EP1663642A2 - Composite structure - Google Patents

Composite structure

Info

Publication number
EP1663642A2
EP1663642A2 EP04787393A EP04787393A EP1663642A2 EP 1663642 A2 EP1663642 A2 EP 1663642A2 EP 04787393 A EP04787393 A EP 04787393A EP 04787393 A EP04787393 A EP 04787393A EP 1663642 A2 EP1663642 A2 EP 1663642A2
Authority
EP
European Patent Office
Prior art keywords
polyamide
composite structure
foam
structure according
structural layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04787393A
Other languages
German (de)
French (fr)
Inventor
Philippe Myard
Jean-François BRIOIS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Operations SAS
Original Assignee
Rhodia Industrial Yarns AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Industrial Yarns AG filed Critical Rhodia Industrial Yarns AG
Publication of EP1663642A2 publication Critical patent/EP1663642A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/046Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0257Polyamide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Definitions

  • the present invention relates to a composite structure, in particular a sandwich structure comprising a structural layer C1, a layer C2 of lightening and possibly of reinforcement, in rigid or semi-rigid foam, and possibly a structural layer C3.
  • the invention relates more particularly to a composite structure comprising a layer C2 of polyamide-based foam, a method of manufacturing and a use of this structure.
  • Composite structures, in particular sandwich structures are used in many fields such as aeronautics, the automobile industry, the sports industry and leisure. These structures are used to produce sporting goods such as skis or else to produce various surfaces such as special floors, partitions, vehicle bodies, billboards etc.
  • Composite structures can also be used for the manufacture of veranda covers, terraces, roofs, balconies, galleries, walls (cladding) etc.
  • Composite structures with an internal lightening layer of polyurethane foam are also known.
  • rigid polyurethane foams tend to crumble and also have low resistance to impact and fatigue. Their processing temperature is also limited.
  • the present invention therefore provides a composite structure which does not have these drawbacks, and which in particular has good properties of rigidity, lightness, recyclability.
  • the present invention therefore relates to a composite structure, in particular a sandwich structure, comprising at least: • a structural layer C1 • a lightening and optionally reinforcing layer C2, of rigid or semi-rigid foam • optionally a structural layer C3, the foam being a polyamide-based foam
  • the composite structure is a sandwich structure comprising two external structural layers C1 and C3, and an internal layer of lightening C2.
  • the structural layer of the composite structure is preferably in the form of a plate or sheet.
  • a plate can be formed from several sheets having different orientations relative to each other in order to obtain a plate having good mechanical properties.
  • the plates or sheets can have variable dimensions.
  • the structural layer may be made of metal such as aluminum, a metal alloy such as steel, etc.
  • the plates can be lacquered or covered with any suitable coating.
  • the thickness of the structural layer of the composite structure of the invention is advantageously between 0.2 and 3 mm.
  • the outer layer of the composite structure of the invention can comprise several layers.
  • the overall thickness of the composite structure of the invention is between 3 and 50 mm.
  • the density of the foam of the structure of the invention is preferably less than
  • the foam of the structure of the invention preferably has good resistance to compression, which allows it to retain its integrity and its properties during a possible crushing of the structure. This crushing can occur in certain fields of application of the structure, for example during violent shocks in particular.
  • the polyamide of the invention is a polyamide of the type of those obtained by polycondensation from dicarboxylic acids and diamines, or of the type of those obtained by polycondensation of lactams and / or amino acids.
  • the polyamide of the invention may be a mixture of polyamides of different types and / or of the same type, and / or copolymers obtained from different monomers corresponding to the same type and / or to different types of polyamide.
  • the polyamide is advantageously chosen from the group comprising PA 4.6, PA 6, PA 6.6, PA 6.9, PA 6.10, PA 6.12, PA 6.36, PA 11, PA 12 or a semi-aromatic semi-aromatic polyamide or copolyamide chosen from the group comprising polyphthalamides, and mixtures of these polymers and their copolymers.
  • the polyamide is chosen from polyamide 6, polyamide 6.6, their mixtures and copolymers.
  • the rigid or semi-rigid polyamide foam of the invention can be obtained according to any method known to those skilled in the art. It can be obtained by injecting gas under pressure into the polyamide in the molten state.
  • the foam can also be obtained by incorporating porophores - thermally unstable fillers - into the polyamide in the molten state, which release a gas during their decomposition. It is also possible to obtain the polyamide foam of the invention by introduction into the polyamide in the molten state of compounds which dissolve in the melt, the foam being obtained by volatilization of these compounds.
  • the foam can also be obtained by means of a chemical reaction releasing gas, such as carbon dioxide, for example by bringing together isocyanates and lactams as well as bases to activate the anionic polymerization.
  • the polyamide foam of the invention is preferably obtained from a mixture of polyamide and polycarbonate. The foam is obtained chemically, that is to say in particular by chemical reaction between polyamide and polycarbonate.
  • the polycarbonate of the mixture is advantageously a polycarbonate comprising aromatic rings of formula:
  • Ri, R 2 identical or different, are hydrogen, halogen or alkyl or haloalkyl radicals comprising between 1 and 5 atoms carbon, each aromatic nucleus possibly being substituted by alkyl or haloalkyl radicals comprising between 1 and 5 carbon atoms.
  • n is an integer between 40 and 300, preferably between 20 and 300.
  • the molecular weight of the polycarbonate of the invention is preferably between 5000 and 80,000, more preferably between 10,000 and 40,000.
  • the mixture comprises 0 , 5 to 20% by weight of polycarbonate relative to the polyamide, preferably 5 to 15% by weight.
  • the mixture of polyamide and polycarbonate of the invention may also comprise, in addition to a polyamide and a polycarbonate, blowing agents which will make it possible to amplify the foaming phenomenon during the preparation of the foam from the mixture.
  • blowing agents are known to those skilled in the art.
  • the mixture can also include other additives useful for the subsequent preparation of the foam, such as surfactants, nucleating agents such as talc, plasticizers, etc. These additives are known to those skilled in the art.
  • the mixture can also include reinforcing fillers such as glass fibers or carbonate, matifiers such as titanium dioxide or zinc sulfide, pigments, dyes, heat or light stabilizers, bioactive agents, antifouling agents, antistatic agents, flame retardants, high or low density fillers etc.
  • matifiers such as titanium dioxide or zinc sulfide, pigments, dyes, heat or light stabilizers, bioactive agents, antifouling agents, antistatic agents, flame retardants, high or low density fillers etc.
  • the mixture of polyamide and polycarbonate is produced according to any method known to a person skilled in the art for producing a mixture, for example by intimate mixing of polyamide and polycarbonate powders, or by mixture of polyamide and polycarbonate granules.
  • the mixing can be carried out in the molten state, for example in an extrusion device.
  • the foam is obtained by heating the mixture of polyamide and polycarbonate.
  • the temperature reached by heating must be sufficient so that there is in particular a reaction between the polyamide and the polycarbonate, as well as a gassing which leads to the formation of foam.
  • the temperature reached by heating is preferably greater than or equal to the melting temperature of the polyamide.
  • a screw mixing device can be used during heating.
  • a twin-screw extrusion device is used for mixing and heating.
  • the foam layer C2 is generally in the form of a plate.
  • the plates can be prepared according to any method known to those skilled in the art. For example when the foam is prepared by mixing and heating in a device extrusion, the plate can be shaped using a shaping device at the die outlet.
  • the structural layer can comprise a thermoplastic or thermosetting polymer matrix, generally reinforced with reinforcing fibers, such as glass, carbon, aramid, polyimide or quartz fibers. , sisal, hemp, flax.
  • the matrix is a thermoplastic polymer.
  • the matrix is a thermoplastic polymer comprising an aliphatic and / or semi-crystalline polyamide or copolyamide, preferably chosen from the group comprising PA 4.6, PA 6, PA 6.6, PA 6.9, PA 6.10, PA 6.12, PA 6.36, PA 11 , PA 12 or a semi-aromatic semi-aromatic polyamide or copolyamide chosen from the group comprising polyphthalamides, and mixtures of these polymers and their copolymers.
  • the structural layer and the lightening layer of the composite structure of the invention are made of polyamide, which has an advantage in particular for recycling this type of structure.
  • the matrix of the structural layer comprises a polyamide with a star structure comprising: star macromolecular chains comprising one or more hearts and at least three branches or three polyamide segments linked to a heart , where appropriate linear polyamide macromolecular chains
  • the star structure polymer is a polymer comprising star macromolecular chains, and where appropriate linear macromolecular chains.
  • the polymers comprising such star macromolecular chains are for example described in the documents FR 2 743 077, FR 2 779 730, EP 0 682 057 and EP 0 832 149. These compounds are known to have an improved fluidity compared to linear polyamides .
  • the polyamide with a star structure is of the type of polyamides obtained by copolymerization of a mixture of monomers comprising at least: a) monomers of general formula (I) below: b) monomers of general formulas (Ma) and (Mb) below: O II XR.-Y (Ha) or RC (Ilb) ⁇ / NH c) optionally monomers of general formula (III) below:
  • - R1 is a hydrocarbon radical comprising at least 2 carbon atoms, linear or cyclic, aromatic or aliphatic and which can comprise heteroatoms
  • - A is a covalent bond or an aliphatic hydrocarbon radical which can comprising heteroatoms and comprising from 1 to 20 carbon atoms
  • - Z represents a primary amino function or a carboxylic acid function
  • - Y is a primary amino function when X represents a carboxylic acid function or - Y is a carboxylic acid function when X represents a primary amine function
