EP1668286A1 - Method and device for detecting the level at which liquid and gas phases are separate in a metallic reservoir - Google Patents

Method and device for detecting the level at which liquid and gas phases are separate in a metallic reservoir

Info

Publication number
EP1668286A1
EP1668286A1 EP04791454A EP04791454A EP1668286A1 EP 1668286 A1 EP1668286 A1 EP 1668286A1 EP 04791454 A EP04791454 A EP 04791454A EP 04791454 A EP04791454 A EP 04791454A EP 1668286 A1 EP1668286 A1 EP 1668286A1
Authority
EP
European Patent Office
Prior art keywords
tank
frame
level
temperatures
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04791454A
Other languages
German (de)
French (fr)
Inventor
Olivier Becq
Jean-Louis Pitois
Stéphane MAHUTEAU
Daniel Bouvier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siraga SAS
Original Assignee
Siraga SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siraga SAS filed Critical Siraga SAS
Publication of EP1668286A1 publication Critical patent/EP1668286A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/021Special adaptations of indicating, measuring, or monitoring equipment having the height as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/002Automated filling apparatus
    • F17C5/005Automated filling apparatus for gas bottles, such as on a continuous belt or on a merry-go-round
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/246Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices
    • G01F23/247Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • G01F23/246Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices
    • G01F23/247Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid thermal devices for discrete levels
    • G01F23/248Constructional details; Mounting of probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0408Level of content in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0491Parameters measured at or inside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0486Indicating or measuring characterised by the location
    • F17C2250/0495Indicating or measuring characterised by the location the indicated parameter is a converted measured parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/02Improving properties related to fluid or fluid transfer
    • F17C2260/024Improving metering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/059Mass bottling, e.g. merry belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0745Gas bottles

Definitions

  • the present invention relates to a method and a device for detecting the level of separation of the liquid and gaseous phases contained in a metal tank of pressurized gas, in particular in a butane or propane bottle.
  • a metal tank of pressurized gas in particular in a butane or propane bottle.
  • the level of separation of the liquid and gas phases contained in the butane and propane bottles is generally detected using a cesium cell.
  • this solution requires that important safety measures be taken to ensure effective protection of the installations and the personnel against the gamma rays emitted by the cell. Carrying out the detection of the separation level in an explosive area further increases the precautions to be taken.
  • Another solution has been proposed recently for detecting the level of separation of the liquid and gaseous phases. .
  • the present invention proposes to overcome the drawbacks of the aforementioned solutions and, to do this, it relates to a method for detecting the level of separation of the liquid and gaseous phases contained in a metal reservoir of pressurized gas, in particular in a bottle of butane or propane, this process being characterized in that it comprises the steps consisting in: measuring the temperature of the wall of the tank in two locations located one at the maximum at the level of the minimum admissible separation level and the other at least at the height of the maximum authorized level, the measurement being carried out in.
  • the method according to the invention makes it possible to detect this last. Since this temperature difference is only detectable for a short period of time, the method according to the invention must obviously be implemented within a limited time after filling. Preferably, the temperature measurement is carried out within a maximum of 30 minutes after filling the tank. Beyond this period, the temperatures of the parts of the tank situated on either side of the separation level become uniform again. According to a first embodiment of the method according to the invention, the temperature is measured using two infrared pyrometers.
  • the measurement of the temperatures can however be carried out using a single infrared pyrometer movable vertically.
  • the method according to this variant has the advantage of being easy to implement.
  • the method according to the invention may comprise a step consisting in spraying water vapor onto at least the part of the tank at the level of which the temperature measurements are carried out, the projection of the vapor being ensured before carrying out the temperature measurements. Thanks to this vapor projection, the difference between the temperatures of the liquid and gaseous phases can be more easily detected, which makes it possible to locate more precisely the level of separation of these two phases.
  • the method according to the invention is preferably implemented in an installation for filling gas cylinders, the temperature measurement being carried out at a fixed station in which the gas bottles are brought one after the other.
  • the present invention also relates to a device for detecting the level of separation of the liquid and gaseous phases contained in a metal tank of pressurized gas, in particular in a butane or propane bottle, this device being characterized in that it comprises a frame carrying means for measuring the temperature of the tank at two locations, one located at the maximum at the level of the minimum admissible separation level and the other at the minimum at the height of the maximum authorized level, and processing means for comparing the temperatures measured at the two locations in order to extract the tank from the commercial circuit when the temperatures are identical.
  • the frame is mounted on a gantry on which it is vertically movable between an extreme high position in which a tank is in place in front of the temperature measurement means and an extreme low position in which no tank is in front of said means temperature measurement.
  • the frame can advantageously include at least one shoe resting on the upper part of the tank when it is in its extreme high position and hang under the gantry when it is in its extreme low position.
  • the temperature measurement means are automatically at the desired height so that a possible temperature difference between the parts of the tank which are situated on either side of the level of separation of the liquid and gaseous phases can be detected under optimal conditions.
  • the gantry can advantageously overlap a conveyor associated with an installation for filling gas bottles and capable of driving the bottles one after the other.
  • the filling installation can operate at a high rate since it can process up to 1200 bottles per hour.
  • the bottles raise the shoe and move the frame from its extreme low position to its extreme high position when they come under the gantry.
  • the temperature measurement means comprise two infrared pyrometers directed towards the side wall of the tank and fixed on the frame so as to measure the temperatures at the two locations.
  • the temperature measurement means comprise a single infrared pyrometer directed towards the side wall of the tank and movable vertically on the frame so as to measure the temperatures at the two locations.
  • the frame can advantageously be provided with a carriage on which the temperature measurement means are mounted and which is provided with a contact element intended to bear against the side wall of a reservoir under the action of an elastic member when the reservoir is in front of the measuring means.
  • the carriage is carried by an assembly mounted on the frame and on which it is movable perpendicular to the trajectory of the containers, its movement being ensured against the action of the elastic member on the tanks arriving in front of the contact element and exerting on it a push to follow their trajectory.
  • the temperature measuring means can be easily maintained at a predetermined distance from the tank, which allows them to provide precise results.
  • the support can advantageously be movable parallel to the trajectory of the bottles, between a first position from which temperature measurements begin and a second position in which said measurements end. This characteristic makes it possible to obtain precise temperature measurements when the tanks circulate continuously in front of the measuring means. The response time of the latter has no influence on the measurements since they can be carried out several times while the tanks are moving.
  • the support comprises a drive stud movable perpendicular to the trajectory of the reservoirs, between an advanced position in which it is placed in front of a reservoir, at the start of the measurements, and a retracted position in which it is distant from the reservoir, the end of said measures.
  • the movement of the support during the execution of the measurements can thus be ensured by the tanks during their movement, which makes it possible to simplify the structure of the detection device.
  • a jack is provided between the frame and the support to return the latter to its first position when the measurements are completed. Thanks to this jack, the detection device can operate automatically and without dead time.
  • the detection device may also comprise means for projecting water vapor onto at least the part of the tanks at the level of which the temperature measurements are carried out, the projection means being actuated before the realization of the temperature measurements. Thanks to the sprayed water vapor, the temperature differences between the liquid and gaseous phases can be more easily detected, which allows a more precise localization of the level of separation of these two phases.
