EP1661978B1 - Detergent compositions - Google Patents
Detergent compositions Download PDFInfo
- Publication number
- EP1661978B1 EP1661978B1 EP20050025877 EP05025877A EP1661978B1 EP 1661978 B1 EP1661978 B1 EP 1661978B1 EP 20050025877 EP20050025877 EP 20050025877 EP 05025877 A EP05025877 A EP 05025877A EP 1661978 B1 EP1661978 B1 EP 1661978B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- perfume
- detergent composition
- encapsulated
- preferred
- composition according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38627—Preparations containing enzymes, e.g. protease or amylase containing lipase
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
- C11D3/502—Protected perfumes
- C11D3/505—Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
Definitions
- the present invention relates to detergent compositions, particularly laundry detergent compositions and in particular to detergents comprising lipolytic or lipase enzymes.
- Lipase enzymes have been used in detergents since the late 1980s for removal of fatty soils. It is known that lipase enzymes impact perfumes of detergent compositions containing them. The selection of perfumes for use in detergent compositions comprising lipase enzymes is documented in EP-A-430315 , where it is described that in order to combat malodours resulting from the use of lipase enzymes, perfumes should be used that comprise at least 25% by weight of defined perfume materials and less than 50% by weight of esters derived from fatty acids with 1-7 carbon atoms.
- Detergent compositions comprising encapsulated perfumes which may also contain lipase enzymes are disclosed in US 6245732 , US 6790814 , WO 94/28107 , WO 97/11151 and US 6452754 .
- a detergent composition comprising:
- the lipase enzyme may be a polypeptide as defined above, meeting criteria (a) and (b) and (c) and/or (e).
- the encapsulated perfume oil comprises at least 1 % by weight or at least 5wt% or even at least 10% by weight, or even at least 20%, 30, 40, 50, 60, 70, 80 or 90 % by weight of at least one perfume ingredient having a boiling point at 36KNm -2 (760mmHg) of 260°C or lower and a calculated log 10 of its octanol/water coefficient P (ClogP), of at least 3.0.
- the encapsulated perfume oil comprises at least one ester derived from fatty acids with 1-7 carbon atoms, generally at least 1 % by weight or at least 5wt% or even at least 10% by weight, or even at least 20%, 30, 40, 50, 60, 70, 80 or 90 wt% ester by weight based on the weight of the total perfume oil in the encapsulated perfume particle.
- a detergent composition comprising a perfume composition, said perfume composition comprising the perfume oil in the encapsulated perfume particle and any optional additional pefume oil, said perfume composition comprising at least 10% by weight, or at least 20, 30, 40, 50, 60, 70, 80 or even 90 wt% of one or more perfume components having a molecular weight of greater than 0 but less than or equal to 350 daltons, at least 80% of said one or more perfume components having a cLogP of at least 2.4, said perfume composition comprising at least 5% of said one or more perfume components having a cLogP of at least 2.4.
- the lipase enzymes are described in WO00/60063 .
- the lipases suitable for use in the present invention as described in WO00/60063 are described with reference to a lipase that is the wild-type lipase derived from Humicola Lanuginosa strain DSM 4109 (reference lipase).
- the reference lipase is also referred to as Lipolase (registered trade name of Novozymes). It is described in EP258068 and EP305216 and has the amino acid sequence shown in positionsl-269 of SEQ ID No 2 of US5869438 .
- the first wash lipase for use in the present invention is available under the tradename LIPEX (registered tradename of Novozymes), a variant of the Humicola lanuginasa (Thermomyces lanugina.sus) lipase (Lipolase registered tradename of Novozymes) with the mutations T231R and N233R.
- LIPEX registered tradename of Novozymes
- Humicola lanuginasa Thermomyces lanugina.sus lipase
- Lipolase registered tradename of Novozymes with the mutations T231R and N233R.
- the lipase enzyme incorporated into the detergent compositions of the present invention is generally present in an amount of 10 to 20000 LU/g of the detergent composition, or even 100 to 10000 LU/g.
- the LU unit for lipase activity is defined in WO99/42566 .
- the lipase dosage in the wash solution is typically from 0.02 to 2 mg/l enzyme, more typically from 0.1 to 2mg/l as enzyme protein.
- the lipase enzyme may be incorporated into the detergent composition in any convenient form, generally in the form of a non-dusting granulate, a stabilised liquid or a coated enzyme particle. Alternatively a slurry may be suitable.
- the at least partially water soluble hydroxylic compounds useful herein are preferably selected from carbohydrates, which can be any or mixture of: i) simple sugars (or mono-saccharides); ii) oligosaccharides (defined as carbohydrate chains consisting of 2-10 monosaccharide molecules); iii) polysaccharides (defined as carbohydrate chains consisting of at least 11, or more usually at least 35 monosaccharide molecules); and iv) starches.
- Both linear and branched carbohydrate chains may be used.
- chemically modified starches and poly-/oligo-saccharides may be used. Typical modifications include the addition of hydrophobic moieties of the form of alkyl, aryl, etc. identical to those found in surfactants to impart some surface activity to these compounds.
- suitable encapsulating materials include all natural or synthetic gums such as alginate esters, carrageenin, agar-agar, pectic acid, and natural gums such as gum arabic, gum tragacanth and gum karaya, chitin and chitosan, cellulose and cellulose derivatives including i) cellulose acetate and cellulose acetate phthalate (CAP); ii) hydroxypropyl methyl cellulose (HPMC); iii)carboxymethylcellulose (CMC); iv) all enteric/aquateric coatings and mixtures thereof.
- natural or synthetic gums such as alginate esters, carrageenin, agar-agar, pectic acid, and natural gums such as gum arabic, gum tragacanth and gum karaya, chitin and chitosan, cellulose and cellulose derivatives including i) cellulose acetate and cellulose acetate phthalate (CAP); ii) hydroxypropyl
- Particularly preferred encapsulating matrix materials comprise starches. Suitable examples can be made from, raw starch, pregelatinized starch, modified starch derived from tubers, legumes, cereal and grains, for example corn starch, wheat starch, rice starch, waxy corn starch, oat starch, cassava starch, waxy barley, waxy rice starch, sweet rice starch, amioca, potato starch, tapioca starch, oat starch, cassava starch, and mixtures thereof.
- Modified starches suitable for use as the encapsulating matrix in the present invention include, hydrolyzed starch, acid thinned starch, starch esters of long chain hydrocarbons, starch acetates, starch octenyl succinate, and mixtures thereof.
- hydrolyzed starch refers to oligosaccharide-type materials that are typically obtained by acid and/or enzymatic hydrolysis of starches, preferably corn starch. Suitable hydrolyzed starches for inclusion in the present invention include maltodextrins and corn syrup solids.
- the hydrolyzed starches for inclusion with the mixture of starch esters have a Dextrose Equivalent (DE) values of from about 10 to about 36 DE.
- the DE value is a measure of the reducing equivalence of the hydrolyzed starch referenced to dextrose and expressed as a percent (on a dry basis). The higher the DE value, the more reducing sugars present.
- a method for determining DE values can be found in Standard Analytical Methods of the Member Companies of Corn Industries Research Foundation, 6th ed. Corn Refineries Association, Inc, Washington, DC 1980, D-52 .
- Starch esters having a degree of substitution in the range of from about 0.01% to about 10.0% may be used to encapsulate the perfume oils of the present invention.
- the hydrocarbon part of the modifying ester should be from a C 5 to C 16 carbon chain.
- octenylsuccinate (OSAN) substituted waxy corn starches of various types such as 1) waxy starch: acid thinned and OSAN substituted, 2) blend of corn syrup solids: waxy starch, OSAN substituted, and dextrinized, 3) waxy starch: OSAN substituted and dextrinized, 4) blend of corn syrup solids or maltodextrins with waxy starch: acid thinned OSAN substituted, and then cooked and spray dried, 5) waxy starch: acid thinned and OSAN substituted then cooked and spray dried, and 6) the high and low viscosities of the above modifications (based on the level of acid treatment) can also be used in the present invention.
- Modified starches having emulsifying and emulsion stabilizing capacity such as starch octenyl succinates have the ability to entrap the perfume oil droplets in the emulsion due to the hydrophobic character of the starch modifying agent.
- the perfume oils remain trapped in the modified starch until dissolved in the wash solution, due to thermodynamic factors i.e., hydrophobic interactions and stabilization of the emulsion because of steric hindrance.
- the perfume may be adsorbed or adsorbed onto a carrier prior to encapsulation. Suitable examples of carriers are as described in WO.97/11151 or may be polymeric materials. Zeolite is a particularly preferred carrier, for example as described in more detail in WO97/11151 .
- starch encapsulates of the present invention include but are not limited to, fluid bed agglomeration, extrusion, cooling/crystallization methods and the use of phase transfer catalysts to promote interfacial polyrnerization.
- perfume oil is intended to refer to perfume raw materials or ingredients, or combinations thereof. Whilst these are generally immiscible with water under standard conditions of temperature and pressure, a small number may be miscible with water.
- the perfume oil may comprise one perfume ingredient or mixtures of more than one perfume ingredient.
- additional perfume oils may be present in the detergent via other delivery systems as discussed below. The overall sum of perfume ingredients present in the encapsulated perfume oil and any optional additional perfume oils provides the perfume composition of the detergent composition.
- lipase enzymes and particularly the high efficiency lipase enzymes essential for the present invention are problematic for perfume stability on storage and this means that the perfume fragrance detected by the consumer is not only reduced compared with the amount of perfume added into the detergent formulation but may also be adversely affected so that it is not the perfume selected by the perfumer.
- This problem is particularly noticeable by the consumer during the washing process and the inventors have found that not only do the encapsulated perfumes have a degree of protection on storage, but also surprisingly, the encapsulated perfumes appear to be chaperoned to the surface of the wash water by the encapsulate, providing maximum efficacy for the perfume raw materials used.
- the use of the encapsulated perfumes in combination with the specified lipases also provides a degree of protection from these particularly lipase-sensitive perfume raw materials.
- the perfume oil present in the encapsulated perfume particle comprises one or more perfume ingredient characterized by its boiling point (B.P.) and its octanol/water partition coefficient (P).
- the octanol/water partition coefficient of a perfume ingredient is the ratio between its equilibrium concentrations in octanol and in water.
- the preferred perfume ingredients of this invention have a B.P., determined at the normal, standard pressure of about 760 mm Hg, of about 260°C or lower, preferably less than about 255°C; and more preferably less than about 250°C, and an octanol/water partition coefficent P of about 1,000 or higher.
- the partition coefficients of the preferred perfume ingredients of this invention have high values, they are more conveniently given in the form of their logarithm to the base 10, logP.
- the preferred perfume ingredients of this invention have logP of at least 3, preferably more than 3.1, and even more preferably more than 3.2.
- the logP of many perfume ingredients has been reported; for example, the Pomona92 database, available from Daylight Chemical Information Systems, Inc. (Daylight CIS), Irvine, California, contains many, along with citations to the original literature. However, the logP values are most conveniently calculated by the "CLOGP” program, also available from Daylight CIS. This program also lists experimental logP values when they are available in the Pomona92 database.
- the "calculated logP” (ClogP) is determined by the fragment approach of Hansch and Leo (cf., A. Leo, in Comprehensive Medicinal Chemistry, Vol. 4, C. Hansch, P. G. Sammens, J. B. Taylor and C. A. Ramsden, Eds., p.
- the fragment approach is based on the chemical structure of each perfume ingredient, and takes into account the numbers and types of atoms, the atom connectivity, and chemical bonding.
- the ClogP values which are the most reliable and widely used estimates for this physicochemical property, are preferably used instead of the experimental logP values in the selection of perfume ingredients which are useful in the present invention.
- Particularly preferred perfume oils for encapsulation include one or a mixture of more than one ingredient selected from octyl aldehyde, nonyl aldehyde, decyl aldehyde, dodecyl aldehyde (dodecanal or lauric aldehye), diphenyl oxide, alpha-Ionine, Lilial and alpha-iso "gamma" methyl Ionone. These have been found to be particularly useful for masking malodours produced from fatty acid odours. These particularly preferred perfume oils may be encapsulated singly or as part of a mixture with other preferred (i.e. listed in Table 1 below) or particularly preferred perfume oils or as part of a mixture with other perfume oils.
- the perfume oil in the encapsulated perfume particle may be adsorbed or absorbed onto a carrier prior to encapsulation.
- Suitable carriers are described in WO97/11151 .
- a particularly preferred carrier is zeolite.
- the detergent compositions herein comprise from about 0.01 % to 50% of the encapsulated perfume particle. More preferably, the detergent compositions herein comprise from 0.05% to 8.0% of the perfume particle, even more preferably from 0.5% to 3.0%. Most preferably, the detergent compositions herein contain from 0.05% to 1.0% of the encapsulated perfume particle.
- the encapsulated perfume particles preferably have size of from 1 micron to 1000 microns, more preferably from 50 microns to 500 microns.
- the perfume oil and/or perfume composition is generally present in the detergent compositions of the invention in amounts of from 0.001% to about 5%, preferably from 0.01% to 5%, and more usually from 0.05% to 3%.
- the preferred perfume ingredients may comprise 100% of the perfume oil, but is more usually used in addition to other perfume ingredients.
- a mixture of more than one of the preferred perfume ingredients may be present for example, at least 2 or even at least 5 or 6 or 7 different preferred perfume ingredients.
- the encapsulated perfume particles may contain at least 1 Or 5 or 10 wt% or even at least 20, 30, 40, 50, 60, 70, 80 or 90 wt% of such preferred perfume ingredients.
