EP1664575A2 - Active vibration absorber and method - Google Patents

Active vibration absorber and method

Info

Publication number
EP1664575A2
EP1664575A2 EP04768606A EP04768606A EP1664575A2 EP 1664575 A2 EP1664575 A2 EP 1664575A2 EP 04768606 A EP04768606 A EP 04768606A EP 04768606 A EP04768606 A EP 04768606A EP 1664575 A2 EP1664575 A2 EP 1664575A2
Authority
EP
European Patent Office
Prior art keywords
arrangement
signal
inertial mass
damping
vibration absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04768606A
Other languages
German (de)
French (fr)
Other versions
EP1664575B1 (en
Inventor
Ian Mcgregor Stothers
Ivan Anthony Scott
Richard Andrew Hinchliffe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ultra Electronics Ltd
Original Assignee
Ultra Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ultra Electronics Ltd filed Critical Ultra Electronics Ltd
Priority to EP10010712A priority Critical patent/EP2261525B1/en
Publication of EP1664575A2 publication Critical patent/EP1664575A2/en
Application granted granted Critical
Publication of EP1664575B1 publication Critical patent/EP1664575B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1005Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/022Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using dampers and springs in combination
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means

Definitions

  • the present invention generally relates to an active vibration absorber for absorbing vibrations in a member.
  • FIG. 1 One prior art technique for absorbing vibrations comprises a tuned vibration absorber.
  • a passive absorber is illustrated in Figure 1.
  • a vibrating member in which the vibrations are to be reduced by absorption comprises a base 1.
  • An inertial mass 2 is stiffly mounted to the base 1 by a stiffness element which is illustrated as a spring member 3.
  • the mass and the stiffness of the spring can be selected or tuned to a particular frequency to provide absorption at the frequency. At the particular chosen frequency resonance occurs by movement of the inertial mass 2 thus causing an absorption of the vibrations in the base 1.
  • Figure 2 is a graph illustrating the amplitude of vibrations in the mass 2 when the mass is mounted to the base 1 in an undamped manner.
  • the well-known passive tuned vibration absorber is limited in that it has a narrow frequency response. If the absorption of more than one frequency is required, typically more than one tuned vibration absorber is required. Also, the resonance frequency of the tuned vibration absorber is fixed by the effective mass of the inertial mass 2 and the spring stiffness of the spring member 3.
  • a known active vibration absorber is illustrated in Figure 3. An inertial mass 11 is mounted to a base 10 via a spring arrangement 12. An actuator 13 is provided to provide a force between the mass 11 and the base 10. A sensor 14 senses vibrations in the base 10 and provides for an error signal which is input to a controller 15 having a gain G to generate a control signal for the actuator 13. Controller 15 comprises an adaptive controller which controls the actuator 13 in order to reduce the vibrations sensed by the sensor 14.
  • the controller 15 achieves control, i.e. vibrations are absorbed in the base 10, the error signal 14 provided for feedback control to the controller 15 reduce in amplitude and will tend towards zero. It is thus necessary for the controller 15 to have a very high feedback gain in order to provide for control. This provides a problem with stability. Further, although some passive damping can be provided between the mass 11 and the base 10, this is not actively controlled.
  • a first aspect of the present invention provides an active vibration absorber for absorbing vibrations in a member in which an inertial mass is mounted on the member with a stiffness between the member and the mass.
  • a force actuator arrangement applies a force between the inertial mass and the member.
  • a damping arrangement is provided for damping a resonance of the active vibration absorber.
  • a first sensor arrangement provides at least one first signal indicative of at least one of movement and or stress related parameters for the member.
  • a second sensor arrangement provides at least one second signal indicative of a reaction of the inertial mass.
  • a control arrangement controls the force actuator arrangement using the at least one first signal and the at least one second signal.
  • active control of the application of a force between the mass and the member is actively controlled in dependence upon a feedback signal indicative of vibrations in the member and a second signal which does not tend to zero when control of the vibrations is achieved, i.e. the second signal is indicative of a reaction of the inertial mass.
  • the inertial mass can be mounted to the member using a stiffness arrangement such as a spring arrangement.
  • the force actuator arrangement can provide the stiffness and the mass is thus mounted with a stiffness to the member by the force actuator arrangement.
  • control arrangement comprises a first filter arrangement for filtering each first signal, a second filter arrangement for filtering each second signal, and a combining arrangement such as a summer (a summation unit) for combining outputs of the first and second filter arrangements for output to control the force actuator arrangement.
  • first and/or the second filter arrangements can be adaptive filters responsive to the at least one first signal.
  • the damping arrangement includes a third sensor arrangement for providing at least one third signal indicative of a velocity of the inertial mass, and a damping control arrangement adapted to use the third signal to control the force actuator arrangement to provide damping of a resonance of the active vibration absorber.
  • active damping is provided using a third sensor arrangement.
  • the second sensor arrangement is adapted to provide each second signal as indicative of a velocity of the inertial mass.
  • the damping arrangement comprises a damping control arrangement adapted to use the second signals to control the force actuator arrangement to provide damping of a resonance of the active vibration absorber.
  • active damping is provided using an output of the second sensor arrangement which is provided in common to the damping control arrangement and the control arrangement.
  • the damping arrangement comprises a mechanical or fluid damping arrangement for connection between the inertial mass and the member.
  • a separate damping configuration is provided in parallel with the stiff mounting of the mass to the member and the application of the force between the mass and the member.
  • a second aspect of the present invention provides an active vibration absorber for absorbing vibrations in a member in which an inertial mass is mounted on the member with a stiffness between the mass and the member.
  • a force actuator arrangement is provided for applying a force between the inertial mass and the member.
  • a first sensor arrangement provides at least one first signal indicative of a velocity of the inertial mass.
  • the damping control arrangement controls the damping of a resonance of the active vibration absorber by controlling the force actuator arrangement using the at least one first signal.
  • a second sensor arrangement provides at least one second signal indicative of at least one of movement and/or stress related parameters for the member.
  • a feedback control arrangement is provided for controlling the force actuator arrangement using the at least one second signal to reduce the movement and/or stress in the member.
  • This aspect of the present invention provides for active vibration absorption in a member by providing for active damping in conjunction with an active feedback control of the application of the force between the inertial mass and the member.
  • the inertial mass is mounted on the member using a stiffness arrangement such as a spring arrangement.
  • the force actuator arrangement is used to mount the inertial mass and provide for the stiff mounting of the inertial mass to the member.
  • the feedback control arrangement comprises a filter arrangement for filtering each second signal to generate a control signal for the force control arrangement.
