EP1664500A1 - Procede de determination de la temperature avant l'entree dans un pot catalytique d'un moteur turbocompresse - Google Patents

Procede de determination de la temperature avant l'entree dans un pot catalytique d'un moteur turbocompresse

Info

Publication number
EP1664500A1
EP1664500A1 EP04764223A EP04764223A EP1664500A1 EP 1664500 A1 EP1664500 A1 EP 1664500A1 EP 04764223 A EP04764223 A EP 04764223A EP 04764223 A EP04764223 A EP 04764223A EP 1664500 A1 EP1664500 A1 EP 1664500A1
Authority
EP
European Patent Office
Prior art keywords
temperature
turbocharger
engine
turbine
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04764223A
Other languages
German (de)
English (en)
French (fr)
Inventor
Kein Thibaut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive France SAS
Original Assignee
Siemens VDO Automotive SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VDO Automotive SAS filed Critical Siemens VDO Automotive SAS
Publication of EP1664500A1 publication Critical patent/EP1664500A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • F01N11/005Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus the temperature or pressure being estimated, e.g. by means of a theoretical model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for determining the temperature before entering a catalytic converter of a turbocharged engine.
  • a catalyzed engine it is important to know the temperature at the level of the catalytic converter so as not to destroy it. This temperature is important for various functions: protection of the catalyst and its upstream oxygen sensor, detection of ready upstream oxygen sensor, heating of upstream oxygen sensor as well as heating of the catalyst. On some engines these four functions, or at least part of them, do not exist. On other motors, these functions are regulated in open loop. It is also known for the management of these functions to take into account less precise parameters than the temperature at the inlet of the catalytic converter.
  • the object of the present invention is therefore to provide a method making it possible to reliably determine in a catalyzed turbocharged engine the inlet temperature of the exhaust gases into the catalytic converter, that is to say downstream of the turbocharger.
  • a method for determining the temperature of the exhaust gases downstream of the turbine of the turbocharger in a turbocharged engine which comprises the following steps: - determination of the temperature upstream of the turbocharger turbine, - calculation of a corrective term from engine operating parameters, and - determination of the temperature downstream of the turbocharger turbine by subtracting the corrective term of the temperature upstream of the turbocharger turbine.
  • This determination is very simple to perform, but as it has been shown, the determination of the temperature obtained by this process allows obtain temperatures substantially in line with those recorded using a temperature probe to confirm this process.
  • the temperature upstream of the turbocharger turbine can be determined using a temperature sensor, but to minimize the cost of the corresponding engine it is preferably obtained by modeling.
  • the corrective term is obtained first of all by a predetermined curve giving a temperature variation as a function of the engine speed and the air flow rate passing through the engine, then by the multiplication of this temperature variation by a adiabatic compression factor.
  • the adiabatic compression factor is advantageously dependent on at least one physical quantity chosen from the assembly comprising the pressure at the engine exhaust, the difference between this pressure and the external pressure and the opening of a pressure relief valve of the turbocharger.
  • FIG. 1 schematically represents the architecture of a turbocharged engine
  • FIG. 2 is a diagram to explain the operation of a method according to the invention.
  • Figure 1 very schematically shows an air supply and exhaust system of a turbocharged engine. This system makes it possible to supply fresh air to an engine in which at least one piston 2 moves in a cylinder 4.
  • a valve 8 is in turn provided for the exhaust of the burnt gases out of the cylinder 4.
  • the air supply system shown comprises, from upstream to downstream, an air inlet 10, a mass air flow meter 12 , a turbocharger 14, a chamber called an intercooler 16, a butterfly valve 18 disposed in a duct through which the air supplying the cylinders passes and making it possible to act on the air flow section of this duct, as well as a manifold d intake generally called manifold 20.
  • the intake valves 6 are in direct connection with the intake manifold 20.
  • the exhaust valves 8 are in turn in direct connection with an exhaust duct 22.
  • this exhaust duct 22 is only shown at the cylinder outlet and at the level of the turbocharger 14.
  • the latter comprises two turbines connected together by a shaft.
  • a first turbine is disposed in the exhaust duct and is rotated by the burnt gases leaving the cylinders 4 by the exhaust valves 8.
  • the second turbine is disposed, as indicated above, in the supply system for engine air and pressurizes the air in the intercooler 16.
  • a turbocharger discharge valve 24 makes it possible to short-circuit the turbine placed in the exhaust duct 22.
  • the exhaust gases pass through a catalytic converter 26 before being discharged into the open air. The method described below makes it possible to determine the temperature of the exhaust gases as they enter the catalytic converter 26.