  • Figure 1 is a side view of a detection device according to the invention, mounted on a gantry straddling the conveyor of an installation for filling gas bottles, this device being shown while its frame is in its extreme low position;
  • Figure 2 is a view similar to Figure 1 but showing the device while its frame is in its upper extreme position;
  • Figure 3 is a schematic sectional view along line III-III of Figure 2.
  • Figure 4 is a sectional view similar to that of Figure 3, but showing another detection device according to one invention
  • Figure 5 is a side view of the device visible in Figure 4, the support of the measuring means being in its first position
  • Figure 6 is a side view similar to that of Figure 5 but in which the support of the measuring means is in its second position
  • - Figure 7 is a sectional view similar to that of Figure 4, but in which the measuring means comprise a single infrared pyrometer.
  • the device shown in Figures 1 to 3 was developed to detect the level of separation of the liquid and gas phases contained in butane or propane bottles. It could however be used to find out the liquid level in other metal tanks containing other pressurized gases.
  • the detection device comprises a frame 1 mounted on a gantry 2 overlapping the conveyor 3 of an installation designed to fill gas bottles 4.
  • the frame 1 comprises a vertical support 5 on which two infrared pyrometers 6 are fixed horizontally one above each other.
  • the pyrometers are not necessarily arranged along the same vertical; they could indeed be located on an oblique line, in particular to facilitate maintenance operations.
  • the frame 1 also comprises a frame 7 located above the conveyor 3 of the filling installation and connected to the support 5 by a horizontal arm 8 visible in FIG. 3.
  • the side walls of the frame 7 extend parallel to the conveyor 3 and are each connected by two parallel connecting rods 9 to a structure 10 fixed to the upper part of the gantry 2. Thanks to this particular mounting, the frame 1 is movable vertically between an extreme low position visible in the figure
  • the underside of the chassis 7 carries two pads 11 extending parallel to the conveyor 3 and spaced from each other so as to be able to receive the tap of the bottles 4 between them.
  • the underside of the pads 11 tilts towards the bottom, from the front edge of these to a flat intermediate part intended to cooperate with the dome of the bottles 4. It then tilts upwards, from this intermediate part to the rear edge of the pads.
  • the lower end of the front edge of the pads 11 is slightly higher than the base of the dome of the bottles.
  • a bottle 4 when driven in the direction of arrow F and advances under the gantry 2, its dome comes into contact with the pads 11 and lifts the frame 1.
  • the frame arrives in its extreme high position when the bottle 4 is in front of the pyrometers 6, under the gantry 2.
  • the conveyor 3 can possibly be immobilized when the frame is in its extreme high position.
  • the two pyrometers 6 are directed towards the side wall of the bottle, the lower pyrometer normally being located below the minimum admissible level of separation of the liquid and gaseous phases contained in the bottle, while the upper pyrometer is normally located at a height less than or equal to the maximum separation level allowed.
  • the pyrometers 6 are used to determine the temperatures of the parts of the wall of the bottle which are located in front of them and can be distant from each other by a distance of the order of 5 mm to 10 cm.
  • the bottle is filled with liquefied gas. When it enters the bottle, it partially expands and vaporizes, which cools the incident liquid and gas phases and creates a temperature difference between these two phases. As the heat of the liquid phase diffuses more quickly towards the wall of the bottle than the heat of the gas phase, a temperature gradient is established on either side of the level of separation of the two phases. It is therefore this temperature gradient which is determined using the two pyrometers 6.
  • the level of separation of the liquid and gas phases is located at an intermediate height between the horizontal axes of the pyrometers.
  • the bottle is therefore properly filled and can be put on the market.
  • the level of separation of the liquid and gaseous phases is situated outside the interval delimited by the horizontal axes of the pyrometers. In this case, the bottle is not filled enough or is too full and must be eliminated from the commercial circuit.
  • the determination of the temperatures of the parts of the wall of the bottle which are in front of the pyrometers must of course be carried out very shortly after the filling of the bottle.
  • the detection device also comprises processing means, not shown, for comparing the temperatures determined by the pyrometers and deciding whether the bottle which has just been filled can be directed into the commercial circuit or be eliminated therefrom. It will be recalled that the bottle is accepted when a temperature difference is detected by the pyrometers and refused when the temperatures determined by the latter are identical.
  • the conveyor can work step by step and stop when a bottle reaches the gantry. However, it can operate continuously, the temperature measurements being carried out while the bottles are circulating in front of the pyrometers.
  • a shock absorber device can be provided to allow the frame to come smoothly into its extreme low position when the bottles 4 move away from the gantry 2, once the temperature measurements have been made.
  • the processing means of the detection device can advantageously include an automatic device for controlling the evacuation of bottles which cannot be placed on the market. If necessary, this machine could transmit information outside the explosive area via optical fibers to a production supervision station. Means could also be provided for automatically adjusting the height of the pyrometers on the frame, depending the temperature of the liquid phase contained in the bottles, in order to take account of the variations in height of the minimum admissible and maximum authorized separation levels, these variations depending on the temperature and the gas contained in the bottles.
  • the detection device which has just been described also comprises means 12 for projecting water vapor onto the bottles 4, at least on their part at the level of which the temperature measurements are made.
  • the means 12 are located upstream of the gantry 2 and include a steam generator 13 located near the conveyor 3, and at least one nozzle 14 connected to the generator 13 via a pipe 15 and oriented so as to project the water vapor the bottles circulating in front of it. Thanks to this vapor projection, the difference between the temperatures of the liquid and gaseous phases can be detected more easily, and the measurements provided by the pyrometers 6 can be more precise.
  • the detection device visible in FIGS. 4 to 6 has great similarities with that which has just been described with reference to FIGS.
  • the device shown in Figures 4 to 6 differs from the device visible in Figures 1 to 3 in that the frame 1 comprises a carriage 16 on which are mounted the two infrared pyrometers 6 and which is provided with a bar horizontal 17 extending parallel to the trajectory of the bottles 4.
  • the carriage 16 is carried by an assembly 18 on which it is displaceable perpendicular to the trajectory of the bottles.
  • a spring 19 extending parallel to the pyrometers 6 and compressed between a bracket 20 of the assembly 18 and the carriage 16 biases the latter towards the trajectory of the bottles, in the direction of the arrow FI.
  • the assembly 18 is movable on the frame 1, parallel to the trajectory of the bottles, between a first position (visible in Figure 5) from which the measurements begin. temperature, and a second position (visible in FIG. 6) in which said measurements end.
  • the carriage 16 comprises a drive stud 21 movable perpendicular to the trajectory of the bottles, between an advanced position (visible in FIG.
  • a jack 22 carried by the carriage 16 is provided to move the pad 21 between its advanced and retracted positions as a function of the position of the bottles on the conveyor 3.
  • the pad 21 forces the 'assembly 18 to move with it in the direction of arrow F2 in Figure 5, the assembly 18 of course driving the carriage 16 with him.
  • the pyrometers 6 thus remain longer in front of the bottle situated under the gantry, which allows the execution of several successive measurements and consequently the obtaining of a more precise result.
  • a jack 23 mounted between the frame 1 and the assembly 18 is provided to return the latter to its first position when the measurements are completed.
  • the assembly 18, which is movable parallel to the trajectory of the bottles 4 is in reality carried by the support 5 of the frame.
  • the support 5 is itself movable vertically relative to the horizontal arm 8 of the frame 1 under the control of a jack not shown. Thanks to this particular arrangement, it is therefore possible to carry out the temperature measurements at predetermined locations on the side wall, the choice of these locations being chosen for example according to the size of the bottles.
  • the detection device visible in FIG. 7 has great similarities with that which has just been described with reference to FIGS. 4 to 6.
  • the device shown in Figure 7 differs from the device visible in Figures 4 to 6 in that the carriage 16 includes a single infrared pyrometer 6.
  • This pyrometer 6 can be moved vertically on the carriage 16 under the control of a jack 24 so that it can measure at the desired locations the temperature of the bottle located in front of it. It will be recalled for all practical purposes that, again, the temperature measurements are carried out in two locations, one located at the maximum at the height of the minimum admissible separation level and the other at the minimum at the height of the maximum authorized level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