- perfume ingredients which are derived from natural or synthetic sources are composed of a multitude of components.
- orange terpenes contain about 90% to about 95% d-limonene, but also contain many other minor ingredients.
- each such material is used in the formulation of the perfume oils in the present invention, it is counted as one ingredient, for the purpose of defining the invention.
- the detergent compositions may comprise in addition to the encapsulated perfume oil, additional perfume oil forming part of the total perfume composition in the detergent composition.
- additional perfume oil may be incorporated into the detergent composition by any other delivery method, for example, simply by spraying onto the finished detergent composition or onto a component thereof, prior to mixing to form the finished detergent composition.
- the encapsulated perfume particles also may comprise perfume oil comprising esters derived from fatty acids having 1 to 7 carbon atoms.
- the detergent composition additionally comprises additional perfume oil, preferably at least 60 wt%, or at least 80 or 90 or substantially all the ester derived from fatty acid having from 1 to 7 carbon atoms will be present in the encapsulated perfume particles.
- the encapsulated perfume oil and/or the perfume composition in the detergent composition comprises at least 10 % , 20%, 30%, 40% , 50%, 60%, 70%, 80%, or even 90% of one or more perfume ingredients having a molecular weight of greater than 0 but less than or equal to 350 daltons, from about 100 daltons to about 350 daltons, from about 130 daltons to about 270 daltons, or even from about 140 daltons to about 230 daltons; at least 80%, 85%, 90% or even 95% of said one or more perfume ingredients having a cLogP of at least 2.4, from about 2.75 to about 8.0 or even from about 2.9 to about 6.0, said perfume composition comprising at least 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, or even 95% of said one or more perfume ingredients having a cLogP in the range of at least 2.4, from about 2.75 to about 8.0 or even from about 2.9 to about 6.0.
- said one or more perfume ingredients may be selected from the group consisting of a Schiff's base, ether, phenol, ketone, alcohol, ester, lactone, aldehyde, nitrile, natural oil or mixtures thereof. Schiff's base and nitriles may be least preferred.
- said one or more perfume ingredients may include Table 2 Perfume Ingredients or mixtures thereof or even Table 2 Perfume Ingredients 1 through 28 or mixtures thereof. It may be preferred for ketones and aldehydes to have a molecular weight of below 200 daltons.
- said perfume composition comprises at least 10 % , 20%, 30%, 40% , 50%, 60%, 70%, 80%, or even 90% of a perfume ingredient selected from the group consisting of the ingredients listed in Table 2 below and mixtures thereof.
- Table 2 Chemical Name CAS Functionality M Wt clogP 1 2-Methoxynaphtlialene 93-04-9 Ether 158 3.24 2 Diphenyl ether 101-84-8 Ether 170 4.24 3 2-methoxy-4-propenyl phenol 120-11-6 Phenol 164 4.63 4 2-Methoxy-4 allyl phenol 97-53-0 Phenol 164 2.40 5 4-Penten-1-one,1-(5,5-dimethyl-1-cyclohexen-1-yl) 56973-85-4 Ketone 192 4.0 6 (1alpha (E),2 beta)-1-(2,6,6-Trimethyl-cyclohex-3-en-1-yl)but-2-en-1-one 71048-82-3 Ketone 192 3.
- the perfume oil or composition comprises an ester perfume ingredient
- said ester perfume when said perfume oil or composition comprises an ester perfume component said ester perfume may have one or more of the following characteristics: branching or pendant rings in at least one of the alpha, beta or gamma positions; branching or pendant rings in at least one of the alpha or beta positions; or at least one tertiary carbon atom in the alpha position. While not being bound by theory, it is believed that the aforementioned perfume ester characteristics result in increased perfume ester stability, and thus perfume composition stability, when said perfume ester in is the presence of an enzyme that can hydrolyze ester bonds, for example, enzymes classed in EC 3.1.1. such as lipases.
- said perfume oil or composition typically contains no more than about 5 %, or even none of the perfume components selected from the group consisting of Acetic acid, phenylmethyl ester; Benzene ethanol; Butanoic acid, 2-methyl-, ethyl ester; 4H-Pyran-4-one, 2-ethyl-3-hydroxy-; Benzaldehyde, 4-hydroxy-3-methoxy-; Benzaldehyde, 3-ethoxy-4-hydroxy-; 3-Hexen-1-ol, acetate, (Z)-; Butanoic acid, 2-methyl-, 1-; methylethyl ester; 3-Decanone, 1-hydroxy-; 2-Heptanone; Benzaldehyde; Propanenitrile, 3-(3-hexenyloxy)-, (Z)-; 2-Butanone, 4-phenyl-; 2-Hexen-l-ol; 2(3H)-Furanone, 5-butyld
- Perfume compositions of the present invention may be made by ad-mixing of perfume raw materials, which are typically liquids. Certain perfume raw materials are solid materials and can require gentle heat to homogenise with the rest of the perfume.
- the perfume blend can also comprise a significant proportion of a diluent (e.g dipropylene glycol), an antioxidant or a solubilising material. Solubilisers can be particularly advantageous where the surfactant level is low in order to disperse the perfume in a predominantly hydrophilic matrix such as aqueous liquid cleaners.
- any of the aforementioned aspects of the perfume compositions may be combined with other materials to produce any of the following delivery systems for delivering additional perfume oils into the detergent composition: spray-on perfume oils, sprayed directly onto detergent composition or components thereof, starch encapsulate delivery systems, porous carrier material delivery systems, coated porous carrier material delivery systems, microencapsulate delivery systems.
- detergent cornopositions of the invention will comprise encapsulates and spray-on perfume. Suitable methods of producing the aforementioned delivery systems may be found in one or more of the following U.S.
- the detergent compositions of the invention will also contain one or more conventional detergent ingredients and/or detergent adjunct ingredients.
- the detergent compositions of the invention may be in any convenient form such as powdered or granular solids, bars, tablets or non-aqueous liquids, including gel and paste forms.
- Other forms of cleaning composition include other institutional and/or household cleaning compositions such as liquid or solid cleaning and disinfecting agents, including antibacterial cleaners car or carpet shampoos, denture cleaners, hard surface cleaners, for example for kitchen and/or bathroom use optionally for cleaning metal, hair shampoos, shower gels, bath foam as well as cleaning auxiliaries such as bleach additives and "stain stick" or pre-treat types.
- the detergent compositions of the present invention are preferably those having an overall bulk density of from 350 to 1200 g/l, more preferably 450 to 1000g/l or even 500 to 900g/l.
- the detergent particles of the detergent composition in a granular form have a size average particle size of from 200 ⁇ m to 2000 ⁇ m, preferably from 350 ⁇ m to 600 ⁇ m.
- detergent compositions of the invention will be mixed with other detergent particles including combinations of agglomerates, spray-dried powders and/or dry added materials such as bleaching agents, enzymes etc.
- the conventional detergent ingredients are selected from typical detergent composition components such as detersive surfactants and detersive builders-
- the detergent ingredients can include one or more other detersive adjuncts or other materials for assisting or enhancing cleaning performance, treatment of the substrate to be cleaned, or to modify the aesthetics of the detergent composition.
- Usual detersive adjuncts of detergent compositions include the ingredients set forth in U.S. Pat. No. 3,936,537 , Baskerville et al. and in Great Britain Patent Application No. 9705617.0, Trinh et al., published September 24, 1997 .
- adjuncts are included in detergent compositions at their conventional art-established levels of use, generally from 0% to about 80% of the detergent ingredients, preferably from about 0.5% to about 20% and can include color speckles, suds boosters, suds suppressors, antitarnish and/or anticorrosion agents, soil-suspending agents, soil release agents, dyes, fillers, optical brighteners, germicides, alkalinity sources, hydrotropes, antioxidants, enzymes, enzyme stabilizing agents, solvents, solubilizing agents, chelating agents, clay soil removal/anti-redeposition agents, polymeric dispersing agents, processing aids, fabric softening components, static control agents, bleaching agents, bleaching activators, bleach stabilizers, etc.
- detergent compositions comprising the particles of the invention will comprise at least some of the usual detergent adjunct materials, such as agglomerates, extrudates, other spray dried particles having different composition to those of the invention, or dry added materials.
- detergent adjunct materials such as agglomerates, extrudates, other spray dried particles having different composition to those of the invention, or dry added materials.
- surfactants are incorporated into agglomerates, extrudates or spray dried particles along with solid materials, usually builders, and these may be admixed with the spray dried particles of the invention.
- some or all of the solid material may be replaced with the particles of the invention.
- the detergent adjunct materials are typically selected from the group consisting of detersive surfactants, builders, polymeric co-builders, bleach, chelants, enzymes, anti-redeposition polymers, soil-release polymers, polymeric soil-dispersing and/or soil-suspending agents, dye-transfer inhibitors, fabric-integrity agents, suds suppressors, fabric-softeners, flocculants, perfumes, whitening agents, photobleach and combinations thereof.
- a highly preferred adjunct component is a surfactant.
- the detergent composition comprises one or more surfactants.
- the detergent composition comprises (by weight of the composition) from 0% to 50%, preferably from 5% and more preferably from 10 or even 15 wt% to 40%, or to 30%, or to 20% one or more surfactants.
- Preferred surfactants are anionic surfactants, non-ionic surfactants, cationic surfactants, zwitterionic surfactants, amphoteric surfactants, cationic surfactants and mixtures thereof.
- Preferred anionic surfactants comprise one or more moieties selected from the group consisting of carbonate, phosphate, sulphate, sulphonate and mixtures thereof.
- Preferred anionic surfactants are C 8-18 alkyl sulphates and C 8-18 alkyl sulphonates.
- Suitable anionic surfactants incorporated alone or in mixtures in the compositions of the invention are also the C 8-18 alkyl sulphates and/or C 8-18 alkyl sulphonates optionally condensed with from 1 to 9 moles of C 1-4 alkylene oxide per mole of C 8-18 alkyl sulphate and/or C 8-18 alkyl sulphonate.
- the alkyl chain of the C 8-18 alkyl sulphates and/or C 8-18 alkyl sulphonates may be linear or branched, preferred branched alkyl chains comprise one or more branched moieties that are C 1-6 alkyl groups.
- Other preferred anionic surfactants are C 8-18 alkyl benzene sulphates and/or C 8-18 alkyl benzene sulphonates.
- the alkyl chain of the C 8-18 alkyl benzene sulphates and/or C 8-18 alkyl benzene sulphonates may be linear or branched, preferred branched alkyl chains comprise one or more branched moieties that are C 1-6 alkyl groups.
- anionic surfactants are selected from the group consisting of: C 8-18 alkenyl sulphates, C 8-18 alkenyl sulphonates, C 8-18 alkenyl benzene sulphates, C 8-18 alkenyl benzene sulphonates, C 8-18 alkyl di-methyl benzene sulphate, C 8-18 alkyl di-methyl benzene sulphonate, fatty acid ester sulphonates, di-alkyl sulphosuccinates, and combinations thereof.
- the anionic surfactants may be present in the salt form.
- the anionic surfactant may be an alkali metal salt of one or more of the compounds selected from the group consisting of: C 8-18 alkyl sulphate, C 8-18 alkyl sulphonate, C 8-18 alkyl benzene sulphate, C 8 -C 18 alkyl benzene sulphonate, and combinations thereof.
- Preferred alkali metals are sodium, potassium and mixtures thereof.
- the detergent composition comprises from 10% to 30wt% anionic surfactant.
- Preferred non-ionic surfactants are selected from the group consisting of: C 8-18 alcohols condensed with from 1 to 9 of C 1 -C 4 alkylene oxide per mole of C 8-18 alcohol, C 8-18 alkyl N-C 1-4 alkyl glucamides, C 8-18 amido C 1-4 dimethyl amines, C 8-18 alkyl polyglycosides, glycerol monoethers, polyhydroxyamides, and combinations thereof.
- the detergent compositions of the invention comprises from 0 to 15, preferably from 2 to 10 wt% non-ionic surfactant.
- Preferred cationic surfactants arc quaternary ammonium compounds.
- Preferred quaternary ammonium compounds comprise a mixture of long and short hydrocarbon chains, typically alkyl and/or hydroxyalkyl and/or alkoxylated alkyl chains.
- long hydrocarbon chains are C 8-18 alkyl chains and/or C 8-18 hydroxyalkyl chains and/or C 8-18 alkoxylated alkyl chains.
- short hydrocarbon chains are C 1-4 alky chains and/or C 1-4 hydroxyabcyl chains and/or C 1-4 alkoxylated alkyl chains.
- the detergent composition comprises (by weight of the composition) from 0% to 20% cationic surfactant.
- Preferred zwitterionic surfactants comprise one or more quaternized nitrogen atoms and one or more moieties selected from the group consisting of: carbonate, phosphate, sulphate, sulphonate, and combinations thereof.
- Preferred zwitterionic surfactants are alkyl betaines.
- Other preferred zwitterionic surfactants are alkyl amine oxides.
- Catanionic surfactants which are complexes comprising a cationic surfactant and an anionic surfactant may also be included. Typically, the molar ratio of the cationic surfactant to anionic surfactant in the complex is greater than 1:1, so that the complex has a net positive charge.
- a further preferred adjunct component is a builder.
- the detergent composition comprises (by weight of the composition and on an anhydrous basis) from 20% to 50% builder.