  • This catalytic converter 26 contains an upstream oxygen sensor (not shown) which gives indications to the engine management device to act on the richness of the fuel / oxidant mixture sent by the air supply system in the cylinders 4.
  • Knowledge of the temperature upstream of the catalytic converter 26, and downstream of the turbocharger 14, makes it possible to protect the catalyst and the upstream oxygen sensor from excessively high temperatures. When an excessively high temperature is detected, it is possible to act on the engine supply in order to reduce the temperature of the exhaust gases leaving the cylinders 4. Conversely, the catalyst and the probe must also be corresponding upstream oxygen are at a relatively high temperature to be able to function perfectly.
  • Knowing the temperature at the inlet of the catalytic converter 26 therefore makes it possible to know whether the upstream oxygen sensor is ready and therefore whether the information which it provides must be taken into consideration. It is also possible to provide for heating of the upstream oxygen sensor and of the catalyst when the temperature thereof is not sufficient.
  • an atmospheric or turbocharged engine it is known to a person skilled in the art to model the temperature in the exhaust duct at the outlet of the cylinders 4. Many parameters are used to determine this temperature, for example, and not exclusively, the engine speed, the air flow, the richness of the fuel / oxidizer mixture sent into the cylinders, the ignition advance, etc.
  • the present invention proposes to calculate the temperature at the inlet of the catalytic converter 26, that is to say at the outlet of the turbocharger, from the temperature (modeled) upstream of the turbocharger. To do this, it proposes to subtract from the basic mapping determining the temperature before the turbocharger 14 a mapping dependent on the engine speed and the air flow rate passing through the engine multiplied by an adiabatic compression factor depending on a parameter such as the pressure at the exhaust and / or the opening of the discharge valve of the turbocharger 24.
  • FIG. 2 illustrates a diagram explaining how the temperature downstream of the turbocharger 14, at the inlet of the catalytic converter 26, is determined according to l 'invention. In this FIG. 2, there is a three-dimensional curve shown diagrammatically in a first window 28.
  • An orthogonal coordinate system is also shown diagrammatically in this window 28.
  • the curve represented diagrammatically gives a variation in temperature TC determined from the engine speed N and of the MAF air flow measured by the flow meter 12.
  • one axis of the reference corresponds to the engine speed N
  • the third axis indicates the value of the temperature variation TC.
  • Under window 28 is a second window 30 inside which are represented a curve and a two-axis orthogonal coordinate system.
  • the abscissa axis corresponds to a parameter while the ordinate axis corresponds to a multiplicative factor ⁇ .
  • the parameter on the abscissa can be the pressure at the PE exhaust measured in the exhaust duct 22 at the outlet of the cylinders 4. It can also be the pressure difference between this PE exhaust pressure and the atmospheric pressure prevailing outside the engine. Finally, it may be the opening (in degree or in percentage) of the discharge valve of the turbocharger 24. This opening is called WG in FIG. 2. It is considered that the temperature in the exhaust duct 22 upstream of the catalytic converter 26 takes the value T am have- Similarly, downstream of the turbocharger 14, the temperature takes a value T ava ⁇ . So then
  • the values TCo and TCi found correspond to an opening of the discharge valve of the turbocharger 24 corresponding to a value WG 0 .
  • the curve of window 30 is produced.
  • the value of the parameter WG is then varied.
  • FIG. 2 the obtaining of two points of the curve of window 30 with the values of the parameter WG being equal to WGi and WG 2 .
  • the temperature upstream of the turbocharger 14 is first of all determined in a known manner. This function is already known and performed on certain engines.
  • the same means can determine the temperature downstream of this turbocharger using a method according to the invention.
  • the additional cost linked to the determination of this temperature at the inlet of the catalytic converter 26 is therefore very low while bringing great advantages with regard to the lifetime of the catalyst and of the upstream oxygen sensor which equips it.
  • a numerical example is indicated below. It is generally considered that the inlet temperature of the exhaust gases into the turbocharger should not exceed approximately 1000 ° C. With regard to the upstream oxygen sensor, it is preferable not to exceed temperatures of the order of 750 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
EP04764223A 2003-09-05 2004-08-18 Procede de determination de la temperature avant l'entree dans un pot catalytique d'un moteur turbocompresse Withdrawn EP1664500A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0310516A FR2859501B1 (fr) 2003-09-05 2003-09-05 Procede de determination de la temperature avant l'entree dans un pot catalytique d'un moteur turbocompresse
PCT/EP2004/009235 WO2005024198A1 (fr) 2003-09-05 2004-08-18 Prodede de dermination de la temperature avant l’entrée dans un pot catalytique d’un moteur turbocompresse

