fonctionnement en mode puisé corresponde à un mode de réalisation préféré de l'invention, cette dernière n'est pas limitée à un tel fonctionnement : on peut polariser la cathode par rapport à l'anode d'un canon à électrons conforme à l'invention au moyen d'une tension continue, pour obtenir un fonctionnement en mode continu. De même, bien que l'utilisation d'une cathode chaude corresponde à un mode de réalisation préféré de l'invention, cette dernière n'est pas limitée à une telle utilisation : on peut utiliser d'autres types de cathodes dans un canon à électrons conforme à l'invention, par exemple une cathode froide, apte à émettre des électrons par effet de champ. De plus, l'invention n'est pas limitée à la fourniture d'un faisceau d'électrons d'au plus 500 keV : des énergies supérieures sont possibles dans l'invention, en adaptant la polarisation de la cathode par rapport à l'anode d'un canon à électrons conforme à l'invention. En outre, bien que l'invention soit conçue pour la fourniture d'un faisceau d'électrons dans l'air, il va de soi qu'un canon à électrons conforme à l'invention est utilisable pour fournir un tel faisceau dans le vide. On a déjà mentionné plus haut diverses applications du canon à électrons objet de l'invention. Ce dernier est particulièrement adapté à ces applications du fait qu'il est susceptible d'être fabriqué de façon compacte et peu coûteuse et qu'il est apte à produire un faisceau d'électrons de basse énergie et de grande capacité de pénétration. On donne dans ce qui suit deux exemples d'application de l'invention en faisant référence aux figures 5 et 6. La figure 5 illustre schématiquement une application de l'invention à la stérilisation d'un film d'emballage 108, par exemple un film de thermoformage ou un film d' operculage . Ce film 108 est mis en tension et déplacé"Diode", this is the simplest possible way of accelerating the electrons: the latter are accelerated between a hot cathode 62 and an anode 64 which are schematically represented in FIG. 3 (and correspond respectively to cathode 6 and at anode 4 of the example in FIG. 1). We also see means 66 for applying the voltage Va to the cathode 62, the anode 64 being grounded. If we add to this acceleration mode the fact that the anode also plays the role of a window necessary for the exit of electrons to the atmosphere, this with a well-controlled "beam span" and adapted to a majority of use cases, we measure the simplicity of the electron gun obtained. In fact, compared to a conventional electron accelerator, the focusing, deflection and transport elements of the electron beam are eliminated, elements which are often very complex and in any case bulky. As already mentioned, the anode has a curvature (in the concave direction for an observer placed on the side of the atmosphere) which is necessary to withstand atmospheric pressure despite the fineness of this anode and which is used also for focusing the electron beam 68 (FIG. 3) directly in the accelerator space and in such a way that the focal zone 70 is outside the electron gun. FIG. 4 schematically illustrates an example of the means 10 for powering the electron gun of FIG. 1. These means 10 make it possible both to apply the high negative pulsed voltage Va to the cathode 6, to polarize the filament 30 by relative to this cathode and to heat this filament, the anode 4 being grounded. These means 10 comprise a transformer 72 which makes it possible to obtain the high negative pulsed voltage. This transformer 72 is essentially characterized by very high electrical insulation, which can advantageously be produced by oil, and by a low leakage inductance. The latter is necessary for obtaining fairly steep rising edges for the output pulse, the duration of these rising edges being by example equal to 1 microsecond, so that the time of application of the high voltage proper on the electron gun can be reduced to the maximum and be for example equal to a few microseconds. The secondary winding 74 of this transformer 72 is wound by means of a cable 76 with three electrical conductors so that one can not only apply the high voltage to the cathode but also, from the ground potential, ensure the heating the filament 30 and applying, between this filament and the cathode 6, a negative voltage Vf allowing the filament to be polarized negatively with respect to the cathode, in order to heat the latter by electron bombardment, at a high temperature, for example of the order 800 ° C. The voltage Vf thus makes it possible to control the temperature of the cathode 6. This temperature itself conditions the emissivity of the cathode. It should be noted that all of these commands, namely the commands for applying the high voltage drawn from the cathode, for heating the filament and for polarizing the filament relative to the cathode, are carried out very simply from the potential of the ground despite the presence of very high voltage pulses. The transformer 72 is controlled by an asymmetrical bridge 80 which is connected to the primary winding 78 of this transformer and designed to supply the latter with a negative pulsed voltage which the transformer converts into a negative pulsed high voltage. This asymmetrical bridge 80 comprises two switching transistors 82 and 84 and two diodes 86 and 88, these diodes and transistors being arranged as seen in FIG. 4. The two diodes 86 and 88 allow the demagnetization of the transformer 72. The two transistors 82 and 84 are preferably IGBT transistors, that is to say bipolar insulated gate transistors. In addition, the transistors 82 and 84 are controlled by means not shown, making it possible to obtain the desired pulsation for the voltage. These means are for example optocoupled "driver" type integrated circuits. The asymmetrical bridge 80 is supplied by a capacitor 90, under a supply voltage which is obtained by