EP1663554B1 - Procede de production de composants d'une turbine à gaz - Google Patents

Procede de production de composants d'une turbine à gaz Download PDF

Info

Publication number
EP1663554B1
EP1663554B1 EP04786170A EP04786170A EP1663554B1 EP 1663554 B1 EP1663554 B1 EP 1663554B1 EP 04786170 A EP04786170 A EP 04786170A EP 04786170 A EP04786170 A EP 04786170A EP 1663554 B1 EP1663554 B1 EP 1663554B1
Authority
EP
European Patent Office
Prior art keywords
sintering
during
powder
joined together
connected together
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04786170A
Other languages
German (de)
English (en)
Other versions
EP1663554A1 (fr
Inventor
Gerhard Andrees
Josef Kranzeder
Max Kraus
Raimund Lackermeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP1663554A1 publication Critical patent/EP1663554A1/fr
Application granted granted Critical
Publication of EP1663554B1 publication Critical patent/EP1663554B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the invention relates to a method for producing components of a gas turbine according to the preamble of patent claim 1.
  • the most important materials used today for aircraft engines or other gas turbines are titanium alloys, nickel alloys (also called superalloys) and high-strength steels.
  • the high strength steels are used for shaft parts, gear parts, compressor casings and turbine casings.
  • Titanium alloys are typical materials for compressor parts.
  • Nickel alloys are suitable for the hot parts of the aircraft engine.
  • Powder metallurgical injection molding is related to plastic injection molding and is also referred to as metal mold injection or metal injection molding (MIM) processes.
  • MIM metal mold injection or metal injection molding
  • a powder preferably a metal powder, hard metal powder or ceramic powder
  • a binder and optionally a plasticizer to form a homogeneous mass becomes.
  • the injection-molded bodies already have the geometric shape of the component to be produced, but their volume is increased by the volume of the binder and plasticizer added.
  • the injection-molded articles are deprived of the binder and plasticizer in a debinding process.
  • the molded body is compressed or shrunk to the finished component.
  • the volume of the molded body decreases, wherein it is crucial that the dimensions of the molded part in all three spatial directions must decrease uniformly.
  • the volume shrinkage depends on the binder and plasticizer content between 30% and 60%.
  • the powder metallurgical injection molding is usually carried out so that each shaped body undergoes the Entbind ceremoniessrea and is subsequently sintered for themselves. If appropriate, a plurality of components produced by powder metallurgical injection molding are joined together by suitable joining methods only after the actual powder metallurgical injection molding. Accordingly, the production of components having a complex, three-dimensional shape is only possible to a limited extent with the powder-metallurgical injection molding processes known from the prior art.
  • the present invention is based on the problem to propose a novel method for the production of components of a gas turbine.
  • a plurality of molded bodies are connected to one another during the sintering by a diffusion process for producing a component of a gas turbine.
  • a component of a gas turbine from a plurality of shaped bodies in that during the sintering, that is to say during the powder metallurgical injection molding, the shaped bodies are connected to one another by a diffusion process. hereby It is possible, by means of powder metallurgy injection molding and components of a gas turbine with a complex, three-dimensional shape quickly and inexpensively.
  • US 4 813 823 A discloses a method of making drill tools by metallurgical injection molding.
  • the moldings to be joined together are brought into surface contact, preferably into a positive surface contact, at least during the sintering of sections of the moldings to be joined, wherein pressure is applied to them during sintering and during the simultaneous diffusion process Molded body is exercised.
  • the inventive method is used in particular for the production of blades or blade segments from a plurality of blades of an aircraft engine, wherein these blades or blade segments made of a nickel-based alloy or titanium-based alloy.
  • the present invention relates to the production of components of a gas turbine, in particular an aircraft engine, by powder metallurgical injection molding (PM). Powder metallurgy injection molding is also referred to as Metal Injection Molding (MIM).
  • PM powder metallurgical injection molding