  • the filter arrangement comprises an adaptive filter arrangement which is adapted in response to the at least one second signal.
  • the present invention also provides a method of absorbing vibrations in a member comprising mounting an inertial mass on the member with a stiffness therebetween, applying a force between the inertial mass and the member using a force actuator arrangement, damping a resonance of the inertial mass, providing at least one first signal indicative of at least one movement and/or stress related parameter for said member, providing at least one second signal indicative of a reaction of the inertial mass, and controlling the application of the force using the at least one first signal and the at least one second signal.
  • the present invention also provides a method of absorbing vibrations in a member comprising mounting an inertial mass on the member with a stiffness therebetween, applying a force between the inertial mass and the member using a force actuator arrangement, providing at least one first signal indicative of a velocity of the inertial mass, controlling a damping of a resonance of the inertial mass by controlling the force actuator arrangement using the at least one first signal, providing at least one second signal indicative of at least one movement and/or stress related parameter for the member, and controlling the force actuator arrangement using the at least one second signal to reduce the movement and/or stress in the member.
  • Figure 1 is a schematic diagram of a tuned vibration absorber in accordance with the prior art
  • Figure 2 is a graph illustrating the response of the tuned vibration absorber of Figure 1;
  • FIG. 3 is a schematic diagram of an active vibration absorber in accordance with the prior art
  • Figure 4 is a schematic diagram of an active vibration absorber in accordance with a first embodiment of the present invention
  • Figure 5 is a schematic diagram of an active vibration absorber in accordance with a second embodiment of the present invention
  • Figure 6 is a schematic diagram of an active vibration absorber in accordance with a third embodiment of the present invention.
  • Figure 7 is a schematic diagram of an active vibration absorber in accordance with a fourth embodiment of the present invention.
  • Figure 4 illustrates a first embodiment of the present invention in which an active vibration absorber is provided with feedback control of the application of force as well as the active control of damping.
  • a base 21 comprises a member experiencing vibration which is to be controlled.
  • the base 21 can thus experience displacement, velocity, acceleration, bending, and strain. All of these parameters are indicative of vibrations in the base 21.
  • a mass 22 has an inertial mass and is mounted on the base 21 via a stiffness arrangement which in this embodiment comprises a spring arrangement 24.
  • a stiffness arrangement which in this embodiment comprises a spring arrangement 24.
  • the spring arrangement 24 is illustrated as a helical spring, any stiff mounting arrangement for the mass 22 on the base 21 can be used.
  • a force actuator 23 is provided coupled between the mass 22 and the base 21 in order to apply a force between the mass 22 and the base 21.
  • a force sensor 25 is provided to measure the force in the spring arrangement 24. The force detected is proportional to the displacement of the spring arrangement 24. The output of the force sensor 25 is thus differentiated by the differentiator 26 in order to provide a signal proportional to the relative velocity of the mass 22 and the base 21.
  • the output of the differentiator 26 is input to an amplifier 27 which applies a negative gain to the signal in order to generate a control signal for the actuator 23.
  • the output control signal from the amplifier 27 is input through a combimng arrangement which in this embodiment comprises a summer 28.
  • the output of the summer 28 is then input into the actuator 23 for control of the force actuator 23. In this way the damping of the active vibration absorber is achieved through active control using the force actuator 23 which receives a signal indicative of the relative velocity of the mass 22 and the base 21.
  • a sensor 29 is provided on the base 21 for detecting vibration related parameters such as displacement, velocity, acceleration, bending, or strain.
  • the output of the sensor 29 is thus an error signal indicating the degree of vibration experienced in the base 21.
  • a controller 30 is provided to operate adaptively using the error signal from the sensor 29 to generate a control signal for the actuator 23.
  • the output control signal from the controller 30 is input into the summer 28 to be combined with the output of the amplifier 27 for the control of the actuator 23.
  • the controller 30 can be implemented in analogue or digital technology or a combination of both.
  • the controller implements well known feedback control methodology.
  • the controller 30 can for example be implemented as a digital feedback controller as for example described in "Adaptive Signal Processing" by B. Widrow and S. Stearns (Prentice-Hall Inc., 1985).
  • Figure 5 illustrates a second embodiment of the present invention in which feedback control is provided together with a feedforward control of the application of a force between the mass and the base.
  • a base 31 experiences vibrations which are to be absorbed.
  • a mass 32 is provided stiffly mounted on the base 31 using a stiffness arrangement, which in this example comprises a spring arrangement 33.
  • a damper arrangement 35 is provided for damping oscillations between the mass 32 and the base 31.
  • the damper 35 comprises a conventional passive damper arrangement such as a mechanical or fluid damping arrangement. Examples of such dampers are well known in the art and they can for example include eddy current damping, friction damping, viscous damping, or gas damping. Ideally, the damping arrangement 35 should provide relatively temperature independent damping to facilitate easy and accurate adaptive control.
  • Actuator arrangement 34 is provided between the mass 32 and the base 31 to provide for the application of a force between the mass 32 and the base 31.
  • Feedback control of the actuator 34 is provided by the provision of a sensor 39 on the base 31.
  • the sensor is provided for sensing vibration related parameters in the base 31 such as displacement, velocity, acceleration, strain, and bending.
  • the output of the sensor 39 is input to the feedback controller 40.
  • the feedback controller 40 is adaptive and generates an output control signal for the actuator 34 which is input into a summer 38 before being input to the actuator 34 to control the actuator 34.
  • a sensor 36 is provided on the mass 32 in order to provide a signal indicative of the reaction of the mass 32.
  • the sensor can measure the displacement, velocity or acceleration of the mass 32.
  • the sensor 36 could also be placed at either end of the spring arrangement 33 in order to sense the force.
  • the sensor 36 could also be placed either side of the actuator 34 or damper 35 in order to detect the force.
  • the output of the sensor 36 is input to a feedforward controller 37 which is adapted in dependence upon the feedback signal from the sensor 39.
  • the feedforward controller 37 thus implements an adaptive feedforward control methodology as is well known in the prior art and examples of which are described in the book by B. Widrow and S. Stearns identified hereinabove.
  • the output of the feedforward controller 37 is input to the summer 38 for summation with the feedback control signal from the feedback controller 40 and the combined feedforward and feedback control signals are applied to control the actuator 34.
  • the problem of control of the actuator 34 when the output of the sensor 39 is small (or tends to zero) is overcome by the provision of the feedforward control arrangement.
  • the feedforward control arrangement can suffer from the disadvantage of the reference signal being corrupted by the controlling force from the actuator 34.
  • the controller 37 can thus carry out a control algorithm such as that described in co-pending UK patent application no. GB 0311085.5, the content of which is hereby incorporated by reference.