rectification of the three-phase sector 92 by means of a Graetz bridge shown diagrammatically by the rectangle 94. As an example, the bridge is supplied asymmetrical 80 by a capacitor whose capacity is worth a few hundred microfarads, under a voltage of the order of 500 V, which is obtained by rectification of the three-phase sector by means of the Graetz bridge. The supply means 10 also include another transformer 96, the primary winding of which is connected to the single-phase sector 98 (220 V-50 Hz). This transformer 96 allows the heating of the filament 30 by means of an alternating current whose frequency is for example 50 Hz, and the intensity 5A, and under a voltage which is worth for example 6 V. The electrical supply means 10 further comprise a generator 100 designed to supply a DC voltage which ensures the temperature control of the cathode 6. This DC voltage can, for example, be adjustable between 100 V and 500 V. The cathode 6 is preferably used in saturated mode. In this case, the density of the current which can be extracted from the accelerator space (space between the cathode and the anode) only depends on the temperature of this cathode. Thus, the current delivered by the electron gun is only controlled by means of this DC voltage. This voltage can optionally be controlled by a servo loop (not shown), from the reading of the current I delivered in a negative high voltage pulse supplied to the cathode. Let us now give details of the secondary winding of the transformer 72. The cable 76, from which this winding is formed, comprises three conductors 102, 104 and 106 which are electrically isolated from each other. The conductors 102 and 104 respectively connect the two terminals of the filament 30 to the two terminals of the secondary winding of the transformer 96. In addition, the generator 100 is mounted between the ground and the end of the conductor 102 which is located on the side of the transformer 96. In addition, the ends of the conductor 106 are respectively connected to the cathode 6 and to the ground. Although the operation in pulsed mode corresponds to a preferred embodiment of the invention, the latter is not limited to such an operation: the cathode can be polarized with respect to the anode of an electron gun conforming to the invention by means of a DC voltage, in order to obtain operation in continuous mode. Similarly, although the use of a hot cathode corresponds to a preferred embodiment of the invention, the latter is not limited to such use: other types of cathodes can be used in a barrel electrons according to the invention, for example a cold cathode, capable of emitting electrons by field effect. In addition, the invention is not limited to the supply of an electron beam of at most 500 keV: higher energies are possible in the invention, by adapting the polarization of the cathode relative to the anode of an electron gun according to the invention. In addition, although the invention is designed for the supply of an electron beam in the air, it goes without saying that an electron gun according to the invention can be used to provide such a beam in a vacuum . We have already mentioned above various applications of the electron gun object of the invention. The latter is particularly suitable for these applications because it can be manufactured in a compact and inexpensive manner and is able to produce a low energy electron beam with a large penetration capacity. Two examples of application of the invention are given in the following with reference to FIGS. 5 and 6. FIG. 5 schematically illustrates an application of the invention to the sterilization of a packaging film 108, for example a thermoforming film or a sealing film. This film 108 is tensioned and moved
(suivant la flèche FI, de la gauche vers la droite de la figure) sur des rouleaux 110, par des moyens non représentés, à partir d'une bobine 112 sur laquelle il est enroulé. Comme on le voit sur la figure, après son déroulement de la bobine, le film 108 pénètre et se déplace dans une enceinte aseptique 114 qui est mise en surpression par des moyens non représentés. Un canon à électrons 116 conforme à l'invention, pourvu de moyens de pompage 118 et de moyens de polarisation 120, est prévu à l'entrée de l'enceinte aseptique 114 pour stériliser le film 108 par un faisceau d'électrons 122 fourni par le canon 116, avant la pénétration du film dans l'enceinte. Le canon est disposé de manière à focaliser le faisceau sur le film 108. Des moyens symbolisés par des flèches F2 sont prévus pour faire effectuer au canon des mouvements de va-et-vient suivant la largeur du film 108, de manière que le faisceau focalisé balaye ce dernier suivant sa largeur et puisse donc balayer tout le film compte tenu du déplacement de ce dernier suivant la flèche FI, qui est perpendiculaire aux flèches F2. On peut également utiliser un canon à électrons à focalisation cylindrique pour éviter d'avoir à le déplacer. Dans ce cas, la focale est une ligne de longueur supérieure à la largeur du film en cours de traitement . La figure 6 illustre schématiquement une autre application de l'invention à la stérilisation de composants d'emballage 124, tels que des capsules ou des bouchons par exemple. Ces composants 124 sont poussés par un jet d'air stérile (symbolisé par la flèche F3) et à partir de moyens non représentés, dans une canalisation verticale 126 dans laquelle les composants tombent par gravité. Cette canalisation 126 est raccordée à une enceinte aseptique 128 qui est mise en surpression par des moyens non représentés . À leur arrivée dans cette enceinte, les composants 124 sont saisis par des moyens mécaniques, symbolisés par le rectangle 130, et amenés par ces moyens à d'autres organes non représentés, prévus pour une utilisation des composants dans l'enceinte. Un canon à électrons 116 conforme à l'invention