  • - R2, R3 identical or different represent aliphatic, cycloaliphatic or aromatic substituted or unsubstituted hydrocarbon radicals comprising from 2 to 20 carbon atoms and which can comprise heteroatoms
  • - m represents an integer between 3 and 8
  • the compound of formula (I) is chosen from 2,2,6,6-tetra- ( ⁇ - carboxyethyl) -cyclohe
  • the invention also relates to a process for preparing the composite structure described above.
  • the method comprises a step of assembling at least the following elements: (C1 '): a structural layer or a precursor of this layer - (C2'): a layer of lightening and possibly of reinforcement, made of foam based of polyamide or a precursor of this foam - (C3 ′): optionally a structural layer or a precursor of this layer
  • the precursor of the foam may be an expandable polyamide composition, for example a mixture of polyamide and polycarbonate as described below. above.
  • expandable polyamide composition is meant a polyamide composition which can form a foam under certain temperature and / or pressure conditions.
  • the expandable polyamide composition comprises a polyamide and a blowing agent.
  • the blowing agent may be a gas which can disperse or dissolve in the polyamide in the molten state. Any gas known to a person skilled in the art which can disperse or dissolve in the polyamide can be used. The gas is preferably inert. As an example of a suitable gas in the context of the invention, there may be mentioned nitrogen, carbon dioxide, butane, etc.
  • the blowing agent can also be a blowing agent. Any blowing agent known to a person skilled in the art can be used. It is introduced into the polyamide according to a method known to those skilled in the art. As an example of a blowing agent, diazocarbonamide may be mentioned.
  • the blowing agent can also be a volatile compound which can dissolve in the polyamide in the molten state.
  • the blowing agent may finally be a chemical compound which can react chemically with the polyamide by heating. A gas is generally generated during this reaction, gas which is at the origin of the expansion of the mixture.
  • the blowing agent can for example be a polycarbonate.
  • the expandable polyamide composition may be in the form of a powder, a part (plate) obtained for example by controlled injection so as to avoid the formation of foam, of mixture in the molten state, etc.
  • the precursor of the structural layer may be an article comprising reinforcing fibers.
  • the article can be in the form of continuous or cut threads, ribbons, mats, braids, fabrics, knits, tablecloths, multiaxials, nonwovens and / or complex shapes comprising several of the above-mentioned shapes.
  • the precursor of the structural layer preferably comprises a polymer matrix, for example in the form of powder, film, etc.
  • the precursor of the structural layer may be a prepreg article, i.e. a fabric impregnated with a resin, the resin comprising a curing agent for further curing by heating.
  • the precursor of the structural layer is an article comprising son and / or reinforcing fibers and son and / or fibers of polymeric matrix.
  • yarn is meant a monofilament, a continuous multifilament yarn, a yarn of fibers, obtained from a single type of fiber or from several types of fibers in intimate mixture.
  • the continuous thread can also be obtained by assembling several multifilament threads.
  • fiber is meant a filament or a set of cut, cracked or converted filaments.
  • the article comprising reinforcing threads and / or fibers and threads and / or fibers of a polymer matrix may be in the form of continuous or cut threads, ribbons, mats, braids, fabrics, knits, tablecloths , multiaxials, nonwovens and / or complex shapes comprising several of the aforementioned shapes.
  • Any method of assembling different layers can be used in the context of the process of the invention.
  • the different elements (C1 '), (C2'), and possibly (C3 ') can be assembled simultaneously or successively, for example by gluing.
  • the bonding is carried out according to any method known to those skilled in the art for assembling elements of a composite structure with several layers.
  • the different elements can be glued with an adhesive film compatible with the material of the elements.
  • the assembly is carried out by thermoforming or calendering of the different elements (C1 '), (C2') and possibly (C3 ') described above.
  • the different elements are thermoformed or calenders simultaneously or successively.
  • the layer (C1 '), layer (C3') and possibly layer (C2 ') combination can be thermoformed or calendared simultaneously. It is also possible to thermoform or calendar the layer (C1 ') and layer (C2') assembly, then thermoform or calendar the layer (C3 ') and the layer (C1') and layer (C2 ') assembly.
  • This step can be carried out by heating, then cold pressing of the various elements (stamping). Generally this step is carried out hot and under pressure.
  • the thermoforming methods used use low pressures (below 20 bars and possibly under vacuum), temperatures below 270 ° C, and short times (below 15 minutes). This step notably makes it possible to obtain good adhesion between the lightening layer and the structural layer.
  • the temperature during thermoforming or calendering is greater than or equal to the melting temperature of the polymer matrix of the precursor of the structural layer, when this precursor includes an article comprising reinforcing fibers and a polymer matrix.
  • the relatively high melting temperature of the polyamide of the foam allows the implementation of high temperatures during the preparation of composite structures, which is not possible with known foams. Indeed, the polyamide foam melts at a higher temperature than the foams of the prior art such as polyurethane foams.
  • the temperature during thermoforming or calendering is preferably greater than or equal to the melting temperature of the thermoplastic polymer matrix of the structural layer, when the latter comprises a thermoplastic polymer matrix.
  • the structural layer of the composite structure is a plate or a sheet comprising a thermoplastic polymer matrix
  • the assembly of the foam to the structural layer can be achieved by melting the matrix during thermoforming or calendering, which inserts into the surface pores of the foam, which then acts as an adhesive by solidifying.
  • thermoforming or calendering temperature is more or less equal to the temperature of the polyamide of the foam, partial melting of the foam at the point of contact of the foam and the structural layer may occur, and this part of molten foam can also act as an adhesive, by solidifying.
  • the invention also relates to the use of the composite structure described above for the production of automobile or airplane parts or for the production of sporting articles such as skis or for the production of panels in the building Other details or advantages of the invention will appear more clearly in the light of the examples given below only for information.
  • the test is carried out on a foam sample 20 mm in diameter and 25 mm thick, using an INSTRON 1185 device, under conditions of temperature of 23 ° C and relative humidity rate of 50%.
  • Young's modulus is determined from the force-displacement curve, recorded using the device, operating at a displacement speed of 20mm / min.
  • Foam density measurement test :
  • the density is measured on machined samples with dimensions 100x100x15 mm. These test pieces are then weighed with a precision balance, according to standard ASTM D 3748-98.
  • Example 1 Preparation of a C2 layer of polyamide foam
  • Granules of PA66 marketed by the company Rhodia Engineering Plastics under the reference A 216 Naturel® (90% w / w) are mixed with polycarbonate granules marketed by the company Bayer under the reference Makrolon 2205® (10% w / w) .
  • the mixture is placed in an oven overnight under partial vacuum and flushing with nitrogen. This mixture is used to feed a twin-screw extruder equipped with a lip die.
  • the temperature profile of the twin screw is as follows: (in ° C) 270-280-280-280-280-280-280-280.
  • the speed of rotation of the twin-screw is adjusted to 250 rev.min "1.
  • the extrudate is shaped in a shaper and cooled on a transport bench before being sawn and shaped in the form of a plate, for example 10 cm wide and 1 cm thick.
  • the feed rate of the extruder is 15 kg / h.
  • These plates have an average density of 0.15.
  • the Young's modulus of these plates is 43 , 3 MPa.
  • the abscissa corresponds to the deformation (%) and the ordinate to the stress (mPa).
  • polyamide foam, PMI polymethacrylimide foam breaks beyond 27% deformation.
  • Matrix used 6-star polyamide, obtained by copolymerization from caprolactam in the presence of 0.5 mol% of 2,2,6,6-tetra ( ⁇ -carboxyethyl) cyclohexanone, according to a process described in document FR 2743077, comprising about 80% of star macromolecular chains and 20% of linear macromolecular chains, of melt flow index measured at 275 ° C under 1000 g of 55 g / 10 minute.
  • a laminated composite is then produced by placing several elementary layers (between 2 and 10) of the fabric obtained in a mold having a plate shape, under a press with heating plates, for a period of 1 to 3 minutes, under a pressure of between 1 and 20 Bars and a temperature higher than the melting temperature of Polyamide 6 star (230-260 ° C). After cooling to a temperature of 50-60 ° C, the composite is removed from the mold. The mass rate of reinforcement is then between 60-70%.
  • Example 4 Preparation of a sandwich composite structure with two external structural layers C1 and C3. and an internal lightening layer C2.
  • Example 2 Two laminate composites according to Example 2 (layers C1 and C3) are placed on either side of a layer C2 of foam prepared according to Example 1. The assembly is placed between the plates of a plate press 270mm x 270mm heaters at 240 ° C for 10 minutes at 15 bar, then pressure cooled to 130 ° C and unmolded. A sandwich structure is obtained with very good integrity of the foam and good cohesion of the layers together.
  • Example 5 Preparation of a sandwich composite structure with two external structural layers C1 and C3. and an internal lightening layer C2.
  • Example 3 Two laminate composites according to Example 3 (layers C1 and C3) are placed on either side of a layer C2 of foam prepared according to Example 1. The assembly is placed between the plates of a plate press 270mm x 270mm heaters at 240 ° C for 10 minutes at 15 bar, then pressure cooled to 130 ° C and unmolded. A sandwich structure is obtained with very good integrity of the foam and good cohesion of the layers together.
  • Example 6 Preparation of a composite sandwich structure with two external structural layers C1 and C3, and an internal layer of lightening C2.
  • the assembly is placed between the plates of a press with heating plates of dimensions 270 mm ⁇ 270 mm at 240 ° C. for 10 minutes under 15 bars, then cooled under pressure to 130 ° C. and demolded.
  • a sandwich structure is obtained with very good integrity of the foam and good cohesion of the layers together.