  • MIM Metal Injection Molding
  • a metal powder, hard metal powder or ceramic powder is provided in a first step 10.
  • a binder and optionally a plasticizer are provided in a second step 11.
  • the metal powder provided in method step 10 and the binder and plasticizer provided in method step 11 are mixed in method step 12 so that a homogeneous composition is formed.
  • the volume fraction of the metal powder in the homogeneous mass is preferably between 40% and 70%.
  • the proportion of binder and plasticizer on the homogeneous mass thus varies approximately between 30% and 60%.
  • This homogeneous mass of metal powder, binder and plasticizer is further processed by injection molding in the sense of step 13.
  • injection molding moldings are made. These moldings already have all the typical features of the components to be produced.
  • the shaped bodies have the geometric shape of the component to be manufactured. However, they have a volume increased by the binder content and plasticizer content.
  • the binder and the plasticizer is expelled from the moldings.
  • the method step 14 can also be referred to as the final binding process.
  • the expulsion of binder and plasticizer can be done in different ways. This is usually done by fractional, thermal decomposition or evaporation. Another possibility consists of sucking out the thermally liquefied binding and plasticizing agents by capillary forces, by sublimation or by solvents.
  • the shaped bodies are sintered in the sense of step 15.
  • the Molded body compacted to the components with the final, geometric properties.
  • the moldings shrink, whereby the dimensions of the moldings must decrease uniformly in all three spatial directions.
  • the linear shrinkage is dependent on the binder content and plasticizer content between 10% and 20%.
  • the finished component After sintering, the finished component is present, which is shown in FIG. 1 by step 16. If necessary, after the sintering (step 15), the component may be subjected to a refining process in the sense of step 17. The refining process is optional. It may already be present immediately after sintering a ready-to-install component.
  • the component to be produced can be composed of two moldings, wherein the two moldings are joined together during the sintering by the diffusion process. It is also possible to connect a higher number of moldings to a component during sintering.
  • the shaped bodies are brought into surface contact at portions or surface areas thereof to be joined together.
  • a pressure is exerted during the diffusion process.
  • the surface contact between the moldings to be joined together and the exertion of the pressure on the same takes place at least during the sintering.
  • the diffusion process thus takes place during the sintering.
  • the surface contact and the pressure on the contacting and to be joined moldings already during a Vorsinterns and / or during the debinding process.
  • the procedure is preferred in that the surface contact is already provided during the debinding process and during the pre-sintering and during the actual sintering, but the pressure is exerted only on the molded bodies during the actual sintering.
  • the pre-sintering takes place between the debindering process and the actual sintering, wherein during presintering there is still no appreciable shrinkage process of the molded bodies to be joined together.
  • the shaped bodies are brought into a positive surface contact. This will be explained below with reference to FIGS. 2 to 4.
  • FIG. 2 shows two moldings 18 and 19 which are to be joined to one another during powder metallurgical injection molding via a diffusion process.
  • the moldings 18 and 19 touch one another at portions or surface regions 20 and 21.
  • the surface region 20 of FIG Shaped body 18 in cross-section wedge-shaped.
  • This wedge-shaped surface region 20 of the shaped body 18 engages in a form-fitting manner in the correspondingly formed surface area 21 of the shaped body 19.
  • the surface region 21 of the shaped body 19 accordingly forms a wedge-shaped groove in cross-section.
  • FIG. 3 shows an alternative embodiment of two moldings 22 and 23 to be joined together. Also in the embodiment of FIG. 3, surface regions 24 and 25 to be joined together are in positive contact with the moldings 22 and 23. For this purpose, a cross-sectionally trapezoidal projection is formed on the surface region 25 of the molded body 23, which engages in a correspondingly formed recess in the surface region 24 of the molded body 22.