est encore prévu, avant l'enceinte 128, pour stériliser les composants 124 avant leur entrée dans cette enceinte, au moyen du faisceau d'électrons focalisé 122 fourni par ce canon. Plusieurs canons à électrons conformes à l'invention peuvent être couplés pour traiter, sans pénétration, la surface des objets dont les formes peuvent être complexes. Ceci est schématiquement illustré par les figures 7 et 8. On voit sur la figure 7 trois canons à électrons conformes à l'invention 132a, 132b et 132c, qui sont placés à 120° les uns des autres. L'intersection des faisceaux d'électrons, qui sont respectivement émis par ces canons, recouvre une zone 134 dans laquelle on place un objet 136 de forme complexe, dont on veut traiter la surface par irradiation électronique. Comme on le voit sur la figure 7, chacun des canons à électrons 132a, 132b ou 132c émet un faisceau 138a, 138b ou 138c dont la divergence, à partir de la zone focale correspondante, n' est pas trop importante, de manière à ne pas irradier les deux autres canons . Les canons à électrons 132a, 132b et 132c sont pourvus de moyens de pompage 140. Ils sont également pourvus de moyens de commande 142 permettant aux canons d'émettre simultanément des faisceaux puisés d'électrons . On voit sur la figure 8 deux canons à électrons conformes à l'invention 144a et 144b, qui sont placés l'un en regard de l'autre de manière à pouvoir irradier une zone comprise entre ces deux canons. Un objet 146 est placé dans cette zone, à peu près à équidistance des deux canons, de manière à pouvoir traiter les deux côtés de l'objet respectivement par les deux faisceaux électroniques 148a et 148b émis par les canons. Les canons à électrons 144a et 144b sont pourvus de moyens de pompage 150. Ils sont également pourvus de moyens de commande 152 permettant aux canons d'émettre simultanément des faisceaux puisés d' électrons . On active ces moyens 152 seulement lorsque l'objet 146 est interposé entre les deux canons, pour que l'un de ceux-ci ne soit pas endommagé par le faisceau émis par l'autre et réciproquement. (according to arrow FI, from left to right of the figure) on rollers 110, by means not shown, from a reel 112 on which it is wound. As can be seen in the figure, after its unwinding from the reel, the film 108 penetrates and moves in an aseptic enclosure 114 which is put under overpressure by means not shown. An electron gun 116 according to the invention, provided with pumping means 118 and polarization means 120, is provided at the entrance to the aseptic enclosure 114 to sterilize the film 108 by an electron beam 122 supplied by the barrel 116, before the penetration of the film into the enclosure. The barrel is arranged so as to focus the beam on the film 108. Means symbolized by arrows F2 are provided for causing the barrel to move back and forth along the width of the film 108, so that the focused beam sweeps the latter along its width and can therefore scan the entire film taking into account the displacement of the latter along arrow FI, which is perpendicular to arrows F2. One can also use an electron gun with cylindrical focusing to avoid having to move it. In this case, the focal length is a line of length greater than the width of the film being processed. FIG. 6 schematically illustrates another application of the invention to the sterilization of packaging components 124, such as capsules or stoppers for example. These components 124 are pushed by a sterile air jet (symbolized by the arrow F3) and from means not shown, in a vertical pipe 126 in which the components fall by gravity. This pipe 126 is connected to an aseptic enclosure 128 which is put under overpressure by means not shown. Upon their arrival in this enclosure, the components 124 are seized by mechanical means, symbolized by the rectangle 130, and brought by these means to other members, not shown, provided for use of the components in the enclosure. An electron gun 116 according to the invention is also provided, before the enclosure 128, for sterilizing the components 124 before their entry into this enclosure, by means of the focused electron beam 122 supplied by this gun. Several electron guns in accordance with the invention can be coupled to treat, without penetration, the surface of objects whose shapes can be complex. This is schematically illustrated by Figures 7 and 8. We see in Figure 7 three electron guns according to the invention 132a, 132b and 132c, which are placed at 120 ° from each other. The intersection of the electron beams, which are respectively emitted by these guns, covers an area 134 in which an object 136 of complex shape is placed, the surface of which is to be treated by electronic irradiation. As can be seen in FIG. 7, each of the electron guns 132a, 132b or 132c emits a beam 138a, 138b or 138c, the divergence of which, from the corresponding focal zone, is not too great, so as not to not irradiate the other two guns. The electron guns 132a, 132b and 132c are provided with pumping means 140. They are also provided with control means 142 allowing the guns to simultaneously emit pulsed beams of electrons. We see in Figure 8 two electron guns according to the invention 144a and 144b, which are placed opposite one another so as to be able to irradiate an area between these two guns. An object 146 is placed in this zone, approximately equidistant from the two guns, so as to be able to process the two sides of the object respectively by the two electron beams 148a and 148b emitted by the guns. The electron guns 144a and 144b are provided with pumping means 150. They are also provided with control means 152 allowing the guns to simultaneously emit pulsed beams of electrons. These means 152 are activated only when the object 146 is interposed between the two guns, so that one of them is not damaged by the beam emitted by the other and vice versa.

