JPS6142847B2 - - Google Patents

Info

Publication number
JPS6142847B2
JPS6142847B2 JP54041441A JP4144179A JPS6142847B2 JP S6142847 B2 JPS6142847 B2 JP S6142847B2 JP 54041441 A JP54041441 A JP 54041441A JP 4144179 A JP4144179 A JP 4144179A JP S6142847 B2 JPS6142847 B2 JP S6142847B2
Authority
JP
Japan
Prior art keywords
electron beam
sample
voltage
irradiation
accelerating electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54041441A
Other languages
Japanese (ja)
Other versions
JPS55133529A (en
Inventor
Shigeo Aoki
Junichi Tamamura
Yasuhiro Ukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSHIDENKI SEIZO KK
Original Assignee
HOSHIDENKI SEIZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSHIDENKI SEIZO KK filed Critical HOSHIDENKI SEIZO KK
Priority to JP4144179A priority Critical patent/JPS55133529A/en
Publication of JPS55133529A publication Critical patent/JPS55133529A/en
Publication of JPS6142847B2 publication Critical patent/JPS6142847B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】 この発明は高分子材料膜に電子ビームを照射し
てその高分子材料膜に電子を注入してエレクトレ
ツトを生成する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for generating electrets by irradiating a polymeric material film with an electron beam and injecting electrons into the polymeric material film.

従来より電子ビームを高分子材料膜に照射して
エレクトレツトを生成する方法として、電子ビー
ムの電子自体とその試料に注入してエレクトレツ
トを得るいわゆる非浸透電子ビーム照射法と、照
射した電子ビームを試料より透過させ、その透過
した電子ビームを絶縁体に入射し、その絶縁体よ
り二次電子を放出させ、その二次電子と試料に注
入させてエレクトレツトを得るいわゆる浸透電子
ビーム照射法とが提案されている。
Conventional methods for generating electrets by irradiating a polymer material film with an electron beam include the so-called non-penetrating electron beam irradiation method, in which electrets are obtained by injecting the electrons of the electron beam into a sample, and the irradiated electron beam. This is the so-called penetrating electron beam irradiation method, in which the transmitted electron beam is transmitted through a sample, the transmitted electron beam is incident on an insulator, secondary electrons are emitted from the insulator, and the secondary electrons and the sample are injected to obtain an electret. is proposed.

つまり従来の浸透電子ビーム照射法はその照射
される電子ビームの試料内での飛程は試料の厚味
よりも小さく選定され、一方浸透電子ビーム照射
法はその電子ビームの試料内での飛程は試料の厚
味よりも大とされ、電子ビームの全ての電子が試
料を透過するように選定されていた。何れにして
も従来の電子ビームの照射エネルギーは一度設定
されると1回の照射中は同一エネルギーで照射さ
れていた。
In other words, in the conventional penetrating electron beam irradiation method, the range of the irradiated electron beam within the sample is selected to be smaller than the thickness of the sample, while in the penetrating electron beam irradiation method, the range of the electron beam within the sample is selected was larger than the thickness of the sample, and was selected so that all electrons of the electron beam would pass through the sample. In any case, once the irradiation energy of the conventional electron beam is set, it is irradiated with the same energy during one irradiation.

ところで非浸透電子ビーム照射法はエレクトレ
ツト生成の最適条件の範囲が狭く、このため試料
の厚味、材料の不均一性により得られた表面電荷
の密度のバラツキが生じ易い。エレクトレツトの
生成中に試料の表面でスパークが発生する事もあ
つた。一方浸透電子ビーム照射法において照射す
る電子ビームのエネルギーが著しく大きく、例え
ば1MeVもあり、このためそのエレクトレツト生
成中に試料の表面でスパークが発生し試料を損傷
するおそれが可成りあり、従つて歩留りが悪かつ
た。
However, in the non-penetrating electron beam irradiation method, the range of optimal conditions for electret generation is narrow, and therefore, variations in the density of the surface charge obtained are likely to occur due to the thickness of the sample and non-uniformity of the material. Sparks were sometimes generated on the surface of the sample during the generation of electrets. On the other hand, in the penetrating electron beam irradiation method, the energy of the electron beam irradiated is extremely large, for example, 1 MeV, so there is a considerable risk that sparks will occur on the surface of the sample and damage the sample during electret generation. Yield was poor.