Landscapes

  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

The invention relates to a composite structure, in particular to a sandwich structure comprising a structural layer (C1), a lightweight layer (C2) and optionally a reinforcing component made of rigid or semi-rigid foam and optionally a structural layer (C3). Said invention relates, in particular to a composite structure comprising a polyamide-based foam layer (C2), to a method for the production and use thereof.

Description

STRUCTURE COMPOSITE COMPOSITE STRUCTURE
La présente invention concerne une structure composite, notamment une structure sandwich comprenant une couche C1 structurelle, une couche C2 d'allégement et éventuellement de renfort, en mousse rigide ou semi-rigide, et éventuellement une couche structurelle C3. L'invention concerne plus particulièrement une structure composite comprenant une couche C2 en mousse à base de polyamide, un procédé de fabrication et une utilisation de cette structure. Les structures composites, notamment les structures sandwich sont employées dans de nombreux domaines tels que l'aéronautique, l'automobile, l'industrie des sports et loisirs. Ces structures sont utilisées pour réaliser des articles de sport tels que des skis ou bien pour réaliser des surfaces diverses telles que des planchers spéciaux, des cloisons, des carrosseries de véhicules, des panneaux publicitaires etc. Les structures composites peuvent également être employées pour la fabrication de couvertures de vérandas, de terrasses, de toitures, de balcons, de galeries, de murs (bardage) etc. Dans l'aéronautique ces structures sont utilisées notamment au niveau des carénages (fuselage, aile, empennage). Dans l'automobile, elles sont utilisées par exemple au niveau des planchers, des supports tels que les tablettes arrière etc. Des structures composites performantes sont recherchées pour ces diverses applications. On cherche à obtenir des structures composites présentant de bonnes propriétés notamment de rigidité, de légèreté, de recyclabilité. Il est connu de fabriquer des structures composites avec une couche d'allégement interne présentant une structure nid d'abeille. Une structure en nid d'abeille présentant des cellules de forme hexagonale est par exemple connue. Cette structure présente notamment les inconvénients suivants : le coût de fabrication de cette structure complexe est important ; de plus, des phénomènes indésirables dus à la nature même de cette structure peuvent être observés, notamment des phénomènes de remplissage d'alvéoles en cas d'infiltrations d'eau, et le phénomène « effet télégraphe ». Des structures composites avec une couche d'allégement interne en mousse polyuréthane sont également connues. Cependant les mousses polyuréthane rigides ont tendance à s'effriter et présentent de plus une faible résistance aux chocs et à la fatigue. Leur température de mise en oeuvre est également limitée. La présente invention propose donc une structure composite ne présentant pas ces inconvénients, et présentant notamment de bonnes propriétés de rigidité, de légèreté, de recyclabilité. La présente invention concerne donc une structure composite, notamment une structure sandwich, comprenant au moins : • une couche C1 structurelle • une couche C2 d'allégement et éventuellement de renfort, en mousse rigide ou semi-rigide • éventuellement une couche C3 structurelle la mousse étant une mousse à base de polyamide Selon un mode de réalisation particulier de l'invention, la structure composite est une structure sandwich comprenant deux couches externes structurelles C1 et C3, et une couche interne d'allégement C2. La couche structurelle de la structure composite se présente de préférence sous forme de plaque ou de feuille. Une plaque peut être formée de plusieurs feuilles présentant des orientations différentes les unes par rapport aux autres afin d'obtenir une plaque présentant de bonnes propriétés mécaniques. Les plaques ou feuilles peuvent avoir des dimensions variables. A titre d'exemple on peut citer comme dimensions de plaques pouvant convenir dans le cadre de l'invention, une plaque d'une longueur de 2,5 m et d'une largeur de 1 m. La couche structurelle peut être en métal tel que l'aluminium, en un alliage métallique tel qu'un acier etc. Les plaques peuvent être laquées ou recouvertes par tout revêtement convenable. L'épaisseur de la couche structurelle de la structure composite de l'invention est avantageusement comprise entre 0,2 et 3 mm. La couche externe de la structure composite de l'invention peut comprendre plusieurs couches. De préférence l'épaisseur globale de la structure composite de l'invention est comprise entre 3 et 50 mm. La densité de la mousse de la structure de l'invention est de préférence inférieure àThe present invention relates to a composite structure, in particular a sandwich structure comprising a structural layer C1, a layer C2 of lightening and possibly of reinforcement, in rigid or semi-rigid foam, and possibly a structural layer C3. The invention relates more particularly to a composite structure comprising a layer C2 of polyamide-based foam, a method of manufacturing and a use of this structure. Composite structures, in particular sandwich structures, are used in many fields such as aeronautics, the automobile industry, the sports industry and leisure. These structures are used to produce sporting goods such as skis or else to produce various surfaces such as special floors, partitions, vehicle bodies, billboards etc. Composite structures can also be used for the manufacture of veranda covers, terraces, roofs, balconies, galleries, walls (cladding) etc. In aeronautics these structures are used in particular at the level of the fairings (fuselage, wing, empennage). In the automobile, they are used for example at floors, supports such as rear shelves etc. Efficient composite structures are sought for these various applications. We seek to obtain composite structures having good properties including rigidity, lightness, recyclability. It is known to manufacture composite structures with an internal lightening layer having a honeycomb structure. A honeycomb structure having cells of hexagonal shape is for example known. This structure has the following disadvantages in particular: the manufacturing cost of this complex structure is significant; moreover, undesirable phenomena due to the very nature of this structure can be observed, in particular phenomena of filling of cells in the event of water infiltration, and the phenomenon "telegraph effect". Composite structures with an internal lightening layer of polyurethane foam are also known. However, rigid polyurethane foams tend to crumble and also have low resistance to impact and fatigue. Their processing temperature is also limited. The present invention therefore provides a composite structure which does not have these drawbacks, and which in particular has good properties of rigidity, lightness, recyclability. The present invention therefore relates to a composite structure, in particular a sandwich structure, comprising at least: • a structural layer C1 • a lightening and optionally reinforcing layer C2, of rigid or semi-rigid foam • optionally a structural layer C3, the foam being a polyamide-based foam According to a particular embodiment of the invention, the composite structure is a sandwich structure comprising two external structural layers C1 and C3, and an internal layer of lightening C2. The structural layer of the composite structure is preferably in the form of a plate or sheet. A plate can be formed from several sheets having different orientations relative to each other in order to obtain a plate having good mechanical properties. The plates or sheets can have variable dimensions. By way of example, mention may be made, as dimensions of plates which may be suitable in the context of the invention, of a plate 2.5 m long and 1 m wide. The structural layer may be made of metal such as aluminum, a metal alloy such as steel, etc. The plates can be lacquered or covered with any suitable coating. The thickness of the structural layer of the composite structure of the invention is advantageously between 0.2 and 3 mm. The outer layer of the composite structure of the invention can comprise several layers. Preferably the overall thickness of the composite structure of the invention is between 3 and 50 mm. The density of the foam of the structure of the invention is preferably less than
300 kg/m3, de préférence comprise entre 30 et 200 kg/m3. Moins la mousse est dense, plus la structure composite sera légère, ce qui présente de nombreux avantages. Le module de Young ou module de compression de la mousse de la structure composite de l'invention est de préférence supérieure ou égale à 30 MPa. Ce module peut être mesuré selon une méthode décrite ci-dessous dans la partie expérimentale. La mousse de la structure de l'invention présente de préférence une bonne résistance à la compression, ce qui lui permet de conserver son intégrité et ses propriétés lors d'un éventuel écrasement de la structure. Cet écrasement peut survenir dans certains domaines d'application de la structure, par exemple lors de chocs violents notamment. Le polyamide de l'invention est un polyamide du type de ceux obtenus par polycondensation à partir de diacides carboxyliques et de diamines, ou du type de ceux obtenus par polycondensation de lactames et/ou aminoacides. Le polyamide de l'invention peut être un mélange de polyamides de différents types et/ou du même type, et/ou des copolymères obtenus à partir de différents monomères correspondant au même type et/ou à des types différents de polyamide. Le polyamide est avantageusement choisi dans le groupe comprenant le PA 4.6, PA 6,PA 6.6, PA 6.9, PA 6.10, PA 6.12, PA 6.36, PA 11 , PA 12 ou un polyamide ou copolyamide semi-aromatique semicristallin choisi dans le groupe comprenant les polyphtalamides, et les mélanges de ces polymères et de leurs copolymères. Selon un mode de réalisation préférentiel de l'invention, le polyamide est choisi parmi le polyamide 6, le polyamide 6,6, leurs mélanges et copolymères. La mousse de polyamide rigide ou semi-rigide de l'invention peut être obtenue selon toute méthode connue de l'homme du métier. Elle peut être obtenue par injection de gaz sous pression dans le polyamide à l'état fondu. La mousse peut également être obtenue par incorporation de porophores -charges instables thermiquement- dans le polyamide à l'état fondu, qui libèrent un gaz lors de leur décomposition. II est aussi possible d'obtenir la mousse de polyamide de l'invention par introduction dans le polyamide à l'état fondu de composés qui se dissolvent dans le fondu, la mousse étant obtenue par volatilisation de ces composés. La mousse peut aussi être obtenue à l'aide d'une réaction chimique dégageant du gaz, comme du dioxyde de carbone, par exemple en mettant en présence des isocyanates et des lactames ainsi que des bases pour activer la polymérisation anionique. La mousse polyamide de l'invention est de préférence obtenue à partir d'un mélange de polyamide et de polycarbonate. La mousse est obtenue par voie chimique, c'est-à-dire notamment par réaction chimique entre du polyamide et du polycarbonate. Le polycarbonate du mélange est avantageusement un polycarbonate comprenant des noyaux aromatiques de formule :300 kg / m 3 , preferably between 30 and 200 kg / m 3 . The less dense the foam, the lighter the composite structure, which has many advantages. The Young's modulus or compression modulus of the foam of the composite structure of the invention is preferably greater than or equal to 30 MPa. This module can be measured according to a method described below in the experimental part. The foam of the structure of the invention preferably has good resistance to compression, which allows it to retain its integrity and its properties during a possible crushing of the structure. This crushing can occur in certain fields of application of the structure, for example during violent shocks in particular. The polyamide of the invention is a polyamide of the type of those obtained by polycondensation from dicarboxylic acids and diamines, or of the type of those obtained by polycondensation of lactams and / or amino acids. The polyamide of the invention may be a mixture of polyamides of different types and / or of the same type, and / or copolymers obtained from different monomers corresponding to the same type and / or to different types of polyamide. The polyamide is advantageously chosen from the group comprising PA 4.6, PA 6, PA 6.6, PA 6.9, PA 6.10, PA 6.12, PA 6.36, PA 11, PA 12 or a semi-aromatic semi-aromatic polyamide or copolyamide chosen from the group comprising polyphthalamides, and mixtures of these polymers and their copolymers. According to a preferred embodiment of the invention, the polyamide is chosen from polyamide 6, polyamide 6.6, their mixtures and copolymers. The rigid or semi-rigid polyamide foam of the invention can be obtained according to any method known to those skilled in the art. It can be obtained by injecting gas under pressure into the polyamide in the molten state. The foam can also be obtained by incorporating porophores - thermally unstable fillers - into the polyamide in the molten state, which release a gas during their decomposition. It is also possible to obtain the polyamide foam of the invention by introduction into the polyamide in the molten state of compounds which dissolve in the melt, the foam being obtained by volatilization of these compounds. The foam can also be obtained by means of a chemical reaction releasing gas, such as carbon dioxide, for example by bringing together isocyanates and lactams as well as bases to activate the anionic polymerization. The polyamide foam of the invention is preferably obtained from a mixture of polyamide and polycarbonate. The foam is obtained chemically, that is to say in particular by chemical reaction between polyamide and polycarbonate. The polycarbonate of the mixture is advantageously a polycarbonate comprising aromatic rings of formula:
