EP1675873A1 - Correlation du ratio taux de fucose / taux de galactose d'anticorps anti rhesus d et anti hla-dr avec l'activite adcc - Google Patents

Correlation du ratio taux de fucose / taux de galactose d'anticorps anti rhesus d et anti hla-dr avec l'activite adcc

Info

Publication number
EP1675873A1
EP1675873A1 EP04805250A EP04805250A EP1675873A1 EP 1675873 A1 EP1675873 A1 EP 1675873A1 EP 04805250 A EP04805250 A EP 04805250A EP 04805250 A EP04805250 A EP 04805250A EP 1675873 A1 EP1675873 A1 EP 1675873A1
Authority
EP
European Patent Office
Prior art keywords
antibodies
antibody
fucose
galactose
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04805250A
Other languages
German (de)
English (en)
Inventor
Nicolas Bihoreau
Christophe De Romeuf
Sylvie Jorieux
Emmanuel Nony
Dominique Bourel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LFB Biotechnologies SAS
Original Assignee
LFB SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LFB SA filed Critical LFB SA
Publication of EP1675873A1 publication Critical patent/EP1675873A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/10Anthelmintics
    • A61P33/12Schistosomicides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2833Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/34Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against blood group antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]

Definitions

  • the present invention relates to compositions of monoclonal antibodies having a high ADCC activity and whose ratio fucose rate / galactose rate of the glycan structures present on their glycosylation sites of the Fc region, is less than or equal to 0.6 .
  • the invention also relates to pharmaceutical compositions comprising said monoclonal antibodies having a strong effector activity.
  • Passive immunotherapy very widespread, is based on the administration of antibodies, in particular immunoglobulins of the IgG type, directed against a given cell or substance. Passive immunotherapy using monoclonal antibodies has given encouraging results. However, if the use of monoclonal antibodies has several advantages, such as an assurance of product safety as regards the absence of infectious contamination, it may however prove difficult to obtain an effective monoclonal antibody.
  • Immunoglobulin type G are heterodimers consisting of 2 heavy chains and 2 light chains, linked together by disulfide bridges. Each chain consists, in the N-terminal position, of a specific variable part of the antigen against which the antibody is directed, and in the C-terminal position, of a constant part, mediating the effector properties of the antibody. .
  • variable parts and the CHj and CL domains of the heavy and light chains forms the Fab parts, which are connected to the Fc region (constant part of the heavy chain) by a region of exceptional flexibility (hinge region). thus allowing each Fab to bind to its antigenic target while the Fc region remains accessible to effector molecules such as Fc ⁇ R receptors and Clq.
  • the Fc region consists of 2 globular domains named CH 2 and CH 3 .
  • the 2 heavy chains interact closely at the level of the CH 3 domains while at the level of the CH 2 domains, the presence, on each of the 2 chains, of a biantennary N-glycan of lactosaminic type, linked to Asn 297, contributes to a separation of the 2 domains.
  • the antibody if the antibody is strongly fucosylated, it must be strongly galactosylated to have optimal effector activity. Conversely, if the antibody is weakly fucosylated, the level of galactose present must be such that the ratio of fucose / galactose level is less than 0.6 but preferably less than 0.5 or even less than 0.4 for have optimal effector activity.
  • the invention relates to a process for the preparation of a chimeric, humanized or human monoclonal antibody having a strong effector activity, characterized in that it comprises the following stages: a) production and purification of monoclonal antibodies obtained from different sources, in particular cells, plants or non-human animals, possibly genetically modified or transformed, b) measurement of the fucose rate and the galactose rate of the glycan structures carried by the glycosylation sites of the region Fc of said antibodies, c) selection of antibodies in which the fucose / galactose rate ratio is less than or equal to 0.6, preferably 0.5 or 0.4.
  • a monoclonal antibody is intended to mean a composition comprising monoclonal antibodies having an identical primary structure, except for the small proportion of antibodies having naturally occurring mutations, identical specificity and post-translational modifications, in particular modifications of glycosylation. , which can vary from one molecule to another.
  • the expressions “monoclonal antibody” or “composition of a monoclonal antibody” are synonymous.
  • the monoclonal antibodies of the invention can be prepared using conventional methods, such as the production of hybridomas as described by Kohler and Milstein (1975), the immortalization of human B cells by the Epstein-Barr virus (EBN), or more recent, such as phage display technology, the use of a combinatorial library of human antibodies or transgenic animals, in particular the Xenomouse® mouse; monoclonal antibodies can also be prepared by molecular engineering, in particular to chimerize or humanize the antibodies.
  • the analysis of glycans can be carried out for example by HPCE-LIF (High-Performance Capillary Electrophoresis with Laser-Induced Fluorescence), or by any other method of analysis of glycans known to man. of career.
  • the method according to the invention makes it possible to obtain a monoclonal antibody having a strong effector activity, and more particularly a strong functional activity of the ADCC type.
  • the term effector is understood to mean the biological activities attributable to the Fc region of an antibody. Examples of these effector functions include, but are not limited to, ADCC activity (Antibody-Dependent Cell-mediated Cytotoxicity), CDC activity (Complement-Dependent Cytotoxicity), phagocytosis activity, endocytosis activity or the induction of cytokine secretion.
  • strong effector activity is meant an effector activity at least 20 times, 50 times, 60 times, 70 times, 80 times, or 90 times, and preferably up to 100 times, or preferably 500 times greater than 1 effector activity of antibodies with the same specificity but with a fucose / galactose rate ratio greater than 0.6.
  • the fucose / galactose rate ratio is between the values 0.6 and 0.3, preferably between 0.5 and 0.35.
  • the galatose rate can be between 70 and 99%. If the fucose rate is between 20% and 35%, the galatose rate is between 55% and 70% or even between 60% and 99%.
  • the value of the “ratio less than or equal to 0.6” also means a value greater than 0.6 of a few hundredths of a unit, for example 4 to 5 hundredths.
  • the antibodies obtained by the process according to the invention are produced in cells genetically modified by the introduction of at least one vector allowing the expression of the antibodies, these cells being eukaryotic or prokaryotic cells, in particular cells of mammals, insects, plants, bacteria or yeasts.
  • the antibody obtained is a human immunoglobulin of the IgG type.
  • these cells can be genetically modified by the introduction of at least one vector allowing the expression of at least one polypeptide having a glycosyltransferase activity.
  • this glycosyltransferase activity is a galactosyltransferase activity, and in particular a beta (1, 4) -galactosyltransferase or beta (1, 3) -galactosyltransferase activity.
  • polypeptide having galactosyltransferase activity means any polypeptide capable of catalyzing the addition of a galactose residue from UDP -galactose to the residue of GlcNAc in the non-reducing position of an N-glycan.
  • vector allowing the expression of a polypeptide having a beta (1,4) -galactosyltransferasic activity means any vector comprising a polynucleotide allowing the expression of a polypeptide capable of synthesize the disaccharide motif Galbeta (1,4) -GlcNac, this polynucleotide which can come from species such as man, mouse, hamster, cow, sheep, goat, pig, horse, rat, monkey, rabbit, chicken for example.
  • Such sequences such as for example NM 001497, AB 024434, NM 003780, BC 053006, XM 242992, NM 177512, this list not being exhaustive, are available in nucleotide and / or protein sequence banks such as Genbank.
  • vector allowing the expression of a polypeptide having a beta (1,3) -galactosyltransferasic activity means any vector comprising a polynucleotide allowing the expression of a polypeptide capable of synthesizing the motif disaccharide Galbeta (1, 3) -GlcNac, this polynucleotide which can come from species like man, mouse, hamster, cow, sheep, goat, pig, horse, rat, monkey, rabbit, chicken for example.
  • sequences coding for a beta (1, 3) -galactosyltransferase originating from species such as man, mouse, hamster, cow, sheep, goat, pig, horse, rat, monkey , rabbit, chicken for example are particularly suitable.
  • species such as man, mouse, hamster, cow, sheep, goat, pig, horse, rat, monkey , rabbit, chicken for example.
  • sequences are available on Genbank, such as for example NM020981, AB084170, AY043479, this list is not exhaustive.
  • glycosylation site of the Fc region of the antibodies generally means the two residues of Asn297 according to the Kabat numbering (Kabat database, http://immuno.bme.nwu.edu), but the invention also relates to antibodies whose amino acid sequences have been modified.
  • the cells also have an activity relating to the synthesis and / or transport of GDP-fucose and / or the activity of an enzyme involved in the addition of fucose to the oligosaccharide of the site of glycosylation of the antibodies decreased or deleted.
  • the enzyme involved in the synthesis of GDP-fucose is GMD (GDP-D-mannose 4,6-dehydratase), Fx (GDP-keto-6-deoxymannose 3,5-epimerase, 4-reductase ) or the GFPP (GDP-beta-L-fucose pyrophosphorylase), this list is not exhaustive.
  • the enzyme involved in. the addition of fucose is a fucosyltransferase.
  • the protein involved in the transport of GDP-fucose can advantageously be human GDP-fucose tansporter 1.
  • the fucose and galactose levels measured in step b) give a ratio greater than 0.6, to defucosylate and / or to add galactose residues to the antibodies before step c), so that the said ratio becomes less than 0.6 but preferably less than 0.5 and even less than 0.4 in order to increase the functional activity of the antibodies.
  • This defucosylation can be carried out by adding a fucosidase to the medium containing the antibody, which can be the preservation medium.
  • galactose residues can be carried out by any suitable means including the addition of a galactosyltransferase in the medium containing the antibody or in a solution containing the antibody and a donor substrate such as UDP -galactose, by example.
  • the cells used to implement the method according to the invention come from animal or human cell lines, these lines being selected in particular from the rat myeloma lines, in particular YB2 / 0 and IR983F, from human myeloma such as Namalwa or any other cell of human origin such as PERC6, CHO lines, in particular CHO-K, CHO-LeclO, CHO-Lecl, CHO Pro-5, CHO dhfr-, CHO Lecl3, or other lines chosen from Wil-2 , Jurkat, Nero, Molt-4, COS-7, 293-HEK, BHK, K6H6, ⁇ SO, SP2 / 0-Ag 14 and P3X63Ag8.653.
  • human myeloma lines such as Namalwa or any other cell of human origin such as PERC6, CHO lines, in particular CHO-K, CHO-LeclO, CHO-Lecl, CHO Pro-5, CHO dhf
  • the antibody is an anti-Rhesus D (anti-D), anti-CD, anti-tumor, anti-virus, anti-CD20 or an anti-HLA-DR, more particularly among the antibodies of Table 0 below.
  • Table 0 Name and brand Target company commercial indication of the antibody Edrecolomab Centocor anti Ep-CAM colorectal cancer PANOREX Rituximab Idea anti CD20 B cell lymphoma RITUXAN Licensed to thrombocytopenia purpura Genentech / Hoffman rock Trastuzumab Genentech anti HER2 ovarian cancer HERCEPTIN Licensed to Hoffman roche / Immunogen Palivizumab Medimmune RSV SYNAGIS Licensed to Abott Alemruzumab BTG anti CD52 leukemia CAMPATH Licensed to Schering ibritumomab IDEC anti CD20 NHL tiuxetan Licensed to Schering ZEVALIN Cetuximab Merck / BMS / anti
  • Bevacizumab Genentech / anti VEGFR cancer A VASTIN Hoffman la roche Epratuzumab Immumedics / anti CD22 cancers: Amgen non-Hogkinian lymphoma Hu M195Mab Protein Design Anti CD33 cancers Labs MDX-210 hrrmuno-Designed ⁇ D cancers BEC2 molecules hnclone anti GD3 cancers Mitumomab Oregovomab Altarex anti CA125 ovarian cancer OVAREX Himalayan Melomim Komaroma -2971 ABX-EGF Abgenix EGF cancers
  • IDEC-114 ⁇ DEC inhibition of non-Hodgkin's lymphoma ProteinC
  • a second object of the invention is to provide a method for increasing the effector activity, in particular the ADCC activity, of a composition of immunologically functional molecules, comprising increasing the level of galactose and / or decreasing the level of fucose of the composition of molecules.
  • immunologically functional molecules is intended to denote molecules capable of reacting to any contact with any immunogen by manifesting an immunological capacity. These molecules can present in the native state a good effector activity, for example ADCC, or a poor effector activity. They have an Fc region comprising a glycosylation site.
  • these functionally immunplogic molecules are preferably antibodies, advantageously monoclonal or polyclonal.
  • the molecules may have a high level of fucose in the native state. More particularly, it is advantageous in this case to effect an increase in the galactose level of these molecules or antibodies.
  • the reduction in the rate of fucose is achieved by de-fucosylation of the molecules of the composition by the action of a fucosidase.
  • This de-fucosylation can be carried out by an ⁇ 1.6 fucosidase. Fucosidases extracted from kidney of bovine or Charonia lampas have this specificity.
  • the increase in the level of galactose of the molecules of the composition is due to a galactosylation of the composition by the action of a galactosyltransferase.
  • both enzymes allowing de-fucosylation and enzymes allowing galactosylation are made to act.
  • the composition of immunologically functional molecules can be purified by means of a series of chromatographies on lectins which enrich the composition with weakly fucosylated antibodies and / or with strongly galactosylated antibodies.
  • the solution comprising the composition of immunologically functional molecules, which are advantageously antibodies is passed over a lectin column (for example an LA-LCA, or LA-AAL, Shimadzu Corporation column) connected to an HPLC system.
  • a lectin column for example an LA-LCA, or LA-AAL, Shimadzu Corporation column
  • the solution is separated into a non-adsorbed fraction and an adsorbed fraction.
  • An analysis of the glycans of the non-adsorbed and adsorbed fractions is carried out: the oligosaccharides, cleaved from the protein part by enzymatic action, are labeled with APTS and are separated by HPCE-LIF and quantified. .
  • the areas of the peaks are calculated: the antibodies possessing glycans devoid of fucose can thus be separated and selected.
  • the selected fraction is then passed (which can be obtained from the non-adsorbed fraction or from the adsorbed fraction) either on a hydrophobic column of the Phenyl-5PW type (prepared by Tosoh Corporation) or on a second lectin column (LA-RCA 120 or LA- WGA, Seikagaku America). It is thus possible to precisely select the fractions whose ratio fucose rate / galactose rate is less than or equal to 0.6.
  • a third subject of the invention is a cell, preferably derived from the YB2 / 0 cell line, into which at least one vector coding for an antibody molecule is introduced, said cell producing a monoclonal antibody having a ratio of fucose / galactose level of the oligosaccharides of the glycosylation site of the Fc region less than or equal to 0.6. Preferably, this ratio is less than 0.5 or even 0.4. In a preferred aspect of the invention, this ratio is between 0.6 and 0.3.
  • this cell is transfected with an expression vector coding for a galactosyltransferase, in particular for a beta (1; 4) - galactosyltransferase or a beta (1,3) -galactosyltransferase.
  • this cell expresses or over-expresses a recombinant galactosyltransferase.
  • the YB2 / 0 line naturally expresses galactosyltransferases from the beta (1,4) and beta (1,3) family.
  • this cell line is known to produce antibodies having a low level of fucose (WO 01/77181, LFB).
  • the cell according to the invention has the advantage of over-expressing the galactosyltransferase, which has the effect of varying the fucose / galactose rate ratio of the antibodies produced by the modified cell compared to the antibodies produced by the line. not modified. Consequently, since the antibody is naturally weakly fucosylated, an increase in its galactose level further lowers its fucose / galactose rate ratio, which has the effect of further optimizing its ADCC activity.
  • the galactosyltransferase is coded by a sequence originating from man, mouse, hamster, cow, sheep, goat, pig, horse, rat, monkey, rabbit or chicken , this list is not exhaustive. More particularly, the coding sequence is the sequence NM 001497, AB 024434, NM 003780, BC 053006, XM 242992 or NM 177512.
  • the invention also relates to a process for preparing monoclonal antibodies whose glycan structures carried by the glycosylation site of the Fc region have a fucose / galactose rate ratio less than or equal to 0.6, preferably less than 0.5 or even 0.4 comprising the culture of the cell previously described in a culture medium and under conditions allowing the expression of said vectors.
  • the invention relates to therapeutic antibodies having a strong effector activity, capable of being obtained from the methods described above, or also obtained from the methods described, these antibodies being characterized in that they present on their glycosylation site of the Fc region, glycan structures having a fucose / galactose rate ratio of less than 0.6, preferably less than 0.5 or even 0.4.
  • they are therapeutic monoclonal antibodies capable of being obtained from the preceding method, said antibodies having an enhanced ADCC activity, for example monoclonal anti-D having an equal or greater ADCC activity. to that of polyclonal antibodies.
  • This enhanced ADCC activity is at least equal but preferably greater than that of the polyclonal or monoclonal therapeutic antibody (of the same specificity) expressed in a CHO DG44 or DxB 11 line.
  • IgG for example IgG1 or IgG3, chimeric, humanized or human or IgG having a human Fc region.
  • these antibodies are human IgG or any chimeric molecule comprising a human Fc region.
  • the invention relates to a pharmaceutical composition comprising an antibody previously described.
  • the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising at least 50%, preferably 60%, 70%, 80% or even 90% or 99% of a monoclonal or polyclonal antibody whose glycan structures carried by the site of glycosylation of the Fc region have a fucose / galactose rate ratio of less than 0.6, preferably less than 0.5 or even 0.4. So preferential, the ratio is between the values 0.6 and 0.3, and more particularly between 0.5 and 0.35.
  • compositions according to the invention preferably comprise an antibody directed against a normal non-ubiquitous antigen, in particular a Rhesus factor, such as the Rhesus factor (D) of the human red blood cell, or an antigen of a pathological cell or of a pathogenic organism for humans, especially against a cancer cell antigen.
  • a Rhesus factor such as the Rhesus factor (D) of the human red blood cell
  • the antibodies are more preferably IgGs.
  • Another subject of the invention relates to the use of an antibody according to the invention for the preparation of a medicament intended for the treatment of alloimmunization, in particular hemolytic disease of the newborn.
  • Another subject of the invention relates to the use of an antibody according to the invention for the preparation of a medicament intended for the treatment of autoimmune diseases, cancers and infections by pathogenic agents, in particular for the treatment of diseases escaping the immune response in particular chosen from Sézary Syndrome, solid cancers, in particular whose antigenic targets are weakly expressed, in particular breast cancer, pathologies linked to the environment targeting in particular people exposed to polychlorinated biphenyls , infectious diseases, especially tuberculosis, chronic fatigue syndrome (CFS), parasitic infections such as schistosomules, and viral infections.
  • pathogenic agents in particular for the treatment of diseases escaping the immune response in particular chosen from Sézary Syndrome, solid cancers, in particular whose antigenic targets are weakly expressed, in particular breast cancer, pathologies linked to the environment targeting in particular people exposed to polychlorinated biphenyls , infectious diseases, especially tuberculosis, chronic fatigue syndrome (CFS), parasitic infections such as schistosomules, and viral infections
  • the antibody according to the invention can be used for the preparation of a medicament intended for the treatment of cancers of HLA class II positive cells such as melanomas, acute lymphoid leukemias of B and T cells, chronic myeloid leukemias and acute, Burkitt's lymphoma, Hodgkin's lymphoma, T-cell lymphomas and non-Hodgkin's lymphomas.
  • HLA class II positive cells such as melanomas, acute lymphoid leukemias of B and T cells, chronic myeloid leukemias and acute, Burkitt's lymphoma, Hodgkin's lymphoma, T-cell lymphomas and non-Hodgkin's lymphomas.
  • the antibodies of the invention can be selected from the antibodies listed in Table 0.
  • the antibody is an anti-HLA-DR or an anti-CD20.
  • the antibody according to the invention is used for the manufacture of a medicament intended to induce the expression of at least one cytokine chosen from IL-1 ⁇ , IL-1 ⁇ , IL-2 , IL-3, IL-4, IL-5, IL-6, IL-12, IL-18, IL-21, TGF ⁇ 1, TGF ⁇ 2, TNF ⁇ , TNF ⁇ , IFN ⁇ , and IP 10 by natural effector cells of the immune system , said medicament being useful in particular for the treatment of cancer and viral, bacterial or parasitic infections.
  • cytokine chosen from IL-1 ⁇ , IL-1 ⁇ , IL-2 , IL-3, IL-4, IL-5, IL-6, IL-12, IL-18, IL-21, TGF ⁇ 1, TGF ⁇ 2, TNF ⁇ , TNF ⁇ , IFN ⁇ , and IP 10
  • the antibody according to the invention is used for the manufacture of a medicament intended for the treatment of patients having one of the CD16 polymorphisms, in particular N / F158 or F / F158, in particular patients in therapeutic failure with currently available antibodies or experiencing undesirable side effects.
  • the invention also relates to a process for preparing a chimeric, humanized or human monoclonal antibody having a low effector activity, in particular a low functional activity of ADCC type, characterized in that it comprises the steps following: a) production and purification of monoclonal antibodies obtained from different sources, in particular cells, plants or non-human animals, possibly genetically modified or transformed, b) measurement of the rate of fucose and of galactose of the glycan structures carried by the glycosylation site of the Fc region of said antibodies, c) selection of antibodies in which the fucose / galactose rate ratio is greater than 0.6, preferably greater than 1.2.
  • the definitions of the effector activity of a monoclonal antibody are the same as those given above.
  • weak effector activity means an effector activity at least 20 times, 50 times, 60 times, 70 times, 80 times, or 90 times, and preferably up to 100 times, or preferably 500 times lower than the effector activity, in particular the functional activity of the ADCC type of antibodies with the same specificity but whose ratio of fucose rate / galactose rate is less than 0.6.