The invention comprises the following steps consisting of: measuring the temperature of the wall of a reservoir (4) at two locations, one of which being located no higher than the minimum admissible level of separation and the other being no lower than the maximum authorized level, this measurement being effected in a limited period of time after the filling of the reservoir, and; comparing the measured temperatures in order to remove the reservoir from the commercial circuit when the temperatures are identical. The device comprises a frame (1) that supports two infrared pyrometers (6) oriented toward the reservoir (4) and placed at locations thereof, and comprises processing means for comparing the temperatures measured by the pyrometers in order to remove the reservoir from the commercial circuit when the temperatures are identical.

Description

Procédé et dispositif pour détecter le niveau de séparation des phases liquide et gazeuse dans un réservoir métallique Method and device for detecting the level of separation of the liquid and gas phases in a metal tank
La présente invention concerne un procédé et un dispositif pour détecter le niveau de séparation des phases liquide et gazeuse contenues dans un réservoir métallique de gaz sous pression, notamment dans une bouteille de butane ou de propane. A l'heure actuelle, le niveau de séparation des phases liquide et gazeuse contenues dans les bouteilles de butane et de propane est en général détecté à l'aide d'une cellule au césium. Cette solution impose toutefois la prise d'importantes mesures de sécurité pour assurer une protection efficace des installations et du personnel contre les rayons gamma émis par la cellule. La réalisation de la détection du niveau de séparation dans une zone explosive augmente encore les précautions à prendre. Une autre solution a été proposée récemment pour détecter le niveau de séparation des phases liquide et gazeuse. . Cette autre solution, qui consiste à chauffer localement la paroi du réservoir et à utiliser un dispositif d'imagerie thermique mesurant le rayonnement infrarouge émis par la partie chauffée de la paroi, est toutefois difficile à mettre en œuvre. La présente invention se propose de remédier aux inconvénients des solutions susmentionnées et, pour ce faire, elle a pour objet un procédé de détection du niveau de séparation des phases liquide et gazeuse contenues dans un réservoir métallique de gaz sous pression, notamment dans une bouteille de butane ou de propane, ce procédé étant caractérisé en ce qu'il comprend les étapes consistant à : mesurer la température de la paroi du réservoir en deux emplacements situés l'un au maximum à la hauteur du niveau de séparation minimum admissible et l'autre au minimum à la hauteur du niveau maximum autorisé, la mesure étant effectuée dans . un délai limité après l'emplissage du réservoir ; et comparer les températures mesurées afin d'extraire le réservoir du circuit commercial lorsque ces températures sont identiques. Lorsqu'un gaz sous pression est introduit à l'état liquide dans un réservoir, il subit une détente au cours de laquelle une partie prédéterminée de la phase liquide se transforme en phase gazeuse. Cette détente s'accompagne d'un refroidissement des phases liquide et gazeuse. Or, comme la diffusion thermique entre le réservoir et la phase liquide est plus grande que celle entre le réservoir et la phase gazeuse, les parties de la paroi du réservoir qui sont en contact avec la phase liquide deviennent plus froides que les parties en contact avec la phase gazeuse. Immédiatement après l'opération d' emplissage, un gradient de température s'établit donc de part et d'autre du niveau de séparation des phases liquide et gazeuse. C'est en détectant la différence de température s' établissant lors de l' emplissage, entre les parties de la paroi du réservoir qui sont situées de part et d'autre du niveau de séparation, que le procédé selon l'invention permet de détecter ce dernier. Etant donné que cette différence de température n'est décelable que pendant une courte période de temps, le procédé selon l'invention doit évidemment être mis en œuvre dans un délai limité après l' emplissage. De préférence, la mesure des températures est réalisée dans un délai maximum de 30 minutes après l' emplissage du réservoir. Au-delà de ce délai, les températures des parties du réservoir situées de part et d'autre du niveau de séparation redeviennent en effet uniformes. Selon un premier mode de mise en œuvre du procédé conforme à l'invention, la mesure des températures est réalisée à l'aide de deux pyromètres infrarouges. Selon un second mode de mise en œuvre du procédé, la mesure des températures peut cependant être réalisée à l'aide d'un pyromètre infrarouge unique déplaçable verticalement. Le procédé selon cette variante a l'avantage d'être facile à mettre en œuvre. Avantageusement, le procédé selon l'invention peut comprendre une étape consistant à projeter de la vapeur d'eau sur au moins la partie du réservoir au niveau de laquelle les mesures de température sont effectuées, la projection de la vapeur étant assurée avant la réalisation des mesures de température. Grâce à cette projection de vapeur, la différence entre les températures des phases liquide et gazeuse peut être plus facilement décelable, ce qui permet de localiser de façon plus précise le niveau de séparation de ces deux phases. Le procédé selon l'invention est de préférence mis en œuvre dans une installation d' emplissage de bouteilles de gaz, la mesure des températures étant réalisée au niveau d'un poste fixe dans lequel les bouteilles de gaz sont amenées les unes après les autres. La présente invention concerne également un dispositif pour détecter le niveau de séparation des phases liquide et gazeuse contenues dans un réservoir métallique de gaz sous pression, notamment dans une bouteille de butane ou de propane, ce dispositif étant caractérisé en ce qu'il comprend un bâti portant des moyens pour mesurer la température du réservoir en deux emplacements, l'un situé au maximum à la hauteur du niveau de séparation minimum admissible et l'autre au minimum à la hauteur du niveau maximum autorisé, et des moyens de traitement pour comparer les températures mesurées aux deux emplacements afin d'extraire le réservoir du circuit commercial lorsque les températures sont identiques. De préférence, le bâti est monté sur un portique sur lequel il est déplaçable verticalement entre une position haute extrême dans laquelle un réservoir est en place devant les moyens de mesure de température et une position basse extrême dans laquelle aucun réservoir n'est devant lesdits moyens de mesure de température. Le bâti peut avantageusement comporter au moins un patin reposant sur la partie supérieure du réservoir lorsqu'il est dans sa position haute extrême et pendre sous le portique lorsqu'il est dans sa position basse extrême. Lorsque le patin repose sur la partie supérieure du réservoir, les moyens de mesure de température sont automatiquement à la hauteur voulue pour qu'une éventuelle différence de température entre les parties du réservoir qui sont situées de part et d'autre du niveau de séparation des phases liquide et gazeuse puisse être détectée dans des conditions optimales. Par ailleurs, le portique peut avantageusement chevaucher un convoyeur associé à une installation d' emplissage de bouteilles de gaz et apte à entraîner les bouteilles les unes à la suite des autres . Grâce au dispositif selon l'invention, l'installation d' emplissage peut fonctionner à une cadence élevée puisqu'elle peut traiter jusqu'à 1200 bouteilles par heure. De préférence, les bouteilles soulèvent le patin et déplacent le bâti de sa position basse extrême à sa position haute extrême lorsqu'elles viennent sous le portique. Selon un premier mode de réalisation de l'invention, les moyens de mesure de température comprennent deux pyromètre infrarouges dirigés vers la paroi latérale du réservoir et fixés sur le bâti de façon à mesurer les températures au niveau des deux emplacements . Selon un second mode de réalisation de l'invention, les moyens de mesure de température comprennent un pyromètre infrarouge unique dirigé vers la paroi latérale du réservoir et déplaçable verticalement sur le bâti de façon à mesurer les températures au niveau des deux emplacements. Afin d'augmenter la précision des mesures de température, le bâti peut avantageusement être pourvu d'un chariot sur lequel sont montés les moyens de mesure de température et qui est pourvu d'un élément de contact destiné à s'appuyer contre la paroi latérale d'un réservoir sous l'action d'un organe élastique lorsque le réservoir est devant les moyens de mesure. De préférence, le chariot est porté par un ensemble monté sur le bâti et sur lequel il est déplaçable perpendiculairement à la trajectoire des récipients, son déplacement étant assuré à 1' encontre de l'action de l'organe élastique sur les réservoirs parvenant devant l'élément de contact et exerçant sur celui-ci une poussée pour suivre leur trajectoire. Grâce à ce montage, les moyens de mesure de température peuvent être maintenus facilement à une distance prédéterminée du réservoir, ce qui leur permet de fournir des résultats précis . Selon une caractéristique particulière du dispositif selon l'invention, le support peut avantageusement être déplaçable parallèlement à la trajectoire des bouteilles, entre une première position à partir de laquelle commencent les mesures de température et une seconde position dans laquelle se terminent lesdites mesures. Cette caractéristique permet d'obtenir des mesures de température précises lorsque les réservoirs circulent en continu devant les moyens de mesure. Le temps de réponse de ces derniers n'a en effet aucune influence sur les mesures puisque celles-ci peuvent être effectuées plusieurs fois pendant que les réservoirs se déplacent . De préférence, le support comporte un plot d'entraînement déplaçable perpendiculairement à la trajectoire des réservoirs, entre une position avancée dans laquelle il est placé devant un réservoir, au début des mesures, et une position rétractée dans laquelle il est éloigné du réservoir, à la fin desdites mesures. Le déplacement du support pendant l'exécution des mesures peut ainsi être assuré par les réservoirs pendant leur déplacement, ce qui permet de simplifier la structure du dispositif de détection. Il est cependant souhaitable qu'un vérin soit prévu entre le bâti et le support pour ramener ce dernier dans sa première position lorsque les mesures sont terminées. Grâce à ce vérin, le dispositif de détection peut fonctionner automatiquement et sans temps mort. Le dispositif de détection selon l'invention peut en outre comprendre des moyens pour projeter de la vapeur d'eau sur au moins la partie des réservoirs au niveau de laquelle les mesures de températures sont effectuées, les moyens de projection étant actionnés avant la réalisation des mesures de température. Grâce à la vapeur d'eau projetée, les différences de température entre les phases liquide et gazeuse peuvent être décelées plus facilement, ce qui permet une localisation plus précise du niveau de séparation de ces deux phases. Plusieurs modes d'exécution de la présente invention seront décrits ci-après à titre d'exemples nullement limitatifs en référence aux dessins annexés dans