dans laquelle R-i, R2, identiques ou différents, sont des atomes d'hydrogène, d'halogène ou des radicaux alkyles ou haloalkyles comprenant entre 1 et 5 atomes de carbone, chaque noyau aromatique pouvant être substitué par des radicaux alkyles ou haloalkyles comprenant entre 1 et 5 atomes de carbone. n est un nombre entier compris entre 40 et 300, préférentiellement entre 20 et 300. Le poids moléculaire du polycarbonate de l'invention est de préférence compris entre 5000 et 80000, plus préférentiellement entre 10000 et 40000. De manière avantageuse, le mélange comprend 0,5 à 20% en poids de polycarbonate par rapport au polyamide, de préférence 5 à 15% en poids. La mélange de polyamide et de polycarbonate de l'invention peut également comprendre, outre un polyamide et un polycarbonate, des agents porogènes qui permettront d'amplifier le phénomène de moussage lors de la préparation de la mousse à partir du mélange. De tels agents porogènes sont connus de l'homme du métier. Le mélange peut également comprendre d'autres additifs utiles pour la préparation ultérieure de la mousse, tels que des surfactants, des nucléants comme le talc, des plastifiants etc. Ces additifs sont connus de l'homme du métier. Le mélange peut également comprendre des charges de renfort telles que des fibres de verre ou du carbonate, des matifiants tels que le dioxyde de titane ou le sulfure de zinc, des pigments, des colorants, des stabilisants chaleur ou lumière, des agents bioactifs, des agents antisalissure, des agents antistatiques, des ignifugeants, des charges de haute ou faible densité etc. Cette liste n'a aucun caractère exhaustif. Le mélange de polyamide et de polycarbonate est réalisé selon toute méthode connue de l'homme du métier pour réaliser un mélange, par exemple par mélange intime de poudres de polyamide et de polycarbonate, ou par mélange de granulés de polyamide et de polycarbonate. Le mélange peut être réalisé à l'état fondu, par exemple dans un dispositif d'extrusion. Selon un mode de réalisation particulier de l'invention, la mousse est obtenue par chauffage du mélange de polyamide et de polycarbonate. La température atteinte par chauffage doit être suffisante pour qu'il y ait notamment réaction entre le polyamide et le polycarbonate, ainsi qu'un dégagement gazeux qui conduit à la formation de mousse. La température atteinte par chauffage est de préférence supérieure ou égale à la température de fusion du polyamide. Un dispositif de mélange à vis peut être utilisé lors du chauffage. De préférence on utilise un dispositif d'extrusion bivis pour réaliser le mélange et le chauffage. La couche C2 en mousse se présente généralement sous forme de plaque. Les plaques peuvent être préparées selon toute méthode connue de l'homme du métier. Par exemple lorsque la mousse est préparée par mélange et chauffage dans un dispositif d'extrusion, la plaque peut être mise en forme à l'aide d'un conformateur en sortie de filière. Selon un mode de réalisation particulier de l'invention, la couche structurelle peut comprendre une matrice polymère thermoplastique ou thermodurcissable, généralement renforcée avec des fibres de renfort, telles que des fibres de verre, de carbone, d'aramide, de polyimide, de quartz, de sisal, de chanvre, de lin. Avantageusement la matrice est un polymère thermoplastique. De préférence la matrice est un polymère thermoplastique comprenant un polyamide ou copolyamide aliphatique et/ou semicristallin, de préférence choisi dans le groupe comprenant le PA 4.6, PA 6,PA 6.6, PA 6.9, PA 6.10, PA 6.12, PA 6.36, PA 11 , PA 12 ou un polyamide ou copolyamide semi-aromatique semicristallin choisi dans le groupe comprenant les polyphtalamides, et les mélanges de ces polymères et de leurs copolymères. Ainsi selon ce mode de réalisation, la couche structurelle et la couche d'allégement de la structure composite de l'invention sont en polyamide, ce qui présente un avantage notamment pour le recyclage de ce type de structure. Selon un mode de réalisation préférentiel de la structure de l'invention, la matrice de la couche structurelle comprend un polyamide à structure étoile comportant : des chaînes macromoléculaires étoiles comprenant un ou plusieurs cœurs et au moins trois branches ou trois segments polyamides liés à un cœur, le cas échéant des chaînes macromoléculaires polyamides linéaires, Le polymère à structure étoile est un polymère comprenant des chaînes macromoléculaires étoiles, et le cas échéant des chaînes macromoléculaires linéaires. Les polymères comprenant de telles chaînes macromoléculaires étoiles sont par exemple décrits dans les documents FR 2 743 077, FR 2 779 730, EP 0 682 057 et EP 0 832 149. Ces composés sont connus pour présenter une fluidité améliorée par rapport à des polyamides linéaires. Avantageusement, le polyamide à structure étoile est du type des polyamides obtenus par copolymérisation d'un mélange de monomères comprenant au moins : a) des monomères de formule générale (I) suivante : b) des monomères de formules générales (Ma) et (Mb) suivantes : O II X-R.-Y (Ha) ou R-C (Ilb) \ / NH c) éventuellement des monomères de formule générale (III) suivante : in which Ri, R 2 , identical or different, are hydrogen, halogen or alkyl or haloalkyl radicals comprising between 1 and 5 atoms carbon, each aromatic nucleus possibly being substituted by alkyl or haloalkyl radicals comprising between 1 and 5 carbon atoms. n is an integer between 40 and 300, preferably between 20 and 300. The molecular weight of the polycarbonate of the invention is preferably between 5000 and 80,000, more preferably between 10,000 and 40,000. Advantageously, the mixture comprises 0 , 5 to 20% by weight of polycarbonate relative to the polyamide, preferably 5 to 15% by weight. The mixture of polyamide and polycarbonate of the invention may also comprise, in addition to a polyamide and a polycarbonate, blowing agents which will make it possible to amplify the foaming phenomenon during the preparation of the foam from the mixture. Such blowing agents are known to those skilled in the art. The mixture can also include other additives useful for the subsequent preparation of the foam, such as surfactants, nucleating agents such as talc, plasticizers, etc. These additives are known to those skilled in the art. The mixture can also include reinforcing fillers such as glass fibers or carbonate, matifiers such as titanium dioxide or zinc sulfide, pigments, dyes, heat or light stabilizers, bioactive agents, antifouling agents, antistatic agents, flame retardants, high or low density fillers etc. This list is not exhaustive. The mixture of polyamide and polycarbonate is produced according to any method known to a person skilled in the art for producing a mixture, for example by intimate mixing of polyamide and polycarbonate powders, or by mixture of polyamide and polycarbonate granules. The mixing can be carried out in the molten state, for example in an extrusion device. According to a particular embodiment of the invention, the foam is obtained by heating the mixture of polyamide and polycarbonate. The temperature reached by heating must be sufficient so that there is in particular a reaction between the polyamide and the polycarbonate, as well as a gassing which leads to the formation of foam. The temperature reached by heating is preferably greater than or equal to the melting temperature of the polyamide. A screw mixing device can be used during heating. Preferably, a twin-screw extrusion device is used for mixing and heating. The foam layer C2 is generally in the form of a plate. The plates can be prepared according to any method known to those skilled in the art. For example when the foam is prepared by mixing and heating in a device extrusion, the plate can be shaped using a shaping device at the die outlet. According to a particular embodiment of the invention, the structural layer can comprise a thermoplastic or thermosetting polymer matrix, generally reinforced with reinforcing fibers, such as glass, carbon, aramid, polyimide or quartz fibers. , sisal, hemp, flax. Advantageously, the matrix is a thermoplastic polymer. Preferably the matrix is a thermoplastic polymer comprising an aliphatic and / or semi-crystalline polyamide or copolyamide, preferably chosen from the group comprising PA 4.6, PA 6, PA 6.6, PA 6.9, PA 6.10, PA 6.12, PA 6.36, PA 11 , PA 12 or a semi-aromatic semi-aromatic polyamide or copolyamide chosen from the group comprising polyphthalamides, and mixtures of these polymers and their copolymers. Thus, according to this embodiment, the structural layer and the lightening layer of the composite structure of the invention are made of polyamide, which has an advantage in particular for recycling this type of structure. According to a preferred embodiment of the structure of the invention, the matrix of the structural layer comprises a polyamide with a star structure comprising: star macromolecular chains comprising one or more hearts and at least three branches or three polyamide segments linked to a heart , where appropriate linear polyamide macromolecular chains, The star structure polymer is a polymer comprising star macromolecular chains, and where appropriate linear macromolecular chains. The polymers comprising such star macromolecular chains are for example described in the documents FR 2 743 077, FR 2 779 730, EP 0 682 057 and EP 0 832 149. These compounds are known to have an improved fluidity compared to linear polyamides . Advantageously, the polyamide with a star structure is of the type of polyamides obtained by copolymerization of a mixture of monomers comprising at least: a) monomers of general formula (I) below: b) monomers of general formulas (Ma) and (Mb) below: O II XR.-Y (Ha) or RC (Ilb) \ / NH c) optionally monomers of general formula (III) below:
Z-R3-Z (III) dans lesquelles : - R1 est un radical hydrocarboné comprenant au moins 2 atomes de carbone, linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes, - A est une liaison covalente ou un radical hydrocarboné aliphatique pouvant comprendre des hétéroatomes et comprenant de 1 à 20 atomes de carbone, - Z représente une fonction aminé primaire ou une fonction acide carboxylique, - Y est une fonction aminé primaire quand X représente une fonction acide carboxylique ou - Y est une fonction acide carboxylique quand X représente une fonction aminé primaire, - R2, R3 identiques ou différents représentent des radicaux hydrocarbonés aliphatiques, cycloaliphatiques ou aromatiques substitués ou non comprenant de 2 à 20 atomes de carbone et pouvant comprendre des hétéroatomes, - m représente un nombre entier compris entre 3 et 8. De préférence, le composé de formule (I) est choisi parmi la 2,2,6,6-tétra-(β- carboxyéthyl)-cyclohexanone, l'acide trimésique, la 2,4,6-tri-(acide aminocaproique)- 1 ,3,5-triazine et la 4-aminoéthyle-1 ,8-octanediamine. L'invention concerne également un procédé de préparation de la structure composite décrite ci-dessus. Le procédé comprend une étape d'assemblage d'au moins les éléments suivants : (C1') : une couche structurelle ou un précurseur de cette couche - (C2') : une couche d'allégement et éventuellement de renfort, en mousse à base de polyamide ou un précurseur de cette mousse - (C3') : éventuellement une couche structurelle ou un précurseur de cette couche Le précurseur de la mousse peut être une composition polyamide expansible, par exemple un mélange de polyamide et de polycarbonate tel que décrit ci-dessus. Par composition polyamide expansible on entend une composition polyamide pouvant former une mousse sous certaines conditions de température et/ou de pression. En général la composition polyamide expansible comprend un polyamide et un agent d'expansion. L'agent d'expansion peut être un gaz pouvant se disperser ou se dissoudre dans le polyamide à l'état fondu. Tout gaz connu de l'homme du métier pouvant se disperser ou se dissoudre dans le polyamide peut être utilisé. Le gaz est de préférence inerte. On peut citer comme exemple de gaz convenable dans le cadre de l'invention l'azote, le dioxyde de carbone, le butane etc. L'agent