- Preferred builders are selected from the group consisting of: inorganic phosphates and salts thereof, preferably orthophosphate, pyrophosphate, tri-poly-phosphate, alkali metal salts thereof, and combinations thereof; polycarboxylic acids and salts thereof, preferably citric acid, alkali metal salts of thereof, and combinations thereof; aluminosilicates, salts thereof, and combinations thereof, preferably amorphous aluminosilicates, crystalline aluminosilicates, mixed amorphous/crystalline aluminosilicates, alkali metal salts thereof, and combinations thereof, most preferably zeolite A, zeolite P, zeolite MAP, salts thereof, and combinations thereof; silicates such as layered silicates, salts thereof, and combinations thereof, preferably sodium layered silicate;
- a preferred adjunct component is a bleaching agent.
- the detergent composition comprises one or more bleaching agents.
- the composition comprises (by weight of the composition) from 1% to 50% of one or more bleaching agent.
- Preferred bleaching agents are selected from the group consisting of sources of peroxide, sources of peracid, bleach boosters, bleach catalysts, photo-bleaches, and combinations thereof.
- Preferred sources of peroxide are selected from the group consisting of: perborate monohydrate, perborate tetra-hydrate, percarbonate, salts thereof, and combinations thereof.
- Preferred sources of peracid are selected from the group consisting of: bleach activator typically with a peroxide source such as perborate or percarbonate, preformed peracids, and combinations thereof.
- Preferred bleach activators are selected from the group consisting of: oxy-benzene-sulphonate bleach activators, lactam bleach activators, imide bleach activators, and combinations thereof.
- a preferred source of peracid is tetra-acetyl ethylene diamine (TAED)and peroxide source such as percarbonate.
- Preferred oxy-benzene-sulphonate bleach activators are selected from the group consisting of: nonanoyl-oxy-benzene-sulponate, 6-nonamido-caproyl-oxy-benzene-sulphonate, salts thereof, and combinations thereof.
- Preferred lactam bleach activators are acyl-caprolactams and/or acyl-valerolactams.
- a preferred imide bleach activator is N-nonanoyi-N-n-iethyl-acetamide.
- Preferred preformed peracids are selected from the group consisting of N,N-pthaloyl-amino-peroxycaproic acid, nonyl-amido-peroxyadipic acid, salts thereof, and combinations thereof.
- the STW-composition comprises one or more sources of peroxide and one or more sources of peracid.
- Preferred bleach catalysts comprise one or more transition metal ions.
- Other preferred bleaching agents are di-acyl peroxides.
- Preferred bleach boosters are selected from the group consisting of: zwitterionic imines, anionic imine polyions, quaternary oxaziridinium salts, and combinations thereof.
- Highly preferred bleach boosters are selected from the group consisting of: aryliminium zwitterions, aryliminium polyions, and combinations thereof. Suitable bleach boosters are described in US360568 , US5360569 and US5370826 .
- a preferred adjunct component is an anti-redeposition agent
- the detergent composition comprises one or more anti-redeposition agents.
- Preferred anti-redeposition agents are cellulosic polymeric components, most preferably carboxymethyl celluloses.
- a preferred adjunct component is a chelant.
- the detergent composition comprises one or more chelants.
- the detergent composition comprises (by weight of the composition) from 0.01% to 10% chelant.
- Preferred chelants are selected from the group consisting of: hydroxyethane-dimethylene-phosphonic acid, ethylene diamine tetra(methylene phosphonic) acid, diethylene triamine pentacetate, ethylene diamine tetraacetate, diethylene triamine penta(methyl phosphonic) acid, ethylene diamine disuccinic acid, and combinations thereof
- a preferred adjunct component is a dye transfer inhibitor.
- the detergent composition comprises one or more dye transfer inhibitors.
- dye transfer inhibitors are polymeric components that trap dye molecules and retain the dye molecules by suspending them in the wash liquor.
- Preferred dye transfer inhibitors are selected from the group consisting of: polyvinylpyrrolidon.es, polyvinylpyridine N-oxides, polyvinylpyrrolidone-polyvinylimidazole copolymers, and combinations thereof.
- Preferred adjunct components include other enzymes.
- the detergent composition comprises one or more additional enzymes.
- Preferred enzymes are selected from then group consisting of: amylases, arabinosidases, carbohydrases, cellulases, chondroitinases, cutinases, dextranases, esterases, ⁇ -glucanases, gluco-amylases, hyaluronidases, keratanases, laccase, ligninases, lipoxygenases, malanases, mannanases, oxidases, pectinases, pentosanases, peroxidases, phenoloxidases, phospholipases, proteases, pullulanases, reductases, tannases, transferases, xylanases, xyloglucanases, and combinations thereof.
- Preferred additional enzymes are selected from the group consisting of: amylases, carbohydrases, cellula
- a preferred adjunct component is a fabric integrity agent.
- the detergent composition comprises one or more fabric integrity agents.
- fabric integrity agents are polymeric components that deposit on the fabric surface and prevent fabric damage during the laundering process.
- Preferred fabric integrity agents are hydrophobically modified celluloses. These hydrophobically modified celluloses reduce fabric abrasion, enhance fibre-fibre interactions and reduce dye loss from the fabric.
- a preferred hydrophobically modified cellulose is described in WO99/14245 .
- Other preferred fabric integrity agents are polymeric components and/or oligomeric components that are obtainable, preferably obtained, by a process comprising the step of condensing imidazole and epichlorhydrin.
- a preferred adjunct component is a salt.
- the detergent composition comprises one or more salts.
- the salts can act as alkalinity agents, buffers, builders, co-builders, encrustation inhibitors, fillers, pH regulators, stability agents, and combinations thereof.
- the detergent composition comprises (by weight of the composition) from 5% to 60% salt.
- Preferred salts are alkali metal salts of aluminate, carbonate, chloride, bicarbonate, nitrate, phosphate, silicate, sulphate, and combinations thereof.
- Other preferred salts are alkaline earth metal salts of aluminate, carbonate, chloride, bicarbonate, nitrate, phosphate, silicate, sulphate, and combinations thereof.
- Especially preferred salts are sodium sulphate, sodium carbonate, sodium bicarbonate, sodium silicate, sodium sulphate, and combinations thereof.
- the alkali metal salts and/or alkaline earth metal salts may be anhydrous.
- a preferred adjunct component is a soil release agent.
- the detergent composition comprises one or more soil release agents.
- soil release agents are polymeric compounds that modify the fabric surface and prevent the redeposition of soil on the fabric.
- Preferred soil release agents are copolymers, preferably block copolymers, comprising one or more terephthalate unit.
- Preferred soil release agents are copolymers that are synthesised from dimethylterephthalate, 1,2-propyl glycol and methyl capped polyethyleneglycol.
- Other preferred soil release agents are anionically end capped polyesters.
- a preferred adjunct component is a soil suspension agent.
- the detergent composition comprises one or more soil suspension agents.
- Preferred soil suspension agents are polymeric polycarboxylates. Especially preferred are polymers derived from acrylic acid, polymers derived from maleic acid, and co-polymers derived from maleic acid and acrylic acid. In addition to their soil suspension properties, polymeric polycarboxylaces are also useful co-builders for laundry detergents.
- Other preferred soil suspension agents are alkoxylated polyalkylene imines. Especially preferred alkoxylated polyalkylene imines are ethoxylated polyethylene imines, or ethoxylated-propoxylated polyethylene imine.
- the soil suspension agents represented by the above formula can be sulphated and/or sulphonated.
- the detergent compositions of the invention may comprise softening agents for softening through the wash such as clay optionally also with flocculant and enzymes.
- the invention also includes methods of washing textiles comprising cleaning, treating and/or masking the odour of a situs for example, a surface or fabric.
- Such method comprises contacting the situs such as a textile with an aqueous solution comprising the detergent composition of the invention.
- the invention may be particularly beneficial at low water temperatures such as below 30°C or below 25 or 20°C.
- the aqueous wash liquor will comprise at least 100 ppm, or at least 500ppm of the detergent composition
- Example 1 Perfume Compositions Common Name CAS Composition 1 2 3 4 Yard Yara 93-04-9 5 Diphenyl Oxide 101-84-8 2 7 5 Iso Eugenol 120-11-6 6 Eugenol 97-53-0 4 5 Dynascone® 56973-85-4 1 1.5 Delta damascone 71048-82-3 2 4 Ionone Gamma Methyl 127-51-5 20 5 Nectaryl 95962-14-4 20 lonone alpha 127-41-3 4 Dartanol 28219-61-6 8 Levosandol® 28219-61-6 8 Hedione® 24851-98-7 25 40 Dihydro 37172-53-5 10 12 5 IsoJasmonate® Frutene 17511-60-3 25 Flor Acetate 2500-83-6 25 Amyl Salicylate 2050-08-0 20 Coumarin 91-64-5 4 Dupical 30168-23-1
- the perfume component is a perfume according to the present invention and/or Examples 1 and 2 above.
- HiCap 100 modified starch supplied by National Starch & Chemical
- 500g of HiCap 100 modified starch are dissolved into 1000g of deionised water.
- 40g of anhydrous citric acid is added to the starch solution.
- the mixture is agitated for 10 minutes to dissolve the citric acid.
- 600g of perfume is added to the mixture.
- the emulsion is then agitated with a high shear mixer (ARD-Barico) for 10 more minutes.
- the mixture is then spray dried in a Production Minor cocurrent spray dryer manufactured by Niro A/S.
- a rotary atomising disc type FS also from Niro A/S, is used.
- the air inlet temperature is 200°C and the outlet temperature 90°C.
- Disc speed is set at 28,500 rpm.
- the tower is stabilized at these conditions by spraying water for 30 minutes before spray drying the emulsion.
- the dried particles are collected in a cyclone.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Detergent Compositions (AREA)
Description
- The present invention relates to detergent compositions, particularly laundry detergent compositions and in particular to detergents comprising lipolytic or lipase enzymes.
- Lipase enzymes have been used in detergents since the late 1980s for removal of fatty soils. It is known that lipase enzymes impact perfumes of detergent compositions containing them. The selection of perfumes for use in detergent compositions comprising lipase enzymes is documented in
, where it is described that in order to combat malodours resulting from the use of lipase enzymes, perfumes should be used that comprise at least 25% by weight of defined perfume materials and less than 50% by weight of esters derived from fatty acids with 1-7 carbon atoms.EP-A-430315 - Detergent compositions comprising encapsulated perfumes which may also contain lipase enzymes are disclosed in
US 6245732 ,US 6790814 , ,WO 94/28107 andWO 97/11151 US 6452754 . - Until relatively recently, the main commercially available lipase enzymes worked particularly effectively at the lower moisture levels of the drying phase of the wash process. However, more recently, higher efficiency lipases have been developed that also work effectively during the wash phase of the cleaning process. Examples of such enzymes are as described in
and Research Disclsoure IP6553D. This makes it even more difficult for the detergent formulator to produce consumer acceptable perfumes in a climate where consumers' expectation is increasingly for pleasant perfumes at all stages of the washing process. One particular area where the impact of lipase on the perfume in the detergent composition can be most noticeable to consumers is after storage and as a result, during the washing process. This can be a particular problem for detergents for use in hand-washing processes. The present inventors have found that the problems described above can be alleviated even for detergent formulations comprising the new high efficiency lipase enzymes. Furthermore, the present inventors have found specific preferred perfumes for use in such detergent formulations.WO00/60063 - In accordance with the present invention there is provided a detergent composition comprising:
- 1. a lipase which is a polypeptide having an amino acid sequence which: (a) has at least 90% identity with the wild-type lipase derived from Humicola lanuginosa strain DSM 4109; (b) compared to said wild-type lipase, comprises a substitution of an electrically neutral or negatively charged amino acid at the surface of the three-dimensional structure within lSAngstroms of E1 or Q249 with a positively charged amino acid; and (c) comprises a peptide addition at the C-tenninal; and/or (d) comprises a peptide addition at the N-terminal and/or (e) meets the following limitations: i) comprises a negative amino acid in position E210 of said wild-type lipase; ii) comprises a negatively charged amino acid in the region corresponding to positions 90-101 of said wild-type lipase; and iii) comprises a neutral or negative amino acid at a position corresponding to N94 of said wild-type lipase and/or has a negative or neutral net electric charge in the region corresponding to positions 90-101 of said wild-type lipase; and (f) comprises the mutations T231R and N233R; and
- 2. an encapsulated perfume particle comprising (a) an at least partially water-soluble solid matrix comprising one or more water-soluble hydroxylic compounds, preferably starch; and (b) a perfume oil encapsulated by the solid matrix.
- The lipase enzyme may be a polypeptide as defined above, meeting criteria (a) and (b) and (c) and/or (e).