lesquels : la figure 1 est une vue de côté d'un dispositif de détection conforme à l'invention, monté sur un portique chevauchant le convoyeur d'une installation d' emplissage de bouteilles de gaz, ce dispositif étant représenté alors que son bâti est dans sa position basse extrême ; la figure 2 est une vue analogue à la figure 1 mais montrant le dispositif alors que son bâti est dans sa position haute extrême ; la figure 3 est une vue en coupe schématique selon la ligne III-III de la figure 2. la figure 4 est une vue en coupe analogue à celle de la figure 3, mais montrant un autre dispositif de détection conforme à 1 ' invention ; la figure 5 est une vue de côté du dispositif visible sur la figure 4, le support des moyens de mesure étant dans sa première position ; la figure 6 est une vue de côté analogue à celle de la figure 5 mais dans laquelle le support des moyens de mesure est dans sa seconde position ; et - la figure 7 est une vue en coupe analogue à celle de la figure 4, mais dans laquelle les moyens de mesure comprennent un pyromètre infrarouge unique . Le dispositif représenté sur les figures 1 à 3 a été mis au point pour détecter le niveau de séparation des phases liquide et gazeuse contenues dans des bouteilles de butane ou de propane. Il pourrait cependant être utilisé pour connaître le niveau de liquide dans d'autres réservoirs métalliques contenant d'autres gaz sous pression. Le dispositif de détection comprend un bâti 1 monté sur un portique 2 chevauchant le convoyeur 3 d'une installation conçue pour emplir des bouteilles de gaz 4. Le bâti 1 comprend un support vertical 5 sur lequel deux pyromètres infrarouges 6 sont fixés horizontalement l'un au-dessus de l'autre. Bien entendu, les pyromètres ne sont pas obligatoirement disposés le long de la même verticale ; ils pourraient en effet être situés sur une ligne oblique, notamment pour faciliter les opérations de maintenance. Le bâti 1 comprend également un châssis 7 situé au-dessus du convoyeur 3 de l'installation d' emplissage et relié au support 5 par un bras horizontal 8 visible sur la figure 3. Les parois latérales du châssis 7 s'étendent parallèlement au convoyeur 3 et sont reliées chacune par deux bielles parallèles 9 à une structure 10 fixée à la partie supérieure du portique 2. Grâce à ce montage particulier, le bâti 1 est déplaçable verticalement entre une position basse extrême visible sur la figureThe present invention relates to a method and a device for detecting the level of separation of the liquid and gaseous phases contained in a metal tank of pressurized gas, in particular in a butane or propane bottle. At present, the level of separation of the liquid and gas phases contained in the butane and propane bottles is generally detected using a cesium cell. However, this solution requires that important safety measures be taken to ensure effective protection of the installations and the personnel against the gamma rays emitted by the cell. Carrying out the detection of the separation level in an explosive area further increases the precautions to be taken. Another solution has been proposed recently for detecting the level of separation of the liquid and gaseous phases. . This other solution, which consists in locally heating the wall of the tank and in using a thermal imaging device measuring the infrared radiation emitted by the heated part of the wall, is however difficult to implement. The present invention proposes to overcome the drawbacks of the aforementioned solutions and, to do this, it relates to a method for detecting the level of separation of the liquid and gaseous phases contained in a metal reservoir of pressurized gas, in particular in a bottle of butane or propane, this process being characterized in that it comprises the steps consisting in: measuring the temperature of the wall of the tank in two locations located one at the maximum at the level of the minimum admissible separation level and the other at least at the height of the maximum authorized level, the measurement being carried out in. a limited time after filling the tank; and compare the temperatures measured in order to extract the reservoir from the commercial circuit when these temperatures are identical. When a pressurized gas is introduced in the liquid state into a tank, it undergoes an expansion during which a predetermined part of the liquid phase transforms into the gaseous phase. This expansion is accompanied by cooling of the liquid and gaseous phases. However, as the thermal diffusion between the tank and the liquid phase is greater than that between the tank and the gas phase, the parts of the wall of the tank which are in contact with the liquid phase become colder than the parts in contact with the gas phase. Immediately after the filling operation, a temperature gradient is therefore established on either side of the level of separation of the liquid and gaseous phases. It is by detecting the temperature difference established during filling, between the parts of the wall of the tank which are situated on either side of the separation level, that the method according to the invention makes it possible to detect this last. Since this temperature difference is only detectable for a short period of time, the method according to the invention must obviously be implemented within a limited time after filling. Preferably, the temperature measurement is carried out within a maximum of 30 minutes after filling the tank. Beyond this period, the temperatures of the parts of the tank situated on either side of the separation level become uniform again. According to a first embodiment of the method according to the invention, the temperature is measured using two infrared pyrometers. According to a second mode of implementation of the method, the measurement of the temperatures can however be carried out using a single infrared pyrometer movable vertically. The method according to this variant has the advantage of being easy to implement. Advantageously, the method according to the invention may comprise a step consisting in spraying water vapor onto at least the part of the tank at the level of which the temperature measurements are carried out, the projection of the vapor being ensured before carrying out the temperature measurements. Thanks to this vapor projection, the difference between the temperatures of the liquid and gaseous phases can be more easily detected, which makes it possible to locate more precisely the level of separation of these two phases. The method according to the invention is preferably implemented in an installation for filling gas cylinders, the temperature measurement being carried out at a fixed station in which the gas bottles are brought one after the other. The present invention also relates to a device for detecting the level of separation of the liquid and gaseous phases contained in a metal tank of pressurized gas, in particular in a butane or propane bottle, this device being characterized in that it comprises a frame carrying means for measuring the temperature of the tank at two locations, one located at the maximum at the level of the minimum admissible separation level and the other at the minimum at the height of the maximum authorized level, and processing means for comparing the temperatures measured at the two locations in order to extract the tank from the commercial circuit when the temperatures are identical. Preferably, the frame is mounted on a gantry on which it is vertically movable between an extreme high position in which a tank is in place in front of the temperature measurement means and an extreme low position in which no tank is in front of said means temperature measurement. The frame can advantageously include at least one shoe resting on the upper part of the tank when it is in its extreme high position and hang under the gantry when it is in its extreme low position. When the pad rests on the upper part of the tank, the temperature measurement means are automatically at the desired height so that a possible temperature difference between the parts of the tank which are situated on either side of the level of separation of the liquid and gaseous phases can be detected under optimal conditions. Furthermore, the gantry can advantageously overlap a conveyor associated with an installation for filling gas bottles and capable of driving the bottles one after the other. Thanks to the device according to the invention, the filling installation can operate at a high rate since it can process up to 1200 bottles per hour. Preferably, the bottles raise the shoe and move the frame from its extreme low position to its extreme high position when they come under the gantry. According to a first embodiment of the invention, the temperature measurement means comprise two infrared pyrometers directed towards the side wall of the tank and fixed on the frame so as to measure the temperatures at the two locations. According to a second embodiment of the invention, the temperature measurement means comprise a single infrared pyrometer directed towards the side wall of the tank and movable vertically on the frame so as to measure the temperatures at the two locations. In order to increase the accuracy of the temperature measurements, the frame can advantageously be provided with a carriage on which the temperature measurement means are mounted and which is provided with a contact element intended to bear against the side wall of a reservoir under the action of an elastic member when the reservoir is in front of the measuring means. Preferably, the carriage is carried by an assembly mounted on the frame and on which it is movable perpendicular to the trajectory of the containers, its movement being ensured against the action of the elastic member on the tanks arriving in front of the contact element and exerting on it a push to follow their trajectory. Thanks to this arrangement, the temperature measuring means can be easily maintained at a predetermined distance from the tank, which allows them to provide precise results. According to a particular characteristic of the device according to the invention, the support can advantageously be movable parallel to the trajectory of the bottles, between a first position from which temperature measurements begin and a second position in which said measurements end. This characteristic makes it possible to obtain precise temperature measurements when the tanks circulate continuously in front of the measuring means. The response time of the latter has no influence on the measurements since they can be carried out several times while the tanks are moving. Preferably, the support comprises a drive stud movable perpendicular to the trajectory of the reservoirs, between an advanced position in which it is placed in front of a reservoir, at the start of the measurements, and a retracted position in which it is distant from the reservoir, the end of said measures. The movement of the support during the execution of the measurements can thus be ensured by the tanks during their movement, which makes it possible to simplify the structure of the detection device. However, it is desirable that a jack is provided between the frame and the support to return the latter to its first position when the measurements are completed. Thanks to this jack, the