  • the positive connection between the moldings to be joined together during the sintering by the diffusion process improves the dimensional stability of the component to be produced.
  • the shaped bodies to be joined together in the sense of the present invention can be identical both in terms of their material composition and / or in terms of their shrinkage properties, and can also have different properties in this respect. If the material compositions and the shrinkage properties of the moldings to be joined together are identical, then a uniform shrinkage process arises during the sintering for the moldings to be joined together.
  • moldings having different shrinkage properties in the sense of the present invention can also be connected to one another via the diffusion process during sintering.
  • Moldings having different shrinkage properties can be provided by using moldings having different material compositions.
  • moldings can be used which are formed from different metal powders and thus different metal alloys. Shall shape bodies of different metal powders together be connected, it is important to ensure that the sintering temperature or diffusion temperature of the metal powder is of the same order, so that the shrinkage of the moldings takes place simultaneously.
  • the material composition for providing molded articles having different shrinkage properties can also be changed by variation in the kind and amount of the binder. Different shrinkage properties can furthermore be achieved with the same material composition in that moldings having the same material composition are presintered differently.
  • Another alternative of the present invention is to compensate for the different shrinkage behavior when using moldings with different shrinkage behavior, that before the actual sintering, the moldings are processed by an upstream presintering process.
  • the different shrinkage behavior of the moldings to be joined together can thus be compensated, so that during the actual sintering, the shrinkage behavior of the moldings is adapted to each other.
  • the different shrinkage behavior can be compensated by the fact that the moldings, which consist for example of different metal powders, also differ in terms of their binders and optionally plasticizers or in terms of their percentage composition of metal powder, binder and optionally plasticizer.
  • the different shrinkage behavior can be compensated for.
  • the contacting surfaces thereof may have a coating.
  • This coating then forms a so-called sintering aid, which can be applied as a film or as a slip material or slip layer onto the surface areas of the shaped bodies to be brought into surface contact.
  • This diffusion effect-enhancing coating can be applied to at least one of the surface regions or sections to be joined together or also to both or all of the sections to be joined together.
  • the sintering may also be carried out under a special gas atmosphere which promotes the diffusion effect.
  • the inventive method is suitable for the production of components of a gas turbine, in particular an aircraft engine.
  • blades or blade segments or rotors with integral blading - so-called Blisks ( Bl aded discs ) or Blings ( Bl aded R ings ) - to produce a gas turbine using the method according to the invention.
  • sealing parts, adjusting levers, securing parts or other components having a complex three-dimensional shape can be produced by the method according to the invention.
  • Such components for a gas turbine consist in particular of a nickel-based alloy or titanium-based alloy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention concerne un procédé de production de composants, de préférence d'une turbine à gaz, en particulier d'un propulseur d'avion, ce procédé faisant appel au moulage par injection de poudre métallique. Lors du moulage par injection de poudre métallique, on mélange d'abord une poudre métallique avec un liant de façon à obtenir une masse homogène, et ensuite on réalise, par moulage par injection de cette masse homogène, au moins un corps moulé, le ou chaque corps moulé étant alors soumis à un processus de déliantage. Enfin, le ou chaque corps moulé est comprimé par frittage pour former au moins un composant présentant les caractéristiques géométriques voulues. Selon l'invention, lors du frittage, pour la production d'un composant, plusieurs corps moulés sont assemblés par un procédé de diffusion. De préférence, les corps moulés à assembler sont, au moins pendant le frittage, mis en contact superficiel au niveau de leurs parties à assembler, de préférence en contact superficiel avec liaison de forme, une pression étant exercée, pendant le frittage, sur les corps moulés à assembler.