  • Figure 6 illustrates a third embodiment of the present invention which is similar to the second embodiment of the present invention but also incorporates the principles of the first embodiment of the present invention.
  • the actuator applies the force under the control of feedback and feedforward controllers and also performs active damping control.
  • a base 41 experiences vibrations which are to be absorbed.
  • a mass 42 is provided stiffly mounted on the base 41 by a stiffness arrangement comprising a spring arrangement 43.
  • a force actuator 44 is provided coupled between the mass 42 and the base 41 to provide for the application of a force between the mass 42 and the base 41.
  • a force sensor 45 is provided to generate a signal indicative of the force between the mass 42 and the base 41.
  • a differentiator 46 is provided to differentiate the signal to provide a signal indicative of the relative velocity of the mass 42 and the base 41.
  • the signal is input to an amplifier 47 which performs amplification using a negative gain to generate a feedback control signal which is input to a summer 48.
  • the output of the summer 48 is used to control the actuator 44.
  • the output of the differentiator 46 in this embodiment is also input to a feedforward controller 49.
  • the feedforward controller generates a control signal which is input to the summer 48 and is summed with the damping control signal before being applied to the actuator 44.
  • the feedforward controller 49 is fed with an error signal from an error sensor 50 mounted on the base 41 to provide for the adaptive feedforward control by the controller 49.
  • the feedforward controller 49 can provide for adaptive feedforward control either in an analogue or digital implementation.
  • One such digital implementation is the filtered X least mean square algorithm as disclosed in the book by B. Widrow and S. Steam acknowledged hereinabove.
  • the sensor 50 provided on the base 41 provides a measure of the vibrations in the base 41 by providing a signal indicative of displacement, velocity, acceleration, bending or stress in the base 41.
  • the error signal is input to a feedback or virtual earth controller 51 which performs adaptive feedback control to generate an output control signal which is input to the summer 48.
  • the summer 48 thus combines the adaptive damping control signal, the adaptive feedforward signal from the feedforward controller 49 and the adaptive feedback control signal from the adaptive feedback controller 51 to provide for the control of the force actuator 44.
  • This embodiment of the present invention is similar to the second embodiment of the present invention and also provides the advantage of avoiding the stability problems of providing for a high gain in the feedback controller 51 by provision of the feedforward controller 49.
  • the provision of the active damping control arrangement provides for an improved active vibration absorber. Also in this embodiment, conveniently, the signal required for the adaptive damping is used for the adaptive feedforward controller input.
  • Figure 7 illustrates a fourth embodiment of the present invention similar to the third embodiment of the present invention except that a separate reference sensor 72 is provided for the feedforward controller 69.
  • the base 61 experiences vibrations which are to be absorbed.
  • a mass 62 is provided mounted to the base 61 by a stiffness arrangement comprising the spring arrangement 63.
  • a force actuator 64 is provided mounted between the mass 62 and the base 61 to provide for the application of a force between the mass 62 and the base 61.
  • a force sensor 65 is provided to measure the force experienced between the mass 62 and the base 61 and the spring arrangement 63.
  • the output of the force sensor is input into a differentiator 66 to provide an output indicative of the relative velocity of the mass 62 and the base 61.
  • the output of the differentiator 66 is input to an amplifier 67 which performs amplification on the signal using negative gain to generate a damping control signal which is input to the summer 68.
  • the output of the summer 68 is input to the actuator 64 for control of the actuator 64.
  • active damping is provided for.
  • the feedback control is provided by a sensor 70 mounted on the base 61 to provide a measure of the vibration in the base 61.
  • the sensor 70 provides a measure of parameters related to displacement, velocity, acceleration, strain, or bending in the base 61.
  • the output of the sensor 70 is input to the feedback controller 71 to perform adaptive feedback control.
  • the output of the adaptive controller 71 is input to the summer 68.
  • the summer 68 sums the adaptive damping control signal and the adaptive feedback signal for control of the actuator 64.
  • the feedforward control is provided for by a sensor 72 mounted to measure the reaction of the mass 62.
  • the sensor 72 can provide a measure of parameters indicative of the displacement, velocity or acceleration of the mass 62, or a force experienced between the mass 62 and the base 61, i.e. at any point in the spring arrangement 63, or either side of the actuator 64.
  • the output of the sensor 72 is input to a feedforward controller 69 which performs adaptive feedforward control to generate a control signal which is input to the summer 68.
  • the feedforward controller 69 receives an output of the sensor 70 for adaptive control of the parameters of the controller 69.
  • the actuator 64 is controlled by the output of the summer 68 to receive a damping control signal, a feedforward control signal and a feedback control signal.
  • an active vibration absorber which is capable of broadband vibration absorption.
  • the active damping is illustrated as being performed using an analogue amplifier, the generation of the active damping control signal can be carried out digitally, for example using a digital filter.
  • the adaptive feedforward controllers in the embodiments of the present invention can be implemented using analogue or digital technology or a combination of both.
  • Digital algorithms for performing the adaptive feedback and feedforward controls are well known in the art.
  • the actuator 34 can provide for the stiff mounting of the mass 32 on the base 31, thus obviating the need for the spring arrangement 33.
  • the actuator 34 can comprise any suitable force actuator such as an electromagnetic actuator, a piezoelectric actuator, a hydraulic actuator, a magnetostrictive actuator, a pneumatic actuator, an electrostatic actuator, or a thermal expansive actuator. Where an electromagnetic actuator is provided, usually a stiffness arrangement will be required to provide for the stiff mounting of the mass 32 on the base 31. Where for example the actuator 34 comprises a piezoelectric actuator, the piezoelectric actuator provides not only for the application of the force, but also for the stiff mounting of the mass 32 on the base 31.
  • damper 35 can comprise any suitable well known passive damping arrangement such as an eddy current damper, a friction damper, a viscous damper or a gas damper.
  • the senor provided on the base can comprise any suitable sensor arrangement, i.e. a single sensor or a number of sensors, in order to provide one or more signals indicative of vibration in the base.
  • the signal or signals can therefore comprise an indication of displacement, velocity, or acceleration in the base, or other physical parameters indicative of vibrations such as strain, or bending.
  • the reference sensor provided to output a signal indicative of the reaction of the inertial mass to the vibration in the base 31, can comprise not just a single sensor, but any suitable sensor arrangement comprising a single sensor or multiple sensors.
  • the sensor can provide a measurement of movement of the mass, i.e. displacement, velocity or acceleration, or a measurement of the force between the mass and the base.
  • the force can thus be measured within the spring arrangement, either in the middle or at either end, either side of a separate passive damper, or either side of the force actuator.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