detection device can operate automatically and without dead time. The detection device according to the invention may also comprise means for projecting water vapor onto at least the part of the tanks at the level of which the temperature measurements are carried out, the projection means being actuated before the realization of the temperature measurements. Thanks to the sprayed water vapor, the temperature differences between the liquid and gaseous phases can be more easily detected, which allows a more precise localization of the level of separation of these two phases. Several embodiments of the present invention will be described below by way of non-limiting examples with reference to the accompanying drawings in which: Figure 1 is a side view of a detection device according to the invention, mounted on a gantry straddling the conveyor of an installation for filling gas bottles, this device being shown while its frame is in its extreme low position; Figure 2 is a view similar to Figure 1 but showing the device while its frame is in its upper extreme position; Figure 3 is a schematic sectional view along line III-III of Figure 2. Figure 4 is a sectional view similar to that of Figure 3, but showing another detection device according to one invention; Figure 5 is a side view of the device visible in Figure 4, the support of the measuring means being in its first position; Figure 6 is a side view similar to that of Figure 5 but in which the support of the measuring means is in its second position; and - Figure 7 is a sectional view similar to that of Figure 4, but in which the measuring means comprise a single infrared pyrometer. The device shown in Figures 1 to 3 was developed to detect the level of separation of the liquid and gas phases contained in butane or propane bottles. It could however be used to find out the liquid level in other metal tanks containing other pressurized gases. The detection device comprises a frame 1 mounted on a gantry 2 overlapping the conveyor 3 of an installation designed to fill gas bottles 4. The frame 1 comprises a vertical support 5 on which two infrared pyrometers 6 are fixed horizontally one above each other. Of course, the pyrometers are not necessarily arranged along the same vertical; they could indeed be located on an oblique line, in particular to facilitate maintenance operations. The frame 1 also comprises a frame 7 located above the conveyor 3 of the filling installation and connected to the support 5 by a horizontal arm 8 visible in FIG. 3. The side walls of the frame 7 extend parallel to the conveyor 3 and are each connected by two parallel connecting rods 9 to a structure 10 fixed to the upper part of the gantry 2. Thanks to this particular mounting, the frame 1 is movable vertically between an extreme low position visible in the figure
1 et dans laquelle aucune bouteille n'est sous le portique, et une position haute extrême visible sur la figure 2 et dans laquelle une bouteille est sous le portique. La face inférieure du châssis 7 porte deux patins 11 s 'étendant parallèlement au convoyeur 3 et espacés l'un de l'autre de façon à pouvoir recevoir entre eux le robinet des bouteilles 4. La face inférieure des patins 11 s'incline vers le bas, du bord antérieur de ceux-ci jusqu'à une partie intermédiaire plane destinée à coopérer avec le dôme des bouteilles 4. Elle s'incline ensuite vers le haut, de cette partie intermédiaire jusqu'au bord postérieur des patins. Lorsqu' aucune bouteille n'est sous le portique 2, l'extrémité inférieure du bord antérieur des patins 11 est légèrement plus haut que la base du dôme des bouteilles. Ainsi, lorsqu'une bouteille 4 est entraînée dans le sens de la flèche F et s'avance sous le portique 2, son dôme entre en contact avec les patins 11 et soulève le bâti 1. Le bâti arrive dans sa position haute extrême lorsque la bouteille 4 se trouve devant les pyromètres 6, sous le portique 2. Le convoyeur 3 peut éventuellement être immobilisé quand le bâti est dans sa position haute extrême. Les deux pyromètres 6 sont dirigés vers la paroi latérale de la bouteille, le pyromètre inférieur étant normalement situé au-dessous du niveau de séparation minimum admissible des phases liquide et gazeuse contenues dans la bouteille, tandis que le pyromètre supérieur est normalement situé à une hauteur inférieure ou égale au niveau de séparation maximum autorisé. Les pyromètres 6 sont utilisés pour déterminer les températures des parties de la paroi de la bouteille qui sont situées devant eux et peuvent être éloignés l'un de l'autre d'une distance de l'ordre de 5 mm à 10 cm. Comme on l'a déjà indiqué ci -dessus, la bouteille est remplie avec du gaz liquéfié. Celui-ci, en pénétrant dans la bouteille, se détend et se vaporise en partie, ce qui provoque un refroidissement des phases liquide et gazeuse incidentes et crée une différence de température entre ces deux phases. Comme la chaleur de la phase liquide diffuse plus rapidement vers la paroi de la bouteille que la chaleur de la phase gazeuse, il s'établit un gradient de température de part et d'autre du niveau de séparation des deux phases. C'est donc ce gradient de température qui est déterminé à l'aide des deux pyromètres 6. Lorsque les températures relevées sont différentes, le niveau de séparation des phases liquide et gazeuse est situé à une hauteur intermédiaire entre les axes horizontaux des pyromètres. La bouteille est donc remplie convenablement et peut être mise dans le commerce . En revanche, lorsque les températures relevées sont identiques, le niveau de séparation des phases liquide et gazeuse est situé en dehors de l'intervalle délimité par les axes horizontaux des pyromètres. Dans ce cas, la bouteille n'est pas assez remplie ou l'est trop et doit être éliminée du circuit commercial. La détermination des températures des parties de la paroi de la bouteille qui sont devant les pyromètres doit bien entendu être effectuée très peu de temps après l' emplissage de la bouteille. En effet, si les températures de ces parties étaient déterminées longtemps après l' emplissage, elles auraient le temps de s'uniformiser et les indications fournies par les pyromètres seraient identiques et par conséquent inexploitables. Le dispositif de détection comprend par ailleurs des moyens de traitement non représentés pour comparer les températures déterminées par les pyromètres et décider si la bouteille qui vient d'être remplie peut être dirigée dans le circuit commercial ou en être éliminée. On rappellera que la bouteille est acceptée lorsqu'une différence de température est décelée par les pyromètres et refusée lorsque les températures déterminées par ces derniers sont identiques . Pour l'exécution des mesures de température, le convoyeur peut fonctionner pas à pas et s'arrêter lorsqu'une bouteille parvient sous le portique. Il peut toutefois fonctionner en continu, les mesures de température étant réalisées pendant que les bouteilles circulent devant les pyromètres. On notera ici qu'un dispositif amortisseur non représenté peut être prévu pour permettre au bâti de venir en douceur dans sa position basse extrême lorsque les bouteilles 4 s'éloignent du portique 2, une fois les mesures de températures effectuées. Les moyens de traitement du dispositif de détection peuvent avantageusement comprendre un automate pour commander l'évacuation des bouteilles ne pouvant pas être mises sur le marché. En cas de besoin, cet automate pourrait transmettre les informations à l'extérieur de la zone explosive par l'intermédiaire de fibres optiques vers un poste de supervision de la production. Des moyens pourraient également être prévus pour ajuster automatiquement la hauteur des pyromètres sur le bâti, en fonction de la température de la phase liquide contenue dans les bouteilles, afin de tenir compte des variations en hauteur des niveaux de séparation minimum admissible et maximum autorisé, ces variations dépendant de la température et du gaz contenu dans les bouteilles. Le dispositif de détection qui vient d'être décrit comprend par ailleurs des moyens 12 pour projeter de la vapeur d'eau sur les bouteilles 4, au moins sur leur partie au niveau de laquelle les mesures de température sont effectuées . Les moyens 12 sont situés en amont du portique 2 et comprennent un générateur de vapeur 13 situé à proximité du convoyeur 3, et au moins une buse 14 reliée au générateur 13 par l'intermédiaire d'une conduite 15 et orientée de façon à projeter la vapeur d'eau les bouteilles circulant devant elle. Grâce à cette projection de vapeur, la différence entre les températures des phases liquide et gazeuse peut être décelée plus facilement, et les mesures fournies par les pyromètres 6 peuvent être plus précises. Le dispositif de détection visible sur les figures 4 à 6 présente de grandes similitudes avec celui qui vient d'être décrit en référence aux figures 1 à 3 et, pour cette raison, les parties constitutives communes aux deux dispositifs seront désignées par les mêmes références et ne seront pas décrites à nouveau ici. En fait, le dispositif représenté sur les figures 4 à 6 se distingue du dispositif visible sur les figures 1 à 3 en ce que le bâti 1 comporte un chariot 16 sur lequel sont montés les deux pyromètres infrarouges 6 et qui est pourvu d'une barre horizontale 17 s ' étendant parallèlement à la trajectoire des bouteilles 4. Le chariot 16 est porté par un ensemble 18 sur lequel il est déplaçable perpendiculairement à la trajectoire des bouteilles. Un ressort 19 s 'étendant parallèlement aux pyromètres 6 et comprimé entre une potence 20 de l'ensemble 18 et le chariot 16 sollicite ce dernier vers la trajectoire des bouteilles, dans la direction de la flèche FI. Lorsque les bouteilles s'avancent sous le portique 2, leur paroi latérale vient en contact avec la barre 17 et oblige le chariot 16 à se déplacer dans le sens inverse de la flèche FI, à 1 ' encontre de l'action du ressort 19. Ainsi, les pyromètres 6 sont maintenus à une distance prédéterminée des bouteilles pendant les opérations de mesure, ce qui permet d'obtenir des résultats précis et fiables. Dans le mode de réalisation représenté sur les figures 4 à 6, l'ensemble 18 est déplaçable sur le bâti 1, parallèlement à la trajectoire des bouteilles, entre une première position (visible sur la figure 5) à partir de laquelle commencent les mesures de température, et une seconde position (visible sur la figure 6) dans laquelle se terminent lesdites mesures. Le chariot 16 comporte un plot d'entraînement 21 déplaçable perpendiculairement à la trajectoire des bouteilles, entre une position avancée (visible sur la figure 4) dans laquelle il est placé devant une bouteille, du début à la fin des mesures, et une position rétractée dans laquelle il est éloigné de la bouteille une fois les mesures terminées. Un vérin 22 porté par le chariot 16 est prévu pour déplacer le plot 21 entre ses positions avancée et rétractée en fonction de la position des bouteilles sur le convoyeur 3. Lorsqu'une bouteille entre en contact avec le plot 21, celui-ci oblige l'ensemble 18 à se déplacer avec lui dans le sens de la flèche F2 sur la figure 5, l'ensemble 18 entraînant bien entendu le chariot 16 avec lui. Les pyromètres 6 demeurent ainsi plus longtemps devant la bouteille située sous le portique, ce qui permet l'exécution de plusieurs mesures successives et