d'expansion peut aussi être un agent porogene. Tout agent porogene connu de l'homme du métier peut être utilisé. Il est introduit dans le polyamide selon une méthode connue de l'homme du métier. On peut citer comme exemple d'agent porogene le diazocarbonamide. L'agent d'expansion peut également être un composé volatile pouvant se dissoudre dans le polyamide à l'état fondu. Tout composé volatile connu de l'homme du métier pouvant se dissoudre dans le polyamide peut être utilisé. On peut citer comme exemple de composé volatile convenable dans le cadre de l'invention le butanol. L'agent d'expansion peut enfin être un composé chimique pouvant réagir chimiquement avec le polyamide par chauffage. Un gaz est généralement généré lors de cette réaction, gaz qui est à l'origine de l'expansion du mélange. L'agent d'expansion peut par exemple être un polycarbonate. La composition polyamide expansible peut se présenter sous forme de poudre, de pièce (plaque) obtenue par exemple par injection contrôlée de manière à éviter la formation de mousse, de mélange à l'état fondu etc. Le précurseur de la couche structurelle peut être un article comprenant des fibres de renfort. L'article peut être sous forme de fils continus ou coupés, de rubans, de mats, de tressés, de tissus, de tricots, de nappes, de multiaxiaux, de non-tissés et/ou de formes complexes comprenant plusieurs des formes précitées. En plus des fibres de renfort, le précurseur de la couche structurelle comprend de préférence une matrice polymérique, par exemple sous forme de poudre, de film etc. Le précurseur de la couche structurelle peut être un article pré-imprégné, c'est-à-dire un tissu imprégné d'une résine, la résine comprenant un agent de durcissement en vue d'un durcissement ultérieur par chauffage. Selon un mode de réalisation particulier de l'invention, le précurseur de la couche structurelle est un article comprenant des fils et/ou fibres de renfort et des fils et/ou fibres de matrice polymérique. Tout ce qui a été décrit précédemment concernant la matrice polymérique de la structure composite de l'invention s'applique ici pour le précurseur, notamment tout ce qui concerne la nature de la matrice. Par fil, on entend un monofilament, un fil multifilamentaire continu, un filé de fibres, obtenu à partir d'un unique type de fibres ou de plusieurs types de fibres en mélange intime. Le fil continu peut être également obtenu par assemblage de plusieurs fils multifilamentaires. Par fibre, on entend un filament ou un ensemble de filaments coupés, craqués ou convertis. L'article comprenant des fils et/ou fibres de renfort et des fils et/ou fibres de matrice polymérique, peut être sous forme de fils continus ou coupés, de rubans, de mats, de tressés, de tissus, de tricots, de nappes, de multiaxiaux, de non-tissés et/ou de formes complexes comprenant plusieurs des formes précitées. Toute méthode d'assemblage de différentes couches peut être utilisée dans le cadre du procédé de l'invention. Les différents éléments (C1 '), (C2'), et éventuellement (C3') peuvent être assemblés simultanément ou successivement, par exemple par collage. Le collage est réalisé selon toute méthode connue de l'homme du métier pour assembler des éléments d'une structure composite à plusieurs couches. Par exemple on peut encoller les différents éléments avec un film d'adhésif compatible avec le matériau des éléments. Selon un mode de réalisation particulier du procédé de l'invention, l'assemblage est réalisé par thermoformage ou calandrage des différents éléments (C1 '), (C2') et éventuellement (C3') décrits ci-dessus. Les différents éléments sont thermoformés ou calandres simultanément ou successivement. Par exemple on peut thermoformer ou calandrer simultanément l'ensemble couche (C1 '), couche (C3') et éventuellement couche (C2'). On peut également thermoformer ou calandrer l'ensemble couche (C1 ') et couche (C2'), puis thermoformer ou calandrer la couche (C3') et l'ensemble couche (C1 ') et couche (C2'). Cette étape peut être réalisée par chauffage, puis presse à froid des divers éléments (emboutissage). Généralement cette étape est réalisée à chaud et sous pression. De façon générale, les procédés de thermoformage utilisés mettent en œuvre des basses pressions (inférieures à 20 bars et éventuellement sous vide), des températures inférieures à 270°C, et des temps courts (inférieurs à 15 minutes). Cette étape permet notamment d'obtenir une bonne adhésion entre la couche d'allégement et la couche structurelle. Selon un mode de réalisation particulier du procédé de l'invention, la température lors du thermoformage ou du calandrage est supérieure ou égale à la température de fusion de la matrice polymérique du précurseur de la couche structurelle, lorsque ce précurseur comprend un article comprenant des fibres de renfort et une matrice polymérique. La température de fusion relativement élevée du polyamide de la mousse permet la mise en œuvre de températures élevées lors de la préparation des structures composites, ce qui n'est pas possible avec les mousses connues. En effet la mousse polyamide fond à une température plus élevée que les mousses de l'art antérieur telles que les mousses polyuréthane. La température lors du thermoformage ou du calandrage est de préférence supérieure ou égale à la température de fusion de la matrice polymère thermoplastique de la couche structurelle, lorsque celle-ci comprend une matrice polymère thermoplastique. Lorsque la couche structurelle de la structure composite est une plaque ou une feuille comprenant une matrice polymère thermoplastique, l'assemblage de la mousse à la couche structurelle peut être réalisé grâce à la fusion de la matrice lors du thermoformage ou du calandrage, qui s'insère dans les pores de surface de la mousse, et qui joue alors le rôle d'un adhésif en se solidifiant. De plus, si la température de thermoformage ou de calandrage est plus ou moins égale à la température du polyamide de la mousse, une fusion partielle de la mousse au niveau du point de contact de la mousse et de la couche structurelle peut se produire, et cette partie de mousse fondue peut également jouer un rôle d'adhésif, en se solidifiant. L'invention concerne également l'utilisation de la structure composite décrite ci- dessus pour la réalisation de pièces d'automobile ou d'avion ou pour la réalisation d'articles de sport tels que des skis ou pour la réalisation de panneaux dans le bâtiment D'autres détails ou avantages de l'invention apparaîtront plus clairement au vu des exemples donnés ci-dessous uniquement à titre indicatif.Z-R3-Z (III) in which: - R1 is a hydrocarbon radical comprising at least 2 carbon atoms, linear or cyclic, aromatic or aliphatic and which can comprise heteroatoms, - A is a covalent bond or an aliphatic hydrocarbon radical which can comprising heteroatoms and comprising from 1 to 20 carbon atoms, - Z represents a primary amino function or a carboxylic acid function, - Y is a primary amino function when X represents a carboxylic acid function or - Y is a carboxylic acid function when X represents a primary amine function, - R2, R3 identical or different represent aliphatic, cycloaliphatic or aromatic substituted or unsubstituted hydrocarbon radicals comprising from 2 to 20 carbon atoms and which can comprise heteroatoms, - m represents an integer between 3 and 8 Preferably, the compound of formula (I) is chosen from 2,2,6,6-tetra- (β- carboxyethyl) -cyclohexa none, trimesic acid, 2,4,6-tri- (aminocaproic acid) - 1,3,5-triazine and 4-aminoethyl-1,8-octanediamine. The invention also relates to a process for preparing the composite structure described above. The method comprises a step of assembling at least the following elements: (C1 '): a structural layer or a precursor of this layer - (C2'): a layer of lightening and possibly of reinforcement, made of foam based of polyamide or a precursor of this foam - (C3 ′): optionally a structural layer or a precursor of this layer The precursor of the foam may be an expandable polyamide composition, for example a mixture of polyamide and polycarbonate as described below. above. By expandable polyamide composition is meant a polyamide composition which can form a foam under certain temperature and / or pressure conditions. In general, the expandable polyamide composition comprises a polyamide and a blowing agent. The blowing agent may be a gas which can disperse or dissolve in the polyamide in the molten state. Any gas known to a person skilled in the art which can disperse or dissolve in the polyamide can be used. The gas is preferably inert. As an example of a suitable gas in the context of the invention, there may be mentioned nitrogen, carbon dioxide, butane, etc. The blowing agent can also be a blowing agent. Any blowing agent known to a person skilled in the art can be used. It is introduced into the polyamide according to a method known to those skilled in the art. As an example of a blowing agent, diazocarbonamide may be mentioned. The blowing agent can also be a volatile compound which can dissolve in the polyamide in the molten state. Any volatile compound known to a person skilled in the art which can dissolve in the polyamide can be used. As an example of a volatile compound which may be used in the context of the invention, mention may be made of butanol. The blowing agent may finally be a chemical compound which can react chemically with the polyamide by heating. A gas is generally generated during this reaction, gas which is at the origin of the expansion of the mixture. The blowing agent can for example be a polycarbonate. The expandable polyamide composition may be in the form of a powder, a part (plate) obtained for example by controlled injection so as to avoid the formation of foam, of mixture in the molten state, etc. The precursor of the structural layer may be an article comprising reinforcing fibers. The article can be in the form of continuous or cut threads, ribbons, mats, braids, fabrics, knits, tablecloths, multiaxials, nonwovens and / or complex shapes comprising several of the above-mentioned shapes. In addition to the reinforcing fibers, the precursor of the structural layer preferably comprises a polymer matrix, for example in the form of powder, film, etc. The precursor of the structural layer may be a prepreg article, i.e. a fabric impregnated with a resin, the resin comprising a curing agent for further curing by heating. According to a particular embodiment of the invention, the precursor of the structural layer is an article comprising son and / or reinforcing fibers and son and / or fibers of polymeric matrix. Everything that has been described above concerning the polymer matrix of the composite structure of the invention applies here for the precursor, in particular everything concerning the nature of the matrix. By yarn is meant a monofilament, a continuous multifilament yarn, a yarn of fibers, obtained from a single type of fiber or from several types of fibers in intimate mixture. The continuous thread can also be obtained by assembling several multifilament threads. By fiber is meant a filament or a set of cut, cracked or converted filaments. The article comprising reinforcing threads and / or fibers and threads and / or fibers of a polymer matrix, may be in the form of continuous or cut threads, ribbons, mats, braids, fabrics, knits, tablecloths , multiaxials, nonwovens and / or complex shapes comprising several of the aforementioned shapes. Any method of assembling different layers can be used in the context of the process of the invention. The different elements (C1 '), (C2'), and possibly (C3 ') can be assembled simultaneously or successively, for example by gluing. The bonding is carried out according to any method known to those skilled in the art for assembling elements of a composite structure with several layers. For example, the different elements can be glued with an adhesive film compatible with the material of the elements. According to a particular embodiment of the method of the invention, the assembly is carried out by thermoforming or calendering of the different elements (C1 '), (C2') and possibly (C3 ') described above. The different elements are thermoformed or calenders simultaneously or successively. For example, the layer (C1 '), layer (C3') and possibly layer (C2 ') combination can be thermoformed or calendared simultaneously. It is also possible to thermoform or calendar the layer (C1 ') and layer (C2') assembly, then thermoform or calendar the layer (C3 ') and the layer (C1') and layer (C2 ') assembly. This step can be carried out by heating, then cold pressing of the various elements (stamping). Generally this step is carried out hot and under pressure. In general, the thermoforming methods used use low pressures (below 20 bars and possibly under vacuum), temperatures below 270 ° C, and short times (below 15 minutes). This step notably makes it possible to obtain good adhesion between the lightening layer and the structural layer. According to a particular embodiment of the process of the invention, the temperature during thermoforming or calendering is greater than or equal to the melting temperature of the polymer matrix of the precursor of the structural layer, when this precursor includes an article comprising reinforcing fibers and a polymer matrix. The relatively high melting temperature of the polyamide of the foam allows the implementation of high temperatures during the preparation of composite structures, which is not possible with known foams. Indeed, the polyamide foam melts at a higher temperature than the foams of the prior art such as polyurethane foams. The temperature during thermoforming or calendering is preferably greater than or equal to the melting temperature of the thermoplastic polymer matrix of the structural layer, when the latter comprises a thermoplastic polymer matrix. When the structural layer of the composite structure is a plate or a sheet comprising a thermoplastic polymer matrix, the assembly of the foam to the structural layer can be achieved by melting the matrix during thermoforming or calendering, which inserts into the surface pores of the foam, which then acts as an adhesive by solidifying. In addition, if the thermoforming or calendering temperature is more or less equal to the temperature of the polyamide of the foam, partial melting of the foam at the point of contact of the foam and the structural layer may occur, and this part of molten foam can also act as an adhesive, by solidifying. The invention also relates to the use of the composite structure described above for the production of automobile or airplane parts or for the production of sporting articles such as skis or for the production of panels in the building Other details or advantages of the invention will appear more clearly in the light of the examples given below only for information.