Claims

REVENDICATIONS
1. Canon à électrons comprenant : - une enceinte étanche (2) , prévue pour être sous vide, - une cathode (6) qui est placée dans l'enceinte et comporte une face émettrice (8), apte à émettre des électrons, - une anode (4) constituant une fenêtre étanche, formée en regard de cette face émettrice dans l'une des parois de l'enceinte, et apte à laisser passer les électrons émis par cette face émettrice, et - des moyens de polarisation (10) pour établir, entre l'anode et la cathode, une tension apte à accélérer ces électrons vers l'anode, les électrons ainsi accélérés formant un faisceau (12) qui traverse 1 ' anode , ce canon à électrons étant caractérisé en ce que l'anode (4) et la face émettrice (8) présentent chacune une courbure, la courbure de l'anode lui permettant de résister à une différence de pression entre l'intérieur et l'extérieur de l'enceinte et étant apte à coopérer avec la courbure de la face émettrice pour focaliser le faisceau d'électrons (12) à l'extérieur de l'enceinte.1. An electron gun comprising: - a sealed enclosure (2), intended to be under vacuum, - a cathode (6) which is placed in the enclosure and has an emitting face (8), capable of emitting electrons, - an anode (4) constituting a sealed window, formed opposite this emitting face in one of the walls of the enclosure, and capable of letting the electrons emitted by this emitting face, and - polarization means (10) to establish, between the anode and the cathode, a voltage capable of accelerating these electrons towards the anode, the electrons thus accelerated forming a beam (12) which crosses the anode, this electron gun being characterized in that the anode (4) and the emitting face (8) each have a curvature, the curvature of the anode allowing it to resist a pressure difference between the inside and the outside of the enclosure and being able to cooperate with the curvature of the emitting face to focus the beam of electrons (12) outside the enclosure.
2. Canon à électrons selon la revendication 1, dans lequel la tension établie entre l'anode (4) et la cathode (6) est apte à communiquer aux électrons une énergie inférieure ou égale à 500 keV. 2. An electron gun according to claim 1, in which the voltage established between the anode (4) and the cathode (6) is able to communicate to the electrons an energy less than or equal to 500 keV.
3. Canon à électrons selon l'une quelconque des revendications 1 et 2, dans lequel la face émettrice (8) de la cathode (6) comporte une couche émettrice (26) , apte à émettre des électrons lorsqu'elle est chauffée, le canon à électrons comprenant en outre des moyens (28) de chauffage de la cathode et donc de cette couche émettrice .3. An electron gun according to any one of claims 1 and 2, wherein the emitting face (8) of the cathode (6) comprises an emitting layer (26), capable of emitting electrons when it is heated, the electron gun further comprising means (28) for heating the cathode and therefore of this emitting layer.
4. Canon à électrons selon la revendication 3, dans lequel ces moyens de chauffage (28) comprennent un filament (30) apte à émettre des électrons lorsqu'il est chauffé et à bombarder la cathode par ces électrons, la cathode et donc la couche émettrice étant ainsi chauffées par bombardement électronique.4. An electron gun according to claim 3, in which these heating means (28) comprise a filament (30) capable of emitting electrons when it is heated and of bombarding the cathode with these electrons, the cathode and therefore the layer thus being heated by electronic bombardment.
5. Canon à électrons selon l'une quelconque des revendications 1 à 4, dans lequel l'anode (4) et la face émettrice (8) de la cathode forment des portions de sphères concentriques ou des portions de cylindres de révolution coaxiaux.5. An electron gun according to any one of claims 1 to 4, in which the anode (4) and the emitting face (8) of the cathode form portions of concentric spheres or portions of coaxial cylinders of revolution.
6. Canon à électrons selon l'une quelconque des revendications 1 à 5, dans lequel l'anode (4) comprend une mince feuille métallique dont l'épaisseur est inférieure à 50 micromètres.6. An electron gun according to any one of claims 1 to 5, wherein the anode (4) comprises a thin metal sheet whose thickness is less than 50 micrometers.