- In a further embodiment of the invention, the encapsulated perfume oil comprises at least 1 % by weight or at least 5wt% or even at least 10% by weight, or even at least 20%, 30, 40, 50, 60, 70, 80 or 90 % by weight of at least one perfume ingredient having a boiling point at 36KNm-2 (760mmHg) of 260°C or lower and a calculated log10 of its octanol/water coefficient P (ClogP), of at least 3.0. In a further embodiment, the encapsulated perfume oil comprises at least one ester derived from fatty acids with 1-7 carbon atoms, generally at least 1 % by weight or at least 5wt% or even at least 10% by weight, or even at least 20%, 30, 40, 50, 60, 70, 80 or 90 wt% ester by weight based on the weight of the total perfume oil in the encapsulated perfume particle. The inventors have found that two particular perfume esters are especially sensitive to the presence of lipase enzymes so that the invention is particularly beneficial where the encapsulated perfume oil comprises benzyl acetate and/or phenylethyl acetate,
In a further embodiment of the invention, there is provided a detergent composition comprising a perfume composition, said perfume composition comprising the perfume oil in the encapsulated perfume particle and any optional additional pefume oil, said perfume composition comprising at least 10% by weight, or at least 20, 30, 40, 50, 60, 70, 80 or even 90 wt% of one or more perfume components having a molecular weight of greater than 0 but less than or equal to 350 daltons, at least 80% of said one or more perfume components having a cLogP of at least 2.4, said perfume composition comprising at least 5% of said one or more perfume components having a cLogP of at least 2.4. - All percentages and ratios herein are calculated by weight unless otherwise indicated. Percentages and ratios are calculated based on the total composition unless otherwise indicated. The nomenclature used herein describing the enzymes, for example relating to amino acid modifications, amino acid groupings and amino acid identity is as in
.WO00/60063 - The lipase enzymes are described in
. The lipases suitable for use in the present invention as described inWO00/60063 are described with reference to a lipase that is the wild-type lipase derived from Humicola Lanuginosa strain DSM 4109 (reference lipase). The reference lipase is also referred to as Lipolase (registered trade name of Novozymes). It is described inWO00/60063 andEP258068 and has the amino acid sequence shown in positionsl-269 of SEQ ID No 2 ofEP305216 US5869438 . - The first wash lipase for use in the present invention is available under the tradename LIPEX (registered tradename of Novozymes), a variant of the Humicola lanuginasa (Thermomyces lanugina.sus) lipase (Lipolase registered tradename of Novozymes) with the mutations T231R and N233R.
- The lipase enzyme incorporated into the detergent compositions of the present invention is generally present in an amount of 10 to 20000 LU/g of the detergent composition, or even 100 to 10000 LU/g. The LU unit for lipase activity is defined in
. The lipase dosage in the wash solution is typically from 0.02 to 2 mg/l enzyme, more typically from 0.1 to 2mg/l as enzyme protein.WO99/42566 - The lipase enzyme may be incorporated into the detergent composition in any convenient form, generally in the form of a non-dusting granulate, a stabilised liquid or a coated enzyme particle. Alternatively a slurry may be suitable.
- The at least partially water soluble hydroxylic compounds useful herein are preferably selected from carbohydrates, which can be any or mixture of: i) simple sugars (or mono-saccharides); ii) oligosaccharides (defined as carbohydrate chains consisting of 2-10 monosaccharide molecules); iii) polysaccharides (defined as carbohydrate chains consisting of at least 11, or more usually at least 35 monosaccharide molecules); and iv) starches.
- Both linear and branched carbohydrate chains may be used. In addition chemically modified starches and poly-/oligo-saccharides may be used. Typical modifications include the addition of hydrophobic moieties of the form of alkyl, aryl, etc. identical to those found in surfactants to impart some surface activity to these compounds.
- Other examples of suitable encapsulating materials include all natural or synthetic gums such as alginate esters, carrageenin, agar-agar, pectic acid, and natural gums such as gum arabic, gum tragacanth and gum karaya, chitin and chitosan, cellulose and cellulose derivatives including i) cellulose acetate and cellulose acetate phthalate (CAP); ii) hydroxypropyl methyl cellulose (HPMC); iii)carboxymethylcellulose (CMC); iv) all enteric/aquateric coatings and mixtures thereof.
- Particularly preferred encapsulating matrix materials comprise starches. Suitable examples can be made from, raw starch, pregelatinized starch, modified starch derived from tubers, legumes, cereal and grains, for example corn starch, wheat starch, rice starch, waxy corn starch, oat starch, cassava starch, waxy barley, waxy rice starch, sweet rice starch, amioca, potato starch, tapioca starch, oat starch, cassava starch, and mixtures thereof.
- Modified starches suitable for use as the encapsulating matrix in the present invention include, hydrolyzed starch, acid thinned starch, starch esters of long chain hydrocarbons, starch acetates, starch octenyl succinate, and mixtures thereof.
- The term "hydrolyzed starch" refers to oligosaccharide-type materials that are typically obtained by acid and/or enzymatic hydrolysis of starches, preferably corn starch. Suitable hydrolyzed starches for inclusion in the present invention include maltodextrins and corn syrup solids. The hydrolyzed starches for inclusion with the mixture of starch esters have a Dextrose Equivalent (DE) values of from about 10 to about 36 DE. The DE value is a measure of the reducing equivalence of the hydrolyzed starch referenced to dextrose and expressed as a percent (on a dry basis). The higher the DE value, the more reducing sugars present. A method for determining DE values can be found in Standard Analytical Methods of the Member Companies of Corn Industries Research Foundation, 6th ed. Corn Refineries Association, Inc, Washington, DC 1980, D-52.
- Starch esters having a degree of substitution in the range of from about 0.01% to about 10.0% may be used to encapsulate the perfume oils of the present invention. The hydrocarbon part of the modifying ester should be from a C5 to C16 carbon chain. Preferably, octenylsuccinate (OSAN) substituted waxy corn starches of various types such as 1) waxy starch: acid thinned and OSAN substituted, 2) blend of corn syrup solids: waxy starch, OSAN substituted, and dextrinized, 3) waxy starch: OSAN substituted and dextrinized, 4) blend of corn syrup solids or maltodextrins with waxy starch: acid thinned OSAN substituted, and then cooked and spray dried, 5) waxy starch: acid thinned and OSAN substituted then cooked and spray dried, and 6) the high and low viscosities of the above modifications (based on the level of acid treatment) can also be used in the present invention.
- Modified starches having emulsifying and emulsion stabilizing capacity such as starch octenyl succinates have the ability to entrap the perfume oil droplets in the emulsion due to the hydrophobic character of the starch modifying agent. The perfume oils remain trapped in the modified starch until dissolved in the wash solution, due to thermodynamic factors i.e., hydrophobic interactions and stabilization of the emulsion because of steric hindrance. The perfume may be adsorbed or adsorbed onto a carrier prior to encapsulation. Suitable examples of carriers are as described in
or may be polymeric materials. Zeolite is a particularly preferred carrier, for example as described in more detail inWO.97/11151 .WO97/11151 - Other known methods of manufacturing the starch encapsulates of the present invention, include but are not limited to, fluid bed agglomeration, extrusion, cooling/crystallization methods and the use of phase transfer catalysts to promote interfacial polyrnerization.
- Other suitable matrix materials and process details are disclosed in, e.g.,
U.S. Pat. No. 3,971,852, Brenner et al., issued July 27, 1976 . - As used herein, the expression "perfume oil" is intended to refer to perfume raw materials or ingredients, or combinations thereof. Whilst these are generally immiscible with water under standard conditions of temperature and pressure, a small number may be miscible with water. The perfume oil may comprise one perfume ingredient or mixtures of more than one perfume ingredient. In addition to the perfume oil present in the detergent compositions of the invention via the encapsulated perfume particle, additional perfume oils may be present in the detergent via other delivery systems as discussed below. The overall sum of perfume ingredients present in the encapsulated perfume oil and any optional additional perfume oils provides the perfume composition of the detergent composition.
- The inventors have found that often lipase enzymes and particularly the high efficiency lipase enzymes essential for the present invention, are problematic for perfume stability on storage and this means that the perfume fragrance detected by the consumer is not only reduced compared with the amount of perfume added into the detergent formulation but may also be adversely affected so that it is not the perfume selected by the perfumer. This problem is particularly noticeable by the consumer during the washing process and the inventors have found that not only do the encapsulated perfumes have a degree of protection on storage, but also surprisingly, the encapsulated perfumes appear to be chaperoned to the surface of the wash water by the encapsulate, providing maximum efficacy for the perfume raw materials used. The use of the encapsulated perfumes in combination with the specified lipases also provides a degree of protection from these particularly lipase-sensitive perfume raw materials.
- Preferably the perfume oil present in the encapsulated perfume particle comprises one or more perfume ingredient characterized by its boiling point (B.P.) and its octanol/water partition coefficient (P). The octanol/water partition coefficient of a perfume ingredient is the ratio between its equilibrium concentrations in octanol and in water. The preferred perfume ingredients of this invention have a B.P., determined at the normal, standard pressure of about 760 mm Hg, of about 260°C or lower, preferably less than about 255°C; and more preferably less than about 250°C, and an octanol/water partition coefficent P of about 1,000 or higher. Since the partition coefficients of the preferred perfume ingredients of this invention have high values, they are more conveniently given in the form of their logarithm to the base 10, logP. Thus the preferred perfume ingredients of this invention have logP of at least 3, preferably more than 3.1, and even more preferably more than 3.2.
- The boiling points of many perfume ingredients are given in, e.g., "Perfume and Flavor Chemicals (Aroma Chemicals)," Steffen Arctander, published by the author, 1969, incorporated herein by reference.
- The logP of many perfume ingredients has been reported; for example, the Pomona92 database, available from Daylight Chemical Information Systems, Inc. (Daylight CIS), Irvine, California, contains many, along with citations to the original literature. However, the logP values are most conveniently calculated by the "CLOGP" program, also available from Daylight CIS. This program also lists experimental logP values when they are available in the Pomona92 database. The "calculated logP" (ClogP) is determined by the fragment approach of Hansch and Leo (cf., A. Leo, in Comprehensive Medicinal Chemistry, Vol. 4, C. Hansch, P. G. Sammens, J. B. Taylor and C. A. Ramsden, Eds., p. 295, Pergamon Press, 1990, incorporated herein by reference). The fragment approach is based on the chemical structure of each perfume ingredient, and takes into account the numbers and types of atoms, the atom connectivity, and chemical bonding. The ClogP values, which are the most reliable and widely used estimates for this physicochemical property, are preferably used instead of the experimental logP values in the selection of perfume ingredients which are useful in the present invention.
- Thus, when a perfume composition which is composed of ingredients having a B.P. of about 260°C or lower and a ClogP, or an experimental logP, of about 3 or higher, is used in an detergent composition, the perfume is very effusive and very noticeable when the product is used. Table 1 gives some non-limiting examples of the preferred perfume ingredients, useful in the detergent compositions of the present invention. Particularly preferred perfume oils for encapsulation, include one or a mixture of more than one ingredient selected from octyl aldehyde, nonyl aldehyde, decyl aldehyde, dodecyl aldehyde (dodecanal or lauric aldehye), diphenyl oxide, alpha-Ionine, Lilial and alpha-iso "gamma" methyl Ionone. These have been found to be particularly useful for masking malodours produced from fatty acid odours. These particularly preferred perfume oils may be encapsulated singly or as part of a mixture with other preferred (i.e. listed in Table 1 below) or particularly preferred perfume oils or as part of a mixture with other perfume oils.
Table I Examples of Preferred Perfume Ingredients Perfume Ingredients Approx. BP(°C) Approx. ClogP allo-Ocimene 192 4.362 Allyl Heptoate 210 3.301 Anethol 236 3.314 Benzyl Butyrate 240 3.698 Camphene 159 4.192 Carvacrol 238 3.401 beta-Caryophyllene 256 6.333 cis-3-Hexenyl Tiglate 101 3.700 Citcal (Neral) 228 3.120 Citronellol 225 3.193 Citronellyl Acetate 229 3.670 Citronellyl Isobutyrate 249 4.937 Citronellyl Nitrile 225 3.094 Citronellyl Propionate 242 4.628 Cyclohexyl Ethyl Acetate 187 3.321 Decyl Aldehyde 209 4.008 Dihydro Myrcenol 208 3.030 Dihydromyrcenyl Acetate 225 3.879 Dimethyl Octanol 213 3.737 Diphenyl Oxide 252 4.240 Dodecalactone 258 4.359 Ethyl Methyl Phenyl Glycidate 260 3.165 Fenchyl Acetate 220 3.485 gamma Methyl Ionone 230 4.089 gamma-n-Melhyl Ionone 252 4.309 gamma-Nonalactone 243 3.140 Geranyl Acetate 245 3.715 Geranyl Formate 216 3.269 Geranyl Isobutymte 245 4.393 Geranyl Nitrile 222 3.139 Hexenyl Isobutyrate 182 3.181 Hexyl Neopentanoate 224 4.374 Hexyl Tiglate 231 3.800 alpha-lonone 237 3.381 beta-Ionone 239 3.960 gamma-Ionone 240 3.780 alpha-Irone 250 3.820 Isobomyl Acetate 227 3.485 Isobutyl Benzoate 242 3.028 Isononyl Acetate 200 3.984 Isononyl Alcohol 194 3.078 Isobutyl Quinoline 252 4.193 Isomenthol 219 3.030 para-Isopropyl Phenylacetaldehyde 243 3.211 Isopulegol 212 3.330 Lauric Aldehyde (Dodecanal) 249 5.066 Lilial (p-t-Bucinal) 258 3.858 d-Limonene 177 4.232 Linalyl Acetate 220 3.500 Menthyl Acetate 227 3.210 Methyl Chavicol 216 3.074 alpha-iso "gamma" Methyl Ionone 230 4.209 Methyl Nonyl Acetaldehyde 232 4.846 Methyl Octyl Acetaldehyde 228 4.317 Myrcene 167 4.272 Neral 228 3.120 Neryl Acetate 231 3.555 Nonyl Acetate 212 4.374 Nonyl Aldehyde 212 3.479 Octyl Aldehyde 223 3.845 Orange Terpenes (d-Limonene) 177 4.232 para-Cymene 179 4.068 Phenyl Heptanol 261 3.478 Phenyl Hexanol 258 3.299 alpha-Pinene 157 4.122 beta-Pinene 166 4.182 alpha-Terpinene 176 4.412 gamma-Terpinene 183 4.232 Terpinolene 184 4.232 Terpinyl acetate 220 3.475 Tetrahydro Linalool 191 3.517 Tetrahydro Myrcenol 208 3.517 Tonalid 246 6.247 Undecenal 223 4.053 Veratrol 206 3.140 Verdox 221 4.059 Vertenex 232 4.060 - The perfume oil in the encapsulated perfume particle may be adsorbed or absorbed onto a carrier prior to encapsulation. Suitable carriers are described in
. A particularly preferred carrier is zeolite.WO97/11151 - The detergent compositions herein comprise from about 0.01 % to 50% of the encapsulated perfume particle. More preferably, the detergent compositions herein comprise from 0.05% to 8.0% of the perfume particle, even more preferably from 0.5% to 3.0%. Most preferably, the detergent compositions herein contain from 0.05% to 1.0% of the encapsulated perfume particle. The encapsulated perfume particles preferably have size of from 1 micron to 1000 microns, more preferably from 50 microns to 500 microns.