この発明の目的は試料の損傷が少なく、かつ試
料の厚味、材質の不均一性にかゝわらず表面電荷
のばらつきが少なく、つまり最適生成条件の範囲
が広く、歩留りが高いエレクトレツト生成装置を
提供する事にある。
The purpose of this invention is to provide an electret generation device that causes less damage to the sample, has less variation in surface charge regardless of sample thickness and non-uniformity of material, has a wide range of optimal generation conditions, and has a high yield. The goal is to provide the following.

この発明によれば電子ビームの照射中にその電
子ビームの照射エネルギーを周期的に変化させ
る。このように周期的に電子ビームを変化させる
とスパークの発生が少なくなり、しかも試料の材
質や厚味の不均一による表面電荷のばらつきが少
なくつまり最適生成条件が広くなつた歩留りも向
上して多量生産に適するものとなる。
According to this invention, the irradiation energy of the electron beam is periodically changed during irradiation with the electron beam. By changing the electron beam periodically in this way, the generation of sparks is reduced, and there is also less variation in surface charge due to non-uniformity in the material and thickness of the sample, which means that the optimum generation conditions are widened, improving yields and producing large amounts of It becomes suitable for production.

以下この発明によるエレクトレツト生成装置を
図面を参照して説明しよう。第1図に示すように
真空室11内において試料保持台12上に試料1
3が保持されている。この試料13と対向した真
空室11の一端に電子ビーム発生部14が連通し
て設けられる。電子ビーム発生部14の端部内に
電子銃15が配され、電子銃15には電源16よ
りフイラメントに対する電流の供給とバイアス電
圧の印加とが行われてる。電子銃15より放射さ
れた電子は加速電極17により加速され、加速電
極17には加速用の電圧が電源18より印加され
ている。加速電極17を通過して加速された電子
ビームは集束コイル19により集束され、この集
束された電子ビーム21は偏向コイル22により
偏向される。この偏向された電子ビーム21によ
り試料13の一面が全面にわたつて走査される。
集束コイル19には集束用電源23より集束用電
流が供給され、又偏向コイル22には偏向用電源
24より偏向電流が供給される。真空室11はそ
の下端より真空引きが行われている。
The electret generation device according to the present invention will be explained below with reference to the drawings. As shown in FIG. 1, a sample 1 is placed on a sample holder 12 in a vacuum chamber 11.
3 is retained. An electron beam generating section 14 is provided in communication with one end of the vacuum chamber 11 facing the sample 13. An electron gun 15 is disposed within the end of the electron beam generator 14, and a power source 16 supplies current to the filament and applies a bias voltage to the electron gun 15. Electrons emitted from the electron gun 15 are accelerated by an accelerating electrode 17, and an accelerating voltage is applied to the accelerating electrode 17 from a power source 18. The electron beam accelerated by passing through the accelerating electrode 17 is focused by a focusing coil 19, and this focused electron beam 21 is deflected by a deflection coil 22. This deflected electron beam 21 scans the entire surface of the sample 13.
A focusing current is supplied to the focusing coil 19 from a focusing power supply 23, and a deflection current is supplied to the deflection coil 22 from a deflection power supply 24. The vacuum chamber 11 is evacuated from its lower end.

試料13の保持は第2図に示すように二通りあ
る。即ち第2図Aに示すように試料13は高分子
材料膜の一面に例えばアルミニウムの蒸着によつ
て金属被膜25が被着されており、この被膜側に
おいて高分子材料膜13は保持リング26に保持
される。更に第2図Bに示すように保持リング2
6内に絶縁体27が嵌合挿入されてその一端面は
金属被膜25に全面にわたつて接触されている。
第2図Aは非浸透電子ビーム照射法に用いられる
ものであり、第2図Bは浸透電子ビーム照射法に
用いるものであり、何れの場合においても電子ビ
ーム21は試料13の金属被膜25と反対側の面
より入射される。
There are two ways to hold the sample 13, as shown in FIG. That is, as shown in FIG. 2A, the sample 13 has a metal coating 25 coated on one side of the polymeric material film by, for example, vapor deposition of aluminum, and on this coating side, the polymeric material film 13 is attached to a retaining ring 26. Retained. Furthermore, as shown in FIG. 2B, the retaining ring 2
An insulator 27 is fitted and inserted into the insulator 6, and one end surface of the insulator 27 is in contact with the metal coating 25 over the entire surface.
2A is used for the non-penetrating electron beam irradiation method, and FIG. 2B is used for the penetrating electron beam irradiation method. In both cases, the electron beam 21 is used for the metal coating 25 of the sample 13. The light is incident from the opposite surface.