Test de mesure du module de Younq de la mousse :Foam Younq modulus test:
Le test est réalisé sur un échantillon de mousse de 20 mm de diamètre et de 25 mm d'épaisseur, à l'aide d'un appareil INSTRON 1185, dans des conditions de température de 23°C et de taux d'humidité relative de 50%.The test is carried out on a foam sample 20 mm in diameter and 25 mm thick, using an INSTRON 1185 device, under conditions of temperature of 23 ° C and relative humidity rate of 50%.
Le module de Young est déterminé à partir de la courbe force-déplacement, enregistrée à l'aide de l'appareil, fonctionnant à une vitesse de déplacement est de 20mm/min. Test de mesure de la densité de la mousse :Young's modulus is determined from the force-displacement curve, recorded using the device, operating at a displacement speed of 20mm / min. Foam density measurement test:
La densité est mesurée sur des échantillons usinés aux dimensions 100x100x15 mm. Ces éprouvettes sont ensuite pesées avec une balance de précision, selon la norme ASTM D 3748-98.The density is measured on machined samples with dimensions 100x100x15 mm. These test pieces are then weighed with a precision balance, according to standard ASTM D 3748-98.
EXEMPLESEXAMPLES
Exemple 1 : Préparation d'une couche C2 en mousse polyamideExample 1: Preparation of a C2 layer of polyamide foam
Des granulés de PA66 commercialisés par la société Rhodia Engineering Plastics sous la référence A 216 Naturel ® (90% p/p) sont mélangés avec des granulés de polycarbonate commercialisés par la société Bayer sous la référence Makrolon 2205® (10% p/p). Le mélange est mis en étuve une nuit sous vide partiel et balayage d'azote. Ce mélange est utilisé pour alimenter une extrudeuse bi-vis équipée d'une filière à lèvre. Le profil de température de la bi-vis est le suivant : (en °C) 270-280-280-280-280-280. La vitesse de rotation de la bi-vis est réglée à 250 tour.min"1. L'extrudat est mis en forme dans un conformateur et refroidi sur un banc de transport avant d'être scié et mis en forme sous forme de plaque, par exemple de 10 cm de large et de 1 cm d'épaisseur. Le débit d'alimentation de l'extrudeuse est de 15kg/h. Ces plaques sont de densité moyenne 0,15. Le module de Young de ces plaques est de 43,3 MPa. La Figure 1 représente la courbe contrainte / déformation de la mousse polyamide de l'exemple 1 (courbe A) , et celle de la mousse polyméthacrylimide PMI (courbe B) commercialisée par la société Degussa sous la référence Rohacell 71 IG® (module de young : 57,9 MPa, densité d=0,08), à titre comparatif. Sur cette figure, l'abscisse correspond à la déformation (%) et l'ordonnée à la contrainte (mPa). Contrairement à la mousse polyamide, la mousse polyméthacrylimide PMI casse au-delà de 27% de déformation.Granules of PA66 marketed by the company Rhodia Engineering Plastics under the reference A 216 Naturel® (90% w / w) are mixed with polycarbonate granules marketed by the company Bayer under the reference Makrolon 2205® (10% w / w) . The mixture is placed in an oven overnight under partial vacuum and flushing with nitrogen. This mixture is used to feed a twin-screw extruder equipped with a lip die. The temperature profile of the twin screw is as follows: (in ° C) 270-280-280-280-280-280. The speed of rotation of the twin-screw is adjusted to 250 rev.min "1. The extrudate is shaped in a shaper and cooled on a transport bench before being sawn and shaped in the form of a plate, for example 10 cm wide and 1 cm thick. The feed rate of the extruder is 15 kg / h. These plates have an average density of 0.15. The Young's modulus of these plates is 43 , 3 MPa. Figure 1 represents the stress / deformation curve of the polyamide foam of Example 1 (curve A), and that of the polymethacrylimide PMI foam (curve B) sold by the company Degussa under the reference Rohacell 71 IG® (Young's modulus: 57.9 MPa, density d = 0.08), for comparison: In this figure, the abscissa corresponds to the deformation (%) and the ordinate to the stress (mPa). polyamide foam, PMI polymethacrylimide foam breaks beyond 27% deformation.
Exemples 2 et 3 : Préparation d'une couche structurelle : plaque semi-finie de polyamide 6 étoile et de fils de renfortExamples 2 and 3: Preparation of a structural layer: semi-finished plate of 6-star polyamide and reinforcing wires
Matrice utilisée : polyamide 6 étoile, obtenu par copolymérisation à partir de caprolactame en présence 0,5% en moles de 2,2,6,6-tétra(β- carboxyéthyl)cyclohexanone, selon un procédé décrit dans le document FR 2743077, comprenant environ 80% de chaînes macromoléculaires étoiles et 20% de chaînes macromoléculaires linéaires, d'indice de fluidité en phase fondue mesuré à 275°C sous 1000 g de 55 g/10 minute.Matrix used: 6-star polyamide, obtained by copolymerization from caprolactam in the presence of 0.5 mol% of 2,2,6,6-tetra (β-carboxyethyl) cyclohexanone, according to a process described in document FR 2743077, comprising about 80% of star macromolecular chains and 20% of linear macromolecular chains, of melt flow index measured at 275 ° C under 1000 g of 55 g / 10 minute.
Une série d'essais à été réalisée à partir d'un fil multifilaments de polyamide 6 Etoile, présentant un titre par brin compris entre 3 et 8 dTex et une ténacité voisine de 15-20 cN/Tex. Un tel multifilament est assemblé, lors d'une opération de tissage multiaxial, avec un fil de renfort continu de carbone hautes performances, comprenant 12.000 filaments (exemple 2), ou avec un fil de renfort de verre, présentant un titre de 600 Tex (exemple 3). Afin de valider la haute fluidité de la matrice à l'état fondu, des tissus multiaxiaux sont réalisés à partir de couches élémentaires, définies comme suit:A series of tests was carried out using a 6-star polyamide multifilament yarn, having a titer per strand of between 3 and 8 dTex and a tenacity close to 15-20 cN / Tex. Such a multifilament is assembled, during a multiaxial weaving operation, with a continuous high-performance carbon reinforcement wire, comprising 12,000 filaments (example 2), or with a glass reinforcement wire, having a titer of 600 Tex (example 3). In order to validate the high fluidity of the matrix in the molten state, multiaxial fabrics are produced from elementary layers, defined as follows:
Couche élémentaire Pli n°1 : fil de renfort - orientation : - 45° Pli n°2 : fil de renfort - orientation : +45° Pli n°3 : fil Polyamide 6 Etoile (matrice) - orientation : 90°Elementary layer Fold n ° 1: reinforcement wire - orientation: - 45 ° Fold n ° 2: reinforcement wire - orientation: + 45 ° Fold n ° 3: Polyamide 6 star wire (matrix) - orientation: 90 °
Un composite stratifié est ensuite réalisé en plaçant plusieurs couches élémentaires (entre 2 et 10) du tissu obtenu dans un moule présentant une forme de plaque, sous une presse à plateaux chauffants, pendant une durée de 1 à 3 minutes, sous une pression comprise entre 1 et 20 Bars et une température supérieure à la température de fusion du Polyamide 6 étoile (230-260°C). Après refroidissement jusqu'à une température de 50- 60°C, le composite est démoulé. Le taux massique de renfort est alors compris entre 60- 70%.A laminated composite is then produced by placing several elementary layers (between 2 and 10) of the fabric obtained in a mold having a plate shape, under a press with heating plates, for a period of 1 to 3 minutes, under a pressure of between 1 and 20 Bars and a temperature higher than the melting temperature of Polyamide 6 star (230-260 ° C). After cooling to a temperature of 50-60 ° C, the composite is removed from the mold. The mass rate of reinforcement is then between 60-70%.
Exemple 4 : Préparation d'une structure composite sandwich avec deux couches externes structurelles C1 et C3. et une couche interne d'allégement C2.Example 4: Preparation of a sandwich composite structure with two external structural layers C1 and C3. and an internal lightening layer C2.
Deux composites stratifiés selon l'exemple 2 (couches C1 et C3) sont placés de part et d 'autre d'une couche C2 de mousse préparée selon l'exemple 1. L'ensemble est placé entre les plateaux d' une presse à plateaux chauffants de dimensions 270mm x 270mm à 240°C pendant 10 minutes sous 15 bars, puis refroidi sous pression à 130°C et démoulé. On obtient une structure sandwich avec une très bonne intégrité de la mousse et une bonne cohésion des couches entre elles.Two laminate composites according to Example 2 (layers C1 and C3) are placed on either side of a layer C2 of foam prepared according to Example 1. The assembly is placed between the plates of a plate press 270mm x 270mm heaters at 240 ° C for 10 minutes at 15 bar, then pressure cooled to 130 ° C and unmolded. A sandwich structure is obtained with very good integrity of the foam and good cohesion of the layers together.
Exemple 5 : Préparation d'une structure composite sandwich avec deux couches externes structurelles C1 et C3. et une couche interne d'allégement C2.Example 5: Preparation of a sandwich composite structure with two external structural layers C1 and C3. and an internal lightening layer C2.
Deux composites stratifiés selon l'exemple 3 (couches C1 et C3) sont placés de part et d 'autre d'une couche C2 de mousse préparée selon l'exemple 1. L'ensemble est placé entre les plateaux d'une presse à plateaux chauffants de dimensions 270mm x 270mm à 240°C pendant 10 minutes sous 15 bars, puis refroidi sous pression à 130°C et démoulé. On obtient une structure sandwich avec une très bonne intégrité de la mousse et une bonne cohésion des couches entre elles. Exemple 6 : Préparation d'une structure composite sandwich avec deux couches externes structurelles C1 et C3, et une couche interne d'allégement C2.Two laminate composites according to Example 3 (layers C1 and C3) are placed on either side of a layer C2 of foam prepared according to Example 1. The assembly is placed between the plates of a plate press 270mm x 270mm heaters at 240 ° C for 10 minutes at 15 bar, then pressure cooled to 130 ° C and unmolded. A sandwich structure is obtained with very good integrity of the foam and good cohesion of the layers together. Example 6: Preparation of a composite sandwich structure with two external structural layers C1 and C3, and an internal layer of lightening C2.
Deux plaques d'aluminium, de dimension 270 x 270 mm et d 'épaisseur 1 mm, et dont la couche protectrice a été éliminée (couches C1 et C3), sont placées de part et d 'autre d'une couche C2 de mousse préparée selon l'exemple 1. L'ensemble est placé entre les plateaux d'une presse à plateaux chauffants de dimensions 270mm x 270mm à 240°C pendant 10 minutes sous 15 bars, puis refroidi sous pression à 130°C et démoulé. On obtient une structure sandwich avec une très bonne intégrité de la mousse et une bonne cohésion des couches entre elles. Two aluminum plates, of dimension 270 x 270 mm and thickness 1 mm, and from which the protective layer has been removed (layers C1 and C3), are placed on either side of a layer C2 of prepared foam. according to Example 1. The assembly is placed between the plates of a press with heating plates of dimensions 270 mm × 270 mm at 240 ° C. for 10 minutes under 15 bars, then cooled under pressure to 130 ° C. and demolded. A sandwich structure is obtained with very good integrity of the foam and good cohesion of the layers together.