- The perfume oil and/or perfume composition is generally present in the detergent compositions of the invention in amounts of from 0.001% to about 5%, preferably from 0.01% to 5%, and more usually from 0.05% to 3%. Where present in the detergent compositions of the present invention, the preferred perfume ingredients may comprise 100% of the perfume oil, but is more usually used in addition to other perfume ingredients. A mixture of more than one of the preferred perfume ingredients may be present for example, at least 2 or even at least 5 or 6 or 7 different preferred perfume ingredients. Furthermore, the encapsulated perfume particles may contain at least 1 Or 5 or 10 wt% or even at least 20, 30, 40, 50, 60, 70, 80 or 90 wt% of such preferred perfume ingredients.
- Most common perfume ingredients which are derived from natural or synthetic sources are composed of a multitude of components. For example, orange terpenes contain about 90% to about 95% d-limonene, but also contain many other minor ingredients. When each such material is used in the formulation of the perfume oils in the present invention, it is counted as one ingredient, for the purpose of defining the invention.
- The detergent compositions may comprise in addition to the encapsulated perfume oil, additional perfume oil forming part of the total perfume composition in the detergent composition. The additional perfume oil may be incorporated into the detergent composition by any other delivery method, for example, simply by spraying onto the finished detergent composition or onto a component thereof, prior to mixing to form the finished detergent composition.
- The encapsulated perfume particles also may comprise perfume oil comprising esters derived from fatty acids having 1 to 7 carbon atoms. Where the detergent composition additionally comprises additional perfume oil, preferably at least 60 wt%, or at least 80 or 90 or substantially all the ester derived from fatty acid having from 1 to 7 carbon atoms will be present in the encapsulated perfume particles.
- In a further aspect of the invention, the encapsulated perfume oil and/or the perfume composition in the detergent composition comprises at least 10 % , 20%, 30%, 40% , 50%, 60%, 70%, 80%, or even 90% of one or more perfume ingredients having a molecular weight of greater than 0 but less than or equal to 350 daltons, from about 100 daltons to about 350 daltons, from about 130 daltons to about 270 daltons, or even from about 140 daltons to about 230 daltons; at least 80%, 85%, 90% or even 95% of said one or more perfume ingredients having a cLogP of at least 2.4, from about 2.75 to about 8.0 or even from about 2.9 to about 6.0, said perfume composition comprising at least 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, or even 95% of said one or more perfume ingredients having a cLogP in the range of at least 2.4, from about 2.75 to about 8.0 or even from about 2.9 to about 6.0. In said aspect of the invention said one or more perfume ingredients may be selected from the group consisting of a Schiff's base, ether, phenol, ketone, alcohol, ester, lactone, aldehyde, nitrile, natural oil or mixtures thereof. Schiff's base and nitriles may be least preferred. In certain aspects of the invention as recited above, said one or more perfume ingredients may include Table 2 Perfume Ingredients or mixtures thereof or even Table 2 Perfume Ingredients 1 through 28 or mixtures thereof. It may be preferred for ketones and aldehydes to have a molecular weight of below 200 daltons.
- In another aspect of the invention said perfume composition comprises at least 10 % , 20%, 30%, 40% , 50%, 60%, 70%, 80%, or even 90% of a perfume ingredient selected from the group consisting of the ingredients listed in Table 2 below and mixtures thereof.
Table 2 Chemical Name CAS Functionality M Wt clogP 1 2-Methoxynaphtlialene 93-04-9 Ether 158 3.24 2 Diphenyl ether 101-84-8 Ether 170 4.24 3 2-methoxy-4-propenyl phenol 120-11-6 Phenol 164 4.63 4 2-Methoxy-4 allyl phenol 97-53-0 Phenol 164 2.40 5 4-Penten-1-one,1-(5,5-dimethyl-1-cyclohexen-1-yl) 56973-85-4 Ketone 192 4.0 6 (1alpha (E),2 beta)-1-(2,6,6-Trimethyl-cyclohex-3-en-1-yl)but-2-en-1-one 71048-82-3 Ketone 192 3.62 7 3-Buten-2-one, 3-Methyl-4-(2,6,6-Trimethyl-2-Cyclohexen-1-yl) 127-51-5 Ketone 206 4.0 8 2-(2-(4-methyl-3-cyclohexen-1-yl)propyl)cyclopentanone 95962-14-4 Ketone 220 4.44 9 4-[(2,6,6-trimethyl-1-cyclohex-2-enyl)]but-3-en-2-one 127-41-3 Ketone 192 3.71 10 1Buten-1-ol,2ethyl-4-(2,2,3-trimethyl-3-cyclopentyl-1- 28219-61-6 Alcohol 208 4.43 yl)- 11 2-Ethyl-4-(2,2,3-trimethylcyclopent-3-enyl-1)-2-buten-1-ol 28219-61-6 Alcohol 208 4.43 12 Cyclopentaneacetic acid,3oxo-2-pentyl-methyl ester 24851-98-7 Ester 226 2.42 13 Methyl 2-hexyl-3-oxo-cyclopentanecarboxylate 37172-53-5 Ester 226 3.09 14 Tricyclodecenyl Propionate 17511-60-3 Ester 206 2.89 15 Tricyclo Decenyl Acetate 2500-83-6 Ester 190 2.36 16 n-pentyl salicylate 2050-08-0 Ester 208 4.56 17 chromen-2-one or 1,2-benzopyrone 91-64-5 Lactone 146 1.41 18 4-(tricycle(5,2,1,0)decylidene-8)butanal 30168-23-1 Aldehyde 204 3.63 19 3-(3-isopropylphenyl)butanal 125109-85-5 Aldehyde 190 3.55 20 p-tert.Butyl-alpha-methyldihydrocinnamic aldehyde 80-54-6 Aldehyde 204 3.86 21 alpha-Hexylcinnamaldehyde 101-86-0 Aldehyde 216 4.85 22 n-octanal 124-13-0 Aldehyde 128 2.95 23 n-nonanal 124-19-6 Aldehyde 142 3.98 24 n-decanal 10486-19-8 Aldehyde 156 5.60 25 dodecanal 112-54-9 Aldehyde 184 5.07 26 Benzene propane nitrile alpha-ethenyl-alpha-methyl 973 84-48-0 Nitrile 171 2.31 27 2-cyclohexylidene-2-phenylacetonitrile 104621-98-0 Nitrile 197 n/a 28 Patchouli n/a Natural Oil n/a n/a 29 Naphtho[2,1-b]furan, dodecahydro-3a,6,6,9a-tetramethyl- 3738-00-9 Ether 236 5.26 30 Cyclopentanone, 2-pentyl- 4819-67-4 Ketone 154 2.94 31 Ethanone, 1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthalenyl)- 54464-57-2 Ketone 234 4.84 32 3-methyl-4(5)-cyclopentadecenone 82356-51-2 Ketone 236 5.60 33 2(3H)-Furanone, 5-heptyldihydro- 104-67-6 Lactone 184 3.83 34 Methyl ionone (mixture) 1335-46-2 Ketone 206 4.23 35 Spiro[1,3-dioxolane-2,8'(5'H)-[2H-2,4a]methanonaphthalene], hexahydro-1',1',5',5'-tetramethyl-, [2'S-(2'.alpha.,4'a.alpha.,8'a.alpha .)]- 154171-77-4 Ketone n/a 5.67 36 Undecanal, 2-methyl- 110-41-8 Aldehyde 184 4.85 37 10-Undecenal 112-45-8 Aldehyde 168 4.05 38 4-Methyl-3-decen-5-ol 81782-77-6 Alcohol 170 39 Benzoic acid, 2-hydroxy-, cyclohexyl ester 25485-88-5 Ester 220 4.48 40 4H-Inden-4-one, 1,2,3,5,6,7-hexahydro-1,1,2,3,3-pentamethyl- 33704-61-9 Ketone 206 3.99 41 N-2,4-Dimethyl-3-cyclohexenemethylene methyl anthranilate 68738-99-8 Schiffs base n/a 4.78 42 2-Buten-1-ol, 2-ethyl-4-(2,2,3-trimethyl-3-cyclopenten-1-yl)- 28219-61-6 Alcohol 208 4.43 43 Acetic acid, hexyl ester 142-92-7 Ester 144 2.83 44 1,6-Octadien-3-ol, 3,7-dimethyl- 78-70-6 Alcohol 154 2.55 45 Cyclohexanol, 2-(1,1-dimethylethyl)-, acetate 88-41-5 Ester 198 4.06 46 2-Butanone, 4-(4-hydroxyphenyl)- 5471-51-2 Ketone 164 1.07 47 Ethanone, 1-(2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-1H-3a,7-methanoazulen-5-yl)-, [3R-(3.a1pha,3a.beta,7.beta,8a. alpha.)]- 32388-55-9 Ketone 246 4.75 48 Cyclododecane, (ethoxymethoxy)- 58567-11-6 Ether 242 5.48 49 Cyclohexane, 3-ethoxy-1,1,5-trimethyl-, cis- 24691-15-4 Ether 156 3.93 50 1,3-Benzodioxole-5-carboxaldehyde 120-57-0 Ether/aldehyd e 150 1.14 51 Benzoic acid, 2-hydroxy-, phenylmethyl ester 118-58-1 Ester 228 4.22 52 2-Cyclopenten-1-one, 2-methyl-3-(2-pentenyl)- 11050-62-7 Ketone 164 2.64 53 Oxacyclohexadecen-2-one 34902-57-3 Lactone 238 5.40 54 4-Cyclopentadecen-1-one, (Z)- 0014595-54-1 Ketone 222 n/a 55 Benzoic acid, 2-[(7-hydroxy-3,7-dimethyloctylidene)amino]-, methyl 89-43-0 Schiffs base 305 4.17 56 4,7-Methano-3aH-indene-3a-carboxylic acid, octahydro-, ethyl ester, (3a.alpha.,4.beta.,7.beta.,7a. alpha.)- 80623-07-0 Ester 209 3.37 57 Benzoic acid, 2-hydroxy-, 3-hexenyl ester, (Z)- 65405-77-8 Ester 220 4.61 58 Benzoic acid, 2-amino-, methyl ester 134-20-3 Ester 151 2.02 59 Benzoic acid, 2-hydroxy-, hexyl ester 6259-76-3 Ester 222 5.09 60 Carbonic acid, 4-cycloocten-1-yl methyl ester 87731-18-8 Ester 184 2.77 61 5-Cyclohexadecen-1-one 37609-25-9 Ketone 236 5.97 62 Cyclohexanepropanoic acid, 2-propenyl ester 705-87-5 Ester 196 3.93 63 Pentanoic acid, 2-methyl-, ethyl ester, (S)- 28959-02-6 Ester 144 2.61 64 3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (E)- 79-77-6 Ketone 192 3.77 65 1,3-Dioxolane, 2,4-dimethyl-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-, cis- 131812-51-6 Ether 288 6.27 66 2,6-Octadienenitrile, 3,7-dimethyl- 5146-66-7 Nitrile 227 3.25 67 2,6-Nonadienenitrile, 3,7-dimethyl- 61792-11-8 Nitrile 163 3.78 68 3-Cyclohexene-1-carboxaldehyde, dimethyl- 27939-60-2 Aldehyde 138 2.53 69 Oxacyclohexadecan-2-one 106-02-5 Lactone 240 6.29 70 Methy-2-methyl-3-(4-tert butylphenyl)propylidenanthr anilate 91-51-0 Schiffs base 337 6.31 71 Acetic acid, (3-methylbutoxy)-, 2-propenyl ester 67634-00-8 Ester 186 2.38 72 9-Undecenal, 2,6,10-trimethyl- 141-13-9 Aldehyde 210 5.16 73 Cyclopentanone, 3-methyl-2-pentyl- 13074-63-0 Ketone 168 3.46 - In any of the aforementioned aspects, if the perfume oil or composition comprises an ester perfume ingredient, when said perfume oil or composition comprises an ester perfume component said ester perfume may have one or more of the following characteristics: branching or pendant rings in at least one of the alpha, beta or gamma positions; branching or pendant rings in at least one of the alpha or beta positions; or at least one tertiary carbon atom in the alpha position. While not being bound by theory, it is believed that the aforementioned perfume ester characteristics result in increased perfume ester stability, and thus perfume composition stability, when said perfume ester in is the presence of an enzyme that can hydrolyze ester bonds, for example, enzymes classed in EC 3.1.1. such as lipases.