par conséquent l'obtention de résultat plus précis. Lorsque les mesures sont terminées, un vérin 23 monté entre le bâti 1 et l'ensemble 18 est prévu pour ramener ce dernier dans sa première position lorsque les mesures sont terminées. Pour être précis, on indiquera que l'ensemble 18, qui est déplaçable parallèlement à la trajectoire des bouteilles 4, est en réalité porté par le support 5 du bâti. On notera par ailleurs que le support 5 est lui-même déplaçable verticalement par rapport au bras horizontal 8 du bâti 1 sous la commande d'un vérin non représenté. Grâce à ce montage particulier, il est donc possible d'effectuer les mesures de températures en des emplacements prédéterminés de la paroi latérale, le choix de ces emplacements étant choisi par exemple en fonction de la taille des bouteilles. Le dispositif de détection visible sur la figure 7 présente de grandes similitudes avec celui qui vient d'être décrit en référence aux figures 4 à 6. Par suite, les parties constitutives communes aux deux dispositifs seront désignées par les mêmes références et ne seront pas décrites à nouveau ici. En fait, le dispositif représenté sur la figure 7 se distingue du dispositif visible sur les figures 4 à 6 en ce que le chariot 16 comporte un pyromètre infrarouge 6 unique. Ce pyromètre 6 est déplaçable verticalement sur le chariot 16 sous la commande d'un vérin 24 afin qu'il puisse mesurer aux emplacements voulus la température de la bouteille située devant lui. On rappellera à toutes fins utiles que, là encore, les mesures de température sont effectuées en deux emplacements, l'un situé au maximum à la hauteur du niveau de séparation minimum admissible et l'autre au minimum à la hauteur du niveau maximum autorisé. 1 and in which no bottle is under the gantry, and an extreme high position visible in FIG. 2 and in which a bottle is under the gantry. The underside of the chassis 7 carries two pads 11 extending parallel to the conveyor 3 and spaced from each other so as to be able to receive the tap of the bottles 4 between them. The underside of the pads 11 tilts towards the bottom, from the front edge of these to a flat intermediate part intended to cooperate with the dome of the bottles 4. It then tilts upwards, from this intermediate part to the rear edge of the pads. When no bottle is under the gantry 2, the lower end of the front edge of the pads 11 is slightly higher than the base of the dome of the bottles. Thus, when a bottle 4 is driven in the direction of arrow F and advances under the gantry 2, its dome comes into contact with the pads 11 and lifts the frame 1. The frame arrives in its extreme high position when the bottle 4 is in front of the pyrometers 6, under the gantry 2. The conveyor 3 can possibly be immobilized when the frame is in its extreme high position. The two pyrometers 6 are directed towards the side wall of the bottle, the lower pyrometer normally being located below the minimum admissible level of separation of the liquid and gaseous phases contained in the bottle, while the upper pyrometer is normally located at a height less than or equal to the maximum separation level allowed. The pyrometers 6 are used to determine the temperatures of the parts of the wall of the bottle which are located in front of them and can be distant from each other by a distance of the order of 5 mm to 10 cm. As already indicated above, the bottle is filled with liquefied gas. When it enters the bottle, it partially expands and vaporizes, which cools the incident liquid and gas phases and creates a temperature difference between these two phases. As the heat of the liquid phase diffuses more quickly towards the wall of the bottle than the heat of the gas phase, a temperature gradient is established on either side of the level of separation of the two phases. It is therefore this temperature gradient which is determined using the two pyrometers 6. When the temperatures recorded are different, the level of separation of the liquid and gas phases is located at an intermediate height between the horizontal axes of the pyrometers. The bottle is therefore properly filled and can be put on the market. On the other hand, when the temperatures recorded are identical, the level of separation of the liquid and gaseous phases is situated outside the interval delimited by the horizontal axes of the pyrometers. In this case, the bottle is not filled enough or is too full and must be eliminated from the commercial circuit. The determination of the temperatures of the parts of the wall of the bottle which are in front of the pyrometers must of course be carried out very shortly after the filling of the bottle. Indeed, if the temperatures of these parts were determined long after filling, they would have time to become uniform and the indications provided by the pyrometers would be identical and therefore unusable. The detection device also comprises processing means, not shown, for comparing the temperatures determined by the pyrometers and deciding whether the bottle which has just been filled can be directed into the commercial circuit or be eliminated therefrom. It will be recalled that the bottle is accepted when a temperature difference is detected by the pyrometers and refused when the temperatures determined by the latter are identical. For the execution of temperature measurements, the conveyor can work step by step and stop when a bottle reaches the gantry. However, it can operate continuously, the temperature measurements being carried out while the bottles are circulating in front of the pyrometers. It should be noted here that a shock absorber device, not shown, can be provided to allow the frame to come smoothly into its extreme low position when the bottles 4 move away from the gantry 2, once the temperature measurements have been made. The processing means of the detection device can advantageously include an automatic device for controlling the evacuation of bottles which cannot be placed on the market. If necessary, this machine could transmit information outside the explosive area via optical fibers to a production supervision station. Means could also be provided for automatically adjusting the height of the pyrometers on the frame, depending the temperature of the liquid phase contained in the bottles, in order to take account of the variations in height of the minimum admissible and maximum authorized separation levels, these variations depending on the temperature and the gas contained in the bottles. The detection device which has just been described also comprises means 12 for projecting water vapor onto the bottles 4, at least on their part at the level of which the temperature measurements are made. The means 12 are located upstream of the gantry 2 and include a steam generator 13 located near the conveyor 3, and at least one nozzle 14 connected to the generator 13 via a pipe 15 and oriented so as to project the water vapor the bottles circulating in front of it. Thanks to this vapor projection, the difference between the temperatures of the liquid and gaseous phases can be detected more easily, and the measurements provided by the pyrometers 6 can be more precise. The detection device visible in FIGS. 4 to 6 has great similarities with that which has just been described with reference to FIGS. 1 to 3 and, for this reason, the constituent parts common to the two devices will be designated by the same references and will not be described again here. In fact, the device shown in Figures 4 to 6 differs from the device visible in Figures 1 to 3 in that the frame 1 comprises a carriage 16 on which are mounted the two infrared pyrometers 6 and which is provided with a bar horizontal 17 extending parallel to the trajectory of the bottles 4. The carriage 16 is carried by an assembly 18 on which it is displaceable perpendicular to the trajectory of the bottles. A spring 19 extending parallel to the pyrometers 6 and compressed between a bracket 20 of the assembly 18 and the carriage 16 biases the latter towards the trajectory of the bottles, in the direction of the arrow FI. When the bottles advance under the gantry 2, their side wall comes into contact with the bar 17 and forces the carriage 16 to move in the opposite direction to the arrow FI, against the action of the spring 19. Thus, the pyrometers 6 are kept at a predetermined distance from the bottles during the measurement operations, which makes it possible to obtain precise and reliable results. In the embodiment shown in Figures 4 to 6, the assembly 18 is movable on the frame 1, parallel to the trajectory of the bottles, between a first position (visible in Figure 5) from which the measurements begin. temperature, and a second position (visible in FIG. 6) in which said measurements end. The carriage 16 comprises a drive stud 21 movable perpendicular to the trajectory of the bottles, between an advanced position (visible in FIG. 4) in which it is placed in front of a bottle, from the start to the end of the measurements, and a retracted position in which it is moved away from the bottle after the measurements are completed. A jack 22 carried by the carriage 16 is provided to move the pad 21 between its advanced and retracted positions as a function of the position of the bottles on the conveyor 3. When a bottle comes into contact with the pad 21, the latter forces the 'assembly 18 to move with it in the direction of arrow F2 in Figure 5, the assembly 18 of course driving the carriage 16 with him. The pyrometers 6 thus remain longer in front of the bottle situated under the gantry, which allows the execution of several successive measurements and consequently the obtaining of a more precise result. When the measurements are completed, a jack 23 mounted between the frame 1 and the assembly 18 is provided to return the latter to its first position when the measurements are completed. To be precise, it will be indicated that the assembly 18, which is movable parallel to the trajectory of the bottles 4, is in reality carried by the support 5 of the frame. Note also that the support 5 is itself movable vertically relative to the horizontal arm 8 of the frame 1 under the control of a jack not shown. Thanks to this particular arrangement, it is therefore possible to carry out the temperature measurements at predetermined locations on the side wall, the choice of these locations being chosen for example according to the size of the bottles. The detection device visible in FIG. 7 has great similarities with that which has just been described with reference to FIGS. 4 to 6. Consequently, the constituent parts common to the two devices will be designated by the same references and will not be described again here. In fact, the device shown in Figure 7 differs from the device visible in Figures 4 to 6 in that the carriage 16 includes a single infrared pyrometer 6. This pyrometer 6 can be moved vertically on the carriage 16 under the control of a jack 24 so that it can measure at the desired locations the temperature of the bottle located in front of it. It will be recalled for all practical purposes that, again, the temperature measurements are carried out in two locations, one located at the maximum at the height of the minimum admissible separation level and the other at the minimum at the height of the maximum authorized level.