非浸透電子ビーム照射法の場合は入射された電
子ビーム自体の電子が試料13に注入され漫透電
子ビーム照射法の場合においては入射された電子
ビーム21は試料13及び金属被膜25を透過し
て絶縁体27に入射され、これにより絶縁体27
から放出された二次電子が試料13内に注入され
る。このようにして電荷が試料13に注入されて
エレクトレツトが生成される。
In the case of the non-penetrating electron beam irradiation method, the electrons of the incident electron beam itself are injected into the sample 13, and in the case of the diffuse electron beam irradiation method, the incident electron beam 21 passes through the sample 13 and the metal coating 25. is incident on the insulator 27, so that the insulator 27
Secondary electrons emitted from the sample 13 are injected into the sample 13. In this way, charges are injected into the sample 13 and electrets are generated.

又従来提案されてないが、これ等の中間、つま
り一次電子による電荷の注入と二次電子による電
荷の注入とを同時に行なわせる事もできる。即ち
電子ビーム21の試料に対する入射エネルギーを
適当に選定するとその電子ビームは試料13を通
過する途中において一次電力が試料13に注入さ
れ、又その他の電子ビームは試料13を透過し、
絶縁体27に入射され、これより二次電子が放出
され、その二次電子が試料13に注入されて一次
電子及び二次電子による注入が並行的に行なえ
る。この場合にもこの発明を適用できる。
Furthermore, although this has not been proposed in the past, it is also possible to simultaneously perform charge injection by primary electrons and charge injection by secondary electrons. That is, if the incident energy of the electron beam 21 on the sample is appropriately selected, primary power is injected into the sample 13 while the electron beam passes through the sample 13, and other electron beams pass through the sample 13.
The light is incident on the insulator 27, from which secondary electrons are emitted, and the secondary electrons are injected into the sample 13, so that injection by the primary electrons and secondary electrons can be performed in parallel. The present invention can also be applied to this case.

この発明においては試料13に入射射される電
子ビーム21のエネルギーの周期的に変化させ
る。例えば加速電極17に対する印加電圧を周期
的に変化させる。このため加速用電源18内には
加速用高圧直流電源28と、例えば正弦波の電圧
を発生する変化電圧源29とが設けられる。変化
電圧源29の出力電圧、例えば正弦波電圧は抵抗
器31、コンデンサ32を介して加速電極17に
与えられる。直流電圧源28の直流電圧は抵抗器
33を通じて加速電極17に印加される。このよ
うにして加速電極17に印加される電圧は直流電
圧に対して変化する電圧、この例では正弦波電圧
が重畳されたものになる。この重畳電圧は例えば
直流電源28の直流電圧の約±20%に選定され
る。つまり直流電圧が例えば100KVの場合は
80KVと120KVの間直流電圧が変化するように振
幅が20KVの正弦波電圧とされる。変化電圧の周
波数は数100Hz〜数1000Hzと選定される。これ等
の範囲より外れるとその生成中のスパークの発生
が多くなつたり、或は最適条件の範囲が狭くな
り、製品のばらつきが多くなる。
In this invention, the energy of the electron beam 21 incident on the sample 13 is changed periodically. For example, the voltage applied to the accelerating electrode 17 is changed periodically. For this purpose, the acceleration power supply 18 is provided with an acceleration high-voltage DC power supply 28 and a variable voltage source 29 that generates, for example, a sinusoidal voltage. The output voltage of the variable voltage source 29, for example a sine wave voltage, is applied to the accelerating electrode 17 via a resistor 31 and a capacitor 32. A DC voltage from DC voltage source 28 is applied to accelerating electrode 17 through resistor 33 . The voltage thus applied to the accelerating electrode 17 is a voltage that changes with respect to the DC voltage, in this example a sine wave voltage is superimposed thereon. This superimposed voltage is selected to be approximately ±20% of the DC voltage of the DC power supply 28, for example. In other words, if the DC voltage is, for example, 100KV,
A sine wave voltage with an amplitude of 20KV is used so that the DC voltage changes between 80KV and 120KV. The frequency of the changing voltage is selected from several 100 Hz to several 1000 Hz. If it deviates from these ranges, more sparks will occur during generation, or the range of optimal conditions will become narrower, resulting in greater product variation.