  • the invention therefore relates to antibodies having a low ADCC activity, and the compositions comprising them, characterized in that their glycosylation site (Asn 297) of the Fc region exhibits a fucose / galactose rate ratio greater than 1.2.
  • These antibodies are useful for preparing drugs to treat and / or prevent autoimmune diseases, including immunological thrombocytopenic purpura (ITP), alloimmunizations, transplant rejection, allergies, asthma, dermatitis, hives, erythema, and inflammatory diseases.
  • ITP immunological thrombocytopenic purpura
  • the antibodies are produced in genetically modified cells by the introduction of at least one vector allowing the expression of said antibodies, said cells being eukaryotic or prokaryotic cells, in particular mammalian cells, insects, plants, bacteria or yeast.
  • the cells are genetically modified by the introduction of at least one vector allowing the expression of at least one polypeptide having a glycosyltransferase activity, preferably a fucosyltransferase activity and in particular 1, 6-fucosyltransferase.
  • the cells have an activity relating to the synthesis and / or transport of UDP -galactose and / or the activity of an enzyme involved in the addition of galactose to l oligosaccharide from the site of antibody glycosylation is decreased or deleted.
  • this enzyme involved in the addition of galactose is a ⁇ 1,4-galactosyltransferase.
  • the cells have both a glycosyltransferase activity, preferably a fucosyltransferase activity and an activity relating to the synthesis and / or transport of UDP-galactose and / or the activity of an enzyme involved in the addition of galactose to the oligosaccharide from the decreased or deleted antibody glycosylation site.
  • a glycosyltransferase activity preferably a fucosyltransferase activity
  • an activity relating to the synthesis and / or transport of UDP-galactose and / or the activity of an enzyme involved in the addition of galactose to the oligosaccharide from the decreased or deleted antibody glycosylation site preferably a fucosyltransferase activity and an activity relating to the synthesis and / or transport of UDP-galactose and / or the activity of an enzyme involved in the addition of galactose to the oligosaccharide from the decreased or deleted antibody glyco
  • the measured ratio is less than 0.6, fucosylated and / or removes galactose residues from said antibody before step c ), so that the fucose / galactose rate ratio becomes greater than 0.6.
  • the de-galactosylation is carried out by the addition of a galactosidase in the medium containing the antibody.
  • the addition of fucose residues is carried out by the addition of a fucosyltransferase in the medium containing the antibody.
  • the antibody is a human immunoglobulin of the IgG type.
  • the antibody is directed against a CD, a marker for differentiation of human blood cells or against a pathogenic agent or its toxin listed as being particularly dangerous in cases of bioterrorism, in particular Bacillus anthracis, Clostridium botulium, Yersinia pestis, Variola major, Francisella tularensis, Filoviruses, Arenaviruses, Brucella species, Clostridium perfringens, Salmonella, E.coli, Shigella, Coxiella burnetii, castor toxin, Rickettsia, Viral encephalitis viruses, Vibrio cholerae or Hantavirus.
  • Another subject of the invention relates to a method for decreasing the activity of a composition of immunologically functional molecules, comprising increasing the level of fucose and / or decreasing the level of galactose of said composition.
  • the immunologically functional molecules are monoclonal or polyclonal antibodies.
  • the increase in the rate of fucose is due to a fucosylation of said composition by the action of a rucosyltransferase, preferably an ⁇ 1,6-fucosyltransferase.
  • the decrease in the galactose level of said composition is due to a de-galactosylation of the composition by the action of a galactosidase, preferably one or more ⁇ -galactosidase.
  • an object of the invention relates to an antibody composition capable of being obtained from the methods according to the invention described above, or an antibody composition obtained from one of these methods .
  • a further object of the invention is the use of this antibody composition for the preparation of a medicament intended for the treatment and / or prevention of autoimmune diseases and in particular ITP, of alloimmunization, transplant rejection, allergies, asthma, dermatitis, hives, erythema, or inflammatory diseases, this list is not exhaustive.
  • the invention relates to a method for controlling the activity of a composition of immunologically functional molecules, comprising the regulation of the fucose rate / galactose rate ratio of the oligosaccharides of the glycosylation site of the Fc region of the antibodies.
  • Figure 1 Glycan structures present on the glycosylation site of the Fc region of different anti-Rh (D) antibodies.
  • This figure represents the percentages of the different glycan forms carried by the residues Asn297 of 3 anti-Rh (D) antibodies: anti-D IgGl of WinRho (black histograms), monoclonal antibody EMAB2 (white histograms) and Anti- Dl (hatched histograms) .
  • Figure 2 Correlation line between the fucose / galactose rate ratio and the ADCC activity of anti-Rh (D) antibodies.
  • FIG. 3 Effect of galactose level on the ADCC activity of anti-Rh (D) polyclonal antibodies.
  • This figure represents the percentage of lysis of Rh (D +) red blood cells induced by polyclonal anti-Rh (D) antibodies equal or not equal (Control) in the presence of polyvalent IgG (Tegeline, LFB) at the concentration of 0 , 5 and 2.5 mgml.
  • FIG. 4 CD 16 activation of anti-Rh (D) degalactosylated monoclonal antibodies. This figure represents the% of CD 16 activation induced by the presence of anti-Rh (D) EMAB2 and HHO1 monoclonal antibodies, degalactosylated (white histograms) or not (control, black histograms).
  • FIG. 5 CD 16 activation of galactosylated anti-Rh (D) monoclonal antibodies. This figure represents the CD16 activation induced by the anti-Rh (D), EMAB2 and EMAB3 monoclonal antibodies, before (control, black histograms) and after galactosylation in vitro by bovine ⁇ 1, 4-galactosyltransferase (white histograms).
  • Figure 6 Clearance curves for radiolabelled red cells, sensitized or not by anti-Rh (D) antibodies.
  • This figure represents the monitoring of the radioactivity, expressed in%, contained in the blood of volunteers to which a volume of red blood cells labeled with Cr 51 has been re-injected, either not sensitized ( ⁇ ,) or sensitized by the therapeutic preparation of Rhophylac polyclonal antibodies.
  • TM (•) or by the monoclonal antibody EMAB2 (", A, ⁇ ).
  • the antibody EMAB2 was tested in 3 volunteers (008, 009 and 010).
  • Figure 7 Effect of degalactosylation of anti-HLA DR monoclonal antibodies expressed in cell lines YB2 / 0 and CHO-DG44 on CD16 activation.
  • This figure represents the quantity, expressed in pg / ml, of Il-2 secreted by Jurkat CD 16 cells whose CD 16 receptor has been activated, in the presence of Raji cells carrying on their membrane molecules of HLA DR, by chimeric anti-HLA DR antibodies, native (solid lines) or degalactosylated (dotted lines).
  • Example 1 Correlation between the fucose / galactose rate ratio and the ADCC activity of a cohort of anti-Rh (D) antibodies.
  • the monoclonal antibodies are derived from the transformation by EBV, of B lymphocytes of a negative Rh (D) human donor, immunized with red cells carrying the Rh (D) antigen. From this transformation, 2 clones were selected: 1) one of the clones was fused with human / mouse heteromyeloma K6H6-B5; from this fusion was selected the HHOl clone. 2) from the other clone, the RNA encoding the anti-Rh (D) antibody were extracted for the preparation of an expression vector for the heavy chain and the light chain of the antibody.
  • This expression vector was used to transfect, on the one hand the cell line YB2 / 0 giving rise to the antibodies EMAB1, EMAB2, EMAB3 and EMAB4 and, on the other hand, the following CHO lines: DG44, Kl and Lecl3 which synthesize Anti-Dl, Anti-D2 and Anti-D3 antibodies, respectively.
  • DG44 CHO lines
  • Kl Kl and Lecl3 which synthesize Anti-Dl, Anti-D2 and Anti-D3 antibodies, respectively.
  • the oligosaccharides thus obtained are either labeled directly with a fluorochrome, the APTS (1-ammo-pyrene-3,6,8-trisulfonate) or subjected to the action of specific exoglycosidases before labeling by the APTS. Then the labeled oligosaccharides are injected into an N-CHO capillary and separated and quantified by capillary electrophoresis with laser-induced fluorescence detection (HPCE-LIF).
  • HPCE-LIF laser-induced fluorescence detection
  • the evaluation of the fucose level is carried out either by the addition of the isolated fucosylated forms, or more specifically after the simultaneous action of neuraminidase, ⁇ -galactosidase and N-acetylhexosaminidase, making it possible to obtain, on the electropherogram, 2 peaks corresponding to the pentasaccharide [Glc ⁇ ac2-Man3] fucosylated or not.
  • the galactose level is calculated by adding the percentages of the oligosaccharide forms containing galactose in the terminal position.
  • the formula used is as follows: Galactose level - [(G1 + G1B + G1F + G1FB) + 2x (G2 + G2F + G2B + G2FB)]
  • the ratio of fucose / galactose rate is obtained by dividing the fucose rate by the galactose rate, the rates being calculated as described above.
  • ADCC Antibody-Dependent Cell-mediated Cytotoxicity
  • red cells of a RhD (+) globular concentrate are treated with papain
  • Effector cells are isolated from a pool of at least 3 buffy coats, by centrifugation on FicoU
  • a microtiter plate (96 wells) is deposited per well: 100 ⁇ l of a dilution of purified anti-Rh (D) antibody (from 9.3 to 150 ng / ml), 25 ⁇ l of Rh (D +) papain red blood cells (i.e. 1.10 6 ), 25 ⁇ l of effector cells (ie 2.10) and 50 ⁇ l of polyvalent IgG (Tegeline, LFB) at the usual concentrations of 2 and 10 mg / ml. Dilutions are made in MDM 0.25% fetal calf serum (SNF).
  • SNF fetal calf serum
  • the plates are centrifuged, then 'the released hemoglobin in the supernatant was measured via its peroxidase activity in the presence of a chromogenic substrate, 2,7 diaminofluorene (DAF).
  • DAF 2,7 diaminofluorene
  • the results are expressed as a percentage of lysis, 100% corresponding to the total lysis of erythrocytes in ⁇ H 4 C1 (control 100%) and 0% to the reaction mixture without antibody (control 0%).
  • the specific lysis is calculated as a percentage according to the following formula:
  • the immunopurified polyclonal antibodies are dialyzed against the hydrolysis buffer (50 mM sodium acetate, pH 5.5 containing 4 mM calcium chloride).
  • the antibodies are desialylated and degalactosylated by incubation in the presence of 5 mU of neuraminidase (EC 3.2.1.18) from Vibrio cholerae (Calbiochem) and 9 mU of ⁇ -galactosidase (EC 3.2.1.23) produced by E. Coli (Roche).
  • control consists of the same preparation of antibody treated as indicated above but in the absence of neuraminidase and of ⁇ -galactosidase. After 24 hours of incubation at 37 ° C, the antibodies are stored at 4 ° C.
  • the antibodies generated in this example are separated into two fractions; One of the fractions is used for glycan analysis . and the other fraction is reserved for measuring ADCC activity.
  • the procedure consists in desalting on a Sephadex-G25 column the fraction of polygalonal anti-Rh (D) degalactosylated antibodies in order to remove the salts but also the free dares which could be present in the preparation.
  • D polygalonal anti-Rh
  • the glycans are released by the action of endoglycosidase PNGase F (Glyko).
  • PNGase F endoglycosidase F
  • the sample is subjected to the simultaneous action of sialidase and fucosidase or of sialidase, ⁇ -galactosidase and N-acetylhexosaminidase, respectively, before labeling with the APTS. Then the labeled oligosaccharides are injected onto an N-CHO capillary and separated and quantified by capillary electrophoresis with laser-induced fluorescence detection (HPCE-LIF). 3. Measurement of ADCC activity.
  • the measurement of the ADCC activity of the polyclonal antibodies before and after treatment with ⁇ -galactosidase is carried out according to the method described in Example 1.
  • the glycans of the Fc region of polyclonal anti-Rh (D) antibodies have a residual galactose level of 17.7% and a fucose level equal to 68.5%.
  • the fucose / galactose rate ratio of degalactosylated polyclonal antibodies is therefore equal to 3.8.
  • the percentage of ADCC activity of anti-Rh (D) degalactosylated polyclonal antibodies compared to control antibodies, that is to say having undergone the same incubation but in the absence of neuraminidase and ⁇ -galactosidase, are presented in the table. II.
  • the decrease in the ADCC activity of the polygalonal antibodies degalactosylated compared to the control antibodies is all the more important as the quantity of antibodies is low.
  • the decrease in activity of degalactosylated polyclonal antibodies is greater in the presence of a concentration of polyvalent IgG of 2.5 mg / ml.
  • EXAMPLE 3 Measurement of the Activation of the CD16 Receptor Induced by the Degalactosylated Anti-Rh (D) Monoclonal Antibodies 1. Degalactosylation of the Anti-Rh (D) Monoclonal Antibodies
  • the antibodies are dialyzed against the hydrolysis buffer (50 mM sodium acetate, pH 5.5 containing 4 mM calcium chloride).
  • the antibodies are desialylated and degalactosylated by an incubation in the presence of 5 mU of neuraminidase (EC 3.2.1.18) of Vibrio cholerae (Calbiochem) and 9 mU of ⁇ -galactosidase (EC 3.2.1.23) produced by E.coli (Roche).
  • the control designated by the name of “control”, consists of the same preparation of antibody treated as indicated above but in the absence of neuraminidase and of ⁇ -galactosidase. After 24 hours of incubation at 37 ° C, the antibodies are stored at 4 ° C.
  • the antibodies generated in this example are separated into two fractions; one of the fractions is used for glycan analysis and the other fraction is reserved for the measurement of functional activity.
  • the Jurkat CD 16 cell activation test measures the secretion of interleukin-2 (IL-2) induced by the binding of antibody Fc to CD 16 (Fc ⁇ RIIIA) after binding of the Fab to its antigen, present on the target cell.
  • IL-2 interleukin-2
  • Fc ⁇ RIIIA antibody Fc to CD 16
  • the level of IL-2 secreted by Jurkat CD 16 cells is proportional to the activation of the CD16 receptor.
  • a 96-well microtiter plate 50 ⁇ l of antibody dilutions are successively deposited, 50 ⁇ l of a red blood cell suspension at 6.10 5 / ml, 50 ⁇ l of a suspension of Jurkat CD 16 cells at 1.10 6 / ml and 50 ⁇ l of a 40 ng / ml PMA solution. All dilutions were carried out in EMDM culture medium containing 5% SNF.
  • the microtiter plate After 16 hours of incubation at 37 ° C and 7% CO 2, the microtiter plate is centrifuged and the amount of IL-2 contained in the supernatant is assayed by a commercial kit (Duoset, R&D). The levels of secreted IL-2 are expressed in pg / ml. The results are expressed as a percentage of CD16 activation, the level of IL-2 secreted in the presence of the control monoclonal antibody being considered equal to 100%.
  • the monoclonal antibody EMAB2 is completely degalactosylated while the antibody HHOl still contains 17.3% of monogalactosylated forms.
  • the fucose / galactose rate ratio of the EMAB2 and HHOl antibodies therefore becomes much greater than 0.6.
  • the degalactosylated anti-Rh (D) monoclonal antibodies exhibit a much reduced CD 16 activation compared to the control antibodies (FIG. 4).
  • the monoclonal antibodies EMAB2 and HHO1 show a decrease in their capacity to induce CD16 activation by 52 and 47%, respectively.
  • the antibodies are dialyzed against 50 mM HEPES buffer, pH 7.20.
  • the reaction mixture consists of the solution of monoclonal antibodies to which are added 10 mM MnC12, 20 mM UDP-galactose and 40 mU of bovine ⁇ 1,4-galactosyltransferase (Calbiochem). After incubation at 37 ° C for 24 hours, the tubes are stored at 4 ° C before use.
  • the control consists of the same antibody incubated under the same conditions except for the absence of UDP-Gal in the reaction medium.
  • the antibodies generated in this example are separated into two fractions; one of the fractions is used for glycan analysis and the other fraction is reserved for the measurement of ADCC activity.
  • the monoclonal antibodies are immobilized in the wells of a microtiter plate. After 20 minutes of heating at 100 ° C. to denature the IgG molecules in order to make the N-glycans of the Fc region accessible, the wells are incubated for 2 h. at room temperature and with gentle stirring in the presence of a biotinylated RCAi solution (Nector). After washing to remove the unreacted lectin, streptavidin-peroxidase is added to each well, incubated for 1 h and the fixed lectin is measured at 492 nm after addition of O-phenylenediamine.
  • the quantity of antibody fixed in the wells of the microtitration plate is measured by an anti-human IgG antibody labeled with peroxidase. Then the quantity of lectin fixed is corrected by the quantity of antibody fixed in the microtiter wells.
  • the monoclonal antibodies described in the present example are anti-Rh (D) antibodies having the same primary sequence and produced by the YB2 / 0 cell. They differ in their functional activity, in connection with their rate of fucosylation in ⁇ 1, 6 which is 25% for EMAB2 and 53% for EMAB3.
  • CD16 activation induced by the monoclonal antibodies EMAB2 and EMAB3 is increased by 10 and 54%, respectively (Fig. 5).
  • the anti-Rh (D) monoclonal antibody EMAB2 was evaluated in a phase I clinical trial in order to compare the clearance of red cells sensitized by this antibody with that of red cells sensitized by Rhophylac TM, a therapeutic preparation of anti-Rh polyclonal antibodies. (D) used clinically.
  • the red cells of healthy volunteers are labeled ex-vivo with chromium 51 ( 51 Cr) and sensitized, that is to say incubated, in the presence of anti-Rh (D) antibodies, EMAB2 or Rhophylac TM, to obtain a level saturation of 25% of the antigenic sites before being re-injected into the volunteers.
  • the disappearance in the blood circulation of the red cells labeled with 51 Cr was followed by measurement of the radioactivity with the gamma counter on blood samples taken at 3, 15, 30 minutes and 1, 2, 4, 6, 8, 10, 24, 48, 72, 96 hours after transfusion of the marked and sensitized red cells.
  • the blood sample taken 3 minutes after the red blood cell transfusion represents the 100% survival of red blood cells.
  • the results presented in FIG. 6 show that in the absence of sensitization of the red cells labeled with an antibody, the decrease in radioactivity measured over a period greater than 100 h, is less than 20%.
  • the red cells are sensitized by a therapeutic preparation of polyclonal antibodies or by the monoclonal antibody EMAB2
  • the blood radioactivity decreases rapidly; ten hours after the injection, less than 10%> of the radioactivity injected remains.
  • the disappearance curve of red cells sensitized by the monoclonal antibody EMAB2 has a profile similar to that of red blood cells sensitized by the therapeutic preparation of Rhophylac TM polyclonal antibodies.
  • the monoclonal antibody EMAB2 has an in vivo activity with respect to the clearance of pre-sensitized Rh (D +) red cells, at least comparable to that of a therapeutic polyclonal antibody preparation.
  • the anti-HLA DR antibody used in this study originates from the chimerization of the mouse antibody, of the IgG2a isotype, expressed by the Lym-1 hybridoma (ATCC Hb-8612).
  • RNA extracted from the murine antibody producing hybridoma was converted to cDNA.
  • the murine NK region was amplified using the primers K-Lym- ⁇ otl and K- Lym-Dra3 then cloned into the chimerization vector CK-Hu, previously digested by Notl and Dra3, which contains the CK sequence of a human anti-D antibody and the DHFR selection gene.
  • the murine VH region was amplified using the primers H-Lym-Not 1 and H-Lym-Apa 1 and then cloned into the Gl-Hu chimerization vector, previously digested with Not 1 and Apa 1, which contains the sequence Gl of a human anti-D antibody and the NEO selection gene.
  • the RSN promoter present in the expression vectors described above, was deleted by double digestion Bgl II and Spe I then replaced by the fragment ⁇ he I- Acc65 I.
  • the 2 clones selected are YB2 / 0-DR-4B7 for the YB2 / 0 expression cell line and DXB11-DR-22A10 for the CHO-DXB11 expression cell line.
  • the clone YB2 / 0-DR-4B7 was cultured in a 10 liter cytocultor (Biolafitte) in EM-SF1.1 medium, EMS base medium supplemented with Insulin (l ⁇ g / ml), Iron Citrate (50 ⁇ g / ml ), HEPES (4 mg / ml) and Pluronic F68 (0.5 mg / ml).
  • the DXB11-DR-22A10 clone was cultured in a 10 liter cytocultor (Biolafitte) in CHO SFM4 utility medium (Perbio) supplemented with 2% hypoxanthine. When the cell viability is less than 50%, the culture media are collected, centrifuged to remove the cells and the chimeric antibodies contained in the supernatants are purified by affinity chromatography on Sepharose-protein A.
  • the chimeric anti-HLA DR antibodies were dialyzed against a 50 mM sodium acetate buffer, pH 5.50 containing 4 mM CaC12.
  • the antibodies are degalactosylated by incubation in the presence of 5 mU of neuraminidase (EC 3.2.1.18) from Vibrio cholerae (Calbiochem) and 9 mU of ⁇ -galactosidase (EC 3.2.1.23) produced by E. Coli (Roche).
  • the control consists of the same antibody treated as indicated above but in the absence of neuraminidase and of ⁇ -galactosidase. After 24 hours of incubation at 37 ° C, the antibodies are stored at 4 ° C.
  • the antibodies generated in this example are separated into two fractions; one of the fractions is used for glycan analysis and the other fraction is reserved for the measurement of functional activity. 3. Measurement of CD16 activation
  • the Raji cell line is used as a target because it carries on its surface the antigenic determinant of the major histocompatibility complex HLA-DR.
  • 50 ⁇ l of antibody dilutions, 50 ⁇ l of a Raji cell suspension at 6.10 5 / ml, 50 ⁇ l of a suspension, Jurkat CD 16 to 1.10 6 cells are successively deposited in a 96-well microtiter plate. / ml and 50 ⁇ l of a PMA solution at 40 ng / ml. All dilutions were carried out in EMS culture medium containing 5% SNF.
  • the microtiter plate After 16 hours of incubation at 37 ° C and 7% CO 2, the microtiter plate is centrifuged and the amount of IL-2 contained in the supernatant is assayed by a commercial kit (Duoset, R&D). The levels of secreted IL-2 are expressed in pg / ml. The results are expressed in% of CD16 activation, the level of IL-2 secreted in the presence of the control monoclonal antibody being considered equal to 100%.
  • the chimeric anti-HLA DR antibodies have very different glycan structures depending on whether they are expressed by the line YB2 / 0 or CHO DXB11.
  • the ratio of fucose rate / galactose rate of the antibody expressed by YB2 / 0 is equal to 0.37 while the ratio of the antibody expressed in CHO is very increased, since it is equal to 1.3.
  • the CD 16 activation of native antibodies is in agreement with the values of fucose / galactose rate ratio; thus, the secretion of IL-2 induced by the anti-HLA DR antibody synthesized by YB2 / 0 and which has a ratio of 0.37 is 2 times greater than that induced by the same antibody synthesized by CHO DXBl 1 but whose ratio is equal to 1.3.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Virology (AREA)
  • Transplantation (AREA)
  • Diabetes (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La présente invention concerne des anticorps monoclonaux ayant une forte activité ADCC caractérisés en ce qu'ils possèdent, sur leur site de glycosylation de la région Fc, des structures glycanniques présentant un rapport (taux de fucose / taux de galactose) inférieur ou égal à 0,6. L'invention porte également sur des compositions pharmaceutiques comprenant lesdits anticorps monoclonaux ayant une forte activité effectrice.