Claims

REVENDICATIONS
1. Structure composite comprenant au moins : • une couche C1 structurelle ; • une couche C2 d'allégement en mousse rigide ou semi-rigide ; et • éventuellement une couche C3 structurelle caractérisée en ce que la mousse est une mousse à base de polyamide.1. Composite structure comprising at least: • a structural layer C1; • a C2 lightening layer of rigid or semi-rigid foam; and • optionally a structural layer C3 characterized in that the foam is a polyamide-based foam.
2. Structure composite selon la revendication 1 , caractérisée en ce qu'il s'agit d'une structure sandwich comprenant deux couches structurelles externes C1 et C3, et une couche d'allégement interne C2.2. Composite structure according to claim 1, characterized in that it is a sandwich structure comprising two external structural layers C1 and C3, and an internal lightening layer C2.
3. Structure composite selon la revendication 1 ou 2, caractérisée en ce qu'au moins une couche structurelle est une plaque ou une feuille.3. Composite structure according to claim 1 or 2, characterized in that at least one structural layer is a plate or a sheet.
4. Structure composite selon la revendication 3, caractérisée en ce qu'au moins une couche structurelle est une plaque ou une feuille de métal ou d'un alliage métallique tel qu'un acier.4. Composite structure according to claim 3, characterized in that at least one structural layer is a plate or a sheet of metal or of a metal alloy such as steel.
5. Structure composite selon l'une des revendications précédentes, caractérisée en ce que l'épaisseur de la couche structurelle est comprise entre 0,2 et 3 mm.5. Composite structure according to one of the preceding claims, characterized in that the thickness of the structural layer is between 0.2 and 3 mm.
6. Structure composite selon la revendication 5, caractérisée en ce qu'elle présente une épaisseur comprise entre 3 et 50 mm.6. Composite structure according to claim 5, characterized in that it has a thickness between 3 and 50 mm.
7. Structure composite selon l'une des revendications précédentes, caractérisée en ce que la densité de la mousse est inférieure à 300 kg/m3, de préférence comprise entre 30 et 200 kg/m3.7. Composite structure according to one of the preceding claims, characterized in that the density of the foam is less than 300 kg / m 3 , preferably between 30 and 200 kg / m 3 .
8. Structure composite selon l'une des revendications précédentes, caractérisée en ce que le module de Young (module de compression) de la mousse est supérieur ou égal à 30 MPa.8. Composite structure according to one of the preceding claims, characterized in that the Young's modulus (compression modulus) of the foam is greater than or equal to 30 MPa.
9. Structure composite l'une des revendications précédentes, caractérisée en ce que la mousse de polyamide est obtenue par injection de gaz dans le polyamide et/ou incorporation de composés volatiles, d'agents porophores et/ou d'un composé pouvant réagir avec le polyamide pour former du gaz, dans le polyamide. 9. Composite structure one of the preceding claims, characterized in that the polyamide foam is obtained by injecting gas into the polyamide and / or incorporating volatile compounds, porophoric agents and / or a compound capable of reacting with polyamide to form gas, in polyamide.
10. Structure composite selon la revendication 9, caractérisée en ce que la mousse est obtenue à partir d'un mélange de polyamide et de polycarbonate.10. Composite structure according to claim 9, characterized in that the foam is obtained from a mixture of polyamide and polycarbonate.
11. Structure composite selon la revendication 10, caractérisée en ce que le polycarbonate est un polycarbonate comprenant des noyaux aromatiques de formule :11. Composite structure according to claim 10, characterized in that the polycarbonate is a polycarbonate comprising aromatic rings of formula:
dans laquelle R^ R2, identiques ou différents, sont des atomes d'hydrogène, d'halogène ou des radicaux alkyles ou haloalkyles comprenant entre 1 et 5 atomes de carbone, chaque noyau aromatique pouvant être substitué par des radicaux alkyles ou haloalkyles comprenant entre 1 et 5 atomes de carbone ; n est un nombre entier compris entre 40 et 300. in which R ^ R 2 , identical or different, are hydrogen atoms, halogen atoms or alkyl or haloalkyl radicals comprising between 1 and 5 carbon atoms, each aromatic nucleus being able to be substituted by alkyl radicals or haloalkyl radicals comprising between 1 and 5 carbon atoms; n is an integer between 40 and 300.
12. Structure composite selon la revendication 10 ou 11 , caractérisée en ce que le poids moléculaire du polycarbonate est compris entre 5000 et 80000.12. Composite structure according to claim 10 or 11, characterized in that the molecular weight of the polycarbonate is between 5000 and 80000.
13. Structure composite selon l'une des revendications 10 à 12, caractérisée en ce que le mélange comprend 0,5 à 20% en poids de polycarbonate par rapport au polyamide, de préférence 5 à 15% en poids.13. Composite structure according to one of claims 10 to 12, characterized in that the mixture comprises 0.5 to 20% by weight of polycarbonate relative to the polyamide, preferably 5 to 15% by weight.
14. Structure composite selon l'une des revendications 10 à 13, caractérisée en ce que la mousse est obtenue par chauffage du mélange de polyamide et de polycarbonate à une température supérieure ou égale à la température de fusion du polyamide.14. Composite structure according to one of claims 10 to 13, characterized in that the foam is obtained by heating the mixture of polyamide and polycarbonate at a temperature greater than or equal to the melting temperature of the polyamide.
15. Structure composite selon l'une des revendications précédentes, caractérisée en ce qu'au moins une couche structurelle est une plaque ou une feuille comprenant une matrice polymère thermoplastique ou thermodurcissable.15. Composite structure according to one of the preceding claims, characterized in that at least one structural layer is a plate or a sheet comprising a thermoplastic or thermosetting polymer matrix.
16. Structure composite selon la revendication 15, caractérisée en ce qu'au moins une couche structurelle est une plaque ou une feuille comprenant une matrice polymère thermoplastique ou thermodurcissable et des fibres de renfort, telles que des fibres de verre, de carbone, d'aramide, de polyimide, de quartz, de sisal, de chanvre, de lin. 16. Composite structure according to claim 15, characterized in that at least one structural layer is a plate or a sheet comprising a thermoplastic or thermosetting polymer matrix and reinforcing fibers, such as glass fibers, carbon fibers, aramid, polyimide, quartz, sisal, hemp, flax.
17. Structure composite selon la revendication 15 ou 16, caractérisée en ce que la matrice comprend un polyamide à structure étoile comportant : * des chaînes macromoléculaires étoiles comprenant un ou plusieurs cœurs et au moins trois branches ou trois segments polyamides liés à un cœur, * le cas échéant des chaînes macromoléculaires polyamides linéaires,17. Composite structure according to claim 15 or 16, characterized in that the matrix comprises a polyamide with a star structure comprising: * star macromolecular chains comprising one or more cores and at least three branches or three polyamide segments linked to a core, * where appropriate linear polyamide macromolecular chains,
18. Structure composite selon la revendication 17, caractérisée en ce que le polyamide à structure étoile est du type des polyamides obtenus par copolyméhsation d'un mélange de monomères comprenant au moins : a) des monomères de formule générale (I) suivante : b) des monomères de formules générales (lia) et (llb) suivantes : o II X-Rj-Y (Ha) ou R- C (llb) \ / NH c) éventuellement des monomères de formule générale (III) suivante18. A composite structure according to claim 17, characterized in that the polyamide with a star structure is of the type of polyamides obtained by copolymerization of a mixture of monomers comprising at least: a) monomers of general formula (I) below: b) monomers of general formulas (IIa) and (llb) below: o II X-Rj-Y (Ha) or R- C (llb) \ / NH c) optionally monomers of general formula (III)
Z-R3-Z (III) dans lesquelles : - R1 est un radical hydrocarboné comprenant au moins 2 atomes de carbone, linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes, - A est une liaison covalente ou un radical hydrocarboné aliphatique pouvant comprendre des hétéroatomes et comprenant de 1 à 20 atomes de carbone, - Z représente une fonction aminé primaire ou une fonction acide carboxylique, - Y est une fonction aminé primaire quand X représente une fonction acide carboxylique ou - Y est une fonction acide carboxylique quand X représente une fonction aminé primaire, - R2, R3 identiques ou différents représentent des radicaux hydrocarbonés aliphatiques, cycloaliphatiques ou aromatiques substitués ou non comprenant de 2 à 20 atomes de carbone et pouvant comprendre des hétéroatomes, - m représente un nombre entier compris entre 3 et 8.Z-R3-Z (III) in which: - R1 is a hydrocarbon radical comprising at least 2 carbon atoms, linear or cyclic, aromatic or aliphatic and which can comprise heteroatoms, - A is a covalent bond or an aliphatic hydrocarbon radical which can comprising heteroatoms and comprising from 1 to 20 carbon atoms, - Z represents a primary amino function or a carboxylic acid function, - Y is a primary amino function when X represents a carboxylic acid function or - Y is a carboxylic acid function when X represents a primary amino function, - R2, R3, identical or different, represent substituted or unsubstituted aliphatic, cycloaliphatic or aromatic hydrocarbon radicals comprising from 2 to 20 carbon atoms and which may comprise heteroatoms, - m represents an integer between 3 and 8.
19. Procédé de préparation de la structure composite selon l'une des revendications 1 à 18 comprenant une étape d'assemblage d'au moins les éléments suivants : - (C1') : une couche structurelle ou un précurseur de cette couche ; - (C2') une couche d'allégement en mousse à base de polyamide ou un précurseur de cette mousse ; et - éventuellement (C3') : une couche structurelle ou un précurseur de cette couche.19. A method of preparing the composite structure according to one of claims 1 to 18 comprising a step of assembling at least the following elements: - (C1 '): a structural layer or a precursor of this layer; - (C2 ') a lightening layer of polyamide-based foam or a precursor of this foam; and - optionally (C3 '): a structural layer or a precursor of this layer.
20. Procédé selon la revendication 19, caractérisé en ce que le précurseur de la mousse est une poudre ou une pièce comprenant une composition polyamide expansible comprenant du polyamide et un agent d'expansion.20. The method of claim 19, characterized in that the foam precursor is a powder or a piece comprising an expandable polyamide composition comprising polyamide and a blowing agent.
21. Procédé selon la revendication 20, caractérisé en ce que l'agent d'expansion est un polycarbonate.21. The method of claim 20, characterized in that the blowing agent is a polycarbonate.
22. Procédé selon l'une des revendications 19 à 21 , caractérisé en ce que le précurseur d'au moins une couche structurelle est un article comprenant des fibres de renfort.22. Method according to one of claims 19 to 21, characterized in that the precursor of at least one structural layer is an article comprising reinforcing fibers.
23. Procédé selon la revendication 22, caractérisé en ce que le précurseur d'au moins une couche structurelle comprend : - un article comprenant des fibres de renfort ; et - une matrice polymérique23. The method of claim 22, characterized in that the precursor of at least one structural layer comprises: - an article comprising reinforcing fibers; and - a polymer matrix
24. Procédé selon la revendication 22, caractérisé en ce que le précurseur d'au moins une couche structurelle est un article comprenant des fils et/ou fibres de renfort et des fils et/ou fibres de matrice polymérique.24. The method of claim 22, characterized in that the precursor of at least one structural layer is an article comprising son and / or reinforcing fibers and son and / or fibers of polymeric matrix.
25. Procédé selon la revendication 24, caractérisé en ce que l'article est sous forme de fils continus ou coupés, de rubans, de mats, de tressés, de tissus, de tricots, de nappes, de multiaxiaux, de non-tissés et/ou de formes complexes comprenant plusieurs des formes précitées. 25. The method of claim 24, characterized in that the article is in the form of continuous or cut threads, ribbons, mats, braids, fabrics, knits, tablecloths, multiaxials, nonwovens and / or complex forms comprising several of the abovementioned forms.
26. Procédé selon l'une des revendications 19 à 25, caractérisé en ce que l'assemblage est réalisé par thermoformage ou calandrage des différents éléments (C1 '), (C2') et éventuellement (C3'), les différents éléments étant thermoformés ou calandres simultanément ou successivement.26. Method according to one of claims 19 to 25, characterized in that the assembly is carried out by thermoforming or calendering of the different elements (C1 '), (C2') and possibly (C3 '), the different elements being thermoformed or calenders simultaneously or successively.
27. Procédé selon la revendication 26, caractérisé en ce que la matrice polymérique thermoplastique du précurseur d'au moins une couche structurelle est une matrice thermoplastique et en ce que la température lors du thermoformage ou du calandrage est supérieure ou égale à la température de fusion de la matrice thermoplastique.27. The method of claim 26, characterized in that the thermoplastic polymer matrix of the precursor of at least one structural layer is a thermoplastic matrix and in that the temperature during thermoforming or calendering is greater than or equal to the melting temperature of the thermoplastic matrix.
28. Utilisation de la structure composite selon l'une des revendications 1 à 18 pour la réalisation de pièces d'automobile ou d'avion ou pour la réalisation d'articles de sport tels que des skis ou pour la réalisation de panneaux dans le bâtiment. 28. Use of the composite structure according to one of claims 1 to 18 for the production of automobile or airplane parts or for the production of sports articles such as skis or for the production of panels in the building .
EP04787393A 2003-09-23 2004-09-17 Composite structure Withdrawn EP1663642A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0311114A FR2859943B1 (en) 2003-09-23 2003-09-23 COMPOSITE STRUCTURE
PCT/FR2004/002357 WO2005030477A2 (en) 2003-09-23 2004-09-17 Composite structure