Publications (1)

Publication Number Publication Date
EP1664500A1 true EP1664500A1 (fr) 2006-06-07

Family

ID=34178814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04764223A Withdrawn EP1664500A1 (fr) 2003-09-05 2004-08-18 Procede de determination de la temperature avant l'entree dans un pot catalytique d'un moteur turbocompresse

Country Status (7)

Country Link
US (1) US7261095B2 (es)
EP (1) EP1664500A1 (es)
JP (1) JP4575379B2 (es)
KR (1) KR20060090663A (es)
FR (1) FR2859501B1 (es)
MX (1) MXPA06002538A (es)
WO (1) WO2005024198A1 (es)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2917782A3 (fr) * 2007-06-22 2008-12-26 Renault Sas Procede et dispositif d'estimation de la temperature en amont d'un catalyseur d'oxydation en fonction de la en amont d'une turbine
US8136357B2 (en) 2008-08-27 2012-03-20 Honda Motor Co., Ltd. Turbocharged engine using an air bypass valve
EP2615283B1 (en) * 2012-01-10 2020-08-19 Ford Global Technologies, LLC A method and observer for determining the exhaust manifold temperature in a turbocharged engine
US9664093B2 (en) 2015-03-27 2017-05-30 Caterpillar Inc. Method for calculating exhaust temperature
JP6319255B2 (ja) * 2015-09-30 2018-05-09 マツダ株式会社 エンジンの制御装置
DE102016011440A1 (de) 2015-09-29 2017-03-30 Mazda Motor Corporation Regel- bzw. Steuergerät für einen Motor, Verfahren zum Regeln bzw. Steuern einer Temperatur eines Abgassystems und Computerprogrammprodukt

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700542A (en) * 1984-09-21 1987-10-20 Wang Lin Shu Internal combustion engines and methods of operation
JP2663720B2 (ja) * 1990-12-26 1997-10-15 トヨタ自動車株式会社 ディーゼルエンジンの排気浄化装置
DE19525667A1 (de) * 1995-07-14 1997-01-16 Audi Ag Vorrichtung an einer Brennkraftmaschine mit einem Abgasturbolader
JPH0979092A (ja) * 1995-09-12 1997-03-25 Nissan Motor Co Ltd 内燃機関の制御装置
JP3900590B2 (ja) * 1996-05-17 2007-04-04 株式会社デンソー 内燃機関の排気浄化装置
US6230683B1 (en) * 1997-08-22 2001-05-15 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
DE69740148D1 (de) * 1996-08-23 2011-04-21 Cummins Inc Verbrennungskraftmaschine mit Kompressionszündung und Kraftstoff-Luft Vormischung mit optimaler Verbrennungsregelung
EP0983433B1 (en) * 1998-02-23 2007-05-16 Cummins Inc. Premixed charge compression ignition engine with optimal combustion control
JP3987199B2 (ja) * 1998-03-31 2007-10-03 マツダ株式会社 シミュレーション装置、シミュレーション方法、および記憶媒体
DE19907382A1 (de) * 1999-02-20 2000-08-24 Bayerische Motoren Werke Ag Verfahren zur Abschätzung der Katalysatortemperatur
US6321157B1 (en) * 1999-04-27 2001-11-20 Ford Global Technologies, Inc. Hybrid modeling and control of disc engines
DE19963358A1 (de) * 1999-12-28 2001-07-12 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine mit einem Luftsystem
US6314735B1 (en) * 2000-02-23 2001-11-13 Ford Global Technologies, Inc. Control of exhaust temperature in lean burn engines
DE10111775B4 (de) * 2001-03-12 2008-10-02 Volkswagen Ag Verfahren und Vorrichtung zur Bestimmung der Gasaustrittstemperatur der Turbine eines Abgasturboladers eines Kraftfahrzeugs
JP4122770B2 (ja) * 2002-01-07 2008-07-23 日産自動車株式会社 内燃機関の排気温度検出装置
JP4056776B2 (ja) * 2002-03-29 2008-03-05 本田技研工業株式会社 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005024198A1 *