Claims

REVENDICATIONS 1. Procédé pour détecter le niveau de séparation des phases liquide et gazeuse contenues dans un réservoir métallique de gaz sous pression, notamment dans une bouteille de butane ou de propane, caractérisé en ce qu'il comprend les étapes consistant à : mesurer la température de la paroi du réservoir (4) en deux emplacements situés l'un au maximum à la hauteur du niveau de séparation minimum admissible et l'autre au minimum à la hauteur du niveau maximum autorisé, la mesure étant effectuée dans un délai limité après l' emplissage du réservoir ; et comparer les températures mesurées afin d'extraire le réservoir du circuit commercial lorsque ces températures sont identiques. 2. Procédé selon la revendication 1, caractérisé en ce que la mesure des températures est réalisée dans un délai maximum de 30 minutes après l' emplissage du réservoir (4) . 3. Procédé selon la revendication 1 ou 2 , caractérisé en ce que la mesure des températures est réalisée à l'aide de deux pyromètres infrarouges (6) . 4. Procédé selon la revendication 1 ou 2 , caractérisé en ce que la mesure des températures est réalisée à l'aide d'un pyromètre infrarouge unique déplaçable verticalement. 5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une étape consistant à projeter de la vapeur d'eau sur au moins la partie du réservoir au niveau de laquelle les mesures de température sont effectuées, la projection de la vapeur étant assurée avant la réalisation des mesures de température . 6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est mis en œuvre dans une installation d' emplissage de bouteilles de gaz, la mesure des températures étant réalisée au niveau d'un poste fixe dans lequel les bouteilles de gaz (4) sont amenées les unes après les autres. 7. Dispositif pour détecter le niveau de séparation des phases liquide et gazeuse contenues dans un réservoir métallique de gaz sous pression (4) , notamment dans une bouteille de butane ou de propane, caractérisé en ce qu'il comprend un bâti (1) portant des moyens (6) pour mesurer la température du réservoir en deux emplacements, l'un situé au maximum à la hauteur du niveau de séparation minimum admissible et l'autre au minimum à la hauteur du niveau maximum autorisé, et des moyens de traitement pour comparer les températures mesurées aux deux emplacements afin d'extraire le réservoir (4) du circuit commercial lorsque les températures sont identiques . 8. Dispositif selon la revendication 7, caractérisé en ce que le bâti (1) est monté sur un portique (2) sur lequel il est déplaçable verticalement entre une position haute extrême dans laquelle un réservoir (4) est en place devant les moyens de mesure de température (6) et une position basse extrême dans laquelle aucun réservoir n'est devant lesdits moyens de mesure de température. 9. Dispositif selon la revendication 7 ou 8 , caractérisé en ce que le bâti (1) comporte au moins un patin (11) reposant sur la partie supérieure du réservoir (4) lorsqu'il est dans sa position haute extrême et pend sous le portique (2) lorsqu'il est dans sa position basse extrême. 10. Dispositif selon la revendication 8 ou 9 , caractérisé en ce que le portique (2) chevauche un convoyeur (3) associé à une installation d' emplissage de bouteilles de gaz et apte à entraîner les bouteilles (4) les unes à la suite des autres. 11. Dispositif selon la revendication 8, caractérisé en ce que les bouteilles (4) soulèvent le patin (11) et déplacent le bâti (1) de sa position basse extrême à sa position haute extrême lorsqu'elles viennent sous le portique (2). 12. Dispositif selon l'une quelconque des revendications 7 à 11, caractérisé en ce que les moyens de mesure de température (6) comprennent deux pyromètre infrarouges dirigés vers la paroi latérale du réservoir (4) et fixés sur le bâti (1) de façon à mesurer les températures au niveau des deux emplacements. 13. Dispositif selon l'une quelconque des revendications 7 à 11, caractérisé en ce que les moyens de mesure de température (6) comprennent un pyromètre infrarouge unique dirigé vers la paroi latérale du réservoir (4) et déplaçable verticalement sur le bâti (1) de façon à mesurer les températures au niveau des deux emplacements . 14. Dispositif selon l'une quelconque des revendications 7 à 13, caractérisé en ce que le bâti (1) est pourvu d'un chariot (16) sur lequel sont montés les moyens de mesure de température (6) et qui est pourvu d'un élément de contact (17) destiné à s'appuyer contre la paroi latérale d'un réservoir (4) sous l'action d'un organe élastique (19) lorsque le réservoir (4) est devant les moyens de mesure. 15. Dispositif selon la revendication 14, caractérisé en ce que le chariot (16) est porté par un ensemble (18) monté sur le bâti (1) et sur lequel il est déplaçable perpendiculairement à la trajectoire des récipients (4), son déplacement étant assuré à 1 ' encontre de l'action de l'organe élastique (19) sur les réservoirs parvenant devant l'élément de contact (17) et exerçant sur celui-ci une poussée pour suivre leur trajectoire. 16. Dispositif selon la revendication 15, caractérisé en ce que l'ensemble (18) est déplaçable sur le bâti (1) parallèlement à la trajectoire des réservoirs (4) , entre une première position à partir de laquelle commencent les mesures de température et une seconde position dans laquelle se terminent lesdites mesures. 17. Dispositif selon la revendication 16, caractérisé en ce que le chariot (16) comporte un plot d'entraînement (21) déplaçable perpendiculairement à la trajectoire des réservoirs (4), entre une position avancée dans laquelle il est placé devant un réservoir, du début à la fin des mesures, et une position rétractée dans laquelle il est éloigné du réservoir, une fois les mesures terminées. 18. Dispositif selon la revendication 17, caractérisé en ce qu'un vérin (23) est prévu entre le bâti (1) et l'ensemble (18) pour ramener ce dernier dans sa première position lorsque les mesures sont terminées . 19. Dispositif selon l'une quelconque des revendications 7 à 18, caractérisé en ce qu'il comprend en outre des moyens (12) pour projeter de la vapeur d'eau sur au moins la partie des réservoirs (4) au niveau de laquelle les mesures de températures sont effectuées, les moyens de projection (12) étant actionnés avant la réalisation des mesures de température. CLAIMS 1. Method for detecting the level of separation of the liquid and gaseous phases contained in a metal tank of pressurized gas, in particular in a butane or propane bottle, characterized in that it comprises the steps consisting in: measuring the temperature of the tank wall (4) in two locations, one at the maximum at the level of the minimum admissible separation level and the other at the minimum at the height of the maximum authorized level, the measurement being carried out within a limited time after the 'filling the tank; and compare the temperatures measured in order to extract the reservoir from the commercial circuit when these temperatures are identical. 2. Method according to claim 1, characterized in that the measurement of temperatures is carried out within a maximum period of 30 minutes after filling the tank (4). 3. Method according to claim 1 or 2, characterized in that the measurement of the temperatures is carried out using two infrared pyrometers (6). 4. Method according to claim 1 or 2, characterized in that the measurement of the temperatures is carried out using a single infrared pyrometer movable vertically. 5. Method according to any one of the preceding claims, characterized in that it comprises a step consisting in projecting water vapor onto at least the part of the tank at the level of which the temperature measurements are made, the projection steam is provided before temperature measurements are taken. 6. Method according to any one of the preceding claims, characterized in that it is implemented in an installation for filling gas cylinders, the temperature measurement being carried out at a fixed station in which the bottles gas (4) are brought one after the other. 7. Device for detecting the level of separation of the liquid and gaseous phases contained in a metal tank of pressurized gas (4), in particular in a bottle of butane or of propane, characterized in that it comprises a frame (1) carrying means (6) for measuring the temperature of the tank in two locations, one located at the maximum at the height of the minimum admissible level of separation and the other at minimum at the height of the maximum authorized level, and processing means for comparing the temperatures measured at the two locations in order to extract the reservoir (4) from the commercial circuit when the temperatures are identical. 8. Device according to claim 7, characterized in that the frame (1) is mounted on a gantry (2) on which it is movable vertically between a high extreme position in which a tank (4) is in place in front of the means of temperature measurement (6) and an extreme low position in which no tank is in front of said temperature measurement means. 9. Device according to claim 7 or 8, characterized in that the frame (1) comprises at least one shoe (11) resting on the upper part of the reservoir (4) when it is in its extreme high position and hangs under the gantry (2) when it is in its extreme low position. 10. Device according to claim 8 or 9, characterized in that the gantry (2) overlaps a conveyor (3) associated with an installation for filling gas bottles and capable of driving the bottles (4) one after the other others. 11. Device according to claim 8, characterized in that the bottles (4) raise the shoe (11) and move the frame (1) from its extreme low position to its extreme high position when they come under the gantry (2) . 12. Device according to any one of claims 7 to 11, characterized in that the temperature measurement means (6) comprise two infrared pyrometers directed towards the side wall of the tank (4) and fixed on the frame (1) of so as to measure the temperatures at the two locations. 13. Device according to any one of claims 7 to 11, characterized in that the temperature measuring means (6) comprise a single infrared pyrometer directed towards the wall side of the tank (4) and vertically movable on the frame (1) so as to measure the temperatures at the two locations. 14. Device according to any one of claims 7 to 13, characterized in that the frame (1) is provided with a carriage (16) on which are mounted the temperature measuring means (6) and which is provided with 'a contact element (17) intended to bear against the side wall of a tank (4) under the action of an elastic member (19) when the tank (4) is in front of the measuring means. 15. Device according to claim 14, characterized in that the carriage (16) is carried by an assembly (18) mounted on the frame (1) and on which it is movable perpendicular to the trajectory of the containers (4), its displacement being ensured against the action of the elastic member (19) on the tanks reaching the contact element (17) and exerting on it a push to follow their trajectory. 16. Device according to claim 15, characterized in that the assembly (18) is movable on the frame (1) parallel to the trajectory of the tanks (4), between a first position from which the temperature measurements begin and a second position in which said measurements end. 17. Device according to claim 16, characterized in that the carriage (16) comprises a drive stud (21) movable perpendicular to the trajectory of the tanks (4), between an advanced position in which it is placed in front of a tank, from the beginning to the end of the measurements, and a retracted position in which it is distant from the tank, once the measurements are completed. 18. Device according to claim 17, characterized in that a jack (23) is provided between the frame (1) and the assembly (18) to return the latter to its first position when the measurements are completed. 19. Device according to any one of claims 7 to 18, characterized in that it further comprises means (12) for projecting water vapor onto at least the part of the tanks (4) at which the temperature measurements are made, the projection means (12) being actuated before the temperature measurements are made.
EP04791454A 2003-10-03 2004-10-01 Method and device for detecting the level at which liquid and gas phases are separate in a metallic reservoir Withdrawn EP1668286A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0311594A FR2860573B1 (en) 2003-10-03 2003-10-03 METHOD AND DEVICE FOR DETECTING THE SEPARATION LEVEL OF LIQUID AND GAS PHASES IN A METAL TANK
PCT/FR2004/002490 WO2005033576A1 (en) 2003-10-03 2004-10-01 Method and device for detecting the level at which liquid and gas phases are separate in a metallic reservoir