Description

CORRELATION DU RATIO TAUX DE FUCOSE / TAUX DE GALACTOSE D ' ANTICORPS ANTI RHESUS D ET ANTI HLA-DR AVEC L ' ACTIVITE ADCC
ANTICORPS PRESENTANT UN TAUX DE FUCOSE ET DE GALACTOSE OPTIMISE
La présente invention se rapporte à des compositions d'anticorps monoclonaux ayant une forte activité ADCC et dont le ratio taux de fucose/taux de galactose des structures glycanniques présentes sur leurs sites de glycosylation de la région Fc, est inférieur ou égal à 0,6. L'invention porte également sur des compositions pharmaceutiques comprenant lesdits anticorps monoclonaux ayant une forte activité effectrice. 10 L'immunothérapie passive, très répandue, est fondée sur l' administration d'anticorps, en particulier d'immunoglobulines de type IgG, dirigés contre une cellule ou une substance donnée. L'immunothérapie passive au moyen d'anticorps monoclonaux a donné des résultats encourageants. Toutefois, si l'utilisation d'anticorps monoclonaux 15 possède plusieurs avantages, comme par exemple une assurance de sécurité du produit quant à l'absence de contamination infectieuse, il peut en revanche s'avérer difficile d'obtenir un anticorps monoclonal efficace.
Les immunoglobulines de type G (IgG), sont des hétérodimères constitués de 2 chaînes 20 lourdes et de 2 chaînes légères, liées entre elles par des ponts disulfures. Chaque chaîne est constituée, en position N-terminale, d'une partie variable spécifique de l'antigène contre lequel l'anticorps est dirigé, et en position C-terminale, d'une partie constante, médiatrice des propriétés effectrices de l'anticorps.
25 L'association des parties variables et des domaines CHj et CL des chaînes lourdes et légères forme les parties Fab, qui sont connectées à la région Fc (partie constante de la chaîne lourde) par une région d'une exceptionnelle flexibilité (région charnière) permettant ainsi à chaque Fab de se fixer à sa cible antigénique tandis que la région Fc reste accessible aux molécules effectrices telles que les récepteurs FcγR et le Clq. La région Fc est constituée de 2 domaines globulaires nommés CH2 et CH3. Les 2 chaînes lourdes interagissent étroitement au niveau des domaines CH3 tandis qu'au niveau des domaines CH2, la présence, sur chacune des 2 chaînes, d'un N-glycanne biantenné de type lactosaminique, lié à l'Asn 297, contribue à un écartement des 2 domaines.
De nombreuses études ont montré que la glycosylation de la région Fc est essentielle pour l'activité biologique des IgG, particulièrement pour la lyse cellulaire médiée par le complément (CDC) et la cytotoxicité cellulaire dépendante de l'anticorps (ADCC). Ainsi, il a été démontré que les IgG aglycosylées, obtenues soit par mutagénèse dirigée soit par culture des cellules produisant l'anticorps en présence de tunicamycine, perdent leur capacité à activer le complément et à fixer les récepteurs FcγR (Nose et Wigzell, 1983 ; Tao et Morrison, 1989).
Des études plus précises sur le rôle de chaque monosaccharide ont montré que l'attachement d'un résidu de N-acétylglucosamine (GlcΝac) en position bissectrice conduit à améliorer l'activité ADCC des IgG (Umana et al., 1999 ; Davies, 2001). Par contre, l'effet de la présence ou non de résidus de galactose dans l'oligosaccharide lié à l' Asn297 est plus controversé. Si la présence de résidus de galactose a été décrite comme essentielle pour la fonction effectrice des IgG (Tsuchiya et al., 1989 ; Furukawa et Kobata, 1991 ; Kumpel et al., 1994), d'autres auteurs ont montré que l'absence de résidus de galactose ne modifiait pas l'activité fonctionnelle des IgG (Boyd et al., 1995 ; Wright et Morrison, 1998).
Dans la demande de brevet WO 01/77181, nous avons démontré que la glycosylation de la région Fc est essentielle pour l'activité biologique des IgG, particulièrement pour les activités CDC et ADCC. Nous montrons qu'un N-glycanne biantenné de type lactosaminique caractérisé par des chaînes courtes, une faible sialylation, une faible fucosylation, des résidus de mannose terminaux et/ou des résidus de GlcNac terminaux non intercalaires est le dénominateur commun des structures glycanniques conférant une forte activité ADCC aux anticorps monoclonaux. Par la suite, notre découverte a été corroborée par les études de Shields et al.(2002) et Shinkawa et al. (2003).
Dans le cadre de la présente invention, nous avons observé que des anticorps polyclonaux anti-D thérapeutiques (NATEAD, WinRho) présentent une activité ADCC très forte compte tenu de leur forte teneur en fucose.
Cette observation implique que le faible taux de fucose n'est pas en soi le seul facteur qui influence la capacité des anticorps à activer les récepteurs FcγR, et notamment le FcγRIII.
En étudiant le profil glycosidique complet des anticorps polyclonaux, nous avons découvert une relation inverse entre le rapport [taux de fucose / taux de galactose] et l'activité effectrice des anticorps.
En effet, si l'anticorps est fortement fucosylé, il faut qu'il soit fortement galactosylé pour avoir une activité effectrice optimale. A contrario, si l'anticorps est faiblement fucosylé, le taux de galactose présent doit être tel que le ratio taux de fucose / taux de galactose est inférieur à 0,6 mais préférentiellement inférieur à 0,5 ou même inférieur à 0,4 pour avoir une activité effectrice optimale.
A la lumière de ces résultats expérimentaux, nous avons donc mis en place un procédé de préparation d'anticorps présentant un ratio taux de fucose / taux de galactose optimisé, ce qui permet l'obtention d'anticorps ayant une forte activité effectrice. En d'autres termes, nous proposons de nouveaux anticorps monoclonaux présentant une structure oligosaccharidique précise, notamment en ce qui concerne les résidus de fucose et de galactose, conférant une forte activité effectrice. D'autre part, nous proposons également des anticorps dont la structure glycannique ne permet pas l'activation de l'activité cytotoxique ainsi que les procédés permettant de les obtenir.
Description
Ainsi, dans un premier aspect, l'invention se rapporte à un procédé de préparation d'un anticorps monoclonal chimérique, humanisé ou humain ayant une forte activité effectrice, caractérisé en ce qu'il comprend les étapes suivantes : a) production et purification d'anticorps monoclonaux obtenus à partir de différentes sources, notamment de cellules, plantes ou animaux non humains, éventuellement génétiquement modifiés ou transformés, b) mesure du taux de fucose et du taux de galactose des structures glycanniques portées par les sites de glycosylation de la région Fc desdits anticorps, c) sélection des anticorps dont le ratio taux de fucose / taux de galactose est inférieur ou égal à 0,6, préférentiellement à 0,5 ou à 0,4.
On entend par « un anticorps monoclonal », une composition comprenant des anticorps monoclonaux ayant une structure primaire identique, excepté la faible proportion d'anticorps présentant des mutations survenues naturellement, une spécificité identique et des modifications post-traductionnelles, notamment des modifications de la glycosylation, qui peuvent varier d'une molécule à l'autre. Aux fins de la présente invention, les expressions « anticorps monoclonal » ou « composition d'un anticorps monoclonal » sont synonymes.
Les anticorps monoclonaux de l'invention peuvent être préparés à l'aide de méthodes conventionnelles, telles que la production d'hybridomes comme décrit par Kôhler et Milstein (1975), l'immortalisation de lymphocytes B humains par le virus d'Epstein- Barr (EBN), ou plus récentes, comme la technologie du "phage display", l'utilisation de librairie combinatoire d'anticorps humains ou d'animaux transgéniques, notamment la souris Xenomouse® ; les anticorps monoclonaux peuvent également être préparés par ingénerie moléculaire, notamment pour chimériser ou humaniser les anticorps. Aux fins de l'invention, l'analyse des glycannes peut être effectuée par exemple par HPCE-LIF (High-Performance Capillary Electrophoresis with Laser-Induced Fluorescence), ou grâce à toute autre méthode d'analyse des glycannes connue de l'homme du métier.
Le procédé selon l'invention permet l'obtention d'un anticorps monoclonal possédant une forte activité effectrice, et plus particulièrement une forte activité fonctionnelle de type ADCC. A ce titre, on entend par activité effectrice les activités biologiques attribuables à la région Fc d'un anticorps. Des exemples de ces fonctions effectrices incluent, sans y être limitées, l'activité ADCC (Antibody-Dependent Cell-mediated Cytotoxicity), l'activité CDC (Complement-Dependent Cytotoxicity), l'activité de phagocytose, l'activité d'endocytose ou encore l'induction de la sécrétion de cytokines.
Par « forte » activité effectrice on entend une activité effectrice au moins 20 fois, 50 fois, 60 fois, 70 fois, 80 fois, ou 90 fois, et de préférence jusqu'à 100 fois, ou de manière préférentielle 500 fois supérieure à l'activité effectrice d'anticorps de même spécificité mais dont le ratio taux de fucose/taux de galactose est supérieur à 0,6. De manière préférentielle, le ratio taux de fucose/taux de galactose se situe entre les valeurs 0,6 et 0,3, préférentiellement entre 0,5 et 0,35. En effet, au vu des expérimentations menées dans le cadre de l'invention, il apparaît qu'un ratio limite existe, c'est-à-dire un ratio taux de fucose/taux de galactose en dessous duquel l'activité fonctionnelle, notamment l'ADCC, n'augmente plus de manière linéaire à la diminution du ratio. Il est donc particulièrement avantageux de réaliser le procédé selon l'invention de manière à se situer entre ces limites.
Par exemple, si le taux de fucose se situe entre 35% et 45%, le taux de galatose peut être compris entre 70 et 99%. Si le taux de fucose se situe entre 20% et 35%, le taux de galatose est compris entre 55% et 70% ou même entre 60% et 99%. Aux fins de l'invention, la valeur du « ratio inférieur ou égal à 0,6 » s'entend aussi d'une valeur supérieure à 0,6 de quelques centièmes d'unité, par exemple 4 à 5 centièmes.
Dans un aspect particulier de l'invention, les anticorps obtenus par le procédé selon l'invention sont produits dans des cellules modifiées génétiquement par introduction d'au moins un vecteur permettant l'expression des anticorps, ces cellules étant des cellules eucaryotes ou procaryotes, notamment des cellules de mammifères, d'insectes, de plantes, de bactéries ou de levures.
De manière avantageuse, l'anticorps obtenu est une immunoglobuline humaine de type IgG.
De manière particulièrement avantageuse, ces cellules peuvent être modifiées génétiquement par introduction d'au moins un vecteur permettant l'expression d'au moins un polypeptide possédant une activité glycosyltransférasique. Préférentiellement, cette activité glycosyltransférasique est une activité galactosyltransférasique, et notamment une activité beta(l,4)-galactosyltransférasique ou beta(l,3)-galactosyltransférasique.
Aux fins de l'invention, on entend par « polypeptide possédant une activité galactosyltransférasique » tout polypeptide capable de catalyser l'addition d'un résidu de galactose à partir de l'UDP -galactose vers le résidu de GlcNAc en position non réductrice d'un N-glycanne.
Aux fins de l'invention, on entend par « vecteur permettant l'expression d'un polypeptide possédant une activité beta(l,4)-galactosyltransférasique » tout vecteur comprenant un polynucléotide permettant l'expression d'un polypeptide capable de synthétiser le motif disaccharidique Galbeta(l,4)-GlcNac, ce polynucléotide pouvant provenir d'espèces comme l'homme, la souris, le hamster, la vache, le mouton, la chèvre, le cochon, le cheval, le rat, le singe, le lapin, le poulet par exemple. De telles séquences, comme par exemple NM 001497, AB 024434, NM 003780, BC 053006, XM 242992, NM 177512, cette liste n'étant pas exhaustive, sont disponibles dans des banques de séquences nucléotidiques et/ou protéiques comme Genbank.
Aux fins de l'invention, on entend par « vecteur permettant l'expression d'un polypeptide possédant une activité beta(l,3)-galactosyltransférasique » tout vecteur comprenant un polynucléotide permettant l'expression d'un polypeptide capable de synthétiser le motif disaccharidique Galbeta(l,3)-GlcNac, ce polynucléotide pouvant provenir d'espèces comme l'homme, la souris, le hamster, la vache, le mouton, la chèvre, le cochon, le cheval, le rat, le singe, le lapin, le poulet par exemple. Notamment, les séquences codant pour une beta(l,3)-galactosyltransférase provenant d'espèces comme l'homme, la souris, le hamster, la vache, le mouton, la chèvre, le cochon, le cheval, le rat, le singe, le lapin, le poulet par exemple sont particulièrement adaptées. De telles séquences sont disponibles sur Genbank, comme par exemple NM020981, AB084170, AY043479, cette liste n'étant pas limitative.
Par « site de glycosylation de la région Fc des anticorps » on entend généralement les deux résidus d'Asn297 selon la numérotation de Kabat (Kabat database, http://immuno.bme.nwu.edu), mais l'invention vise également les anticorps dont les séquences en acides aminés ont été modifiées.
Dans un mode de réalisation particulier de l'invention, les cellules possèdent en outre une activité relative à la synthèse et/ou au transport du GDP-fucose et/ou l'activité d'une enzyme impliquée dans l'addition de fucose à l'oligosaccharide du site de glycosylation des anticorps diminuée ou délétée. De manière avantageuse, l'enzyme impliquée dans la synthèse du GDP-fucose est la GMD (GDP-D-mannose 4,6- déhydratase), la Fx (GDP-keto-6-déoxymannose 3,5-épimérase, 4-réductase) ou la GFPP (GDP-beta-L-fucose pyrophosphorylase), cette liste n'étant pas exhaustive. Avantageusement, l'enzyme impliquée dans . l'addition du fucose est une fucosyltransférase. La protéine impliquée dans le transport du GDP-fucose peut avantageusement être le GDP-fucose tansporter 1 humain.
Dans un mode de réalisation particulier de l'invention, il est possible, si les taux de fucose et de galactose mesurés à l'étape b) donnent un ratio supérieur à 0,6, de dé- fucosyler et/ou d'ajouter des résidus de galactose aux anticorps avant l'étape c), de manière à ce que ledit ratio devienne inférieur à 0,6 mais préférentiellement inférieur à 0,5 et même à 0,4 afin d'augmenter l'activité fonctionnelle des anticorps. Cette dé- fucosylation peut être effectuée par l'addition d'une fucosidase dans le milieu contenant l'anticorps, qui peut être le milieu de conservation. L'ajout de résidus de galactose peut être effectué par tout moyen approprié y compris l'addition d'une galactosyltransférase dans le milieu contenant l'anticorps ou dans une solution contenant l'anticorps et un substrat donneur comme l'UDP -galactose, par exemple.
De manière avantageuse, les cellules utilisées pour mettre en œuvre le procédé selon l'invention proviennent de lignées cellulaires animales ou humaines, ces lignées étant sélectionnées notamment parmi les lignées de myélomes de rat, notamment YB2/0 et IR983F, de myélome humain comme Namalwa ou toute autre cellule d'origine humaine comme PERC6, les lignées CHO, notamment CHO-K, CHO-LeclO, CHO- Lecl, CHO Pro-5, CHO dhfr-, CHO Lecl3, ou d'autres lignées choisies parmi Wil-2, Jurkat, Nero, Molt-4, COS-7, 293-HEK, BHK, K6H6, ΝSO, SP2/0-Ag 14 et P3X63Ag8.653.
Avantageusement, l'anticorps est un anti- Rhésus D (anti-D), anti-CD, anti-tumeurs, anti-virus, anti-CD20 ou un anti-HLA-DR, plus particulièrement parmi les anticorps du Tableau 0 ci-après : Tableau 0 Nom et marque Société cible indication commerciale de l'anticorps Edrecolomab Centocor anti Ep-CAM cancer colorectal PANOREX Rituximab Idée anti CD20 B cell lymphoma RITUXAN Licensié à thrombocytopenia purpura Genentech/ Hoffman la roche Trastuzumab Genentech anti HER2 cancer ovarien HERCEPTIN Licensié à Hoffman la roche/Immunogen Palivizumab Medimmune RSV SYNAGIS Licensié à Abott Alemruzumab BTG anti CD52 leukemia CAMPATH Licensié à Schering ibritumomab IDEC anti CD20 NHL tiuxetan Licensié à Schering ZEVALIN Cetuximab Merck /BMS / anti EGFR cancers C-C225 Imclone