- In any of the aforementioned aspects of the invention, said perfume oil or composition typically contains no more than about 5 %, or even none of the perfume components selected from the group consisting of Acetic acid, phenylmethyl ester; Benzene ethanol; Butanoic acid, 2-methyl-, ethyl ester; 4H-Pyran-4-one, 2-ethyl-3-hydroxy-; Benzaldehyde, 4-hydroxy-3-methoxy-; Benzaldehyde, 3-ethoxy-4-hydroxy-; 3-Hexen-1-ol, acetate, (Z)-; Butanoic acid, 2-methyl-, 1-; methylethyl ester; 3-Decanone, 1-hydroxy-; 2-Heptanone; Benzaldehyde; Propanenitrile, 3-(3-hexenyloxy)-, (Z)-; 2-Butanone, 4-phenyl-; 2-Hexen-l-ol; 2(3H)-Furanone, 5-butyldihydro-,
- Perfume compositions of the present invention may be made by ad-mixing of perfume raw materials, which are typically liquids. Certain perfume raw materials are solid materials and can require gentle heat to homogenise with the rest of the perfume. The perfume blend can also comprise a significant proportion of a diluent (e.g dipropylene glycol), an antioxidant or a solubilising material. Solubilisers can be particularly advantageous where the surfactant level is low in order to disperse the perfume in a predominantly hydrophilic matrix such as aqueous liquid cleaners.
- Any of the aforementioned aspects of the perfume compositions may be combined with other materials to produce any of the following delivery systems for delivering additional perfume oils into the detergent composition: spray-on perfume oils, sprayed directly onto detergent composition or components thereof, starch encapsulate delivery systems, porous carrier material delivery systems, coated porous carrier material delivery systems, microencapsulate delivery systems. Preferably, detergent cornopositions of the invention will comprise encapsulates and spray-on perfume. Suitable methods of producing the aforementioned delivery systems may be found in one or more of the following
U.S. patents 6,458,754 ;5,656,584 ;6,172,037 ;5,955,419 and5,691,383 and WIPO ,publications WO 94/28017 ,WO 98/41607 . Such delivery systems may be used alone, in combination with other or even in combination with the neat sprayed on or admixed perfume compositions of the present invention in a consumer product.WO 98/52527 - In addition to the lipase enzyme and encapsulated perfume particles, the detergent compositions of the invention will also contain one or more conventional detergent ingredients and/or detergent adjunct ingredients.
- The detergent compositions of the invention may be in any convenient form such as powdered or granular solids, bars, tablets or non-aqueous liquids, including gel and paste forms. Other forms of cleaning composition include other institutional and/or household cleaning compositions such as liquid or solid cleaning and disinfecting agents, including antibacterial cleaners car or carpet shampoos, denture cleaners, hard surface cleaners, for example for kitchen and/or bathroom use optionally for cleaning metal, hair shampoos, shower gels, bath foam as well as cleaning auxiliaries such as bleach additives and "stain stick" or pre-treat types. When present in the granular form the detergent compositions of the present invention are preferably those having an overall bulk density of from 350 to 1200 g/l, more preferably 450 to 1000g/l or even 500 to 900g/l. Preferably, the detergent particles of the detergent composition in a granular form have a size average particle size of from 200µm to 2000µm, preferably from 350µm to 600µm.
- Generally the detergent compositions of the invention will be mixed with other detergent particles including combinations of agglomerates, spray-dried powders and/or dry added materials such as bleaching agents, enzymes etc.
- As a preferred embodiment, the conventional detergent ingredients are selected from typical detergent composition components such as detersive surfactants and detersive builders- Optionally, the detergent ingredients can include one or more other detersive adjuncts or other materials for assisting or enhancing cleaning performance, treatment of the substrate to be cleaned, or to modify the aesthetics of the detergent composition. Usual detersive adjuncts of detergent compositions include the ingredients set forth in
U.S. Pat. No. 3,936,537 , Baskerville et al. and in . Such adjuncts are included in detergent compositions at their conventional art-established levels of use, generally from 0% to about 80% of the detergent ingredients, preferably from about 0.5% to about 20% and can include color speckles, suds boosters, suds suppressors, antitarnish and/or anticorrosion agents, soil-suspending agents, soil release agents, dyes, fillers, optical brighteners, germicides, alkalinity sources, hydrotropes, antioxidants, enzymes, enzyme stabilizing agents, solvents, solubilizing agents, chelating agents, clay soil removal/anti-redeposition agents, polymeric dispersing agents, processing aids, fabric softening components, static control agents, bleaching agents, bleaching activators, bleach stabilizers, etc.Great Britain Patent Application No. 9705617.0, Trinh et al., published September 24, 1997 - As described above, detergent compositions comprising the particles of the invention will comprise at least some of the usual detergent adjunct materials, such as agglomerates, extrudates, other spray dried particles having different composition to those of the invention, or dry added materials. Conventionally, surfactants are incorporated into agglomerates, extrudates or spray dried particles along with solid materials, usually builders, and these may be admixed with the spray dried particles of the invention. However, as described above some or all of the solid material may be replaced with the particles of the invention.
- The detergent adjunct materials are typically selected from the group consisting of detersive surfactants, builders, polymeric co-builders, bleach, chelants, enzymes, anti-redeposition polymers, soil-release polymers, polymeric soil-dispersing and/or soil-suspending agents, dye-transfer inhibitors, fabric-integrity agents, suds suppressors, fabric-softeners, flocculants, perfumes, whitening agents, photobleach and combinations thereof.
- The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition or component, and the precise nature of the washing operation for which it is to be used.
- A highly preferred adjunct component is a surfactant. Preferably, the detergent composition comprises one or more surfactants. Typically, the detergent composition comprises (by weight of the composition) from 0% to 50%, preferably from 5% and more preferably from 10 or even 15 wt% to 40%, or to 30%, or to 20% one or more surfactants. Preferred surfactants are anionic surfactants, non-ionic surfactants, cationic surfactants, zwitterionic surfactants, amphoteric surfactants, cationic surfactants and mixtures thereof.
- Preferred anionic surfactants comprise one or more moieties selected from the group consisting of carbonate, phosphate, sulphate, sulphonate and mixtures thereof. Preferred anionic surfactants are C8-18 alkyl sulphates and C8-18 alkyl sulphonates. Suitable anionic surfactants incorporated alone or in mixtures in the compositions of the invention are also the C8-18 alkyl sulphates and/or C8-18 alkyl sulphonates optionally condensed with from 1 to 9 moles of C1-4 alkylene oxide per mole of C8-18 alkyl sulphate and/or C8-18 alkyl sulphonate. The alkyl chain of the C8-18 alkyl sulphates and/or C8-18 alkyl sulphonates may be linear or branched, preferred branched alkyl chains comprise one or more branched moieties that are C1-6 alkyl groups. Other preferred anionic surfactants are C8-18 alkyl benzene sulphates and/or C8-18 alkyl benzene sulphonates. The alkyl chain of the C8-18 alkyl benzene sulphates and/or C8-18 alkyl benzene sulphonates may be linear or branched, preferred branched alkyl chains comprise one or more branched moieties that are C1-6 alkyl groups.
- Other preferred anionic surfactants are selected from the group consisting of: C8-18 alkenyl sulphates, C8-18 alkenyl sulphonates, C8-18 alkenyl benzene sulphates, C8-18 alkenyl benzene sulphonates, C8-18 alkyl di-methyl benzene sulphate, C8-18 alkyl di-methyl benzene sulphonate, fatty acid ester sulphonates, di-alkyl sulphosuccinates, and combinations thereof. The anionic surfactants may be present in the salt form. For example, the anionic surfactant may be an alkali metal salt of one or more of the compounds selected from the group consisting of: C8-18 alkyl sulphate, C8-18 alkyl sulphonate, C8-18 alkyl benzene sulphate, C8-C18 alkyl benzene sulphonate, and combinations thereof. Preferred alkali metals are sodium, potassium and mixtures thereof. Typically, the detergent composition comprises from 10% to 30wt% anionic surfactant.
- Preferred non-ionic surfactants are selected from the group consisting of: C8-18 alcohols condensed with from 1 to 9 of C1-C4 alkylene oxide per mole of C8-18 alcohol, C8-18 alkyl N-C1-4 alkyl glucamides, C8-18 amido C1-4 dimethyl amines, C8-18 alkyl polyglycosides, glycerol monoethers, polyhydroxyamides, and combinations thereof. Typically the detergent compositions of the invention comprises from 0 to 15, preferably from 2 to 10 wt% non-ionic surfactant.
- Preferred cationic surfactants arc quaternary ammonium compounds. Preferred quaternary ammonium compounds comprise a mixture of long and short hydrocarbon chains, typically alkyl and/or hydroxyalkyl and/or alkoxylated alkyl chains. Typically, long hydrocarbon chains are C8-18 alkyl chains and/or C8-18 hydroxyalkyl chains and/or C8-18 alkoxylated alkyl chains. Typically, short hydrocarbon chains are C1-4 alky chains and/or C1-4 hydroxyabcyl chains and/or C1-4 alkoxylated alkyl chains. Typically, the detergent composition comprises (by weight of the composition) from 0% to 20% cationic surfactant.
- Preferred zwitterionic surfactants comprise one or more quaternized nitrogen atoms and one or more moieties selected from the group consisting of: carbonate, phosphate, sulphate, sulphonate, and combinations thereof. Preferred zwitterionic surfactants are alkyl betaines. Other preferred zwitterionic surfactants are alkyl amine oxides. Catanionic surfactants which are complexes comprising a cationic surfactant and an anionic surfactant may also be included. Typically, the molar ratio of the cationic surfactant to anionic surfactant in the complex is greater than 1:1, so that the complex has a net positive charge.
- A further preferred adjunct component is a builder. Preferably, the detergent composition comprises (by weight of the composition and on an anhydrous basis) from 20% to 50% builder. Preferred builders are selected from the group consisting of: inorganic phosphates and salts thereof, preferably orthophosphate, pyrophosphate, tri-poly-phosphate, alkali metal salts thereof, and combinations thereof; polycarboxylic acids and salts thereof, preferably citric acid, alkali metal salts of thereof, and combinations thereof; aluminosilicates, salts thereof, and combinations thereof, preferably amorphous aluminosilicates, crystalline aluminosilicates, mixed amorphous/crystalline aluminosilicates, alkali metal salts thereof, and combinations thereof, most preferably zeolite A, zeolite P, zeolite MAP, salts thereof, and combinations thereof; silicates such as layered silicates, salts thereof, and combinations thereof, preferably sodium layered silicate; and combinations thereof.
- A preferred adjunct component is a bleaching agent. Preferably, the detergent composition comprises one or more bleaching agents. Typically, the composition comprises (by weight of the composition) from 1% to 50% of one or more bleaching agent. Preferred bleaching agents are selected from the group consisting of sources of peroxide, sources of peracid, bleach boosters, bleach catalysts, photo-bleaches, and combinations thereof. Preferred sources of peroxide are selected from the group consisting of: perborate monohydrate, perborate tetra-hydrate, percarbonate, salts thereof, and combinations thereof. Preferred sources of peracid are selected from the group consisting of: bleach activator typically with a peroxide source such as perborate or percarbonate, preformed peracids, and combinations thereof. Preferred bleach activators are selected from the group consisting of: oxy-benzene-sulphonate bleach activators, lactam bleach activators, imide bleach activators, and combinations thereof. A preferred source of peracid is tetra-acetyl ethylene diamine (TAED)and peroxide source such as percarbonate. Preferred oxy-benzene-sulphonate bleach activators are selected from the group consisting of: nonanoyl-oxy-benzene-sulponate, 6-nonamido-caproyl-oxy-benzene-sulphonate, salts thereof, and combinations thereof. Preferred lactam bleach activators are acyl-caprolactams and/or acyl-valerolactams. A preferred imide bleach activator is N-nonanoyi-N-n-iethyl-acetamide.
- Preferred preformed peracids are selected from the group consisting of N,N-pthaloyl-amino-peroxycaproic acid, nonyl-amido-peroxyadipic acid, salts thereof, and combinations thereof. Preferably, the STW-composition comprises one or more sources of peroxide and one or more sources of peracid. Preferred bleach catalysts comprise one or more transition metal ions. Other preferred bleaching agents are di-acyl peroxides. Preferred bleach boosters are selected from the group consisting of: zwitterionic imines, anionic imine polyions, quaternary oxaziridinium salts, and combinations thereof. Highly preferred bleach boosters are selected from the group consisting of: aryliminium zwitterions, aryliminium polyions, and combinations thereof. Suitable bleach boosters are described in
US360568 ,US5360569 andUS5370826 . - A preferred adjunct component is an anti-redeposition agent Preferably, the detergent composition comprises one or more anti-redeposition agents. Preferred anti-redeposition agents are cellulosic polymeric components, most preferably carboxymethyl celluloses.
- A preferred adjunct component is a chelant. Preferably, the detergent composition comprises one or more chelants. Preferably, the detergent composition comprises (by weight of the composition) from 0.01% to 10% chelant. Preferred chelants are selected from the group consisting of: hydroxyethane-dimethylene-phosphonic acid, ethylene diamine tetra(methylene phosphonic) acid, diethylene triamine pentacetate, ethylene diamine tetraacetate, diethylene triamine penta(methyl phosphonic) acid, ethylene diamine disuccinic acid, and combinations thereof
- A preferred adjunct component is a dye transfer inhibitor. Preferably, the detergent composition comprises one or more dye transfer inhibitors. Typically, dye transfer inhibitors are polymeric components that trap dye molecules and retain the dye molecules by suspending them in the wash liquor. Preferred dye transfer inhibitors are selected from the group consisting of: polyvinylpyrrolidon.es, polyvinylpyridine N-oxides, polyvinylpyrrolidone-polyvinylimidazole copolymers, and combinations thereof.