Publications (1)

Publication Number Publication Date
EP1668286A1 true EP1668286A1 (en) 2006-06-14

Family

ID=34307391

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04791454A Withdrawn EP1668286A1 (en) 2003-10-03 2004-10-01 Method and device for detecting the level at which liquid and gas phases are separate in a metallic reservoir

Country Status (3)

Country Link
EP (1) EP1668286A1 (en)
FR (1) FR2860573B1 (en)
WO (1) WO2005033576A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045586A1 (en) * 2007-10-01 2009-04-08 Siemens Milltronics Process Instruments Inc. A method and system for measuring the fill level of a material
CN102353476B (en) * 2011-06-03 2013-02-13 华中科技大学 Water-wind reverse current air sampling and temperature measuring device
GB2517458A (en) * 2013-08-21 2015-02-25 George Edwards Measurement device, measurement system, canister and measurement method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB917988A (en) * 1960-12-23 1963-02-13 George Haim Method and means for determining the level of a liquid in a container
FR1334715A (en) * 1961-09-28 1963-08-09 Shell Int Research Device for automatic filling of containers
US3151468A (en) * 1962-04-26 1964-10-06 Cryogenics Inc Liquid level control for cold traps
FR2306935A1 (en) * 1975-04-10 1976-11-05 Gaz De France Liquid gas tank electronic filling control - receives signals indicating filling proceding and complete and emits alarm
CA1169947A (en) * 1981-08-20 1984-06-26 Howard R. Braun Liquid nitrogen level controller
SE439768B (en) * 1982-03-10 1985-07-01 Primus Sievert Ab DEVICE FOR AUTOMATICALLY LIMITED SUPPLY OF A FLOW OF LIQUID
DE3421803A1 (en) * 1984-06-12 1985-12-12 Messer Griesheim Gmbh, 6000 Frankfurt DEVICE FOR DETERMINING THE LEVEL IN CRYE CONTAINERS
FR2677735B1 (en) * 1991-06-17 1995-08-25 Totalgaz Cie Fse DEVICE FOR CONTROLLING FILLING, AND AUTOMATIC SHUTDOWN AT A SPECIFIED LEVEL, OF LIQUEFIED OIL GAS TANKS.
US5209115A (en) * 1991-09-11 1993-05-11 Intelsat Liquid detector for thin-walled tanks operating in zero gravity
FR2681934B1 (en) * 1991-09-27 1993-12-31 Automation Mecanique Provencale METHOD AND INSTALLATION FOR FILLING LIQUID GAS BOTTLES AND FOR MONITORING SUCH BOTTLES AFTER FILLING.
DE29606594U1 (en) * 1996-04-11 1996-06-05 Siemens AG, 80333 München Monitoring system for liquid gas containers, compressed gas containers or liquid gas or compressed gas pipelines
FR2793555B3 (en) * 1999-05-11 2001-07-13 Cybernetix METHOD AND INSTALLATION FOR MEASURING THE FILLING LEVEL OF A TANK OR AN OPAQUE BOTTLE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005033576A1 *

Also Published As

Publication number Publication date
WO2005033576A1 (en) 2005-04-14
FR2860573A1 (en) 2005-04-08
FR2860573B1 (en) 2006-01-21

Similar Documents

Publication Publication Date Title
CA2825648C (en) Sintering and laser fusion device, comprising a means for heating powder by induction
EP0537195B1 (en) Pouring tube insertion and replacement device
EP0038227B1 (en) Device for mounting an engine on an aircraft frame
EP1399357B1 (en) Articulated vehicle
EP1668286A1 (en) Method and device for detecting the level at which liquid and gas phases are separate in a metallic reservoir
FR2912323A1 (en) Automatically assisted positioning device for heating chamber in distillation apparatus, has locking units moving between coupling and uncoupling positions, where units return chamber from work position to rest position under its gravity
EP0069011A1 (en) Apparatus for applying and centering a thermoplastics sleeve around an article by means of a vertical member provided with a floating mandrel
EP0230180B1 (en) Process and installation for maintaining the lining of a furnace vessel
EP3234263A1 (en) Method for mounting an undersea installation comprising at least one section of pipe, and associated installation
EP0620061A1 (en) Device for rapid changing and holding a side wall in a twin roll continuous casting machinen for casting a metallic product
EP2794083A1 (en) Sensor support for a reactor undergoing charging
EP0274962B1 (en) Vertical automatic machine for cutting glass
FR2536736A1 (en) Installation for the continuous positioning of heat-shrink sleeves
FR2500920A1 (en) PNEUMATIC DEVICE FOR CLEANING ICE FROM EVAPORATION SLABS IN A PLATE OR SHEET ICE GENERATOR
EP3479922B1 (en) Device for supporting and positioning shuttle tables, and method for controlling such a device
FR2561041A1 (en) APPARATUS FOR SUPPLYING SILICON DISK BASEBOOMS WITHIN A GAS DIFFUSION OVEN USED IN THE MANUFACTURE OF INTEGRATED MICRO CIRCUITS
FR2587885A1 (en) Oven for reactivating toes
FR2463726A1 (en) Unwrapping machine for shrink wrapped pallets - has hot gas jets sweeping over edge and carried on movable beam
FR3132907A1 (en) LIFTING GANTRY AND ASSOCIATED ASSEMBLY METHOD
CH431917A (en) Extendable mast installation
BE1001017A6 (en) Automatic device for securing free end of plastic material roll - comprises sensor detecting position of roll and its end which is raised by air jet and heat-sealed
FR2793555A1 (en) Accurate measurement of the level of filling of an opaque pressurized gas container by heating of a localized area of wall of the container and then viewing it using infrared for use with propane or butane gas bottles
EP4419418A1 (en) Method for mounting an axle in a bogie, and associated installation
FR3035316A1 (en) ANCHOR DETECTION SYSTEM FOR INFUSION BEVERAGE PRODUCTION MACHINE
CH202006A (en) Apparatus for supplying ingots to a melting furnace.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MAHUTEAU, STEPHANE

Inventor name: PITOIS, JEAN-LOUIS

Inventor name: BECQ, OLIVIER

Inventor name: BOUVIER, DANIEL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070828