7. Canon à électrons selon l'une quelconque des revendications 1 à 6, dans lequel les moyens de polarisation (10) sont prévus pour établir une tension puisée entre l'anode (4) et la cathode (6), en vue d'une accélération des électrons en mode puisé. 7. electron gun according to any one of claims 1 to 6, wherein the biasing means (10) are provided to establish a pulsed voltage between the anode (4) and the cathode (6), for an acceleration of the electrons in pulsed mode.
8. Canon d'électrons selon les revendications 4 et 7, dans lequel les moyens de polarisation (10) sont prévus pour porter la cathode (6) à une haute tension puisée négative par rapport à l'anode (4), cette dernière étant mise à la masse, et ces moyens de polarisation comprennent : - des moyens auxiliaires (80) , aptes à fournir une tension puisée négative, et - un transformateur (72) qui est apte à transformer cette tension puisée négative en la haute tension puisée négative, ce transformateur comprenant un enroulement primaire (78) , qui est relié aux moyens auxiliaires (80) , et un enroulement secondaire (74) qui comporte trois conducteurs électriques (102, 104, 106), deux de ces conducteurs étant prévus pour le chauffage du filament (30) et la polarisation de ce filament par rapport à la cathode (6) , pour que les électrons émis par le filament atteignent cette cathode, le troisième conducteur (106) étant prévu pour porter la cathode à la haute tension puisée négative.8. An electron gun according to claims 4 and 7, in which the polarization means (10) are provided for bringing the cathode (6) to a high pulsed negative voltage with respect to the anode (4), the latter being grounded, and these biasing means comprise: - auxiliary means (80), capable of supplying a negative pulsed voltage, and - a transformer (72) which is capable of transforming this negative pulsed voltage into the negative pulsed high voltage , this transformer comprising a primary winding (78), which is connected to the auxiliary means (80), and a secondary winding (74) which comprises three electrical conductors (102, 104, 106), two of these conductors being provided for heating of the filament (30) and the polarization of this filament relative to the cathode (6), so that the electrons emitted by the filament reach this cathode, the third conductor (106) being provided to bring the cathode to high voltage pu negative.
9. Canon à électrons selon l'une quelconque des revendications 1 à 8, dans lequel l'anode (4) est pourvue de moyens de refroidissement (54) .9. An electron gun according to any one of claims 1 to 8, in which the anode (4) is provided with cooling means (54).
10. Canon à électrons selon la revendication 9, dans lequel ces moyens de refroidissement comprennent des moyens (56) de projection d'un gaz sur au moins une partie de la périphérie de l'anode (4).10. An electron gun according to claim 9, in which these cooling means comprise means (56) for projection of a gas onto at least part of the periphery of the anode (4).
11. Installation d'irradiation électronique d'au moins un objet, cette installation comprenant des moyens d'irradiation de cet objet par un faisceau d'électrons focalisé, installation dans laquelle les moyens d'irradiation comprennent le canon à électrons (116) selon l'une quelconque des revendications 1 à 10.11. Installation for electronically irradiating at least one object, this installation comprising means for irradiating this object with a focused electron beam, installation in which the irradiation means comprise the electron gun (116) according to any one of claims 1 to 10.
12. Installation de stérilisation électronique d'objets, notamment de composants d'emballage, cette installation comprenant des moyens d'irradiation de ces objets par un faisceau d'électrons focalisé, installation dans laquelle les moyens d'irradiation comprennent le canon à électrons (116) selon l'une quelconque des revendications 1 à 10. 12. Installation for electronic sterilization of objects, in particular packaging components, this installation comprising means for irradiating these objects with a focused electron beam, installation in which the irradiation means comprise the electron gun ( 116) according to any one of claims 1 to 10.
EP04805233A 2003-10-20 2004-10-19 Electron gun with a focusing anode, forming a window for said gun and application thereof to irradiation and sterilization Withdrawn EP1676290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350704A FR2861215B1 (en) 2003-10-20 2003-10-20 ELECTRON GUN WITH FOCUSING ANODE, FORMING A WINDOW OF THIS CANON, APPLICATION TO IRRADIATION AND STERILIZATION
PCT/FR2004/002669 WO2005041241A1 (en) 2003-10-20 2004-10-19 Electron gun with a focusing anode, forming a window for said gun and application thereof to irradiation and sterilization