- Preferred adjunct components include other enzymes. Preferably, the detergent composition comprises one or more additional enzymes. Preferred enzymes are selected from then group consisting of: amylases, arabinosidases, carbohydrases, cellulases, chondroitinases, cutinases, dextranases, esterases, β-glucanases, gluco-amylases, hyaluronidases, keratanases, laccase, ligninases, lipoxygenases, malanases, mannanases, oxidases, pectinases, pentosanases, peroxidases, phenoloxidases, phospholipases, proteases, pullulanases, reductases, tannases, transferases, xylanases, xyloglucanases, and combinations thereof. Preferred additional enzymes are selected from the group consisting of: amylases, carbohydrases, cellulases, proteases, and combinations thereof.
- A preferred adjunct component is a fabric integrity agent. Preferably, the detergent composition comprises one or more fabric integrity agents. Typically, fabric integrity agents are polymeric components that deposit on the fabric surface and prevent fabric damage during the laundering process. Preferred fabric integrity agents are hydrophobically modified celluloses. These hydrophobically modified celluloses reduce fabric abrasion, enhance fibre-fibre interactions and reduce dye loss from the fabric. A preferred hydrophobically modified cellulose is described in
. Other preferred fabric integrity agents are polymeric components and/or oligomeric components that are obtainable, preferably obtained, by a process comprising the step of condensing imidazole and epichlorhydrin.WO99/14245 - A preferred adjunct component is a salt. Preferably, the detergent composition comprises one or more salts. The salts can act as alkalinity agents, buffers, builders, co-builders, encrustation inhibitors, fillers, pH regulators, stability agents, and combinations thereof. Typically, the detergent composition comprises (by weight of the composition) from 5% to 60% salt. Preferred salts are alkali metal salts of aluminate, carbonate, chloride, bicarbonate, nitrate, phosphate, silicate, sulphate, and combinations thereof. Other preferred salts are alkaline earth metal salts of aluminate, carbonate, chloride, bicarbonate, nitrate, phosphate, silicate, sulphate, and combinations thereof. Especially preferred salts are sodium sulphate, sodium carbonate, sodium bicarbonate, sodium silicate, sodium sulphate, and combinations thereof. Optionally, the alkali metal salts and/or alkaline earth metal salts may be anhydrous.
- A preferred adjunct component is a soil release agent. Preferably, the detergent composition comprises one or more soil release agents. Typically, soil release agents are polymeric compounds that modify the fabric surface and prevent the redeposition of soil on the fabric. Preferred soil release agents are copolymers, preferably block copolymers, comprising one or more terephthalate unit. Preferred soil release agents are copolymers that are synthesised from dimethylterephthalate, 1,2-propyl glycol and methyl capped polyethyleneglycol. Other preferred soil release agents are anionically end capped polyesters.
- A preferred adjunct component is a soil suspension agent. Preferably, the detergent composition comprises one or more soil suspension agents. Preferred soil suspension agents are polymeric polycarboxylates. Especially preferred are polymers derived from acrylic acid, polymers derived from maleic acid, and co-polymers derived from maleic acid and acrylic acid. In addition to their soil suspension properties, polymeric polycarboxylaces are also useful co-builders for laundry detergents. Other preferred soil suspension agents are alkoxylated polyalkylene imines. Especially preferred alkoxylated polyalkylene imines are ethoxylated polyethylene imines, or ethoxylated-propoxylated polyethylene imine. Other preferred soil suspension agents are represented by the formula:
bis((C2H5O)(C2H4O)n(CH3)-N+-CxH2x-N+-(CH3)-bis((C2H4O)n(C2H5O)),
wherein, n=from 10 to 50 and x=from 1 to 20. Optionally, the soil suspension agents represented by the above formula can be sulphated and/or sulphonated. - The detergent compositions of the invention may comprise softening agents for softening through the wash such as clay optionally also with flocculant and enzymes.
- Further more specific description of suitable detergent components can be found in
.WO97/11151 - The invention also includes methods of washing textiles comprising cleaning, treating and/or masking the odour of a situs for example, a surface or fabric. Such method comprises contacting the situs such as a textile with an aqueous solution comprising the detergent composition of the invention. The invention may be particularly beneficial at low water temperatures such as below 30°C or below 25 or 20°C. Typically the aqueous wash liquor will comprise at least 100 ppm, or at least 500ppm of the detergent composition
Example 1: Perfume Compositions Common Name CAS Composition 1 2 3 4 Yard Yara 93-04-9 5 Diphenyl Oxide 101-84-8 2 7 5 Iso Eugenol 120-11-6 6 Eugenol 97-53-0 4 5 Dynascone® 56973-85-4 1 1.5 Delta damascone 71048-82-3 2 4 Ionone Gamma Methyl 127-51-5 20 5 Nectaryl 95962-14-4 20 lonone alpha 127-41-3 4 Dartanol 28219-61-6 8 Levosandol® 28219-61-6 8 Hedione® 24851-98-7 25 40 Dihydro 37172-53-5 10 12 5 IsoJasmonate® Frutene 17511-60-3 25 Flor Acetate 2500-83-6 25 Amyl Salicylate 2050-08-0 20 Coumarin 91-64-5 4 Dupical 30168-23-1 1 Florhydral® 125109-85-5 2 Lilial 80-54-6 20 20 Hexyl Cinnamlc aldehyde 101-86-0 40 Aldehyde C10 10486-19-8 5 Lauric Aldehyde 112-54.9 1.5 Peonile® 104621-98-0 15 12 Patchouli 10 Balance 100 100 100 100 Example 2: Perfumes Made With Compositions from Example 1. Perfume Example Common Name CAS A B C D Composition 1 n/a 61 Composition 2 n/a 45 Composition 3 n/a 26 Composition 4 n/a 10 Cetalox 3738-00-9 0.5 Delphone 4819-67-4 2 Delta Muscenone 82356-51-2 1 Undecalactone 104-67-6 1 Aldehyde MNA 110-41-8 2 Undecavertal 81782-77-6 2 Cyclohexyl salicylate 25485-88-5 3 Cashmeran® 33704-61-9 1 Agrumea 6873 8-99-8 3 Hexyl Acetate 142-92-7 5 Verdox 88-41-5 10 Methyl Cedrylone 32388-55-9 2 Heliotropin 120-57-0 1 Benzyl Salicylate 118-58-1 4 Iso Jasmone 11050-62-7 1 Habanolide® 34902-57-3 5 5 Aurantiol 89-43-0 1 Cis-3-hexenyl salicylate 65405-77-8 3 Methyl Anthranilate 134-20-3 1 Hexyl Salicylate 6259-76-3 4 Manzanate 28959-02-6 1 Geranyl Nitrile 5146-66-7 2 Ligustral 27939-60-2 1 2 Allyl Amyl Glycolate 67634-00-8 1 Adoxal 141-13-9 0.5 Jasmylone 13074-63-0 1 Benzyl Acetate 140-11-4 10 58 Phenyl Ethyl Alcohol 60-12-8 34 Vanillin 121-33-5 1 Ethyl Vanillin 121-32-4 0.5 Cis 3 hexenyl acetate 3681-71-8 1 Cinnamalva 1885-38-7 1 Benzyl Acetone 2550-26-7 20 20 Beta Gamma Hexenol 2305-21-7 1 2 1 Gamma Octalactone 104-50-7 0.5 1 D-Limonene 138-86-3 15 26 Total 100 100 100 100 - In the following encapsulation and detergent compositions the perfume component is a perfume according to the present invention and/or Examples 1 and 2 above.
- 1. 225 g of CAPSUL modified starch (National Starch & Chemical) is added to 450 g of water at 24°C.
2. The mixture is agitated at 600 RPM (turbine impeller 2 inches in diameter) for 20 minutes.
3. 75 g perfume oil is added near the vortex of the starch solution.
4. The emulsion formed is agitated for an additional 20 minutes (at 600 RPM).
5. Upon achieving a perfume droplet size of less than 15 microns, the emulsion is pumped to a spray drying tower and atomized through a spinning disk with co-current airflow for drying. The inlet air temperature is set at 205-210°C, the exit air temperature is stabilized at 98-103°C.
6. Dried particles of the starch encapsulated perfume oil are collected at the dryer outlet. Analysis of the finished perfume particle (all % based on weight):Total Perfume Oil 24.56% Encapsulated Oil/ Free or Surface Oil 24.46%/0.10% Starch 72.57% Moisture 2.87% Particle Size Distribution < 50 micrometers 16% 50-500 micrometers 83% > 500 micrometers 1% - In a suitable container 500g of HiCap 100 modified starch (supplied by National Starch & Chemical) are dissolved into 1000g of deionised water. Once a homogenous solution is achieved, 40g of anhydrous citric acid is added to the starch solution. The mixture is agitated for 10 minutes to dissolve the citric acid. At this point, 600g of perfume is added to the mixture. The emulsion is then agitated with a high shear mixer (ARD-Barico) for 10 more minutes.
The mixture is then spray dried in a Production Minor cocurrent spray dryer manufactured by Niro A/S. A rotary atomising disc type FS 1, also from Niro A/S, is used. The air inlet temperature is 200°C and the outlet temperature 90°C. Disc speed is set at 28,500 rpm. The tower is stabilized at these conditions by spraying water for 30 minutes before spray drying the emulsion. The dried particles are collected in a cyclone. - Detergent compositions comprising the encapsulated perfumes of examples 3 and 4 are exemplified in Table 3 below:
Table 3 Ingredient A B C D E Sodium linear C11-13 alkylbenzene sulfonate 11% 12% 10% 18% 15% R2N+(CH3)2(C2H4OH), wherein R2 = C12-14 alkyl group 0.6% 1% 0.6% Mid chain methyl branched sodium C12-C14 linear alkyl sulfate 1.4% 1.2% 1% Sodium C12-18 linear alkyl sulfate 0.7% 0.5% C12-18 linear alkyl ethoxylate condensed with an average of 3-9 moles of ethylene oxide per mole of alkyl alcohol 1% 4% 2% 3% 1% Citric acid 2% 1.5% 2% Sodium tripolyphosphate 25% 22% (anhydrous weight given) Sodium carboxymethyl cellulose 0.2% 0.2% 0.3% Sodium polyacrylate polymer having a weight average molecular weight of from 3000 to 5000 2.0% 0.5% 1% 0.7% Copolymer of maleic/acrylic acid, having a weight average molecular weight of from 50,000 to 90,000, wherein the ratio of maleic to acrylic acid is from 1:3 to 1:4 (Sokalan CP5 from BASF) 2.1% 3.5% 7% 2.0% 2.1% Diethylene triamine pentaacetic acid 0.2% 1.0% 0.2% 0.3% Ethylene diamine dis1iccinic acid 0.5% 0.6% 0.5% Proteolytic enzyme having an enzyme activity of from 15 mg/g to 70 mg/g 0.2% 0.2% 0.5% 0.4% 0.3% Amyolitic enzyme having an enzyme activity of from 25 mg/g to 50 mg/g 0.2% 0.2% 0.3% 0.4% 0.3% Lipex® enzyme from Novozymes having an enzyme activity of 5 mg/g to 25 mg/g 0.2% 0.5% 0.1% 0.5% 0.3% Anhydrous sodium perborate monohydrate 20% 5% 8% Sodium percarbonate 10% 12% Magnesium sulfate 0.1 % 0.5% Nonanoyl oxybenzene sulfonate 2% 1.2% Tetraacetylethylenediamine 3% 4% 2% 0.6% 0.8% Brightener 0.1% 0.1% 0.2% 0.1% 0.1% Sodium carbonate 10% 10% 10% 19% 22% Sodium sulfate 20% 15% 5% 5% 6% Zeolite A 25% 20% 20% 17% 14% Sodium silicate (2.0 R) 0.2% 1% 1% Crystalline layered silicate 3% 5% 10% Photobleach 0.002% Polyethylene oxide having a weight average molecular weight from 100 to 10,000 2% 1% Perfume spray-on 0.2% 0.5% 0.25% 0.1% Starch encapsulated perfume from example 1 or example 2 0.4% 0.5% 1% 0.4% 1.5% Silicone based suds suppressor 0.05% 0.05% 0.02% Soap 1.2% 1.5% 1.0% Miscellaneous and moisture To 100% To 100% To 100% To 100% To 100%
Claims (10)
- A detergent composition comprising:1. a lipase which is a polypeptide having an amino acid sequence which: (a) has at least 90% identity with the wild-type lipase derived from Humicola lanuginosa strain DSM 4109; (b) compared to said wild-type lipase, comprises a substitution of an electrically neutral or negatively charged amino acid at the surface of the three-dimensional structure within 15Angstroms of E1 or Q249 with a positively charged amino acid; and (c) comprises a peptide addition at the C-terminal; and/or (d) comprises a peptide addition at the N-terminal and/or (e) meets the following limitations: i) comprises a negative amino acid in position E210 of said wild-type lipase; ii) comprises a negatively charged amino acid in the region corresponding to positions 90-101 of said wild-type lipase; and iii) comprises a neutral or negative amino acid at a position corresponding to N94 or said wild-type lipase and/or has a negative or neutral net electric charge in the region corresponding to positions 90-101 of said wild-type lipase; and (f) comprises the mutations T231R and N233R; and2. an encapsulated perfume particle comprising (a) an at least partially water-soluble solid matrix comprising one or more water-soluble hydroxylic compounds, preferably starch; and (b) a perfume oil encapsulated by the solid matrix.