An active vibration absorber is provided for absorbing vibrations in a member (21). An inertial mass (22) is mounted on the member with a stiffness (24) between the member and the mass. A force actuator arrangement (23) applies a force between the inertial mass and the member. A damping arrangement provides for damping of a resonance of the active vibration absorber. A first sensor arrangement (29) provides at least one first signal indicative of at least one movement and/or stress related parameter for the member and a second sensor arrangement (25) provides for at least one second signal indicative of a reaction of the inertial mass. A control arrangement (30) is provided for controlling the force actuator arrangement using the at least one first signal and the at least one second signal.

Description

ACTIVE VIBRATION ABSORBER AND METHOD
The present invention generally relates to an active vibration absorber for absorbing vibrations in a member.
It is well known in the prior art that it is desirable to provide a vibration absorber that can absorb vibrations in a vibrating member.
One prior art technique for absorbing vibrations comprises a tuned vibration absorber. Such a passive absorber is illustrated in Figure 1. As illustrated in this diagram, a vibrating member in which the vibrations are to be reduced by absorption comprises a base 1. An inertial mass 2 is stiffly mounted to the base 1 by a stiffness element which is illustrated as a spring member 3. As is well known in the art, the mass and the stiffness of the spring can be selected or tuned to a particular frequency to provide absorption at the frequency. At the particular chosen frequency resonance occurs by movement of the inertial mass 2 thus causing an absorption of the vibrations in the base 1. Figure 2 is a graph illustrating the amplitude of vibrations in the mass 2 when the mass is mounted to the base 1 in an undamped manner.
It can be seen in Figure 2 that although the undamped vibration absorber provides for good absorption at the resonance frequency, the frequency range is limited. Thus, it is known to provide a damper 4 to damp the vibrations between the mass 2 and the base 1. The damping provides for a reduction in the peak height of the resonance and a broadening of the peak. This is illustrated in Figure 2.
The well-known passive tuned vibration absorber is limited in that it has a narrow frequency response. If the absorption of more than one frequency is required, typically more than one tuned vibration absorber is required. Also, the resonance frequency of the tuned vibration absorber is fixed by the effective mass of the inertial mass 2 and the spring stiffness of the spring member 3. A known active vibration absorber is illustrated in Figure 3. An inertial mass 11 is mounted to a base 10 via a spring arrangement 12. An actuator 13 is provided to provide a force between the mass 11 and the base 10. A sensor 14 senses vibrations in the base 10 and provides for an error signal which is input to a controller 15 having a gain G to generate a control signal for the actuator 13. Controller 15 comprises an adaptive controller which controls the actuator 13 in order to reduce the vibrations sensed by the sensor 14. As the controller 15 achieves control, i.e. vibrations are absorbed in the base 10, the error signal 14 provided for feedback control to the controller 15 reduce in amplitude and will tend towards zero. It is thus necessary for the controller 15 to have a very high feedback gain in order to provide for control. This provides a problem with stability. Further, although some passive damping can be provided between the mass 11 and the base 10, this is not actively controlled.
It is an object of the present invention to provide an improved vibration absorber in the form of an active vibration absorber.
A first aspect of the present invention provides an active vibration absorber for absorbing vibrations in a member in which an inertial mass is mounted on the member with a stiffness between the member and the mass. A force actuator arrangement applies a force between the inertial mass and the member. A damping arrangement is provided for damping a resonance of the active vibration absorber. A first sensor arrangement provides at least one first signal indicative of at least one of movement and or stress related parameters for the member. A second sensor arrangement provides at least one second signal indicative of a reaction of the inertial mass. A control arrangement controls the force actuator arrangement using the at least one first signal and the at least one second signal.
Thus in this aspect of the present invention active control of the application of a force between the mass and the member is actively controlled in dependence upon a feedback signal indicative of vibrations in the member and a second signal which does not tend to zero when control of the vibrations is achieved, i.e. the second signal is indicative of a reaction of the inertial mass. In one embodiment of the present invention, the inertial mass can be mounted to the member using a stiffness arrangement such as a spring arrangement. In an alternative embodiment of the present invention, the force actuator arrangement can provide the stiffness and the mass is thus mounted with a stiffness to the member by the force actuator arrangement.
In one embodiment of the present invention the control arrangement comprises a first filter arrangement for filtering each first signal, a second filter arrangement for filtering each second signal, and a combining arrangement such as a summer (a summation unit) for combining outputs of the first and second filter arrangements for output to control the force actuator arrangement. In this embodiment of the present invention the first and/or the second filter arrangements can be adaptive filters responsive to the at least one first signal.
In one embodiment of the present invention the damping arrangement includes a third sensor arrangement for providing at least one third signal indicative of a velocity of the inertial mass, and a damping control arrangement adapted to use the third signal to control the force actuator arrangement to provide damping of a resonance of the active vibration absorber. Thus in this embodiment of the present invention active damping is provided using a third sensor arrangement.
In an alternative embodiment of the present invention, the second sensor arrangement is adapted to provide each second signal as indicative of a velocity of the inertial mass. In this arrangement the damping arrangement comprises a damping control arrangement adapted to use the second signals to control the force actuator arrangement to provide damping of a resonance of the active vibration absorber. Thus in this embodiment of the present invention, active damping is provided using an output of the second sensor arrangement which is provided in common to the damping control arrangement and the control arrangement.
In an alternative embodiment of the present invention the damping arrangement comprises a mechanical or fluid damping arrangement for connection between the inertial mass and the member. Thus in this embodiment of the present invention a separate damping configuration is provided in parallel with the stiff mounting of the mass to the member and the application of the force between the mass and the member.
A second aspect of the present invention provides an active vibration absorber for absorbing vibrations in a member in which an inertial mass is mounted on the member with a stiffness between the mass and the member. A force actuator arrangement is provided for applying a force between the inertial mass and the member. A first sensor arrangement provides at least one first signal indicative of a velocity of the inertial mass. The damping control arrangement controls the damping of a resonance of the active vibration absorber by controlling the force actuator arrangement using the at least one first signal. A second sensor arrangement provides at least one second signal indicative of at least one of movement and/or stress related parameters for the member. A feedback control arrangement is provided for controlling the force actuator arrangement using the at least one second signal to reduce the movement and/or stress in the member.
This aspect of the present invention provides for active vibration absorption in a member by providing for active damping in conjunction with an active feedback control of the application of the force between the inertial mass and the member.
In one embodiment of this aspect of the present invention the inertial mass is mounted on the member using a stiffness arrangement such as a spring arrangement.
In an alternative embodiment of the present invention the force actuator arrangement is used to mount the inertial mass and provide for the stiff mounting of the inertial mass to the member.