このようにこの発明において電子ビームの照射
エネルギーをその照射中に変化するが、これは従
来より提案されている非浸透電子ビーム照射方法
及び浸透電子ビーム照射方法の何れにも適用でき
更に先に述べたこれらの中間的な方法である一次
電子及び二次電子の注入を並行的に行なう場合に
もこの発明は適用できる。このように一次電子及
び二次電子により同時に電荷の注入を行なう場合
は例えば厚味が12.5μの4弗化樹脂のフイルムに
対してアルミニウムを500Å〜1000Å接着した試
料に対してその照射エネルギーを−26KeV〜−
34KeVとし、ビーム電流密度を1〜10×10-8A/
cm2、照射時間を5〜15秒、電子ビームの直径を10
〜20mmとすると生成電荷密度は4×10-8C/cm2
なり、高い電荷密度が得られる。この発明をこの
ような一次電子及び二次電子の双方による同時電
子注入に適用すると、その最適条件の範囲が更に
広くなつて試料の厚味及び材質が不均一であつて
も表面電荷のばらつきが少なくなる。例えば従来
方法の試料のばらつきによる最適条件のばらつき
に対し、パーセントでこの発明の適用により1/3
以下にする事ができた。
In this way, in this invention, the irradiation energy of the electron beam is changed during irradiation, but this can be applied to both the non-penetrating electron beam irradiation method and the penetrating electron beam irradiation method that have been proposed in the past. The present invention can also be applied to a case where primary electron and secondary electron injection are performed in parallel, which is an intermediate method between these methods. When injecting charges simultaneously using primary and secondary electrons in this way, for example, the irradiation energy is - 26KeV〜−
34KeV and beam current density of 1 to 10×10 -8 A/
cm2 , irradiation time 5-15 seconds, electron beam diameter 10
When the thickness is set to 20 mm, the generated charge density is 4×10 −8 C/cm 2 , and a high charge density can be obtained. When this invention is applied to such simultaneous electron injection using both primary and secondary electrons, the range of optimal conditions becomes wider, and even if the thickness and material of the sample are non-uniform, variations in surface charge can be avoided. It becomes less. For example, compared to the variation in optimal conditions due to sample variation in the conventional method, application of this invention reduces the variation to 1/3 in terms of percentage.
I was able to do the following.

更にこの発明によれば照射エネルギーをそのエ
ネルギーの照射中に変化させる事により、生成中
のスパークの発生が少なく歩留りが向上し、従来
よりも歩留りで2倍以上良くなつた。つまりスパ
ークの発生率が1/2以下となつた。もちろんこの
発明は浸透電子ビーム照射法や非浸透電子ビーム
照射法にも適用できるものである。
Further, according to the present invention, by changing the irradiation energy during irradiation, the generation of sparks during generation is reduced and the yield is improved, and the yield is more than twice as good as that of the conventional method. In other words, the spark generation rate has been reduced to less than 1/2. Of course, this invention can also be applied to penetrating electron beam irradiation methods and non-penetrating electron beam irradiation methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明によるエレクトレツト生成装
置の一例を示す構成図、第2図はその試料の保持
構造を示す断面図である。 11:真空室、12:試料保持台、13:試
料、14:電子ビーム発生部、15:電子銃、1
6:電子銃に対する電源、17:加速用電極、1
8:加速用電源装置、19:集束コイル、21:
電子ビーム、22:偏向コイル23:集束用電
源、24:偏向用電源、25:金属被膜、26:
保持リング、27:絶縁体、28:直流高圧電
源、29:重畳用変化電圧源。
FIG. 1 is a block diagram showing an example of an electret generation apparatus according to the present invention, and FIG. 2 is a sectional view showing a sample holding structure thereof. 11: Vacuum chamber, 12: Sample holding table, 13: Sample, 14: Electron beam generator, 15: Electron gun, 1
6: Power source for the electron gun, 17: Acceleration electrode, 1
8: Acceleration power supply device, 19: Focusing coil, 21:
Electron beam, 22: Deflection coil 23: Focusing power supply, 24: Deflection power supply, 25: Metal coating, 26:
Retaining ring, 27: Insulator, 28: DC high voltage power supply, 29: Variable voltage source for superimposition.