Bevacizumab Genentech/ anti VEGFR cancers A VASTIN Hoffman la roche Epratuzumab Immumedics/ anti CD22 cancers: Amgen lymphome non hogkinien Hu M195Mab Protein Design Anti CD33 cancers Labs MDX-210 hrrmuno-Designed ΝD cancers Molécules BEC2 hnclone anti GD3 cancers Mitumomab Oregovomab Altarex anti CA125 cancer ovarien OVAREX Ecromeximab Kyowa-Hakko anti GD3 melanome malin KW-2971 ABX-EGF Abgenix EGF cancers
MDX010 Medarex Anti CD4R Cancers
XTL 002 XTL ΝD anti- viral : HCN biopharmaceuticals H11 SCFN viventia biotech ΝD cancers
4B5 viventia biotech anti GD2 Cancers XTL 001 XTL ΝD anti-viral : HBN biopharmaceuticals MDX-070 MEDAREX Anti-PSMA cancer de la Prostate
TΝX-901 TANOX anti IgE Allergies
IDEC-114 ΠDEC inhibition lymphome non-Hodgkinien ProteinC
Cette liste n'est toutefois pas limitative. Un deuxième objet de l'invention est de fournir un procédé pour augmenter l'activité effectrice, notamment l'activité ADCC, d'une composition de molécules immunologiquement fonctionnelles, comprenant l'augmentation du taux de galactose et/ou la diminution du taux de fucose de la composition de molécules.
Par « molécules immunologiquement fonctionnelles » on entend désigner des molécules capables de réagir à tout contact avec un immunogène quelconque en manifestant une capacité immunologique. Ces molécules peuvent présenter à l'état natif une bonne activité effectrice, par exemple ADCC, ou une mauvaise activité effectrice. Elles possèdent une région Fc comportant un site de glycosylation.
A cet effet, ces molécules fonctionnellement immunplogiques sont préférentiellement des anticorps, avantageusement monoclonaux ou polyclonaux.
Les molécules peuvent posséder à l'état natif un fort taux de fucose. Plus particulièrement, il est avantageux dans ce cas d'effectuer une augmentation du taux de galactose de ces molécules ou anticorps.
Dans un mode de réalisation de l'invention, la diminution du taux de fucose est réalisée par une dé-fucosylation des molécules de la composition par action d'une fucosidase. Cette dé-fucosylation peut être effectuée par une αl,6 fucosidase. Les fucosidases extraites de rein de bovin ou de Charonia lampas ont cette spécificité.
Dans un autre mode de réalisation de l'invention, l'augmentation du taux de galactose des molécules de la composition est due à une galactosylation de la composition par action d'une galactosyltransférase.
Dans un mode de réalisation particulier de l'invention, on fait agir à la fois des enzymes permettant la dé-fucosylation et des enzymes permettant la galactosylation. De manière alternative au traitement enzymatique, on peut purifier la composition de molécules immunologiquement fonctionnelles grâce à une série de chromatographies sur lectines qui enrichissent la composition en anticorps faiblement fucosylés et/ou en anticorps fortement galactosylés.
A titre d'exemple, la solution comprenant la composition de molécules immunologiquement fonctionnelles, qui sont de manière avantageuse des anticorps, est passée sur une colonne de lectine (par exemple une colonne LA-LCA, ou LA- AAL,Shimadzu Corporation ) connectée à un système HPLC. La solution est séparée en une fraction non-adsorbée et une fraction adsorbée. ). Une analyse des glycannes des fractions non-adsorbée et adsorbée est effectuée : les oligosaccharides, clivés de la partie protéique par action enzymatique, sont marqués avec l' APTS et sont séparés par HPCE-LIF et quantifiés. . Les aires des pics sont calculés : les anticorps possédant des glycannes dépourvus de fucose peuvent être ainsi séparés et sélectionnés. On passe ensuite la fraction sélectionnée (qui peut être issue de la fraction non-adsorbée ou de la fraction adsorbée) soit sur une colonne hydrophobe de type Phenyl-5PW (préparée par Tosoh Corporation) soit sur une seconde colonne de lectine ( LA-RCA 120 ou LA- WGA, Seikagaku America). On peut ainsi sélectionner de manière précise les fractions dont le ratio taux de fucose/taux de galactose est inférieur ou égal à 0,6.
Un troisième objet de l'invention est une cellule, de manière préférentielle dérivée de la lignée cellulaire YB2/0, dans laquelle au moins un vecteur codant pour une molécule d'anticorps est introduite, ladite cellule produisant un anticorps monoclonal possédant un ratio taux de fucose/taux de galactose des oligosaccharides du site de glycosylation de la région Fc inférieur ou égal à 0,6. Préférentiellement, ce ratio est inférieur à 0,5 ou encore à 0,4. Dans un aspect préféré de l'invention, ce ratio est compris entre 0,6 et 0,3.
Dans un aspect préféré de l'invention, cette cellule est transfectée par un vecteur d'expression codant pour une galactosyltransférase, notamment pour une beta(l;,4)- galactosyltransférase ou une beta(l,3)-galactosyltransférase. Avantageusement, cette cellule exprime ou sur-exprime une galactosyltransférase recombinante. La lignée YB2/0 exprime naturellement des galactosyltransférases de la famille des beta(l,4) et beta(l,3). Par ailleurs, cette lignée cellulaire est connue pour produire des anticorps possédant un faible taux de fucose (WO 01/77181, LFB). Toutefois, la cellule selon l'invention a pour avantage de sur-exprimer la galactosyltransférase, ce qui a pour effet de faire varier le ratio taux de fucose / taux de galactose des anticorps produits par la cellule modifiée par rapport aux anticorps produits par la lignée non modifiée. Par conséquent, l'anticorps étant naturellement faiblement fucosylé, une augmentation de son taux de galactose baisse encore son ratio taux de fucose / taux de galactose, ce qui a pour effet d'optimiser encore son activité ADCC. De manière avantageuse, la galactosyltransférase est codée par une séquence ayant pour origine l'homme, la souris, le hamster, la vache, le mouton, la chèvre, le cochon, le cheval, le rat, le singe, le lapin ou le poulet, cette liste n'étant pas limitative. Plus particulièrement, la séquence codante est la séquence NM 001497, AB 024434, NM 003780, BC 053006, XM 242992 ou NM 177512.
Ainsi, l'invention se rapporte également à un procédé de préparation d'anticorps monoclonal dont les structures glycanniques portées par le site de glycosylation de la région Fc possèdent un ratio taux de fucose/taux de galactose inférieur ou égal à 0,6, préférentiellement inférieur à 0,5 ou encore à 0,4 comprenant la culture de la cellule précédemment décrite dans un milieu de culture et à des conditions permettant l'expression desdits vecteurs.
Alternativement, on peut préparer des compositions d'anticorps telles que définies ci- dessus au moyen d'une ou plusieurs étapes de chromatographie en utilisant toute molécule capable de piéger avec spécificité le fucose, le galactose ou les oligosaccharides les comprenant. A ce titre, on peut utiliser la séparation sur lectine, comme illustrée ci-avant. De même, l'invention se rapporte à des anticorps thérapeutiques ayant une forte activité effectrice, susceptibles d'être obtenus à partir des procédés précédemment décrits, ou encore obtenus à partir des procédés décrits, ces anticorps étant caractérisés en ce qu'ils présentent sur leur site de glycosylation de la région Fc, des structures glycanniques possédant un ratio taux de fucose / taux de galactose inférieur à 0,6, préférentiellement inférieur à 0,5 ou encore à 0,4.
De manière particulièrement avantageuse, il s'agit d'anticorps monoclonaux thérapeutiques susceptibles d'être obtenus à partir du procédé précédent, lesdits anticorps présentant une activité ADCC renforcée, à titre d'exemple des anti-D monoclonaux présentant une activité ADCC égale ou supérieure à celle des anticorps polyclonaux. Cette activité ADCC renforcée est au moins égale mais préférentiellement supérieure à celle de l'anticorps thérapeutique polyclonal ou monoclonal (de même spécificité) exprimé dans une lignée CHO DG44 ou DxB 11.
Avantageusement, il peut s'agir d'IgG, par exemple des IgGl ou des IgG3, chimériques, humanisées ou humaines ou d'IgG ayant une région Fc humaine. Préférentiellement, ces anticorps sont des IgG humaines ou toute molécule chimérique comportant une région Fc humaine.
Dans le même ordre d'idée, l'invention se rapporte à une composition pharmaceutique comprenant un anticorps précédemment décrit.
De même, l'invention se rapporte à une composition pharmaceutique comprenant au moins 50%, préférentiellement 60%, 70%, 80% ou encore 90% ou 99% d'un anticorps monoclonal ou polyclonal dont les structures glycanniques portées par le site de glycosylation de la région Fc possèdent un ratio taux de fucose / taux de galactose inférieur à 0,6 préférentiellement inférieur à 0,5 ou encore à 0,4. De manière préférentielle, le ratio se situe entre les valeurs 0,6 et 0,3, et plus particulièrement entre 0,5 et 0,35.
Les compositions selon l'invention comportent préférentiellement un anticorps dirigé contre un antigène normal non ubiquitaire, notamment un facteur Rhésus, comme le facteur Rhésus (D) du globule rouge humain, ou un antigène d'une cellule pathologique ou d'un organisme pathogène pour l'homme, en particulier contre un antigène d'une cellule cancéreuse. Les anticorps sont de plus préférentiellement des IgG.
Un autre objet de l'invention se rapporte à l'utilisation d'un anticorps selon l'invention pour la préparation d'un médicament destiné au traitement de l'allo-immunisation, notamment la maladie hémolytique du nouveau-né.
Un autre objet de l'invention se rapporte à l'utilisation d'un anticorps selon l'invention pour la préparation d'un médicament destiné au traitement des maladies auto-immunes, des cancers et des infections par des agents pathogènes, notamment pour le traitement des maladies échappant à la réponse immune notamment choisie parmi le Syndrome de Sézary, les cancers solides, notamment dont les cibles antigéniques sont faiblement exprimées, notamment le cancer du sein, les pathologies liées à l'environnement visant notamment les personnes exposées aux biphényles polychlorinés, les maladies infectieuses, notamment la tuberculose, le syndrome de la fatigue chronique (CFS), les infections parasitaires comme par exemple les schistosomules, et les infections virales.
De plus, l'anticorps selon l'invention peut être utilisé pour la préparation d'un médicament destiné au traitement des cancers des cellules HLA classe II positives comme les mélanomes, les leucémies lymphoïdes aiguës des cellules B et T, les leucémies myéloïdes chroniques et aiguës , le lymphome de Burkitt, le lymphome de Hodgkin, les lymphomes des cellules T et les lymphomes non hodgkiniens. Les anticorps de l'invention peuvent être sélectionnés parmi les anticorps figurant dans le tableau 0.
Avantageusement, l'anticorps est un anti-HLA-DR ou un anti-CD20.
Dans un autre aspect de l'invention, l'anticorps selon l'invention est utilisé pour la fabrication d'un médicament destiné à induire l'expression d'au moins une cytokine choisie parmi IL-lα, IL-lβ, IL-2, IL-3, IL-4, IL-5, IL-6, IL-12, IL-18 , IL-21, TGFβl, TGFβ2, TNFα, TNFβ, IFNγ, et IP 10 par les cellules effectrices naturelles du système immunitaire, ledit médicament étant utile notamment pour le traitement du cancer et des infections virales, bactériennes ou parasitaires.
Dans un autre aspect particulier de l'invention, l'anticorps selon l'invention est utilisé pour la fabrication d'un médicament destiné au traitement de patients présentant un des polymorphismes du CD16, en particulier N/F158 ou F/F158, notamment des patients se trouvant en échec thérapeutique avec les anticorps actuellement disponibles ou subissant des effets secondaires indésirables.
Dans un aspect supplémentaire, l'invention se rapporte également à un procédé de préparation d'un anticorps monoclonal chimérique, humanisé ou humain ayant une faible activité effectrice, notamment une faible activité fonctionnelle de type ADCC, caractérisé en ce qu'il comprend les étapes suivantes : a) production et purification d'anticorps monoclonaux obtenus à partir de différentes sources, notamment de cellules, plantes ou animaux non humains, éventuellement génétiquement modifiés ou transformés, b) mesure du taux de fucose et du taux de galactose des structures glycanniques portées par le site de glycosylation de la région Fc desdits anticorps, c) sélection des anticorps dont le ratio taux de fucose / taux de galactose est supérieur à 0,6, préférentiellement supérieur à 1,2. A ce titre, les définitions de l'activité effectrice d'un anticorps monoclonal sont les mêmes que celles données précédemment.
De plus, par « faible activité effectrice » on entend une activité effectrice au moins 20 fois, 50 fois, 60 fois, 70 fois, 80 fois, ou 90 fois, et de préférence jusqu'à 100 fois, ou de manière préférentielle 500 fois inférieure à l'activité effectrice, notamment à l'activité fonctionnelle de type ADCC d'anticorps de même spécificité mais dont le ratio taux de fucose/taux de galactose est inférieur à 0,6.
Dans un aspect complémentaire, l'invention vise donc des anticorps ayant une faible activité ADCC, et les compositions les comprenant, caractérisés en ce que leur site de glycosylation (Asn 297) de la région Fc présente un ratio taux de fucose / taux de galactose supérieur à 1,2.
Ces anticorps sont utiles pour préparer des médicaments pour traiter et/ou prévenir les maladies auto-immunes, notamment le purpura thrombopénique immunologique (PTI), les allo-immunisations, le rejet de greffe, les allergies, l'asthme, les dermatites, les urticaires, les érythèmes, et les maladies inflammatoires.
Dans un aspect particulier de l'invention, les anticorps sont produits dans des cellules modifiées génétiquement par introduction d'au moins un vecteur permettant l'expression desdits anticorps, lesdites cellules étant des cellules eucaryotes ou procaryotes, notamment des cellules de mammifères, d'insectes, de plantes, de bactéries ou de levures.
Dans un mode de réalisation de l'invention, les cellules sont modifiées génétiquement par introduction d'au moins un vecteur permettant l'expression d'au moins un polypeptide possédant une activité glycosyltransférase, préférentiellement une activité fucosyltransférase et notamment 1 ,6-fucosyltransférase.
Dans un autre mode de réalisation de l'invention, les cellules possèdent une activité relative à la synthèse et/ou au transport de l'UDP -galactose et/ou l'activité d'une enzyme impliquée dans l'addition de galactose à l'oligosaccharide du site de glycosylation des anticorps est diminuée ou délétée. Avantageusement, cette enzyme impliquée dans l'addition de galactose est une β 1,4-galactosyltransférase.
Avantageusement, les cellules possèdent à la fois une activité glycosyltransférasique, préférentiellement une activité fucosyltransférasique et une activité relative à la synthèse et/ou au transport de l'UDP-galactose et/ou l'activité d'une enzyme impliquée dans l'addition de galactose à l'oligosaccharide du site de glycosylation des anticorps diminuée ou délétée.
Dans un mode de réalisation de l'invention, on peut prévoir que si à l'étape b), le ratio mesuré est inférieur à 0,6, on fucosylé et/ou on enlève des résidus de galactose audit anticorps avant l'étape c), de manière à ce que le ratio taux de fucose/taux de galactose devienne supérieur à 0,6. Avantageusement, la dé-galactosylation est effectuée par l'addition d'une galactosidase dans le milieu contenant 1 ' anticorps .
Avantageusement, l'ajout de résidus de fucose est effectué par l'addition d'une fucosyltransférase dans le milieu contenant l'anticorps.