In one embodiment of the present invention the feedback control arrangement comprises a filter arrangement for filtering each second signal to generate a control signal for the force control arrangement. In a specific embodiment the filter arrangement comprises an adaptive filter arrangement which is adapted in response to the at least one second signal. The present invention also provides a method of absorbing vibrations in a member comprising mounting an inertial mass on the member with a stiffness therebetween, applying a force between the inertial mass and the member using a force actuator arrangement, damping a resonance of the inertial mass, providing at least one first signal indicative of at least one movement and/or stress related parameter for said member, providing at least one second signal indicative of a reaction of the inertial mass, and controlling the application of the force using the at least one first signal and the at least one second signal.
The present invention also provides a method of absorbing vibrations in a member comprising mounting an inertial mass on the member with a stiffness therebetween, applying a force between the inertial mass and the member using a force actuator arrangement, providing at least one first signal indicative of a velocity of the inertial mass, controlling a damping of a resonance of the inertial mass by controlling the force actuator arrangement using the at least one first signal, providing at least one second signal indicative of at least one movement and/or stress related parameter for the member, and controlling the force actuator arrangement using the at least one second signal to reduce the movement and/or stress in the member.
Embodiments of the present invention will now be described with reference to the accompanying drawings, in which:
Figure 1 is a schematic diagram of a tuned vibration absorber in accordance with the prior art;
Figure 2 is a graph illustrating the response of the tuned vibration absorber of Figure 1;
Figure 3 is a schematic diagram of an active vibration absorber in accordance with the prior art;
Figure 4 is a schematic diagram of an active vibration absorber in accordance with a first embodiment of the present invention; Figure 5 is a schematic diagram of an active vibration absorber in accordance with a second embodiment of the present invention;
Figure 6 is a schematic diagram of an active vibration absorber in accordance with a third embodiment of the present invention; and
Figure 7 is a schematic diagram of an active vibration absorber in accordance with a fourth embodiment of the present invention.
Figure 4 illustrates a first embodiment of the present invention in which an active vibration absorber is provided with feedback control of the application of force as well as the active control of damping.
A base 21 comprises a member experiencing vibration which is to be controlled. The base 21 can thus experience displacement, velocity, acceleration, bending, and strain. All of these parameters are indicative of vibrations in the base 21.
A mass 22 has an inertial mass and is mounted on the base 21 via a stiffness arrangement which in this embodiment comprises a spring arrangement 24. Although the spring arrangement 24 is illustrated as a helical spring, any stiff mounting arrangement for the mass 22 on the base 21 can be used.
A force actuator 23 is provided coupled between the mass 22 and the base 21 in order to apply a force between the mass 22 and the base 21. A force sensor 25 is provided to measure the force in the spring arrangement 24. The force detected is proportional to the displacement of the spring arrangement 24. The output of the force sensor 25 is thus differentiated by the differentiator 26 in order to provide a signal proportional to the relative velocity of the mass 22 and the base 21. The output of the differentiator 26 is input to an amplifier 27 which applies a negative gain to the signal in order to generate a control signal for the actuator 23. The output control signal from the amplifier 27 is input through a combimng arrangement which in this embodiment comprises a summer 28. The output of the summer 28 is then input into the actuator 23 for control of the force actuator 23. In this way the damping of the active vibration absorber is achieved through active control using the force actuator 23 which receives a signal indicative of the relative velocity of the mass 22 and the base 21.
A sensor 29 is provided on the base 21 for detecting vibration related parameters such as displacement, velocity, acceleration, bending, or strain. The output of the sensor 29 is thus an error signal indicating the degree of vibration experienced in the base 21. A controller 30 is provided to operate adaptively using the error signal from the sensor 29 to generate a control signal for the actuator 23. The output control signal from the controller 30 is input into the summer 28 to be combined with the output of the amplifier 27 for the control of the actuator 23.
Thus this embodiment of the present invention provides for the active control of the damping as well as the active control of the application of the force for feedback control. The controller 30 can be implemented in analogue or digital technology or a combination of both. The controller implements well known feedback control methodology. The controller 30 can for example be implemented as a digital feedback controller as for example described in "Adaptive Signal Processing" by B. Widrow and S. Stearns (Prentice-Hall Inc., 1985).
This embodiment of the present invention in which the adaptive damping is used makes it simpler to implement the controller 30 with the high gain necessary to provide for feedback control.
Figure 5 illustrates a second embodiment of the present invention in which feedback control is provided together with a feedforward control of the application of a force between the mass and the base.
In this embodiment, a base 31 experiences vibrations which are to be absorbed. A mass 32 is provided stiffly mounted on the base 31 using a stiffness arrangement, which in this example comprises a spring arrangement 33.
A damper arrangement 35 is provided for damping oscillations between the mass 32 and the base 31. The damper 35 comprises a conventional passive damper arrangement such as a mechanical or fluid damping arrangement. Examples of such dampers are well known in the art and they can for example include eddy current damping, friction damping, viscous damping, or gas damping. Ideally, the damping arrangement 35 should provide relatively temperature independent damping to facilitate easy and accurate adaptive control.
Actuator arrangement 34 is provided between the mass 32 and the base 31 to provide for the application of a force between the mass 32 and the base 31. Feedback control of the actuator 34 is provided by the provision of a sensor 39 on the base 31. The sensor is provided for sensing vibration related parameters in the base 31 such as displacement, velocity, acceleration, strain, and bending. The output of the sensor 39 is input to the feedback controller 40. The feedback controller 40 is adaptive and generates an output control signal for the actuator 34 which is input into a summer 38 before being input to the actuator 34 to control the actuator 34.
A sensor 36 is provided on the mass 32 in order to provide a signal indicative of the reaction of the mass 32. The sensor can measure the displacement, velocity or acceleration of the mass 32. The sensor 36 could also be placed at either end of the spring arrangement 33 in order to sense the force. The sensor 36 could also be placed either side of the actuator 34 or damper 35 in order to detect the force. Thus the sensor 36 provides parameters related to the reaction of the mass. The output of the sensor 36 is input to a feedforward controller 37 which is adapted in dependence upon the feedback signal from the sensor 39. The feedforward controller 37 thus implements an adaptive feedforward control methodology as is well known in the prior art and examples of which are described in the book by B. Widrow and S. Stearns identified hereinabove. The output of the feedforward controller 37 is input to the summer 38 for summation with the feedback control signal from the feedback controller 40 and the combined feedforward and feedback control signals are applied to control the actuator 34.
Thus in accordance with this embodiment of the present invention, the problem of control of the actuator 34 when the output of the sensor 39 is small (or tends to zero) is overcome by the provision of the feedforward control arrangement. The feedforward control arrangement can suffer from the disadvantage of the reference signal being corrupted by the controlling force from the actuator 34. The controller 37 can thus carry out a control algorithm such as that described in co-pending UK patent application no. GB 0311085.5, the content of which is hereby incorporated by reference.