Claims (5)

  1. Procédé de fabrication de pièces d'une turbine à gaz, en particulier d'un groupe motopropulseur, par le moulage par injection de poudres métallurgiques, plusieurs corps moulés étant réalisés à partir de mélanges de poudre et de liant et chaque corps moulé étant soumis ensuite à un processus d'extraction du liant, chaque corps moulé étant ensuite compacté et contracté par frittage pour former une pièce avec les caractéristiques géométriques souhaitées, et, pour la réalisation d'une pièce, plusieurs corps moulés étant assemblés entre eux par un processus de diffusion pendant le frittage du fait que les corps moulés à assembler entre eux sont amenés, au moins pendant le frittage, en contact par leur surface au niveau de parties à assembler entre elles, caractérisé en ce que, pendant le frittage, une pression est exercée sur les corps moulés à assembler entre eux.
  2. Procédé selon la revendication 1, caractérisé en ce qu'un revêtement est déposé sur au moins une des parties de corps moulés à assembler entre elles, en vue de favoriser le processus de diffusion.
  3. Procédé selon la revendication 2, caractérisé en ce que le ou chaque revêtement est déposé sous forme de film ou de barbotine.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que, lorsque les corps moulés à assembler entre eux possèdent un comportement de contraction différent pendant le frittage, le corps moulé avec le niveau de contraction le plus élevé est assemblé par contraction sur le corps moulé avec le niveau de contraction plus faible.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit procédé est utilisé pour la fabrication d'aubes ou de segments d'aubes, en particulier des aubes directrices, des segments d'aubes directrices, des aubes mobiles ou des segments d'aubes mobiles d'un groupe motopropulseur, ou la fabrication de rotors avec un aubage intégral.
EP04786170A 2003-09-22 2004-08-24 Procede de production de composants d'une turbine à gaz Expired - Fee Related EP1663554B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10343782A DE10343782A1 (de) 2003-09-22 2003-09-22 Verfahren zur Herstellung von Bauteilen
PCT/DE2004/001872 WO2005030417A1 (fr) 2003-09-22 2004-08-24 Procede de production de composants

Publications (2)

Publication Number Publication Date
EP1663554A1 EP1663554A1 (fr) 2006-06-07
EP1663554B1 true EP1663554B1 (fr) 2007-03-07

Family

ID=34306008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04786170A Expired - Fee Related EP1663554B1 (fr) 2003-09-22 2004-08-24 Procede de production de composants d'une turbine à gaz

Country Status (3)

Country Link
EP (1) EP1663554B1 (fr)
DE (2) DE10343782A1 (fr)
WO (1) WO2005030417A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282681B2 (en) * 2005-05-05 2007-10-16 General Electric Company Microwave fabrication of airfoil tips
DE102005022730A1 (de) 2005-05-18 2006-11-23 Schaeffler Kg Wälzlagerring,insbesondere für hochbeanspruchte Wälzlager in Flugzeugtriebwerken, sowie Verfahren zu dessen Herstellung
DE102006009860A1 (de) * 2006-03-03 2007-09-06 Mtu Aero Engines Gmbh Verfahren zur Herstellung eines Dichtsegments und Dichtsegment zur Verwendung in Verdichter- und Turbinenkomponenten
US20080237403A1 (en) * 2007-03-26 2008-10-02 General Electric Company Metal injection molding process for bimetallic applications and airfoil
US7543383B2 (en) * 2007-07-24 2009-06-09 Pratt & Whitney Canada Corp. Method for manufacturing of fuel nozzle floating collar
US10226818B2 (en) * 2009-03-20 2019-03-12 Pratt & Whitney Canada Corp. Process for joining powder injection molded parts
FR2944724B1 (fr) * 2009-04-24 2012-01-20 Snecma Procede de fabrication d'un ensemble comprenant une pluralite d'aubes montees dans une plateforme
DE102013004807B4 (de) 2013-03-15 2018-12-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von gesinterten Bauteilen
DE102013207440A1 (de) * 2013-04-24 2014-10-30 Bosch Mahle Turbo Systems Gmbh & Co. Kg Verfahren zur Herstellung eines Hebels einer variablen Turbinengeometrie
US9970318B2 (en) 2014-06-25 2018-05-15 Pratt & Whitney Canada Corp. Shroud segment and method of manufacturing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3601385A1 (de) * 1986-01-18 1987-07-23 Krupp Gmbh Verfahren zur herstellung von sinterkoerpern mit inneren kanaelen, strangpresswerkzeug zur durchfuehrung des verfahrens und bohrwerkzeug
US5393484A (en) * 1991-10-18 1995-02-28 Fujitsu Limited Process for producing sintered body and magnet base
TW415859B (en) * 1998-05-07 2000-12-21 Injex Kk Sintered metal producing method
DE10053199B4 (de) * 1999-10-28 2008-10-30 Denso Corp., Kariya-shi Verfahren zum Herstellen eines Metallverbundstoff-Presslings