Also Published As

Publication number Publication date
FR2859501B1 (fr) 2007-05-04
MXPA06002538A (es) 2006-06-20
KR20060090663A (ko) 2006-08-14
US20060276955A1 (en) 2006-12-07
WO2005024198A1 (fr) 2005-03-17
JP2007533885A (ja) 2007-11-22
FR2859501A1 (fr) 2005-03-11
JP4575379B2 (ja) 2010-11-04
US7261095B2 (en) 2007-08-28

Similar Documents

Publication Publication Date Title
EP1989426B1 (fr) Procede et dispositif de controle de la suralimentation en air d'un moteur a combustion interne
FR2500061A1 (fr) Procede et dispositif pour regler la pression a l'admission d'un moteur a combustion interne a turbocompresseur
FR2874237A1 (fr) Procede et dispositif de gestion d'un moteur a combustion interne
FR2794803A1 (fr) Procede et dispositif de regulation de la fraction de gaz d'echappement recyclee dans un moteur
FR2915237A1 (fr) Systeme et procede de commande d'un turbocompresseur de suralimentation pour moteur a combustion interne
FR2750454A1 (fr) Procede pour determiner le signal de charge d'un moteur a combustion interne avec reinjection externe des gaz d'echappement
EP1664500A1 (fr) Procede de determination de la temperature avant l'entree dans un pot catalytique d'un moteur turbocompresse
FR2532362A1 (fr) Procede de commande d'alimentation en carburant d'un moteur a combustion interne immediatement apres son demarrage
FR2553831A1 (fr) Procede permettant de commander la valeur de quantites a produire par un moyen de commande du fonctionnement d'un moteur a combustion interne
EP1671023B1 (fr) Procede de gestion de l' alimentation en air d' un moteur, destine notamment a la gestion d' un moteur turbocompresse
FR2548273A1 (fr) Procede pour commander l'etat de fonctionnement d'un moteur a combustion interne
EP1347163B1 (fr) Procédé d'estimation du couple de pompage d'un moteur thermique pour véhicule automobile
WO2004085811A1 (fr) Mesure de la pression ambiante dans un moteur turbocompresse
FR2849897A1 (fr) Procede de fonctionnement d'un moteur a combustion interne
EP1828578B1 (fr) Procede de commande pour moteur suralimente
EP2045456B1 (fr) Moteur thermique equipe d'un turbocompresseur de suralimentation et procede pour lutter contre le pompage du turbocompresseur
FR2905408A1 (fr) Procede de commande pour moteur suralimente
FR2813098A1 (fr) Dispositif pour detecter un mauvais fonctionnement du systeme d'echappement d'un moteur
WO2014095052A1 (fr) Procédé de détermination du débit d'air recycle et de la quantité d'oxygène disponible a l'entrée d'un cylindre d'un moteur a combustion interne
EP0639704A1 (fr) Procédé de calcul de la masse d'air admise dans un moteur à combustion interne
EP1748174B1 (fr) Système et procédé d'estimation du débit d'alimentation en air frais d'un moteur de véhicule automobile équipé d'un turbocompresseur de suralimentation
EP0637685B1 (fr) Procédé et dispositif d'auto adaptation de richesse pour moteur à combustion interne avec système de purge de canister
EP0636778B1 (fr) Procédé et dispositif de correction de la durée d'injection en fonction du débit de purge d'un circuit de purge à canister, pour moteur à injection
EP2807353B1 (fr) Procédé de protection thermique des composants de la ligne d'échappement d'un moteur thermique
WO2020070179A1 (fr) Procede de detection du colmatage d'un filtre a air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081028