De manière particulièrement avantageuse, l'anticorps est une immunoglobuline humaine de type IgG. De manière avantageuse, l'anticorps est dirigé contre un CD, marqueur de différenciation des cellules sanguines humaines ou contre un agent pathogène ou sa toxine listée comme étant particulièrement dangereuse dans les cas de bioterrorisme, notamment Bacillus anthracis, Clostridium botulium, Yersinia pestis, Variola major, Francisella tularensis, Filoviruses, Arenaviruses, Brucella species, Clostridium perfringens, Salmonella, E.coli, Shigella, Coxiella burnetii, la toxine de ricin , Rickettsia, Viral encephalitis viruses, Vibrio cholerae ou Hantavirus .
Un autre objet de l'invention se rapporte à un procédé pour diminuer l'activité d'une composition de molécules immunologiquement fonctionnelles, comprenant l'augmentation du taux de fucose et/ou la diminution du taux de galactose de ladite composition.
Avantageusement, les molécules immunologiquement fonctionnelles sont des anticorps monoclonaux ou polyclonaux. Dans un aspect particulier, l'augmentation du taux de fucose est due à une fucosylation de ladite composition par action d'une rucosyltransférase, préférentiellement d'une αl ,6-fucosyltransférase.
Dans un autre aspect particulier, la diminution du taux de galactose de ladite composition est due à une dé-galactosylation de la composition par action d'une galactosidase, préférentiellement d'une ou plusieurs β-galactosidase.
De manière particulièrement avantageuse, on effectue à la fois une fucosylation et une dé-galactosylation de cette composition.
Ainsi, un objet de l'invention se rapporte à une composition d'anticorps susceptible d'être obtenue à partir des procédés selon l'invention décrits ci-dessus, ou une composition d'anticorps obtenue à partir de l'un de ces procédés.
Un objet supplémentaire de l'invention est l'utilisation de cette composition d'anticorps pour la préparation d'un médicament destiné au traitement et/ou à la prévention des maladies auto-immunes et notamment le PTI, de l'allo-immunisation, des rejets de greffe, des allergies, de l'asthme, des dermatites, des urticaires, des érythèmes, ou des maladies inflammatoires, cette liste n'étant pas exhaustive.
Enfin, l'invention se rapporte à un procédé pour contrôler l'activité d'une composition de molécules immunologiquement fonctionnelles, comprenant la régulation du ratio taux de fucose / taux de galactose des oligosaccharides du site de glycosylation de la région Fc des anticorps .
D'autres aspects et avantages de l'invention seront décrits dans les exemples qui suivent montrant la modulation de « l'effet fucose » par le galactose, qui doivent être considérés comme illustratifs et ne limitent pas l'étendue de l'invention. Description des figures
Figure 1 : Structures glycanniques présentes sur le site de glycosylation de la région Fc de différents anticorps anti-Rh(D).
Cette figure représente les pourcentages des différentes formes glycanniques portées par les résidus Asn297 de 3 anticorps anti-Rh(D) : IgGl anti-D de WinRho (histogrammes noirs), anticorps monoclonal EMAB2 (histogrammes blancs) et Anti- Dl (histogrammes hachurés).
Figure 2 : Droite de corrélation entre le rapport taux de fucose / taux de galactose et l'activité ADCC des anticorps anti-Rh(D).
Figure 3 : Effet du taux de galactose sur l'activité ADCC des anticorps polyclonaux anti-Rh(D).
Cette figure représente le pourcentage de lyse des hématies Rh(D+) induite par les anticorps polyclonaux anti-Rh(D) dégalactosylés (Dégal.) ou non (Témoin) en présence d'IgG polyvalentes (Tégéline, LFB) à la concentration de 0,5 et 2,5 mgml.
Figure 4 : Activation CD 16 des anticorps monoclonaux anti-Rh(D) dégalactosylés. Cette figure représente le % d' activation CD 16 induit par la présence des anticorps monocloaux anti-Rh(D) EMAB2 et HHOl, dégalactosylés (histogrammes blancs) ou non (Témoin, histogrammes noirs).
Figure 5 : Activation CD 16 des anticorps monoclonaux anti-Rh(D) galactosylés. Cette figure représente l'activation CD16 induite par les anticorps monoclonaux anti- Rh(D), EMAB2 et EMAB3, avant (Témoin, histogrammes noirs) et après galactosylation in vitro par la βl,4-galactosyltransférase bovine (histogrammes blancs). Figure 6 : Courbes de clairance des hématies radiomarquées, sensibilisées ou non par des anticorps anti-Rh(D).
Cette figure représente le suivi de la radioactivité, exprimée en %, contenu dans le sang de volontaires auxquels ont été réinjectées un volume d'hématies radiomarquées au Cr51 soit non sensibilisées (^, ) soit sensibilisées par la préparation thérapeutique d'anticorps polyclonaux Rhophylac™ (•) ou par l'anticorps monoclonal EMAB2 (" , A, Δ). L'anticorps EMAB2 a été testé chez 3 volontaires (008, 009 et 010).
Figure 7 : Effet de la dégalactosylation des anticorps monoclonaux anti-HLA DR exprimés dans les lignées cellulaires YB2/0 et CHO-DG44 sur l'activation CD16.
Cette figure représente la quantité, exprimée en pg/ml, d'Il-2 sécrétée par les cellules Jurkat CD 16 dont le récepteur CD 16 a été activé, en présence de cellules Raji portant sur leur membrane des molécules de HLA DR, par des anticorps chimériques anti-HLA DR, natifs (traits pleins) ou dégalactosylés (traits pointillés).
Exemples
Exemple 1. Corrélation entre le rapport taux de fucose/taux de galactose et l'activité ADCC d'une cohorte d'anticorps anti- Rh(D).
Nous avons procédé à la mesure du taux de fucose, puis du taux de galactose de divers anticorps monoclonaux et polyclonaux dirigés contre l'antigène Rhésus (Rh) (D). Nous en avons déduit le rapport entre les deux, et mesuré l'activité ADCC relative à chaque anticorps.
1. Production des anticorps monoclonaux anti-Rh(D) Les anticorps monoclonaux sont issus de la transformation par EBV, de lymphocytes B d'un donneur humain Rh(D) négatif, immunisé avec des hématies portant l'antigène Rh(D). De cette transformation ont été sélectionnés 2 clones: 1) l'un des clones a été fusionné avec l'hétéromyélome homme/souris K6H6-B5 ; de cette fusion a été sélectionné le clone HHOl. 2) à partir de l'autre clone, ont été extraits les ARN codant l'anticorps anti-Rh(D) pour la préparation d'un vecteur d'expression de la chaîne lourde et de la chaîne légère de l'anticorps. Ce vecteur d'expression a été utilisé pour transfecter, d'une part la lignée cellulaire YB2/0 donnant naissance aux anticorps EMAB1, EMAB2, EMAB3 et EMAB4 et, d'autre part, les lignées CHO suivantes : DG44, Kl et Lecl3 qui synthétisent les anticorps Anti-Dl, Anti-D2 et Anti-D3, respectivement. 2. Purification des anticorps polyclonaux.
Les anticorps polyclonaux anti-Rh(D) ont été immunopurifiés à partir d'un produit thérapeutique, WinRho (Cangène), par sélection positive sur hématies Rh(D+) puis par sélection négative sur hématies RhD(-) ; enfin, une étape de chromatographie d'affinité utilisant le gel de Sépharose-protéine A a permis d'une part d'éliminer les contaminants récupérés au cours de l'immunopurification sur hématies et, d'autre part, de séparer les IgGl des IgG3, étant donné que seules les IgGl ont été utilisées dans les essais suivants.
3. Analyse des glycannes par HPCE-LIF Les anticorps monoclonaux et polyclonaux anti-Rh(D) sont dessalés sur une colonne de Sephadex G-25 (HiTrap Desalting, Amersham Biosciences), séchés par évaporation et remis en suspension dans le tampon d'hydrolyse de la PNGase F (Glyko) en présence de 50 mM β-mercaptoéthanol. Après 16 h d'incubation à 37°C, la partie protéique est précipitée par l'ajout d'éthanol absolu et le surnageant, qui contient les N-glycannes, est séché par évaporation. Les oligosaccharides ainsi obtenus sont soit marqués directement par un fluorochrome, l'APTS (l-ammo-pyrène-3,6,8-trisulfonate) soit soumis à l'action d'exoglycosidases spécifiques avant marquage par l'APTS. Puis les oligosaccharides marqués sont injectés sur un capillaire N-CHO et séparés et quantifiés par électrophorèse capillaire à détection de fluorescence induite par laser (HPCE-LIF).
L'évaluation du taux de fucose est réalisée soit par l'addition des formes fucosylées isolées, soit plus spécifiquement après action simultanée de la neuraminidase, la β- galactosidase et la N-acétylhexosaminidase, permettant d'obtenir, sur l'électrophorégramme, 2 pics correspondant au pentasaccharide [GlcΝac2-Man3] fucosylé ou non.
Le taux de fucose, exprimé en %, est calculé en utilisant la formule suivante : [GlcNac2-Man3] fucosylé x 100 Taux de fucose = [GlcNac2-Man3+ GlcNac2-Man3 fucosylé]
Le taux de galactose, exprimé en %, est calculé en additionnant les pourcentages des formes oligosaccharidiques contenant du galactose en position terminale. La formule utilisée est la suivante : Taux de galactose - [(G1+G1B+G1F+G1FB) + 2x(G2+G2F+G2B+G2FB)]
Le rapport taux de fucose/taux de galactose est obtenu en divisant le taux de fucose par le taux de galactose, les taux étant calculés comme décrit ci-dessus.
4. Activité fonctionnelle des anticorps : ADCC La technique ADCC (Antibody-Dependent Cell-mediated Cytotoxicity) permet d'évaluer la capacité des anticorps à induire la lyse des hématies Rh(D+), en présence de cellules effectrices (cellules mononuclées ou lymphocytes).
Brièvement, les hématies d'un concentré globulaire RhD(+) sont traitées à la papaïne
(lmg/ml, 10 min à 37°C) puis lavées en NaCl 0,9%. Les cellules effectrices sont isolées à partir d'un pool d'au moins 3 buffy-coat, par centrifugation sur FicoU
(Amersham), suivi d'une étape d'adhérence en présence de 25% de SNF, de façon à obtenir un ratiq lymphocytes/monocytes de l'ordre de 9. Dans une plaque de microtitration (96 puits) on dépose par puits : 100 μl d'une dilution d'anticorps anti- Rh(D) purifié (de 9,3 àl50 ng/ml), 25 μl d'hématies papaïnées Rh(D+) (soit 1.106), 25 μl de cellules effectrices (soit 2.10 ) et 50 μl d'IgG polyvalentes (Tégéline, LFB) aux concentrations usuelles de 2 et 10 mg/ml. Les dilutions sont faites en MDM 0,25% de sérum de veau fétal (SNF). Après une nuit d'incubation 1 nuit à 37°C, les plaques sont centrifugées, puis' l'hémoglobine libérée dans le surnageant est mesurée par l'intermédiaire de son activité peroxydasique en présence d'un substrat chromogénique, le 2,7-diaminofluorène (DAF). Les résultats sont exprimés en pourcentage de lyse, 100% correspondant à la lyse totale des hématies en ΝH4C1 (témoin 100%) et 0% au mélange réactionnel sans anticorps (témoin 0%). La lyse spécifique est calculée en pourcentage selon la formule suivante :
(DO échantillon -DO témoin 0%) XI 00 = % ADCC DO témoin 100% - DO témoin 0%
L'analyse, par HPCE-LIF, des oligosaccharides portés par le site de glycosylation de la région Fc des IgGl anti-Rh(D) a été réalisée.
TABLEAU I
* Anti-D polyclonaux immunopurifîés Les valeurs des ratios [taux de fucose/taux de galactose] et des pourcentages d'ADCC, contenus dans le tableau I, sont reportées respectivement en abscisse et en ordonnée de la Fig.2. Le coefficient de correlation.de la droite de régression linéaire tracée est égal à 0,92. Ainsi, il existe une corrélation entre le ratio [taux de fucose / taux de galactose] et l'activité ADCC des anticorps anti-Rh(D) monoclonaux et polyclonaux. Les anticorps qui ont une activité ADCC importante présentent un ratio taux de fucose / taux de galactose inférieur à 0,6.
EXEMPLE 2. Comparaison de l'activité ADCC des anticorps polyclonaux anti- Rh(D) avant et après dégalactosylation
1. Dégalactosylation des anticorps polyclonaux anti-Rh(D). Les anticorps polyclonaux immunopurifiés sont dialyses contre le tampon d'hydrolyse (Acétate de sodium 50 mM, pH 5,5 contenant 4 mM chlorure de calcium). Les anticorps sont désialylés et dégalactosylés par incubation en présence de 5 mU de neuraminidase (EC 3.2.1.18) de Vibrio cholerae (Calbiochem) et 9 mU de β- galactosidase (EC 3.2.1.23) produite par E .coli (Roche). Le contrôle, désigné sous le nom de « témoin », est constitué de la même préparation d'anticorps traité comme indiqué ci-dessus mais en absence de neuraminidase et de β-galactosidase. Après 24h d'incubation à 37 °C, les anticorps sont stockés à 4°C.
Les anticorps générés dans cet exemple sont séparés en deux fractions ; l'Une des fractions est utilisée pour l'analyse glycannique . et l'autre fraction est réservée à la mesure de l'activité ADCC.
2. Analyse des glycannes par HPCE-LIF
La procédure consiste en un dessalage sur colonne de Sephadex-G25 de la fraction d' anticorps polyclonaux anti-Rh(D) dégalactosylés afin d'éliminer les sels mais aussi les oses libres qui pourraient être présents dans la préparation. Après dénaturation et réduction des anticorps, les glycannes sont libérés par action de l'endoglycosidase PNGase F (Glyko) . Après 16' h d'incubation à 37°C, la partie protéique est précipitée par l'ajout d'éthanol absolu et le surnageant, qui contient les N-glycannes, est séché par évaporation. Pour évaluer les taux de galactose et de fucose contenus dans les oligosaccharides ainsi obtenus, l'échantillon est soumis à l'action simultanée de sialidase et de fucosidase ou de sialidase, β-galactosidase et N-acétylhexosaminidase, respectivement, avant marquage par l'APTS. Puis les oligosaccharides marqués sont injectés sur un capillaire N-CHO et séparés et quantifiés par électrophorèse capillaire à détection de fluorescence induite par laser (HPCE-LIF). 3. Mesure de l'activité ADCC.
La mesure de l'activité ADCC des anticorps polyclonaux avant et après traitement par la β-galactosidase est réalisée selon la méthode décrite dans l'exemple 1.
Ainsi, après action de la β-galactosidase, les glycannes de la région Fc des anticorps polyclonaux anti-Rh(D) présentent un taux de galactose résiduel de 17,7 % et un taux de fucose égal à 68,5%. Le ratio taux de fucose / taux de galactose des anticorps polyclonaux dégalactosylés est donc égal à 3,8.
La présence, dans le test ADCC, d'IgG polyvalentes comme Tégéline dans l'exemple présent, bloque les récepteurs de haute affinité (c'est-à-dire FcγRI ou CD64), rendant ainsi la lyse des hématies Rh(D+) plus spécifique de l'interaction des anticorps anti- Rh(D) avec les récepteurs FcγRIII présents sur les cellules effectrices. Les résultats présentés Fig. 3 montrent d'une part que l'activité ADCC des anticorps polyclonaux anti-Rh(D) est dose dépendante et d'autre part, que l'augmentation de la quantité d'IgG polyvalentes dans le mélange réactionnel provoque une diminution de l'activité lyrique des anticorps polyclonaux. De plus, les anticorps polyclonaux dégalactosylés ont une activité ADCC diminuée par rapport aux anticorps témoins. TABLEAU IL
Le pourcentage d'activité ADCC des anticorps polyclonaux anti-Rh(D) dégalactosylés par rapport aux anticorps témoins, c'est-à-dire ayant subi la même incubation mais en absence de neuraminidase et de β-galactosidase, sont présentés dans le tableau II. Ainsi, la diminution de l'activité ADCC des anticorps polyclonaux dégalactosylés par rapport aux anticorps témoins est d'autant plus importante que la quantité d'anticorps est faible. De plus, la diminution d'activité des anticorps polyclonaux dégalactosylés est plus importante en présence d'une concentration d'IgG polyvalentes de 2,5 mg/ml.
Exemple 3. Mesure de l'activation du récepteur CD16 induite par les anticorps monoclonaux anti-Rh(D) dégalactosylés 1.Dégalactosylation des anticorps monoclonaux anti-Rh(D)
Les anticorps sont dialyses contre le tampon d'hydrolyse (Acétate de sodium 50 mM, pH 5.5 contenant 4 mM chlorure de calcium). Les anticorps sont désialylés et dégalactosylés par une incubation en présence de 5 mU de neuraminidase (EC 3.2.1.18) de Vibrio cholerae (Calbiochem) et 9 mU de β-galactosidase (EC 3.2.1.23) produite par E.coli (Roche). Le contrôle, désigné sous le nom de « témoin », est constitué de la même préparation d'anticorps traitée comme indiqué ci-dessus mais en absence de neuraminidase et de β-galactosidase. Après 24h d'incubation à 37°C, les anticorps sont stockés à 4°C. Les anticorps générés dans cet exemple sont séparés en deux fractions ; l'une des fractions est utilisée pour l'analyse glycannique et l'autre fraction est réservée à la mesure de l'activité fonctionnelle.