Also Published As

Publication number Publication date
DE502004003171D1 (de) 2007-04-19
WO2005030417A1 (fr) 2005-04-07
DE10343782A1 (de) 2005-04-14
EP1663554A1 (fr) 2006-06-07

Similar Documents

Publication Publication Date Title
WO2007085230A1 (fr) Segment d'aube de guidage d'une turbine a gaz et procede pour sa fabrication
EP1691946B1 (fr) Procedes pour fabriquer des elements de turbine a gaz et element de turbine a gaz
EP2643111B1 (fr) Procédé de fabrication d'éléments de réacteur à structure géométriquement complexe
EP3069803A1 (fr) Aube de turbomachine fabriquee a partir de plusieurs matieres et son procede de fabrication
DE102012206087A1 (de) Verfahren zur Herstellung eines Bauteils eines Flugtriebwerks durch Metallpulverspritzgießen
DE102006016147A1 (de) Verfahren zum Herstellen einer Wabendichtung
EP1663554B1 (fr) Procede de production de composants d'une turbine à gaz
DE102016208761A1 (de) Pulverspritzgießverfahren, Pulverspritzgießvorrichtung und Pulverspritzgussteil
EP3450056A1 (fr) Procédé de fabrication d'un composant d'aluminiure de titane à noyau dur et composant fabriqué selon ledit procédé
US20070202000A1 (en) Method For Manufacturing Components
DE102004057360B4 (de) Verfahren zum Herstellen einer Wabendichtung
DE10331599A1 (de) Bauteil für eine Gasturbine sowie Verfahren zur Herstellung desselben
WO2005007326A2 (fr) Procede pour realiser des elements de turbine a gaz et element correspondant
DE102004029789A1 (de) Verfahren zum Fertigen von Bauteilen einer Gasturbine sowie Bauteil einer Gasturbine
DE102005019077A1 (de) Schaufel einer Strömungsmaschine und Verfahren zur Herstellung und/oder Reparatur derselben
DE102005033625B4 (de) Verfahren zur Herstellung und /oder Reparatur eines integral beschaufelten Rotors
DE10343780A1 (de) Verfahren zur Herstellung von Bauteilen und Halteeinrichtung
DE10343781B4 (de) Verfahren zur Herstellung von Bauteilen
EP2869961B1 (fr) Procédé de fabrication d'une pièce avec chauffage du premier élément et de la deuxième matière à une température de reaction
DE10336701B4 (de) Verfahren zur Herstellung von Bauteilen
DE102004060023B4 (de) Verfahren zum Herstellen eines Wabendichtungssegments
DE102018212624A1 (de) Verfahren zur Herstellung eines Bauteils für eine Turbomaschine
DE102004029547B4 (de) Verfahren zur Herstellung von Bauteilen einer Gasturbine
DE10355313A1 (de) Leitschaufelgitter sowie Verfahren zur Herstellung desselben
WO2012069374A1 (fr) Procédé pour produire, avec des formes très précises, des éléments structuraux de système d'entraînement à haute résistance thermique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RTI1 Title (correction)

Free format text: METHOD FOR THE PRODUCTION OF COMPONENTS OF A GAS TURBINE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004003171

Country of ref document: DE

Date of ref document: 20070419

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070515

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080822

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080813

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080821

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090824

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090824