Publications (1)

Publication Number Publication Date
EP1676290A1 true EP1676290A1 (en) 2006-07-05

Family

ID=34385410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04805233A Withdrawn EP1676290A1 (en) 2003-10-20 2004-10-19 Electron gun with a focusing anode, forming a window for said gun and application thereof to irradiation and sterilization

Country Status (5)

Country Link
US (1) US7800012B2 (en)
EP (1) EP1676290A1 (en)
JP (1) JP4611993B2 (en)
FR (1) FR2861215B1 (en)
WO (1) WO2005041241A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865135B1 (en) * 2004-01-20 2007-10-05 Serac Group STERILIZATION INSTALLATION OF ARTICLES BY ELECTRONIC BOMBING
WO2007107211A1 (en) * 2006-03-20 2007-09-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for altering the characteristics of three-dimensional shaped parts using electrons
DE102008025868A1 (en) * 2008-05-30 2009-12-03 Krones Ag Device for sterilizing containers by means of charge carriers
EP2196223B1 (en) * 2008-12-05 2014-09-03 Solvay Specialty Polymers USA, LLC. Sterilization chamber made of polyethersulfone, process for its manufacture and sterilization apparatus comprising this chamber
DE102009014040A1 (en) * 2009-03-20 2010-09-02 Siemens Aktiengesellschaft Jet head comprises vacuum housing, in which electron source is arranged, and jet finger is connected with vacuum housing, where discharge port is provided at distal end
DE102009014037A1 (en) * 2009-03-20 2010-09-02 Siemens Aktiengesellschaft Jet head for use in beverage filling machine for physical sterilization of e.g. bottle, has jet finger connected with vacuum housing such that vacuum housing with finger form permanent high vacuum-tight vacuum covering
DE102009014039A1 (en) * 2009-03-20 2010-09-02 Siemens Aktiengesellschaft Spray head is provided with vacuum housing, in which electron source is arranged, and has spray finger, which is connected with vacuum housing and has discharge port at distal end
WO2010118982A1 (en) * 2009-04-14 2010-10-21 Siemens Aktiengesellschaft Beam head
DE102009017841A1 (en) * 2009-04-17 2010-10-21 Siemens Aktiengesellschaft Sterilization device is provided with predetermined number of jet heads having vacuum housing, in which electron source is arranged
WO2010131209A1 (en) * 2009-05-12 2010-11-18 Koninklijke Philips Electronics N.V. X-ray source with a plurality of electron emitters
US20120175532A1 (en) * 2011-01-11 2012-07-12 Ushio America, Inc. Compact modular ebeam systems and methods
ITBS20110061A1 (en) 2011-04-26 2012-10-27 Guala Pack Spa INPUT OR OUTPUT UNIT OF AN ELECTRONIC STERILIZATION DEVICE AND STERILIZATION METHOD
ITBS20110060A1 (en) 2011-04-26 2012-10-27 Guala Pack Spa STERILIZATION DEVICE FOR ELECTRONIC BANDS FOR THIN WALLS AND STERILIZATION METHOD
CN103620726B (en) * 2011-07-04 2016-12-28 利乐拉瓦尔集团及财务有限公司 A kind of electron beam device, getter sheet and manufacture are equipped with the method for the electron beam device of described getter sheet
DE102012106555A1 (en) * 2012-07-19 2014-05-22 Krones Ag Method and device for sterilizing containers with cooling air removal from the sterile room
BR112016021845B1 (en) * 2014-03-24 2020-11-17 Tetra Laval Holdings & Finance Sa electron beam emitter, and, sterilization device
FR3022143B1 (en) * 2014-06-11 2018-08-31 Sidel Participations METHOD AND SYSTEM FOR DECONTAMINATION OF CAPS OR COLLARS OF CONTAINERS BY ELECTRONIC BOMBING PULSE
WO2016035942A1 (en) * 2014-09-05 2016-03-10 한국생산기술연구원 Electron beam emission device
FR3031903B1 (en) 2015-01-28 2017-01-13 Sidel Participations DEVICE AND METHOD FOR STERILIZING THERMOPLASTIC CONTAINERS USING A PULSE ELECTRON BEAM
CN104735896B (en) * 2015-03-30 2018-07-31 同方威视技术股份有限公司 Mains isolation equipment and electrocurtain accelerator
CN104735897B (en) * 2015-03-30 2017-08-25 同方威视技术股份有限公司 Electrocurtain accelerator, receiving pole and electronics accelerated method
JP6735134B2 (en) * 2016-04-18 2020-08-05 日立造船株式会社 Nozzle type electron beam irradiation device and electron beam sterilization equipment equipped with the same
UA113827C2 (en) * 2016-09-07 2017-03-10 Axial Electron Cannon
JP6829576B2 (en) * 2016-10-26 2021-02-10 浜松ホトニクス株式会社 Electron beam irradiation device
IL268283B1 (en) 2017-01-26 2024-04-01 Canadian Light Source Inc Exit Window for Electron Beam in Isotope Production
KR101911542B1 (en) * 2017-02-23 2018-10-24 박흥균 Line Type Focused Electron Beam Emission Device
CN106847660B (en) * 2017-04-05 2018-08-21 中国科学技术大学 A kind of middle high energy electron rifle
KR101989847B1 (en) * 2017-12-21 2019-06-17 박흥균 Line Type Electron Beam Emission Device Using Plasma
CN110215525B (en) * 2019-06-05 2021-06-25 广东强基药业有限公司 Method for sufficiently irradiating and sterilizing hollow capsules by using lower-dose electron beams
CN114334587A (en) * 2021-12-31 2022-04-12 广州赛隆增材制造有限责任公司 Electron gun
CN117733305B (en) * 2024-02-20 2024-04-26 四川华束科技有限公司 Sealed-off type electron gun and non-vacuum electron beam welding robot