Publications (1)

Publication Number Publication Date
EP1663642A2 true EP1663642A2 (en) 2006-06-07

Family

ID=34224404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04787393A Withdrawn EP1663642A2 (en) 2003-09-23 2004-09-17 Composite structure

Country Status (10)

Country Link
US (1) US20070166526A1 (en)
EP (1) EP1663642A2 (en)
JP (1) JP2007505772A (en)
KR (1) KR100814659B1 (en)
CN (1) CN1871126A (en)
BR (1) BRPI0414614A (en)
CA (1) CA2539629A1 (en)
FR (1) FR2859943B1 (en)
RU (1) RU2344041C2 (en)
WO (1) WO2005030477A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504841B1 (en) * 2007-02-09 2009-03-15 Theurl Leimholzbau Gmbh SLIDING BOARDS FOR SCHI OR SNOWBOARDS
DE102007046226A1 (en) * 2007-09-26 2009-04-09 Thyssenkrupp Steel Ag Method for producing a lightweight sheet
US8048815B2 (en) 2007-12-12 2011-11-01 Kubota Research, Inc. Composite article and method of manufacture
DE102008016104A1 (en) * 2008-03-28 2009-10-08 Airbus Deutschland Gmbh Breathable aircraft fuselage
FR2941382B1 (en) * 2009-01-27 2011-02-11 Rossignol Sa SNOWBOARD BOARD ON SNOW
FR2953446B1 (en) 2009-12-08 2015-02-06 Laurent Peyreaud COMPOSITE STRUCTURE, METHOD FOR MANUFACTURING THE SAME, AND SUPPORT MEMBER PRODUCED WITH THE COMPOSITE STRUCTURE
DE102010037817A1 (en) * 2010-09-28 2012-03-29 Thyssenkrupp Steel Europe Ag Structural or chassis part of a motor vehicle
WO2013032620A1 (en) * 2011-08-29 2013-03-07 Cytec Technology Corp. Interlaminar toughening of thermoplastics
JP2015502659A (en) * 2011-11-18 2015-01-22 ギガ ソーラー エフピーシー Novel solar module, support layer stack, and manufacturing method thereof
CN103131170A (en) * 2011-11-28 2013-06-05 上海杰事杰新材料(集团)股份有限公司 Continuous fiber reinforce polyamide composite material prepreg tape and preparation method thereof
RU2561972C1 (en) * 2014-03-26 2015-09-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Method to produce multi-layer foam plastic
CN105082690A (en) * 2014-04-29 2015-11-25 赢创特种化学(上海)有限公司 Fiber-reinforced thermoplastic composite material member containing foam core layer and preparation method thereof
JP6431546B2 (en) * 2014-09-30 2018-11-28 積水化成品工業株式会社 Resin composite
WO2017006143A1 (en) 2015-07-07 2017-01-12 Arcelormittal Method for producing a sandwich structure
KR102311351B1 (en) * 2017-11-14 2021-10-12 한화솔루션 주식회사 Light weight sandwich steel sheet using polyamide and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208232A (en) * 1984-04-03 1985-10-19 旭化成株式会社 Bonded article of improved resin and metal
NL8900398A (en) * 1989-02-17 1990-09-17 Schreiner Luchtvaart METHOD FOR APPLYING A LOCAL REINFORCEMENT IN A SANDWICH CONSTRUCTION.
US4999384A (en) * 1990-08-14 1991-03-12 General Electric Company Foamed blends of nylon 6,I/T and polycarbonate
CN1122583A (en) * 1993-11-05 1996-05-15 埃勒夫阿托化学有限公司 Over molding of lightened amide block polyether on thermoplastic elastomer
US5968598A (en) * 1997-09-15 1999-10-19 E.I. Du Pont De Nemours And Company PPD-T structural composites
WO1999061283A1 (en) * 1998-05-27 1999-12-02 The Dow Chemical Company Vehicle headliner comprised of a thermoformable thermoplastic foam sheet
FR2830255B1 (en) * 2001-10-01 2004-10-22 Rhodia Industrial Yarns Ag COMPOSITE MATERIALS COMPRISING A REINFORCING MATERIAL AND AS A THERMOPLASTIC MATRIX, A STAR POLYAMIDE, PRECURSOR COMPOSED ARTICLE OF SUCH MATERIALS AND PRODUCTS OBTAINED FROM SUCH MATERIALS
KR20030042782A (en) * 2001-11-24 2003-06-02 김진웅 Prefabricated sandwich panel for a structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005030477A2 *

Also Published As

Publication number Publication date
FR2859943B1 (en) 2007-07-13
WO2005030477A2 (en) 2005-04-07
KR100814659B1 (en) 2008-03-18
RU2006113609A (en) 2007-11-10
FR2859943A1 (en) 2005-03-25
US20070166526A1 (en) 2007-07-19
BRPI0414614A (en) 2006-11-21
JP2007505772A (en) 2007-03-15
WO2005030477A3 (en) 2005-06-09
KR20060080589A (en) 2006-07-10
RU2344041C2 (en) 2009-01-20
CN1871126A (en) 2006-11-29
CA2539629A1 (en) 2005-04-07

Similar Documents

Publication Publication Date Title
EP2155474B1 (en) Composite polyamide article
EP2326487B1 (en) Composite polyamide article
EP1663642A2 (en) Composite structure
WO2011003786A1 (en) Composite polyamide article
EP1432763B1 (en) Composite materials comprising a reinforcing material and a star polyamide as a thermoplastic matrix, the precursor compound article of said materials and the products obtained using same
EP3237545B1 (en) Polyamide mixture having improved fluidity
EP2451864A1 (en) Composite polyamide article
EP2513203B1 (en) Article comprising low molecular weight polyamide resins
EP1701836B1 (en) Composite materials comprising a reinforcing material and a thermoplastic matrix, precursor compound article of said materials and products obtained using same
EP3237544B1 (en) Thermoplastic composition having high fluidity
EP0461966A1 (en) Thermoplastic elastomeric films based on polyamide and modified copolyolefine(s), apt for glueing composite materials obtained therewith
FR2663237A1 (en) METHOD FOR GLUING ELEMENTS OF THE STRUCTURE OF A SKI.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060320

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHODIA OPERATIONS

17Q First examination report despatched

Effective date: 20090529

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091009