2. Mesure de l'activation du récepteur CD 16 Le test d' activation des cellules Jurkat CD 16 mesure la sécrétion de l'interleukine-2 (IL-2) induite par la fixation du Fc des anticorps sur le CD 16 (FcγRIIIA) après liaison du Fab à son antigène, présent sur la cellule cible. Le taux d'IL-2 sécrété par les cellules Jurkat CD 16 est proportionnel à l'activation du récepteur CD16. Dans une plaque de microtitration de 96 puits, on dépose successivement 50 μl de dilutions d'anticorps, 50 μl d'une suspension d'hématies à 6.105/ml, 50 μl d'une suspension de cellules Jurkat CD 16 à 1.106/ml et 50 μl d'une solution de PMA à 40 ng/ml. Toutes les dilutions ont été réalisées en milieu de culture EMDM contenant 5% SNF.
Après 16 heures d'incubation à 37°C et 7% de CO2, la plaque de microtitration est centrifugée et la quantité d'IL-2 contenue dans le surnageant est dosée par un kit commercial (Duoset, R&D). Les taux d'IL-2 sécrétée sont exprimés en pg/ml. Les résultats sont exprimés en pourcentage d'activation CD16, le taux d'IL-2 sécrétée en présence de l'anticorps monoclonal témoin étant considéré égal à 100%.
Les résultats d'analyse des glycannes réalisée par HPCE-LIF comme décrit dans l'exemple 2, sont réunis dans le tableau III.
TABLEAU III
Ainsi, il apparaît que l'anticorps monoclonal EMAB2 est totalement dégalactosylé alors que l'anticorps HHOl contient encore 17,3 % de formes monogalactosylées. Après action de la β-galactosidase, le ratio taux de fucose / taux de galactose des anticorps EMAB2 et HHOl devient donc très supérieur à 0,6.
Les anticorps monoclonaux anti-Rh(D) dégalactosylés présentent une activation CD 16 très diminuée par rapport aux anticorps témoins (Fig. 4). Ainsi les anticorps monoclonaux EMAB2 et HHOl présentent une diminution de leur capacité à induire l'activation du CD16 de 52 et 47 %, respectivement.
Exemple 4. Mesure de l'activation CD16 induite par des anticorps monoclonaux anti-Rh(D) galactosylés 1.Galactosylation des anticorps.
Les anticorps sont dialyses contre du tampon HEPES 50 mM, pH 7.20. Le mélange réactionnel est constitué de la solution d'anticorps monoclonal à laquelle sont ajoutés 10 mM MnC12, 20 mM UDP-galactose et 40 mU de βl,4-galactosyltransférase bovine (Calbiochem). Après incubation à 37°C pendant 24 heures, les tubes sont conservés à 4°C avant utilisation.
Le contrôle est constitué du même anticorps incubé dans les mêmes conditions excepté l'absence d' UDP-Gal dans le milieu réactionnel. Les anticorps générés dans cet exemple sont séparés en deux fractions ; l'une des fractions est utilisée pour l'analyse glycannique et l'autre fraction est réservée à la mesure de l'activité ADCC.
2. Dosage du galactose par ELISA lectine De part leur spécificité de reconnaissance, les lectines ont été utilisées dans de nombreuses applications de biologie et de médecine et notamment dans l'analyse des glycannes par technique ELIS A. La lectine RCA1, qui reconnaît le galactose lié en βl,4, a été utilisée pour doser le galactose présent dans les N-glycannes des anticorps.
Les anticorps monoclonaux sont immobilisés dans les puits d'une plaque de microtitration. Après 20 minutes de chauffage à 100°C pour dénaturer les molécules d'IgG afin de rendre les N-glycannes de la région Fc accessibles, les puits sont incubés 2 h. à tempérautre ambiante et sous agitation douce en présence d'une solution de RCAi biotinylée (Nector). Après lavage pour éliminer la lectine n'ayant pas réagi, la streptavidine-peroxidase est ajoutée dans chaque puits, incubée 1 h et la lectine fixée est mesurée à 492 nm après addition d'O-phénylènediamine.
Parallèlement, la quantité d'anticorps fixée dans les puits de la plaque de microtitration est mesurée par un anticorps anti-IgG humaine marquée à la peroxidase. Puis la quantité de lectine fixée est corrigée par la quantité d'anticorps fixé dans les puits de microtitration.
3. Mesure de l'activation du récepteur CD 16 Les conditions opératoires utilisées pour mesurer l'activation du récepteur CD16 des anticorps monoclonaux galactosylés sont identiques à celles décrites ci-dessus.
Les anticorps monoclonaux décrits dans l'exemple présent sont des anticorps anti- Rh(D) ayant la même séquence primaire et produits par la cellule YB2/0. Ils diffèrent par leur activité fonctionnelle, en liaison avec leur taux de fucosylation en αl,6 qui est de 25% pour EMAB2 et 53% pour EMAB3. Après action in vitro de la β-l,4-galactosyltransférase, l'activation CD16 induite par les anticorps monoclonaux EMAB2 et EMAB3 est augmentée de 10 et 54%, respectivement (Fig. 5). Ainsi, l'augmentation de la galactosylation de l'anticorps EMAB2, qui à l'origine possède une très bonne activité effectrice, n'induit qu'une très faible amélioration de l'activation CD 16 tandis que l'augmentation de la galactosylation de l'anticorps EMAB3, fortement fucosylé, se traduit par une amélioration très significative de l'activité CD16.
EXEMPLE 5 : Etude de la clairance des hématies sensibilisées par l'anticorps monoclonal anti-Rh(D) EMAB2.
L'anticorps monoclonal anti-Rh(D) EMAB2 a été évalué dans un essai clinique de phase I afin de comparer la clairance des hématies sensibilisées par cet anticorps avec celle des hématies sensibilisées par Rhophylac™, préparation thérapeutique d'anticorps polyclonaux anti-Rh(D) utilisée en clinique.
Les hématies de volontaires sains sont marquées ex-vivo au chrome 51 (51Cr) et sensibilisées, c'est-à-dire incubées, en présence d'anticorps anti-Rh(D), EMAB2 ou Rhophylac™, pour obtenir un niveau de saturation de 25% des sites antigéniques avant d'être ré-injectées aux volontaires.
La disparition dans la circulation sanguine des hématies marquées au 51Cr a été suivie par mesure de la radioactivité au compteur gamma sur des prélèvements sanguins réalisés à 3, 15, 30 minutes et 1, 2, 4, 6, 8, 10, 24, 48, 72, 96 heures après la transfusion des hématies marquées et sensibilisées. L'échantillon de sang prélevé à 3 minutes après la transfusion des hématies représente le 100% de survie des globules rouges.
Les résultats présentés à la figure 6 montrent qu'en absence de sensibilisation des hématies radiomarquées par un anticorps, la diminution de la radioactivité mesurée sur une période supérieure à 100 h, est inférieure à 20%. Par contre, lorsque les hématies sont sensibilisées par une préparation thérapeutique d'anticorps polyclonaux ou par l'anticorps monoclonal EMAB2, la radioactivité sanguine décroît rapidement ; dix heures après l'injection, il reste moins de 10%> de la radioactivité injectée. Ainsi, la courbe de disparition des hématies sensibilisées par l'anticorps monoclonal EMAB2 a un profil similaire à celle des hématies sensibilisées par la préparation thérapeutique d'anticorps polyclonaux Rhophylac™.
L'anticorps monoclonal EMAB2 dont le rapport taux de fucose / taux de galactose est égal à 0,4, possède une activité in vivo, vis à vis de la clairance des hématies Rh(D+) pré-sensibilisées, au moins comparable à celle d'une préparation d' anticorps polyclonaux thérapeutique.
Des études cliniques réalisées dans les mêmes conditions mais avec un autre anticorps monoclonal, appelé MonoD, avaient donné des résultats très différents ; à 25% de saturation des site antigéniques membranaire, la clairance induite par MonoD n'était que partielle. L'analyse glycannique de l'anticorps MonoD avait révélé la présence d'un taux de fucose de 80% et de galactose de 86%, soit un ratio égal à 0,93. La comparaison de ces résultats cliniques montre donc que les anticorps monoclonaux anti-D, ayant un ratio taux de fucose / taux de galactose inférieur ou égal 0,6, présentent une efficacité sur la clairance des hématies supérieure à celle des anticorps dont le ratio est proche de 1.
Exemple 6 : Modification du taux de galactose d'un anticorps monoclonal anti- HLA DR exprimé par les lignées cellulaires CHO et YB2/0
1. Production de l'anticorps monoclonal anti-HLA DR 1.1. Construction des vecteurs d'expression L'anticorps anti-HLA DR utilisé dans cette étude provient de la chimérisation de l'anticorps de souris, d'isotype IgG2a, exprimé par l'hybridome Lym-1 (ATCC Hb- 8612).
L'ARN extrait de l'hybridome producteur de l'anticorps murin a été converti en cDNA. La région NK murine a été amplifiée à l'aide des amorces K-Lym-Νotl et K- Lym-Dra3 puis clonée dans le vecteur de chimérisation CK-Hu, préalablement digéré par Notl et Dra3, qui contient la séquence CK d'un anticorps anti-D humain et le gène de sélection DHFR.
La région VH murine a été amplifiée à l'aide des amorces H-Lym-Not 1 et H-Lym-Apa 1 puis clonée dans le vecteur de chimérisation Gl-Hu, préalablement digéré par Not 1 et Apa 1, qui contient la séquence Gl d'unanticorps anti-D humain et le gène de sélection NEO.
Le promoteur hEF-la et la région 5'UTR du gène hEF-la, contenant l'exon 1 non codant et le premier intron, a été isolé à partir du plasmide commercial pEF/Bsd (Invitrogen) par double digestion Nhe I et Ace 65 I. Parallèlement, le promoteur RSN, présent dans les vecteurs d'expression décrits ci-dessus, a été délété par double digestion Bgl II et Spe I puis remplacé par le fragment Νhe I- Acc65 I.
1.2. Obtention de lignées productrices stables Les vecteurs d'expression pEF-Lym-dhfr-K-10 et pEF-Lym-neo-H-12 codant, respectivement, pour la chaîne légère et la chaîne lourde de l'anticorps chimérique anti-HLA DR, ont été utilisés pour co-transfecter, par électroportation, les lignées CHO-DXB11 (ATCC n°CRL-l 1397) et YB2/0 (ATCC n°CRL-1662). Après transfection, les cellules en culture ont été soumises à une double pression de sélection comprenant d'une part, la délétion en nucléosides du milieu de culture et d'autre part l'addition de G418. Les transformants résistant à cette double pression de sélection ont ensuite été clones par dilution limite.
Les 2 clones sélectionnés sont YB2/0-DR-4B7 pour la lignée cellulaire d'expression YB2/0 et DXB11-DR-22A10 pour la lignée cellulaire d'expression CHO-DXB11.
1.3. Production et purification de l'anticorps chimérique anti- HLA DR'
Le clone YB2/0-DR-4B7 a été cultivé dans un cytoculteur de 10 litres (Biolafitte) en milieu EM-SF1.1, milieu de base EMS supplémenté par Insuline (lμg/ml), Citrate de fer ( 50 μg/ml), HEPES (4 mg/ml) et Pluronic F68 ( 0,5 mg/ml). Le clone DXB11-DR-22A10 a été cultivé en cytoculteur de 10 litres (Biolafitte) en milieu CHO SFM4 utility (Perbio) supplémenté par 2% d'hypoxanthine. Lorsque la viabilité cellulaire est inférieure à 50 %, les milieux de culture sont collectés, centrifugés pour éliminer les cellules et les anticorps chimériques contenus dans les surnageants sont purifiés par chromatographie d'affinité sur Sépharose- protéine A.
2. Dégalactosylation Les anticorps chimériques anti-HLA DR ont été dialyses contre un tampon Acétate de sodium 50 mM, pH 5,50 contenant 4 mM CaC12. Les anticorps sont dégalactosylés par incubation en présence de 5 mU de neuraminidase (EC 3.2.1.18) de Vibrio cholerae (Calbiochem)et 9 mU de β-galactosidase (EC 3.2.1.23) produite par E .coli (Roche). Le contrôle est constitué du même anticorps traité comme indiqué ci-dessus mais en absence de neuraminidase et de β-galactosidase. Après 24h d'incubation à 37°C, les anticorps sont stockés à 4°C.
Les anticorps générés dans cet exemple sont séparés en deux fractions ; l'une des fractions est utilisée pour l'analyse glycannique et l'autre fraction est réservée à la mesure de l'activité fonctionnelle. 3. Mesure de l'activation CD16
La lignée cellulaire Raji est utilisée comme cible car elle porte à sa surface le déteπninant antigènique du complexe majeur d'histocompatibilité HLA-DR. Dans une plaque de microtitration de 96 puits, sont déposés successivement 50 μl de dilutions d'anticorps, 50 μl d'une suspension de cellules Raji à 6.105/ml, 50 μl d'une suspension , de cellules Jurkat CD 16 à 1.106/ml et 50 μl d'une solution de PMA à 40 ng/ml. Toutes les dilutions ont été réalisées en milieu de culture EMS contenant 5% SNF. Après 16 heures d'incubation à 37°C et 7% de CO2, la plaque de microtitration est centrifugée et la quantité d'IL-2 contenue dans le surnageant est dosée par un kit commercial (Duoset, R&D). Les taux d'IL-2 sécrétée sont exprimés en pg/ml. Les résultats sont exprimés en % d'activation CD16, le taux d'IL-2 sécrétée en présence de l'anticorps monoclonal témoin étant considéré égal à 100%.
Les anticorps chimériques anti-HLA DR ont des structures glycanniques très différentes selon qu'ils sont exprimés par la lignée YB2/0 ou CHO DXB11. Ainsi, le ratio taux de fucose / taux de galactose de l'anticorps exprimé par YB2/0 est égal à 0,37 alors que le ratio de l'anticorps exprimé dans CHO est très augmenté, puisqu'égal à 1,3.
L'activation CD 16 des anticorps natifs est en accord avec les valeurs des ratio taux de fucose / taux de galactose ; ainsi, la sécrétion d'IL-2 induite par l'anticorps anti-HLA DR synthétisé par YB2/0 et qui a un ratio de 0,37 est 2 fois plus importante que celle induite par le même anticorps synthétisé par CHO DXBl 1 mais dont le ratio est égal à 1,3.
Après action de la β-galactosidase, le taux de galactose restant sur les N-Glycannes de la région Fc a été déterminé par HPCE-LIF. La dégalactosylation est presque totale, les taux de formes Gl pour l'anticorps produit par CHO et GIB pour l'anticorps produit par YB2/0, étant respectivement de 7% et 4,4%. Cette baisse du taux de galactose se traduit par une diminution significative de l'activation CD 16 par rapport aux anticorps témoin, comme présenté Figure 7.
Références
Boyd PN, Lines AC, Patel AK. The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-IH. (1995) Mol. Immunol. 32, 1311-1318.
Davies J, Jiang L, Pan LY, Labarre MJ, Anderson D, Reff M. Expression of GnTUI in a recombinant anti-CD20 CHO production cell Une: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affïnity for FC gamma RHI. (2001) Biotechnol. Bioeng. 74, 288-294.
Furakawa K, Kobata A. IgG galactosylation - its biological significance ant pathology. (1991) Mol. Immunol. 28, 1333-1340.
Kôhler G, Milstein C. Continuous cultures of fused cells secreting antibody of prefedined specificity. (1975) Nature 256, 495-7.
Kumpel BM, Rademacher TW, Rook GA, Williams PJ, Wilson JE. Galactosylation of human IgG monoclonal anti-D produced by EBV-transformed B-lymphoblastoid cell lines is dépendent on culture method and affects Fc receptor-mediated functional activity.(1994) Hum. Antibodies Hybridomas 5, 143-151.
Nose M, Wigzell H. Biological significance of carbohudrate chains on monoclonal antibodies. (1983) Proc. Natl. Acad. Sci. USA 80, 6632-6636.
Shields RL, Lai J, Keck R, O'Connell LY, Hong K, Meng YG, Weiler SHA, Presta LG. Lack of fucose on human IgGl N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. (2002) J. Biol. Chem. 277, 26733-26740.
Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K. Absence of fucose but not présence of galactose or bisecting N-acetylglucosamine of human IgGl complex-type oligosaccharides shows the critical rôle of enhancing antibody-dependent cellular cytotoxicity. (2003) J Biol Chem. 278, 3466-3473.
Tao MH, Morrison SL. Studies of aglycosylated chimeric mouse-human IgG. Rôle of carbohydrate in the structure and effector functions mediated by the human IgG constant région. (1989) J. Immunol. 143, 2595-2601.
Tsuchyia N, Endo T, Matsuta K, Yoshinoya S, Aikawa T, Kosuge E, Takeuchi F, Miyamoto T, Kobata A. Effects of galactose depletion from oligosaccharide chains on immunological activities of human IgG. (1989) J. Rheumatol. 16, 285-290.
Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE. Engineered glycoforms of an antineuroblastoma IgGl with optimized antibody-dependent cellular cytotoxic activity. (1999) Nat. Biotechnol. 17, 176-180.
Wright A, Morrison SL. Effect of C2-associated carbohydrate structure on Ig effector fonction : Studies with chimeric mouse-human IgGl antibodies in glycosylation mutants of chinese hamster ovary cells 1. (1998) J.Immunol. 160, 3393-3402.