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2602751A (en) * 1950-08-17 1952-07-08 High Voltage Engineering Corp Method for sterilizing substances or materials such as food and drugs
US3105916A (en) * 1960-09-08 1963-10-01 High Voltage Engineering Corp Radiation beam window
US3217135A (en) * 1961-12-29 1965-11-09 Radiation Dynamics Electron beam welding at atmospheric pressures
US3406304A (en) * 1966-11-25 1968-10-15 Field Emission Corp Electron transmission window for pulsed field emission electron radiation tube
US3486060A (en) * 1967-09-06 1969-12-23 High Voltage Engineering Corp Cooling apparatus with laminar flow for electron permeable windows
FR1582070A (en) * 1968-04-26 1969-09-26
US4305000A (en) 1978-11-03 1981-12-08 Tetra Pak Developpement Ltd. Process of and apparatus for cold-cathode electron-beam generation for sterilization of surfaces and similar applications
GB2153140B (en) * 1983-12-20 1988-08-03 English Electric Valve Co Ltd Apparatus for forming electron beams
DE3587087T2 (en) * 1984-12-20 1993-09-02 Varian Associates X-RAY SOURCE WITH HIGH INTENSITY.
FR2581212B1 (en) * 1985-04-26 1988-06-17 Commissariat Energie Atomique ELECTRON CANON PRINTER
FI84961C (en) * 1989-02-02 1992-02-10 Tampella Oy Ab Method for generating high power electron curtain screens with high efficiency
US5416440A (en) * 1990-08-17 1995-05-16 Raychem Corporation Transmission window for particle accelerator
US5898261A (en) * 1996-01-31 1999-04-27 The United States Of America As Represented By The Secretary Of The Air Force Fluid-cooled particle-beam transmission window
US5962995A (en) * 1997-01-02 1999-10-05 Applied Advanced Technologies, Inc. Electron beam accelerator
US6685883B2 (en) * 1999-08-27 2004-02-03 Tetra Laval Holdings & Finance S.A. Method and unit for sterilizing packaging sheet material for manufacturing sealed packages of pourable food products
RU2250532C2 (en) * 2000-04-13 2005-04-20 Ибара Корпорейшн Electron-beam irradiation method and device (alternatives)
KR20020009797A (en) * 2000-07-27 2002-02-02 김순택 Electron gun for cathode ray tube
US6528799B1 (en) * 2000-10-20 2003-03-04 Lucent Technologies, Inc. Device and method for suppressing space charge induced aberrations in charged-particle projection lithography systems
FR2844916A1 (en) * 2002-09-25 2004-03-26 Jacques Jean Joseph Gaudel X-ray tube producing high intensity beam has spherical section electrodes producing divergent beam with clear virtual focus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005041241A1 *