Figure 6 illustrates a third embodiment of the present invention which is similar to the second embodiment of the present invention but also incorporates the principles of the first embodiment of the present invention. In this embodiment the actuator applies the force under the control of feedback and feedforward controllers and also performs active damping control.
A base 41 experiences vibrations which are to be absorbed. A mass 42 is provided stiffly mounted on the base 41 by a stiffness arrangement comprising a spring arrangement 43. A force actuator 44 is provided coupled between the mass 42 and the base 41 to provide for the application of a force between the mass 42 and the base 41. In order to provide for the active control of damping, a force sensor 45 is provided to generate a signal indicative of the force between the mass 42 and the base 41. A differentiator 46 is provided to differentiate the signal to provide a signal indicative of the relative velocity of the mass 42 and the base 41. For damping control, the signal is input to an amplifier 47 which performs amplification using a negative gain to generate a feedback control signal which is input to a summer 48. The output of the summer 48 is used to control the actuator 44. Thus in this way, in a similar manner to the first embodiment of the present invention, active damping is provided for.
The output of the differentiator 46 in this embodiment is also input to a feedforward controller 49. The feedforward controller generates a control signal which is input to the summer 48 and is summed with the damping control signal before being applied to the actuator 44. The feedforward controller 49 is fed with an error signal from an error sensor 50 mounted on the base 41 to provide for the adaptive feedforward control by the controller 49. Thus the feedforward controller 49 can provide for adaptive feedforward control either in an analogue or digital implementation. One such digital implementation is the filtered X least mean square algorithm as disclosed in the book by B. Widrow and S. Steam acknowledged hereinabove.
The sensor 50 provided on the base 41 provides a measure of the vibrations in the base 41 by providing a signal indicative of displacement, velocity, acceleration, bending or stress in the base 41. The error signal is input to a feedback or virtual earth controller 51 which performs adaptive feedback control to generate an output control signal which is input to the summer 48. The summer 48 thus combines the adaptive damping control signal, the adaptive feedforward signal from the feedforward controller 49 and the adaptive feedback control signal from the adaptive feedback controller 51 to provide for the control of the force actuator 44.
This embodiment of the present invention is similar to the second embodiment of the present invention and also provides the advantage of avoiding the stability problems of providing for a high gain in the feedback controller 51 by provision of the feedforward controller 49. The provision of the active damping control arrangement provides for an improved active vibration absorber. Also in this embodiment, conveniently, the signal required for the adaptive damping is used for the adaptive feedforward controller input.
Figure 7 illustrates a fourth embodiment of the present invention similar to the third embodiment of the present invention except that a separate reference sensor 72 is provided for the feedforward controller 69.
The base 61 experiences vibrations which are to be absorbed. A mass 62 is provided mounted to the base 61 by a stiffness arrangement comprising the spring arrangement 63. A force actuator 64 is provided mounted between the mass 62 and the base 61 to provide for the application of a force between the mass 62 and the base 61. A force sensor 65 is provided to measure the force experienced between the mass 62 and the base 61 and the spring arrangement 63. The output of the force sensor is input into a differentiator 66 to provide an output indicative of the relative velocity of the mass 62 and the base 61. The output of the differentiator 66 is input to an amplifier 67 which performs amplification on the signal using negative gain to generate a damping control signal which is input to the summer 68. The output of the summer 68 is input to the actuator 64 for control of the actuator 64. Thus in this embodiment of the present invention active damping is provided for.
The feedback control is provided by a sensor 70 mounted on the base 61 to provide a measure of the vibration in the base 61. The sensor 70 provides a measure of parameters related to displacement, velocity, acceleration, strain, or bending in the base 61. The output of the sensor 70 is input to the feedback controller 71 to perform adaptive feedback control. The output of the adaptive controller 71 is input to the summer 68. The summer 68 sums the adaptive damping control signal and the adaptive feedback signal for control of the actuator 64.
The feedforward control is provided for by a sensor 72 mounted to measure the reaction of the mass 62. The sensor 72 can provide a measure of parameters indicative of the displacement, velocity or acceleration of the mass 62, or a force experienced between the mass 62 and the base 61, i.e. at any point in the spring arrangement 63, or either side of the actuator 64. The output of the sensor 72 is input to a feedforward controller 69 which performs adaptive feedforward control to generate a control signal which is input to the summer 68. The feedforward controller 69 receives an output of the sensor 70 for adaptive control of the parameters of the controller 69. Thus the actuator 64 is controlled by the output of the summer 68 to receive a damping control signal, a feedforward control signal and a feedback control signal.
In all of the embodiments described hereinabove with reference to Figures 4 to 7, an active vibration absorber is provided which is capable of broadband vibration absorption.
Although in the embodiments of the present invention the active damping is illustrated as being performed using an analogue amplifier, the generation of the active damping control signal can be carried out digitally, for example using a digital filter.
The adaptive feedforward controllers in the embodiments of the present invention can be implemented using analogue or digital technology or a combination of both. Digital algorithms for performing the adaptive feedback and feedforward controls are well known in the art.
Although in the embodiments illustrated in Figures 4 to 7 the mass 32 is illustrated as being stiffly mounted on the base 31 by a spring arrangement 33, the actuator 34 can provide for the stiff mounting of the mass 32 on the base 31, thus obviating the need for the spring arrangement 33. The actuator 34 can comprise any suitable force actuator such as an electromagnetic actuator, a piezoelectric actuator, a hydraulic actuator, a magnetostrictive actuator, a pneumatic actuator, an electrostatic actuator, or a thermal expansive actuator. Where an electromagnetic actuator is provided, usually a stiffness arrangement will be required to provide for the stiff mounting of the mass 32 on the base 31. Where for example the actuator 34 comprises a piezoelectric actuator, the piezoelectric actuator provides not only for the application of the force, but also for the stiff mounting of the mass 32 on the base 31.
Although in the embodiment of Figure 5 a separate damper 35 is illustrated, the damper and stiffness arrangement 33 can be combined. The damper 35 can comprise any suitable well known passive damping arrangement such as an eddy current damper, a friction damper, a viscous damper or a gas damper.
In the embodiments of the present invention the sensor provided on the base can comprise any suitable sensor arrangement, i.e. a single sensor or a number of sensors, in order to provide one or more signals indicative of vibration in the base. The signal or signals can therefore comprise an indication of displacement, velocity, or acceleration in the base, or other physical parameters indicative of vibrations such as strain, or bending.
The reference sensor provided to output a signal indicative of the reaction of the inertial mass to the vibration in the base 31, can comprise not just a single sensor, but any suitable sensor arrangement comprising a single sensor or multiple sensors. The sensor can provide a measurement of movement of the mass, i.e. displacement, velocity or acceleration, or a measurement of the force between the mass and the base. The force can thus be measured within the spring arrangement, either in the middle or at either end, either side of a separate passive damper, or either side of the force actuator. Although the present invention has been described hereinabove with reference to specific embodiments, it will be apparent to a skilled person in the art that modifications lie within the spirit and scope of the present invention.