Claims

REVENDICATIONS
1. Procédé de préparation d'un anticorps monoclonal chimérique, humanisé ou humain ayant une forte activité effectrice, caractérisé en ce qu'il comprend les étapes suivantes : a) production et purification d'anticorps monoclonaux obtenus à partir de différentes sources, notamment de cellules, plantes ou animaux non humains, éventuellement génétiquement modifiés ou transformés, b) mesure du taux de fucose et du taux de galactose des structures glycanniques portées par le site de glycosylation de la région Fc desdits anticorps, c) sélection des anticorps dont le ratio taux de fucose / taux de galactose est inférieur ou égal à 0,6, préférentiellement inférieur à 0,5 ou à 0,4.
2. Procédé selon la revendication 1, caractérisé en ce que lesdits anticorps sont produits dans des cellules modifiées génétiquement par introduction d'au moins un vecteur permettant l'expression desdits anticorps, lesdites cellules étant des cellules eucaryotes ou procaryotes, notamment des cellules de mammifères, d'insectes, de plantes, de bactéries ou de levures.
3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que lesdites cellules sont modifiées génétiquement par introduction d'au moins un vecteur permettant l'expression d'au moins un polypeptide possédant une activité glycosyltransférasique.
4. Procédé selon la revendication 3, caractérisé en ce que ladite activité glycosyltransférasique est une activité galactosyltransférasique.
5. Procédé selon la revendication 4, caractérisé en ce que ladite activité galactosyltransférasique est une activité de beta(l,4)-galactosyltransférase ou une activité de beta(l,3)-galactosyltransférase.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdites cellules possèdent une activité relative à la synthèse, et/ou au transport du GDP-fucose et/ou à l'activité d'une enzyme impliquée dans l'addition de fucose à l'oligosaccharide du site de glycosylation des anticorps diminuée ou délétée.
7. Procédé selon la revendication 6, caractérisé en ce que l'enzyme impliquée dans la synthèse du GDP-fucose est la GMD (GDP-D-mannose 4,6-déhydratase), la Fx (GDP- keto-6-deoxymannose 3,5-épimérase, 4-réductase) ou la GFPP (GDP-beta-L-fucose pyrophosphorylase).
8. Procédé selon la revendication 6, caractérisé en ce que ladite enzyme impliquée dans l'addition du fucose est une fucosyltransférase.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que si à l'étape b), le ratio mesuré est supérieur à 0,6, on dé-fucosyle et/ou on ajoute des résidus de galactose audit anticorps avant l'étape c).
10. Procédé selon la revendication précédente, caractérisé en ce que ladite dé- fucosylation est effectuée par l'addition d'une fucosidase dans le milieu contenant l'anticorps.
11. Procédé selon l'une quelconque des revendications 8 ou 9, caractérisé en ce que l'ajout de résidus de galactose est effectué par l'addition d'une galactosyltransférase dans le milieu contenant l'anticorps.
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdites cellules proviennent de lignées cellulaires animales ou humaines, lesdites lignées étant sélectionnées notamment parmi les lignées de myélomes de rat, notamment YB2/0 et TJR.983F, de myélome humain comme Namalwa ou toute autre cellule d'origine humaine comme PERC6, les lignées CHO, notamment CHO-K, CHO-LeclO, CHO-Lecl, CHO Pro-5, CHO dhfr-, CHO Lecl3, ou d'autres lignées choisies parmi Wil-2, Jurkat, Nero, Molt-4, COS-7, 293-HEK, BHK, K6H6, ΝSO, SP2/0-Ag 14 et P3X63Ag8.653.
13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit anticorps est une immunoglobuline humaine de type IgG.
14. Procédé de préparation selon l'une des revendications précédentes, caractérisé en ce que l'anticorps est un anti-facteur Rhésus (anti-D), anti-CD, anti-tumeurs, anti-virus, anti-CD20 ou un anti-HLA-DR.
15. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite activité effectrice est une activité fonctionnelle de type ADCC.
16. Procédé pour augmenter l'activité effectrice d'une composition de molécules immunologiquement fonctionnelles, comprenant l'augmentation du taux de galactose et/ou la diminution du taux de fucose de la composition de molécules.
17. Procédé selon la revendication 16, caractérisé en ce que lesdites molécules immunologiquement fonctionnelles sont des anticorps monoclonaux ou polyclonaux.
18. Procédé selon l'une quelconque des revendications 16 ou 17, caractérisé en ce que lesdites molécules possèdent à l'état natif un fort taux de fucose.
19. Procédé selon l'une quelconque des revendications 16 à 18, caractérisé en ce que la diminution du taux de fucose est due à une dé-fucosylation de ladite composition par action d'une fucosidase, notamment une l,6 fucosidase .
20. Procédé selon les revendications 16 à 19, caractérisé en ce que l'augmentation du taux de galactose de ladite composition est due à une galactosylation de la composition par action d'une galactosyltransférase.
21. Cellule dérivée de la lignée cellulaire YB2/0 dans laquelle au moins un vecteur codant pour une molécule d'anticorps est introduite, ladite cellule produisant un anticorps dont le ratio taux de fucose/taux de galactose des oligosaccharides du site de glycosylation de la région Fc des anticorps est inférieur ou égal à 0,6.
22. Cellule selon la revendication 21, caractérisée en ce qu'elle est transfectée par un vecteur d' expression codant pour une galactosyltransférase.
23. Cellule selon l'une quelconque des revendications 21 ou 22, caractérisée en ce que ladite galactosyltransférase est une beta(l,4)-galactosyltransférase ou une beta(l,3)- galactosyltransférase.
24. Cellule selon l'une quelconque des revendications 21 à 23, caractérisée en ce que ladite cellule sur-exprime ladite galactosyltransférase.
25. Cellule selon l'une quelconque des revendications 21 à 24, caractérisée en ce que ladite galactosyltransférase est codée par une séquence ayant pour origine l'homme, la souris, le hamster, la vache, le mouton, la chèvre, le cochon, le cheval, le rat, le singe, le lapin ou le poulet.
26. Cellule selon la revendication 25, caractérisée en ce que ladite séquence est la séquence NM 001497, AB 024434, NM 003780, BC 053006, XM 242992 ou NM 177512.
27. Procédé de préparation d'anticorps dont les structures glycanniques portées par le site de glycosylation de la région Fc possèdent un ratio taux de fucose/taux de galactose inférieur ou égal à 0,6, préférentiellement inférieur à 0,5 ou encore à 0,4 comprenant la culture d'une cellule selon l'une de revendications 21 à 26 dans un milieu de culture et à des conditions permettant l'expression desdits vecteurs.
28. Anticorps thérapeutiques ayant une forte activité effectrice, susceptible d'être obtenue à partir du procédé selon l'une des revendications 1 à 20 et 27, lesdits anticorps étant caractérisés en ce qu'ils présentent sur leur site de glycosylation de la région Fc, des structures glycanniques possédant un ratio taux de fucose / taux de galactose inférieur à 0,6, préférentiellement inférieur à 0,5 ou encore à 0,4.
29. Composition pharmaceutique comprenant un anticorps selon la revendication 28 et au moins un excipient.
30. Composition pharmaceutique comprenant au moins 50%, préférentiellement 60%, 70%), 80%o ou encore 90% ou 99% d'un anticorps monoclonal dont les structures glycanniques portées par le site de glycosylation de la région Fc possèdent un ratio taux de fucose / taux de galactose inférieur à 0,6 préférentiellement inférieur à 0,5 ou encoreà 0,4 .
31. Composition pharmaceutique selon l'une quelconque des revendications 29 ou 30 dans laquelle l'anticorps est dirigé contre un antigène normal non ubiquitaire, notamment un facteur Rhésus, comme le facteur Rhésus (D) du globule rouge humain, ou un antigène d'une cellule pathologique ou d'un organisme pathogène pour l'homme, en particulier contre un antigène d'une cellule cancéreuse.
32. Composition pharmaceutique selon l'une quelconque des revendications 29 à 31, caractérisée en ce que lesdits anticorps sont des IgG.
5 33. Utilisation d'un anticorps selon la revendication 28 pour la préparation d'un médicament destiné au traitement de rallo-immunisation, notamment la maladie hémolytique du nouveau-né.
34. Utilisation d'un anticorps selon la revendication 28 pour la préparation d'un 1.0 médicament destiné au traitement des maladies auto-immunes, des cancers et des infections par des agents pathogènes, notamment pour le traitement des maladies choisies parmi le Syndrome de Sézary, les cancers solides, notamment dont les cibles antigéniques sont faiblement exprimées, notamment le cancer du sein, les pathologies liées à l'environnement visant notamment les personnes exposées aux biphényles 15 polychlorinés, les maladies infectieuses, notamment la tuberculose, le syndrome de la fatigue chronique (CFS), les infections parasitaires comme par exemple les schistosomules, et les infections virales.
35. Utilisation d'un anticorps selon la revendication 28 pour la préparation d'un 20 médicament destiné au traitement des cancers des cellules HLA classe II positives, les leucémies lymphoïdes aiguës des cellules B et T, les leucémies myéloïdes chroniques et aiguës, le lymphome de Burkitt, le lymphome de Hodgkin, les leucémies myéloïde, les lymphomes des cellules T, et les lymphomes non hodgkimen.
25 36. Utilisation selon l'une quelconque des revendications 33 à 35 caractérisée en ce que l'anticorps est un anti-HLA-DR ou un anti-CD20.
37. Utilisation d'un anticorps selon la revendication 28 pour la fabrication d'un médicament destiné à induire l'expression de IL-lα, IL-lβ, IL-2, IL-3, IL-4, IL-5, JX-6, IL-12, IL- 18 , IL-21, TGFβl, TGFβ2 TNFα, TNFβ, IFNγ, et IP10 par les cellules effectrices naturelles du système immunitaire, ledit médicament étant utile notamment pour le traitement du cancer et des infections virales, bactériennes ou parasitaires.
38. Utilisation d'un anticorps selon la revendication 28 pour la fabrication d'un médicament destiné au traitement de patients présentant un des polymorphismes du CD16, en particulier N/F158 ou F/F158, notamment des patients se trouvant en échec thérapeutique avec les anticorps actuellement disponibles ou subissant des effets secondaires indésirables.
39. Procédé de préparation d'un anticorps monoclonal chimérique, humanisé ou humain ayant une faible activité effectrice, caractérisé en ce qu'il comprend les étapes suivantes : a) production et purification d'anticorps monoclonaux obtenus à partir de différentes sources, notamment de cellules, plantes ou animaux non humains, éventuellement génétiquement modifiés ou transformés, b) mesure du taux de fucose et du taux de galactose des structures glycanniques portées par le site de glycosylation de la région Fc desdits anticorps, c) sélection des anticorps dont le ratio taux de fucose / taux de galactose est supérieur à 0,6.
40. Procédé selon la revendication 39, caractérisé en ce que lesdits anticorps sont produits dans des cellules modifiées génétiquement par introduction d'au moins un vecteur permettant l'expression desdits anticorps, lesdites cellules étant des cellules eucaryotes ou procaryotes, notamment des cellules de mammifères, d'insectes, de plantes, de bactéries ou de levures.
41. Procédé selon l'une quelconque des revendications 39 ou 40, caractérisé en ce que lesdites cellules sont modifiées génétiquement par introduction d'au moins un vecteur permettant l'expression d'au moins un polypeptide possédant une activité glycosyltransférasique.
42. Procédé selon la revendication 41, caractérisé en ce que ladite activité glycosyltransférasique est une activité fucosyltransférasique, notamment une activité d'α 1,6-fucosyltransférase.
43. Procédé selon l'une quelconque des revendications 39 à 42, caractérisé en ce que lesdites cellules possèdent une activité relative à la synthèse, et/ou au transport de l'UDP-galactose et/ou à l'activité d'une enzyme impliquée dans l'addition de galactose à l'oligosaccharide du site de glycosylation des anticorps diminuée ou délétée.
44. Procédé selon la revendication 43, caractérisé en ce que ladite enzyme impliquée dans l'addition de galactose est une galactosyltransférase, notamment une β 1,4- galactosylatranférase.
45. Procédé selon l'une quelconque des revendications 39 à 44, caractérisé en ce que si à l'étape b), le ratio mesuré est inférieur à 0,6, on fucosylé et/ou on enlève des résidus galactose audit anticorps avant l'étape c).
46. Procédé selon la revendication 45, caractérisé en ce que ladite dé-galactosylation est effectuée par l'addition d'une galactosidase dans le milieu contenant l'anticorps.
47. Procédé selon l'une quelconque des revendications 45 ou 46, caractérisé en ce que l'ajout de résidus fucose est effectué par l'addition d'une fucosyltransferase dans le milieu contenant l'anticorps.
48. Procédé selon l'une quelconque des revendications 39 à 47, caractérisé en ce que ledit anticorps est une immunoglobuline humaine de type IgG.
49. Procédé de préparation selon l'une des revendications 39 à 48, caractérisé en ce que l'anticorps est dirigé contre un CD, marqueur de différenciation des cellules sanguines humaines ou contre un agent pathogène ou sa toxine listée comme étant particulièrement dangereuse dans les cas de bioterrorisme, notamment Bacillus anthracis, Clostridium botulium, Yersinia pestis, Variola major, Francisella tularensis, Filoviruses, Arenaviruses, Brucella species, Clostridium perfringens, Salmonella, E.coli, Shigella, Coxiella burnetii, la toxine de ricin , Rickettsia, Niral encephalitis viruses, Vibrio cholerae ou Hantavirus .
50. Procédé selon l'une quelconque des revendications 39 à 49, caractérisé en ce que ladite activité effectrice est une activité fonctionnelle de type ADCC.
51. Procédé pour diminuer l'activité d'une composition de molécules immunologiquement fonctionnelles, comprenant l'augmentation du taux de fucose et/ou la diminution du taux de galactose de ladite composition.
52. Procédé selon la revendication 51, caractérisé en ce que lesdites molécules immunologiquement fonctionnelles sont des anticorps monoclonaux ou polyclonaux.
53. Procédé selon l'une quelconque des revendications 51 ou 52, caractérisé en ce que l'augmentation du taux de fucose est due à une fucosylation de ladite composition par action de une fucosyltransferase.
54. Procédé selon l'une quelconque des revendications 51 à 53, caractérisé en ce que la diminution du taux de galactose de ladite composition est due à une dé-galactosylation de la composition par action d'une galactosidase.
55. Composition d'anticorps susceptible d'être obtenue à partir d'un procédé selon l'une quelconque des revendications 39 à 54.
56. Utilisation de la composition selon la revendication 55 pour la préparation d'un médicament destiné au traitement et/ou à la prévention des maladies auto-immunes, des allo-immunisations, notamment le PTI, du rejet de greffe, des allergies, de l'asthme, des dermatites, des urticaires, des érythèmes ou des maladies inflammatoires.
57. Procédé pour contrôler l'activité d'une composition de molécules immunologiquement fonctionnelles, comprenant la régulation du ratio taux de fucose / taux de galactose des oligosaccharides du site de glycosylation de la région Fc des anticorps .
EP04805250A 2003-10-20 2004-10-20 Correlation du ratio taux de fucose / taux de galactose d'anticorps anti rhesus d et anti hla-dr avec l'activite adcc Withdrawn EP1675873A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0312229A FR2861080B1 (fr) 2003-10-20 2003-10-20 Anticorps presentant un taux de fucose et de galactose optimise
PCT/FR2004/002686 WO2005040221A1 (fr) 2003-10-20 2004-10-20 Correlation du ratio taux de fucose / taux de galactose d’anticorps anti rhesus d et anti hla-dr avec l’activite adcc