Also Published As

Publication number Publication date
US7800012B2 (en) 2010-09-21
JP4611993B2 (en) 2011-01-12
US20070145304A1 (en) 2007-06-28
FR2861215A1 (en) 2005-04-22
FR2861215B1 (en) 2006-05-19
WO2005041241A1 (en) 2005-05-06
JP2007511039A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
WO2005041241A1 (en) Electron gun with a focusing anode, forming a window for said gun and application thereof to irradiation and sterilization
EP0360655B1 (en) Apparatus for irradiating a product at both sides
EP0200651B1 (en) Triode-type ion source with a single high frequency ionization chamber and with multiple magnetic confinement
FR2922358A1 (en) METHOD FOR THE SURFACE TREATMENT OF AT LEAST ONE PIECE USING ELECTRONIC CYCLOTRONIC RESONANCE PLASMA ELEMENTARY SOURCES
EP0002990B1 (en) Device for implanting strong-current ions, comprising electrostatic deflection plates and magnetic refocussing means
EP2622947B1 (en) Method and device for forming a neutral plasma beam
EP0060771B1 (en) X-ray photography device utilizing a charged-particles accelerator from a radiotherapy apparatus, and a radiotherapy apparatus equipped with such a device
FR2491257A1 (en) LASER-DRIVEN HIGH DENSITY ELECTRON SOURCE
EP0228318B1 (en) Electron gun operating by secondary emission under ionic bombardment
FR2529400A1 (en) GAS LASER WITH EXCITATION BY TRANSVERSE ELECTRIC DISCHARGE TRIGGERED BY PHOTOIONIZATION
FR2630576A1 (en) DEVICE FOR IMPROVING THE LIFETIME AND RELIABILITY OF A HIGH FLOW SEALED NEUTRONIC TUBE
FR2947691A1 (en) METHOD FOR CONTROLLING THE EMISSION OF AN ELECTRON BEAM INTO A CORRESPONDING CATHODE, CATHODE, TUBE AND IMAGING SYSTEM
EP3574719B1 (en) System for generating a plasma jet of metal ions
EP3154598A1 (en) Method and system for decontaminating caps or necks of containers by pulsed electron bombardment
EP0454584B1 (en) Process and apparatus for decontamination using ion etching
WO2023232640A1 (en) Electron beam device for surface treatment
JP3815843B2 (en) Sputtering equipment
EP1397820B1 (en) Device for amplifying the current of an abnormal electrical discharge and system for using an abnormal electrical discharge comprising one such device
EP3368704A1 (en) Device for producing an amorphous carbon layer by electron cyclotron resonance plasma
WO2021175539A1 (en) Method and device for treating a surface of an accelerator cavity by ion implantation
FR2498010A1 (en) Ring type electron gun - has ring anode aperture displaced with respect to cathode aperture axis
WO2019193297A1 (en) Localized heating device for an additive manufacturing apparatus
JP2003034863A (en) Vacuum film forming apparatus
FR3019936A1 (en) PHOTO-THERMO-VOLTAIC CELL WITH PLASMA GENERATOR BY MICROONDE RESONANCE
JPS6142847B2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: G21K 5/00 20060101ALI20070321BHEP

Ipc: H01J 33/02 20060101AFI20070321BHEP

Ipc: H01J 33/04 20060101ALI20070321BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

19U Interruption of proceedings before grant

Effective date: 20060801

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20120903

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GETINGE LA CALHENE

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

INTC Intention to grant announced (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130503