- A detergent composition according to claim 1 in which the encapsulated perfume oil comprises at least 1%, or at least 5 % or at least 10% by weight, or even at least 40 % by weight of at least one perfume ingredient having a boiling point at 36KNm-2 (760mmHg) of 260°C or lower and a calculated log10 of its octanol/water coefficient P (ClogP), of at least 3.0.
- A detergent composition according to claim 1 or claim 2, wherein the encapsulated perfume oil comprises an ester derived from a fatty acid having from 1 to 7 carbon atoms.
- A detergent composition according to any preceding claim in which in addition to the encapsulated perfume oil additional perfume oil is present as a sprayed-on component.
- A detergent composition according to claim 4 in which the perfume oil comprises an ester derived from a fatty acid having from 1 to 7 carbon atoms and at least 90 wt% of the ester derived from a fatty acid having from 1 to 7 carbon atoms is present in the encapsulated perfume particle.
- A detergent composition according to any preceding claim in which the encapsulated perfume particle comprises benzyl acetate and/or phenylethyl acetate.
- A detergent composition according to any preceding claim in which the perfume oil in the encapsulated perfume particle is absorbed or adsorbed onto a carrier and both perfume oil and carrier are encapsulated.
- A detergent composition according to any preceding claim in which the perfume oil in the encapsulated perfume particle and any optional additional perfume oil in the detergent composition comprise a perfume composition, said perfume composition comprising at least 1% or at least 5 wt% or even at least 10 % of one or more perfume ingredients having a molecular weight of greater than 0 but less than or equal to 350 daltons, at least 80% of said one or more perfume ingredients having a cLogP of at least 2.4, said perfume composition comprising at least 1% or even at least 5% of said one or more perfume ingredients having a cLogP of at least 2.4.
- A washing process comprising laundering textile articles in an aqueous solution comprising the detergent composition according to any preceding claim.
- A washing process according to claim 9 in which the aqueous solution is at a temperature below 30°C.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP20050025877 EP1661978B1 (en) | 2004-11-29 | 2005-11-28 | Detergent compositions |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP04257384A EP1661977A1 (en) | 2004-11-29 | 2004-11-29 | Detergent compositions |
| US72475805P | 2005-10-07 | 2005-10-07 | |
| EP20050025877 EP1661978B1 (en) | 2004-11-29 | 2005-11-28 | Detergent compositions |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1661978A1 EP1661978A1 (en) | 2006-05-31 |
| EP1661978B1 true EP1661978B1 (en) | 2011-03-02 |
Family
ID=36204581
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP20050025877 Revoked EP1661978B1 (en) | 2004-11-29 | 2005-11-28 | Detergent compositions |
Country Status (1)
| Country | Link |
|---|---|
| EP (1) | EP1661978B1 (en) |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1894603B1 (en) * | 2006-09-04 | 2014-11-19 | Takasago International Corporation | Encapsulation of bulky fragrance molecules |
| GB0703679D0 (en) * | 2007-02-26 | 2007-04-04 | Quest Int Serv Bv | Perfume compositions |
| EP1964542A1 (en) * | 2007-03-02 | 2008-09-03 | Takasago International Corporation | Sensitive skin perfumes |
| DE102007012909A1 (en) | 2007-03-19 | 2008-09-25 | Momentive Performance Materials Gmbh | Fragrance-modified, reactive polyorganosiloxanes |
| DE102007012910A1 (en) | 2007-03-19 | 2008-09-25 | Momentive Performance Materials Gmbh | Fragrance-modified, branched polyorganosiloxanes |
| MX323219B (en) | 2009-12-18 | 2014-08-28 | Procter & Gamble | Perfumes and perfume encapsulates. |
| WO2014200656A1 (en) | 2013-06-13 | 2014-12-18 | Danisco Us Inc. | Alpha-amylase from streptomyces umbrinus |
| WO2014200657A1 (en) | 2013-06-13 | 2014-12-18 | Danisco Us Inc. | Alpha-amylase from streptomyces xiamenensis |
| WO2014200658A1 (en) | 2013-06-13 | 2014-12-18 | Danisco Us Inc. | Alpha-amylase from promicromonospora vindobonensis |
| EP3011020A1 (en) | 2013-06-17 | 2016-04-27 | Danisco US Inc. | Alpha-amylase from bacillaceae family member |
| US20160186102A1 (en) | 2013-10-03 | 2016-06-30 | Danisco Us Inc. | Alpha-amylases from exiguobacterium, and methods of use, thereof |
| WO2015050723A1 (en) | 2013-10-03 | 2015-04-09 | Danisco Us Inc. | Alpha-amylases from exiguobacterium, and methods of use, thereof |
| JP6560214B2 (en) | 2013-11-20 | 2019-08-14 | ダニスコ・ユーエス・インク | Mutant α-amylase with reduced sensitivity to protease cleavage and method of use thereof |
| WO2017173190A2 (en) | 2016-04-01 | 2017-10-05 | Danisco Us Inc. | Alpha-amylases, compositions & methods |
| WO2017173324A2 (en) | 2016-04-01 | 2017-10-05 | Danisco Us Inc. | Alpha-amylases, compositions & methods |
| US20180077960A1 (en) * | 2016-09-19 | 2018-03-22 | Givaudan S.A. | Flavor composition |
Family Cites Families (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3971852A (en) | 1973-06-12 | 1976-07-27 | Polak's Frutal Works, Inc. | Process of encapsulating an oil and product produced thereby |
| US3936537A (en) | 1974-11-01 | 1976-02-03 | The Procter & Gamble Company | Detergent-compatible fabric softening and antistatic compositions |
| EP0258068B1 (en) | 1986-08-29 | 1994-08-31 | Novo Nordisk A/S | Enzymatic detergent additive |
| ES2076939T3 (en) | 1987-08-28 | 1995-11-16 | Novo Nordisk As | RECOMBINANT LUMPY OF HUMICOLA AND PROCEDURE FOR THE PRODUCTION OF RECOMBINANT LIPAS OF HUMICOLA. |
| GB8921995D0 (en) | 1989-09-29 | 1989-11-15 | Unilever Plc | Perfumed laundry detergents |
| US5869438A (en) | 1990-09-13 | 1999-02-09 | Novo Nordisk A/S | Lipase variants |
| TW282393B (en) | 1992-06-01 | 1996-08-01 | Dowelanco Co | |
| AU7050994A (en) | 1993-06-01 | 1994-12-20 | Scripps Research Institute, The | Human mutant tissue factor compositions useful as tissue factor antagonists |
| TR28670A (en) * | 1993-06-02 | 1996-12-17 | Procter & Gamble | Perfume release system containing zeolites. |
| US5370826A (en) | 1993-11-12 | 1994-12-06 | Lever Brothers Company, Division Of Conopco, Inc. | Quaternay oxaziridinium salts as bleaching compounds |
| US5360569A (en) | 1993-11-12 | 1994-11-01 | Lever Brothers Company, Division Of Conopco, Inc. | Activation of bleach precursors with catalytic imine quaternary salts |
| US5360568A (en) | 1993-11-12 | 1994-11-01 | Lever Brothers Company, Division Of Conopco, Inc. | Imine quaternary salts as bleach catalysts |
| JP4307549B2 (en) | 1995-07-14 | 2009-08-05 | ノボザイムス アクティーゼルスカブ | Modified enzyme with lipolytic activity |
| HUP9802267A3 (en) | 1995-09-18 | 1999-03-29 | Procter And Gamble Company Cin | High efficiency delivery system comprising zeolites |
| BR9610507A (en) | 1995-09-18 | 1999-05-04 | Procter & Gamble | Release systems |
| US5656584A (en) | 1996-02-06 | 1997-08-12 | The Procter & Gamble Company | Process for producing a particulate laundry additive composition for perfume delivery |
| GB2311296B (en) | 1996-03-19 | 1999-12-29 | Procter & Gamble | Perfumed particulate detergent compositions for hand dishwashing |
| CN1130451C (en) * | 1996-03-22 | 2003-12-10 | 普罗格特-甘布尔公司 | Delivery system having release inhibitor loaded zeolite and method for making same |
| JP4303789B2 (en) | 1997-03-15 | 2009-07-29 | ザ、プロクター、エンド、ギャンブル、カンパニー | Delivery system |
| JP2001526724A (en) | 1997-05-21 | 2001-12-18 | クエスト・インターナショナル・ビー・ブイ | Perfume fixing agent containing polyvinylpyrrolidone and hydroxypropylcellulose |
| ES2191969T3 (en) | 1997-09-15 | 2003-09-16 | Procter & Gamble | DETERGENT COMPOSITIONS FOR WASHING CLOTHES WITH CELLULOSE-BASED POLYMERS TO PROVIDE ASPECT AND INTEGRITY BENEFITS TO FABRICS WASHED WITH THEM. |
| AU3247699A (en) | 1998-02-17 | 1999-09-06 | Novo Nordisk A/S | Lipase variant |
| ES2230840T3 (en) | 1998-04-23 | 2005-05-01 | THE PROCTER & GAMBLE COMPANY | PERFUME PARTICLES ENCAPSULATED AND DETERGENT COMPOSITIONS CONTAINING SUCH PARTICLES. |
| MXPA01009700A (en) | 1999-03-31 | 2002-05-14 | Novo Nordisk As | Lipase variant. |
| US6790814B1 (en) * | 1999-12-03 | 2004-09-14 | Procter & Gamble Company | Delivery system having encapsulated porous carrier loaded with additives, particularly detergent additives such as perfumes |
| AU2002229513A1 (en) | 2001-02-07 | 2002-08-19 | Novozymes A/S | Lipase variants |
-
2005
- 2005-11-28 EP EP20050025877 patent/EP1661978B1/en not_active Revoked
Also Published As
| Publication number | Publication date |
|---|---|
| EP1661978A1 (en) | 2006-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7569528B2 (en) | Detergent compositions | |
| EP1661978B1 (en) | Detergent compositions | |
| EP0430315B2 (en) | Perfumed laundry detergents | |
| CA2567358C (en) | Encapsulated particles | |
| CA2989002C (en) | Composition comprising multiple populations of microcapsules comprising perfume | |
| JP4926316B2 (en) | Fragrance composition | |
| EP1451286B1 (en) | Fabric treatment composition | |
| EP2496676B1 (en) | Laundry compositions | |
| EP2262885B1 (en) | Triggered release system | |
| US9896650B2 (en) | Encapsulates | |
| KR20070085478A (en) | Detergent composition | |
| MXPA00012501A (en) | Perfume compositions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
| 17P | Request for examination filed |
Effective date: 20061124 |
|
| AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| 17Q | First examination report despatched |
Effective date: 20070420 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REF | Corresponds to: |
Ref document number: 602005026620 Country of ref document: DE Date of ref document: 20110414 Kind code of ref document: P |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005026620 Country of ref document: DE Effective date: 20110414 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110302 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110603 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110613 |
|
| LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110302 |
|
| REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E010647 Country of ref document: HU |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110602 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110704 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110702 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 |
|
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
| 26 | Opposition filed |
Opponent name: UNILEVER PLC / UNILEVER NV Effective date: 20111201 |
|
| 26 | Opposition filed |
Opponent name: UNILEVER PLC / UNILEVER NV Effective date: 20111201 Opponent name: HENKEL AG & CO. KGAA Effective date: 20111202 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20111110 Year of fee payment: 7 Ref country code: HU Payment date: 20111026 Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602005026620 Country of ref document: DE Effective date: 20111201 |
|
| PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111130 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111130 |
|
| PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120731 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
| R26 | Opposition filed (corrected) |
Opponent name: UNILEVER PLC / UNILEVER NV Effective date: 20111201 Opponent name: HENKEL AG & CO. KGAA Effective date: 20111202 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111128 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111130 |
|
| RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111128 |
|
| APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
| APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
| APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121128 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121129 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110302 |
|
| APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
| PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
| R26 | Opposition filed (corrected) |
Opponent name: UNILEVER PLC / UNILEVER NV Effective date: 20111201 |
|
| PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
| R26 | Opposition filed (corrected) |
Opponent name: UNILEVER PLC / UNILEVER NV Effective date: 20111201 |
|
| APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
| APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
| APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
| APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
| APAW | Appeal reference deleted |
Free format text: ORIGINAL CODE: EPIDOSDREFNO |
|
| APAY | Date of receipt of notice of appeal deleted |
Free format text: ORIGINAL CODE: EPIDOSDNOA2O |
|
| APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
| APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
| PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
| R26 | Opposition filed (corrected) |
Opponent name: HENKEL AG & CO. KGAA Effective date: 20111202 |
|
| PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
| R26 | Opposition filed (corrected) |
Opponent name: UNILEVER PLC / UNILEVER NV Effective date: 20111201 |
|
| APAL | Date of receipt of statement of grounds of an appeal modified |
Free format text: ORIGINAL CODE: EPIDOSCNOA3O |
|
| APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R064 Ref document number: 602005026620 Country of ref document: DE Ref country code: DE Ref legal event code: R103 Ref document number: 602005026620 Country of ref document: DE |
|
| APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
| RDAE | Information deleted related to despatch of communication that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSDREV1 |
|
| RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
| RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20201118 Year of fee payment: 16 Ref country code: GB Payment date: 20201118 Year of fee payment: 16 |
|
| REG | Reference to a national code |
Ref country code: FI Ref legal event code: MGE |
|
| 27W | Patent revoked |
Effective date: 20201209 |
|
| GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20201209 |