Claims

CLAIMS:
1. An active vibration absorber for absorbing vibrations in a member, the active vibration absorber comprising: an inertial mass for mounting on said member with a stiffness therebetween; a force actuator arrangement for applying a force between said inertial mass and said member; a damping arrangement for providing damping of a resonance of said active vibration absorber; a first sensor arrangement for providing at least one first signal indicative of at least one movement and/or stress related parameter for said member; a second sensor arrangement for providing at least one second signal indicative of a reaction of said inertial mass; and a control arrangement for controlling said force actuator arrangement using said at least one first signal and said at least one second signal.
2. An active vibration absorber according to claim 1, including a stiffness arrangement for mounting said inertial mass to said member with stiffness therebetween.
3. An active vibration absorber according to claim 2, wherein said stiffness arrangement comprises a spring arrangement.
4. An active vibration absorber according to claim 1, wherein said force actuator arrangement is adapted to provide the stiff mounting of said inertial mass to said member.
5. An active vibration absorber according to any preceding claim, wherein said control arrangement comprises a first filter arrangement for filtering said at least one first signal, a second filter arrangement for filtering said at least one second signal, and a combining arrangement for combining outputs of said first and second filter arrangements for output to control said force actuator arrangement.
6. An active vibration absorber according to claim 5, wherein said second filter arrangement comprises an adaptive filter arrangement adaptive in response to said at least one first signal.
7. An active vibration absorber according to claim 5 or claim 6, wherein said first filter arrangement comprises an adaptive filter arrangement adaptive in response to said at least one first signal.
8. An active vibration absorber according to any preceding claim, wherein said damping arrangement comprises a third sensor arrangement for providing at least one third signal indicative of a velocity of said inertial mass, and a damping control arrangement adapted to use said third signal to control said force actuator arrangement to provide damping of a resonance of said active vibration absorber.
9. An active vibration absorber according to any one of claims 1 to 7, wherein said second sensor arrangement is adapted to provide said at least one second signal to be indicative of a velocity of said inertial mass, and said damping arrangement comprises a damping control arrangement adapted to use said second signal to control said force actuator arrangement to provide damping of a resonance of said active vibration absorber.
10. An active vibration absorber according to any one of claims 1 to 7, wherein said damping arrangement comprises a mechanical or fluid damping arrangement for connection between said inertial mass and said member.
11. An active vibration absorber for absorbing vibrations in a member, the active vibration absorber comprising: an inertial mass for mounting on said member with a stiffness therebetween; a force actuator arrangement for applying a force between said inertial mass and said member; a first sensor arrangement for providing at least one first signal indicative of a velocity of said inertial mass; a damping control arrangement for controlling a damping of a resonance of said active vibration absorber by controlling said force actuator arrangement using said at least one first signal; a second sensor arrangement for providing at least one second signal indicative of at least one of movement and/or stress related parameters for said member; and a feedback control arrangement for controlling said force actuator arrangement using said at least one second signal to reduce the movement and/or stress in said member.
12. An active vibration absorber according to claim 11, including a stiffness arrangement for mounting said inertial mass to said member with stiffness therebetween.
13. An active vibration absorber according to claim 12, wherein said stiffness arrangement comprises a spring arrangement.
14. An active vibration absorber according to claim 11, wherein said force actuator arrangement is adapted to provide the stiff mounting of said inertial mass to said member.
15. An active vibration absorber according to any one of claims 11 to 14, wherein said feedback control arrangement comprises a filter arrangement for filtering said at least one second signal to generate a control signal for said force control arrangement.
16. An active vibration absorber according to claim 15, wherein said filter arrangement comprises an adaptive filter arrangement adaptive in response to said at least one second signal.
17. A method of absorbing vibrations in a member, the method comprising: mounting an inertial mass on said member with a stiffness therebetween; applying a force between said inertial mass and said member using a force actuator arrangement; damping a resonance of said inertial mass; providing at least one first signal indicative of at least one movement and/or stress related parameter for said member; providing at least one second signal indicative of a reaction of said inertial mass; and controlling the application of said force using said at least one first signal and said at least one second signal.
18. A method according to claim 17, wherein said inertial mass is mounted on said member using a spring arrangement to provide the stiffness.
19. A method according to claim 17, wherein said inertial mass is mounted on said force actuator arrangement to provide the stiff mounting of said inertial mass to said member.
20. A method according to any one of claims 17 to 19, wherein said controlling takes place by filtering said at least one first signal using a first filter arrangement, filtering said at least one second signal using a second filter arrangement, and combimng outputs of said first and second filter arrangements for output to control said force actuator arrangement.
21. A method according to claim 20, wherein said second filter arrangement is adapted in response to said at least one first signal.
22. A method according to claim 20 or claim 21 wherein said first filter arrangement is adapted in response to said at least one first signal.
23. A method according to any one of claims 17 to 22, wherein said damping comprises providing at least one third signal indicative of a velocity of said inertial mass, and using said third signal to control said force actuator arrangement to provide damping of a resonance of said inertial mass.
24. A method according to any one of claims 17 to 22, wherein said at least one second signal is indicative of a velocity of said inertial mass, and said damping comprises using said second signal to control said force actuator arrangement to provide damping of a resonance of said inertial mass.
25. A method according to any one of claims 17 to 22, wherein said damping is carried out using a mechanical or fluid damping arrangement connected between said inertial mass and said member.
26. A method of absorbing vibrations in a member, the method comprising: mounting an inertial mass on said member with a stiffness therebetween; applying a force between said inertial mass and said member using a force actuator arrangement; providing at least one first signal indicative of a velocity of said inertial mass; controlling a damping of a resonance of said inertial mass by controlling said force actuator arrangement using said at least one first signal; providing at least one second signal indicative of at least one movement and/or stress related parameter for said member; and controlling said force actuator arrangement using said at least one second signal to reduce the movement and/or stress in said member.
27. A method according to claim 26, wherein said inertial mass is mounted on said member using a spring arrangement to provide the stiffness.
28. A method according to claim 26, wherein said inertial mass is mounted on said force actuator arrangement to provide the stiff mounting of said inertial mass to said member.
29. A method according to any one of claims 26 to 28, wherein said controlling of said force actuator comprises filtering said at least one second signal using a filter arrangement to generate a confrol signal for said force control arrangement.
30. A method according to claim 29, wherein said filter arrangement is adapted in response to said at least one second signal.
EP04768606A 2003-09-24 2004-09-23 Active vibration absorber and method Expired - Lifetime EP1664575B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10010712A EP2261525B1 (en) 2003-09-24 2004-09-23 Active vibration absorber and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0322404A GB2406369B (en) 2003-09-24 2003-09-24 Active vibration absorber and method
PCT/GB2004/004062 WO2005031186A2 (en) 2003-09-24 2004-09-23 Active vibration absorber and method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP10010712A Division EP2261525B1 (en) 2003-09-24 2004-09-23 Active vibration absorber and method
EP10010712.7 Division-Into 2010-09-27

Publications (2)

Publication Number Publication Date
EP1664575A2 true EP1664575A2 (en) 2006-06-07
EP1664575B1 EP1664575B1 (en) 2010-11-10

Family

ID=29266609

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10010712A Expired - Lifetime EP2261525B1 (en) 2003-09-24 2004-09-23 Active vibration absorber and method
EP04768606A Expired - Lifetime EP1664575B1 (en) 2003-09-24 2004-09-23 Active vibration absorber and method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10010712A Expired - Lifetime EP2261525B1 (en) 2003-09-24 2004-09-23 Active vibration absorber and method

Country Status (6)

Country Link
US (1) US7398143B2 (en)
EP (2) EP2261525B1 (en)
AT (1) ATE487892T1 (en)
DE (1) DE602004030023D1 (en)
GB (1) GB2406369B (en)
WO (1) WO2005031186A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534156A (en) * 2018-07-13 2021-03-19 埃塞克有限责任公司 System and related method for identifying and actively controlling vibrations in a building
US11391900B2 (en) 2019-11-19 2022-07-19 Corning Research & Development Corporation Talcum-free flame retardant fiber optical cable with micro-modules