Claims (1)

【特許請求の範囲】[Claims] 1 高分子材料膜に電子ビームを照射してその高
分子材料膜にエレクトレツトを生成するエレクト
レツト生成装置において、電子ビームの加速電極
の電圧を変化させて上記電子ビームの照射エネル
ギーをその照射中に周期的に変化させる手段を設
け、その加速電極の電圧変化は直流分の±20%以
内とされ、かつ変化周波数は数100Hz〜数1000Hz
とされている事を特徴とするエレクトレツト生成
装置。
1. In an electret generation device that irradiates a polymer material film with an electron beam to generate electrets in the polymer material film, the voltage of the electron beam accelerating electrode is changed to increase the irradiation energy of the electron beam during the irradiation. A means for periodically changing the voltage of the accelerating electrode is provided, and the voltage change of the accelerating electrode is within ±20% of the DC voltage, and the changing frequency is from several 100 Hz to several 1000 Hz.
An electret generation device characterized by:
JP4144179A 1979-04-04 1979-04-04 Device for generating electret Granted JPS55133529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4144179A JPS55133529A (en) 1979-04-04 1979-04-04 Device for generating electret

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4144179A JPS55133529A (en) 1979-04-04 1979-04-04 Device for generating electret

Publications (2)

Publication Number Publication Date
JPS55133529A JPS55133529A (en) 1980-10-17
JPS6142847B2 true JPS6142847B2 (en) 1986-09-24

Family

ID=12608450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4144179A Granted JPS55133529A (en) 1979-04-04 1979-04-04 Device for generating electret

Country Status (1)

Country Link
JP (1) JPS55133529A (en)

Also Published As

Publication number Publication date
JPS55133529A (en) 1980-10-17

Similar Documents

Publication Publication Date Title
US5414267A (en) Electron beam array for surface treatment
US5773834A (en) Method of forming carbon nanotubes on a carbonaceous body, composite material obtained thereby and electron beam source element using same
US3081485A (en) Process and apparatus for treating synthetic plastic materials
US7800012B2 (en) Electron gun with a focusing anode, forming a window for said gun and application thereof to irradiation and sterilization
Wong et al. Vacuum spark as a reproducible x‐ray source
US3381157A (en) Annular hollow cathode discharge apparatus
JPS5975549A (en) X-ray bulb
JPS6231781B2 (en)
US3786268A (en) Electron gun device of field emission type
US2866902A (en) Method of and apparatus for irradiating matter with high energy electrons
GB2074369A (en) Apparatus and method for generating high density pulses ofelectrons
KR960004776B1 (en) Apparatus and method of forming thin film
JPS6142847B2 (en)
US3517240A (en) Method and apparatus for forming a focused monoenergetic ion beam
AU2004310860A1 (en) Plasma discharger
Erofeev et al. Generators of diffuse plasma at atmospheric pressure
Ozur et al. Characteristics of a plasma anode based on hybrid discharge for the use in a high-current electron gun
JPS6035446A (en) Electron stream generating device
SU819850A1 (en) X-ray pulse sorce
RU2159478C2 (en) Autoemission cathode and its manufacturing process; autoemission device
JPS63221547A (en) Ion neutralizer
JPS5823164Y2 (en) Denkai Houshiyutsugata Denshijiyu
JPS5842769A (en) Ion plating device using light beam
JPS5927383B2 (en) Ion beam thin film production equipment
JP3504169B2 (en) Ion implantation apparatus and ion implantation method