Publications (1)

Publication Number Publication Date
EP1675873A1 true EP1675873A1 (fr) 2006-07-05

Family

ID=34385294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04805250A Withdrawn EP1675873A1 (fr) 2003-10-20 2004-10-20 Correlation du ratio taux de fucose / taux de galactose d'anticorps anti rhesus d et anti hla-dr avec l'activite adcc

Country Status (9)

Country Link
US (1) US20070015239A1 (fr)
EP (1) EP1675873A1 (fr)
JP (1) JP2007533299A (fr)
AU (1) AU2004283924B2 (fr)
BR (1) BRPI0415565A (fr)
CA (1) CA2542881A1 (fr)
FR (1) FR2861080B1 (fr)
IL (1) IL174896A0 (fr)
WO (1) WO2005040221A1 (fr)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2892724B1 (fr) * 2005-11-02 2008-01-04 Lab Francais Du Fractionnement Anticorps cytotoxiques diriges contre des anticorps inhibiteurs du facteur viii.
US7846724B2 (en) 2006-04-11 2010-12-07 Hoffmann-La Roche Inc. Method for selecting CHO cell for production of glycosylated antibodies
WO2008028686A2 (fr) * 2006-09-10 2008-03-13 Glycotope Gmbh Système de production à haut rendement, entièrement humain, pour anticorps et protéines améliorés
AU2013203482B2 (en) * 2006-09-10 2015-08-27 Glycotope Gmbh Fully human high yield production system for improved antibodies and proteins
US7846434B2 (en) 2006-10-24 2010-12-07 Trubion Pharmaceuticals, Inc. Materials and methods for improved immunoglycoproteins
EP1920781B1 (fr) 2006-11-10 2015-03-04 Glycotope GmbH Compositions comprenant un microorganisme contenant core-1 et son utilisation pour le traitement des tumeurs
US20080227669A1 (en) * 2007-03-12 2008-09-18 Halliburton Energy Services, Inc. Corrosion-inhibiting additives, treatment fluids, and associated methods
EP1995309A1 (fr) * 2007-05-21 2008-11-26 Vivalis Production de protéine recombinante dans des cellules aviaires EBx
KR20110084196A (ko) * 2008-09-26 2011-07-21 유레카 쎄라퓨틱스, 인코포레이티드 다양한 글리코실화 패턴을 가진 세포계 및 단백질
SG175081A1 (en) * 2009-04-07 2011-11-28 Roche Glycart Ag Bispecific anti-erbb-3/anti-c-met antibodies
DK2493922T3 (en) 2009-10-26 2017-04-24 Hoffmann La Roche Process for preparing a glycosylated immunoglobulin
EP2374816B1 (fr) 2010-04-07 2016-09-28 Agency For Science, Technology And Research Molécules liant le virus du Chikungunya et leurs utilisations
US9441032B2 (en) 2010-04-07 2016-09-13 Agency For Science, Technology And Research Binding molecules against Chikungunya virus and uses thereof
EP2409712A1 (fr) 2010-07-19 2012-01-25 International-Drug-Development-Biotech Anticorps Anti-CD19 doté de fonctions ADCC et CDC et d'un profil de glycosylation amélioré
EP2409989A1 (fr) 2010-07-19 2012-01-25 International-Drug-Development-Biotech Procédé pour améliorer le profile de glycosylation d'un anticorps
EP2409993A1 (fr) 2010-07-19 2012-01-25 International-Drug-Development-Biotech Anticorps Anti-CD19 doté d'une fonction ADCC et d'un profil de glycosylation amélioré
WO2012105699A1 (fr) * 2011-02-03 2012-08-09 株式会社イーベック Procédé de production d'un anticorps présentant une activité biologique élevée dépendante du complément
WO2012149197A2 (fr) 2011-04-27 2012-11-01 Abbott Laboratories Procédé de contrôle du profil de galactosylation de protéines exprimées de manière recombinante
US20140296490A1 (en) * 2011-08-10 2014-10-02 Laboratoire Français Du Fractionnement Et Des Biotechnologies Highly galactosylated antibodies
EP2748302B1 (fr) 2011-08-22 2018-08-15 Glycotope GmbH Microorganismes portant un antigène tumoral
US9181572B2 (en) 2012-04-20 2015-11-10 Abbvie, Inc. Methods to modulate lysine variant distribution
WO2013158279A1 (fr) 2012-04-20 2013-10-24 Abbvie Inc. Procédés de purification de protéines pour réduire des espèces acides
US9067990B2 (en) 2013-03-14 2015-06-30 Abbvie, Inc. Protein purification using displacement chromatography
US9512214B2 (en) 2012-09-02 2016-12-06 Abbvie, Inc. Methods to control protein heterogeneity
EP2956480B1 (fr) 2013-02-13 2019-09-04 Laboratoire Français du Fractionnement et des Biotechnologies Anticorps anti-tnf alpha hautement galactosylés et leurs utilisations
AR094778A1 (es) 2013-02-13 2015-08-26 Laboratoire Français Du Fractionnement Et Des Biotechnologies Proteínas con glicosilación modificada y métodos para producirlas
EP2956485A2 (fr) * 2013-02-13 2015-12-23 Laboratoire Français du Fractionnement et des Biotechnologies Anticorps anti-her2 hautement galactosylés et leurs utilisations
EP2830651A4 (fr) 2013-03-12 2015-09-02 Abbvie Inc Anticorps humains qui se lient au tnf-alpha et leurs procédés de préparation
WO2014151878A2 (fr) 2013-03-14 2014-09-25 Abbvie Inc. Procédés pour la modulation des profils de glycosylation de protéines de traitements à base de protéines recombinantes au moyen de monosaccharides et d'oligosaccharides
US9017687B1 (en) 2013-10-18 2015-04-28 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same using displacement chromatography
US9598667B2 (en) 2013-10-04 2017-03-21 Abbvie Inc. Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins
US9085618B2 (en) 2013-10-18 2015-07-21 Abbvie, Inc. Low acidic species compositions and methods for producing and using the same
US9181337B2 (en) 2013-10-18 2015-11-10 Abbvie, Inc. Modulated lysine variant species compositions and methods for producing and using the same
US20150139988A1 (en) 2013-11-15 2015-05-21 Abbvie, Inc. Glycoengineered binding protein compositions
EP3191527B1 (fr) * 2014-09-10 2020-01-15 F.Hoffmann-La Roche Ag Anticorps 1 d'immunoglobuline galactosynthétisée in vitro
FR3035879A1 (fr) 2015-05-07 2016-11-11 Lab Francais Du Fractionnement Mutants fc a activite fonctionnelle modifiee
EP3410849B1 (fr) 2016-02-05 2023-07-05 Institut Pasteur Utilisation d'inhibiteurs d'adam12 comme adjuvants dans les traitement antitumoraux
US11634488B2 (en) 2017-07-10 2023-04-25 International—Drug—Development—Biotech Treatment of B cell malignancies using afucosylated pro-apoptotic anti-CD19 antibodies in combination with anti CD20 antibodies or chemotherapeutics
EP3508499A1 (fr) 2018-01-08 2019-07-10 iOmx Therapeutics AG Anticorps ciblant et d'autres modulateurs d'un gène d'immunoglobuline associé à une résistance contre des réponses immunitaires antitumorales et leurs utilisations
WO2019219889A1 (fr) 2018-05-18 2019-11-21 Glycotope Gmbh Anticorps anti-muc1
EP3994171A1 (fr) 2019-07-05 2022-05-11 iOmx Therapeutics AG Anticorps de liant à l'igc2 de l'igsf11 (vsig3) et leurs utilisations
EP3822288A1 (fr) 2019-11-18 2021-05-19 Deutsches Krebsforschungszentrum, Stiftung des öffentlichen Rechts Anticorps ciblant et autres modulateurs de l'antigène cd276 et leurs utilisations
EP4175668A1 (fr) 2020-07-06 2023-05-10 iOmx Therapeutics AG Anticorps de liaison à l'igv d'igsf11 (vsig3) et leurs utilisations

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0316463A1 (fr) * 1987-11-13 1989-05-24 Northwestern University Hybridome murin lym-1 et anticorps de diagnostic ainsi produit
SE9203479L (sv) * 1992-01-20 1993-07-21 Rso Corp Saett och anordning vid elektronisk identifiering
FR2776096B1 (fr) * 1998-03-12 2000-06-23 Commissariat Energie Atomique Procede et systeme de lecture d'un ensemble dynamique d'etiquettes portant des codes d'identification distincts
FR2805637B1 (fr) * 2000-02-25 2002-12-13 Commissariat Energie Atomique Procede de lecture d'etiquettes electroniques par identification simultanee de leur code
FR2807767B1 (fr) * 2000-04-12 2005-01-14 Lab Francais Du Fractionnement Anticorps monoclonaux anti-d
US6946292B2 (en) * 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
AU2003286926A1 (en) * 2002-11-15 2004-06-15 Sensitech Inc. Rf identification reader for communicating condition information associated with the reader
FR2859843B1 (fr) * 2003-09-16 2005-12-23 Commissariat Energie Atomique Dispositif adressable par radiofrequence, systeme comportant une pluralite de tels dispositifs agences dans l'espace et procede d'adressage par activation d'un mode transparent

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. M. KUMPEL: "Efficacy of RhD monoclonal antibodies in clinical trials as replacement therapy for prophylactic anti-D immunoglobulin: more questions than answers", VOX SANGUINIS, vol. 93, no. 2, 1 August 2007 (2007-08-01), pages 99 - 111, XP055002584, ISSN: 0042-9007, DOI: 10.1111/j.1423-0410.2007.00945.x *
MORI KATSUHIRO ET AL: "Non-fucosylated therapeutic antibodies: the next generation of therapeutic antibodies.", CYTOTECHNOLOGY DEC 2007 LNKD- PUBMED:19003000, vol. 55, no. 2-3, December 2007 (2007-12-01), pages 109 - 114, XP019550382, ISSN: 0920-9069 *
See also references of WO2005040221A1 *

Also Published As

Publication number Publication date
AU2004283924A1 (en) 2005-05-06
IL174896A0 (en) 2006-08-20
BRPI0415565A (pt) 2007-01-02
AU2004283924B2 (en) 2010-12-02
JP2007533299A (ja) 2007-11-22
FR2861080A1 (fr) 2005-04-22
US20070015239A1 (en) 2007-01-18
FR2861080B1 (fr) 2006-02-17
CA2542881A1 (fr) 2005-05-06
WO2005040221A1 (fr) 2005-05-06

Similar Documents

Publication Publication Date Title
EP1675873A1 (fr) Correlation du ratio taux de fucose / taux de galactose d'anticorps anti rhesus d et anti hla-dr avec l'activite adcc
US20210101961A1 (en) Polypeptides With Enhanced Anti-Inflammatory And Decreased Cytotoxic Properties And Relating Methods
US20220162290A1 (en) Polypeptides With Enhanced Anti-Inflammatory And Decreased Cytotoxic Properties And Relating Methods
Jefferis Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action
Le et al. Immune recruitment or suppression by glycan engineering of endogenous and therapeutic antibodies
Vattepu et al. Sialylation as an important regulator of antibody function
US20080206246A1 (en) Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
US20120134988A1 (en) Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
WO2003084570A1 (fr) Medicament contenant une composition d'anticorps appropriee au patient souffrant de polymorphisme fc$g(g)riiia
WO2007011041A1 (fr) Composition d'anticorps génétiquement modifié
Kronimus et al. IgG Fc N-glycosylation: Alterations in neurologic diseases and potential therapeutic target?
JP6480926B2 (ja) タンパク質におけるフコシル化レベルを制御するための方法
WO2007146847A2 (fr) Thérapie utilisant des anticorps modifiés par glycosylation
Jefferis Glyco-engineering of human IgG-Fc to modulate biologic activities
WO2007080277A1 (fr) Procede de preparation d' anticorps selectifs des recepteurs fc activateurs
US20130217863A1 (en) Method to Improve Glycosylation Profile and to Induce Maximal Cytotoxicity for Antibody
CA2666308A1 (fr) Polypeptides ayant des proprietes antiinflammatoires accrues et cytotoxiques reduites et procedes associes
EP1537419B1 (fr) Procédé d'évaluation de l'efficacité ADCC médiée par le CD16 d'anticorps monoclonaux ou polyclonaux
NZ597651A (en) Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
US20110150867A1 (en) Polypeptides with enhanced anti-inflammatory and decreased cytotoxic properties and relating methods
Jefferis Antibody posttranslational modifications
FR2861079A1 (fr) Utilisation de cations metalliques divalents pour l'amelioration de l'activite fonctionnelle des anticorps.
Yu et al. Antibody Glycosylation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LFB BIOTECHNOLOGIES

17Q First examination report despatched

Effective date: 20081009

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20111104