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8746649B2 (en) * 2002-05-21 2014-06-10 Textron Innovations Inc. Variable stiffness support
US7352198B2 (en) * 2006-01-18 2008-04-01 Electroglas, Inc. Methods and apparatuses for improved stabilization in a probing system
NL1029887C2 (en) * 2005-09-05 2007-03-06 Loggers Rubbertech Active mass damping sysem is provided with mass, spring system connected on one side with mass and on other side with vibrating object
US8439299B2 (en) * 2005-12-21 2013-05-14 General Electric Company Active cancellation and vibration isolation with feedback and feedforward control for an aircraft engine mount
KR101153579B1 (en) 2006-05-08 2012-06-11 신꼬오덴끼가부시끼가이샤 Damper for automobiles for reducing vibration of automobile body
US8584820B2 (en) * 2006-10-31 2013-11-19 Nissan Motor Co., Ltd. Vibration reducing device and vibration reducing method
GB2447231B (en) * 2007-03-05 2012-03-07 Ultra Electronics Ltd Active tuned vibration absorber
EP2075484A1 (en) * 2007-12-31 2009-07-01 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO An active vibration isolation system having an inertial reference mass
US8519728B2 (en) 2008-12-12 2013-08-27 Formfactor, Inc. Compliance control methods and apparatuses
US8136894B2 (en) * 2009-04-13 2012-03-20 Hydro-Aire, Inc., A Subsidiary Of Crane Co. Shock and vibration isolation for aircraft brake control valve
US8308149B2 (en) * 2009-04-13 2012-11-13 Hydro-Alre, Inc. Shock and vibration isolation for aircraft brake control valve
EP2261530A1 (en) * 2009-06-12 2010-12-15 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO An active vibration isolation and damping system
GB2478790B (en) * 2010-03-19 2016-06-15 Univ Southampton Apparatus and method of vibration control
DE102011006024A1 (en) * 2011-03-24 2012-09-27 Carl Zeiss Smt Gmbh Arrangement for vibration isolation of a payload
US8855826B2 (en) * 2011-04-25 2014-10-07 Mitsubishi Electric Research Laboratories, Inc. Controller for reducing vibrations in mechanical systems
FR2986842B1 (en) * 2012-02-06 2015-05-29 Jacques Clausin ACTIVE LOW COST VIBRATION REDUCTION DEVICE CONSISTING OF ELASTIC PLOTS
DE102015215554A1 (en) * 2015-08-14 2017-02-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for influencing a dynamic property of at least one movably mounted body and their use as a variably adjustable damping element
JP6792961B2 (en) * 2016-05-18 2020-12-02 倉敷化工株式会社 Vibration damping device
US9992890B1 (en) * 2016-12-07 2018-06-05 Raytheon Company Modules and systems for damping excitations within fluid-filled structures
US11421877B2 (en) * 2017-08-29 2022-08-23 General Electric Company Vibration control for a gas turbine engine
US11981176B2 (en) 2021-02-10 2024-05-14 Gene Hawkins Active suspension control system for a motor vehicle
CN114876995B (en) * 2022-02-08 2023-04-07 上海交通大学 Multidimensional self-adaptive vibration and noise control device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821849A (en) * 1986-09-29 1989-04-18 Lord Corporation Control method and means for vibration attenuating damper
US5255764A (en) * 1989-06-06 1993-10-26 Takafumi Fujita Active/passive damping apparatus
US5613009A (en) * 1992-12-16 1997-03-18 Bridgestone Corporation Method and apparatus for controlling vibration
US5456341A (en) * 1993-04-23 1995-10-10 Moog Inc. Method and apparatus for actively adjusting and controlling a resonant mass-spring system
US5730429A (en) * 1993-10-29 1998-03-24 Lord Corporation Decouplers for active devices
EP0786057B1 (en) * 1994-10-12 1999-12-29 Lord Corporation ACTIVE SYSTEMS AND DEVICES INCLUDING ACTIVE VIBRATION ABSORBERS (AVAs)
JPH09175137A (en) * 1995-12-26 1997-07-08 Unisia Jecs Corp Vehicle suspension device
US5713438A (en) * 1996-03-25 1998-02-03 Lord Corporation Method and apparatus for non-model based decentralized adaptive feedforward active vibration control
US6026339A (en) * 1997-06-12 2000-02-15 Trw Inc. Apparatus and method for providing an inertial velocity signal in an active suspension control system
US6059274A (en) * 1998-05-04 2000-05-09 Gte Internetworking Incorporated Vibration reduction system using impedance regulated active mounts and method for reducing vibration
US6213442B1 (en) * 1998-10-08 2001-04-10 Lord Corporation Isolation system for isolation tables and the like
JP3722127B2 (en) * 2003-02-05 2005-11-30 日産自動車株式会社 Electromagnetic suspension device for vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005031186A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534156A (en) * 2018-07-13 2021-03-19 埃塞克有限责任公司 System and related method for identifying and actively controlling vibrations in a building
US11391900B2 (en) 2019-11-19 2022-07-19 Corning Research & Development Corporation Talcum-free flame retardant fiber optical cable with micro-modules

Also Published As

Publication number Publication date
EP2261525A1 (en) 2010-12-15
ATE487892T1 (en) 2010-11-15
GB0322404D0 (en) 2003-10-22
EP2261525B1 (en) 2012-08-22
US20070028885A1 (en) 2007-02-08
WO2005031186A2 (en) 2005-04-07
GB2406369A (en) 2005-03-30
DE602004030023D1 (en) 2010-12-23
US7398143B2 (en) 2008-07-08
EP1664575B1 (en) 2010-11-10
WO2005031186A3 (en) 2005-05-12
GB2406369B (en) 2007-05-09

Similar Documents

Publication Publication Date Title
US7398143B2 (en) Active vibration absorber and method
TWI596885B (en) A control element, a resonator device, and a method for controlling operation of a mechanical resonator
US8914154B2 (en) Active tuned vibration absorber
FI124624B (en) Improved oscillating gyroscope
CN104395695B (en) Improved vibratory gyroscope
EP2202488A2 (en) Adaptive mounting within an inertial navigation system
US5409078A (en) Adaptively controlled vibration damping support apparatus for vehicle power unit including engine
JP3098425B2 (en) Vehicle sprung unsprung relative speed calculation device
WO2010008714A2 (en) Method and system for detecting a vibration level of a wheel within a resonating frequency range of a vehicle suspension
JP2615392B2 (en) Tool fine table
GB2312972A (en) Active vibration damping
JP2004507689A (en) Method and damping device for absorbing unwanted vibrations
Pagliarulo et al. Tunable magnetostrictive dynamic vibration absorber
US11529839B2 (en) Device for decoupling vibrations between two systems and the working machine
EP2218674B1 (en) Llifting vehicle comprising mobile lifting arm and control device
McEver et al. Autonomous vibration suppression using on-line pole-zero identification
SU1223213A1 (en) Vibration isolator with controlled stiffness
Akella et al. Synthesized passive feedback control of sensor-rich smart structures-experimental results
JPH04287764A (en) Vibration control device for railroad car
KR19990020709A (en) Road Vibration Control System
JPS6288015A (en) Active vibration isolation control method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060317

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080303

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ULTRA ELECTRONICS LIMITED

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004030023

Country of ref document: DE

Date of ref document: 20101223

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110210

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110310

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110221

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004030023

Country of ref document: DE

Effective date: 20110811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110923

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130918

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130910

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004030023

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930