EP1656497B1 - Diffuser located between a compressor and a combustion chamber of a gasturbine - Google Patents
Diffuser located between a compressor and a combustion chamber of a gasturbine Download PDFInfo
- Publication number
- EP1656497B1 EP1656497B1 EP04741084A EP04741084A EP1656497B1 EP 1656497 B1 EP1656497 B1 EP 1656497B1 EP 04741084 A EP04741084 A EP 04741084A EP 04741084 A EP04741084 A EP 04741084A EP 1656497 B1 EP1656497 B1 EP 1656497B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion chamber
- turbine
- diffuser
- longitudinal axis
- gas turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 94
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims description 49
- 230000001154 acute effect Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 29
- 239000000112 cooling gas Substances 0.000 abstract 1
- 239000002826 coolant Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/005—Combined with pressure or heat exchangers
Definitions
- the invention relates to a gas turbine with an annular combustion chamber and one of these upstream, substantially parallel to a turbine longitudinal axis and flowed from this less than the annular combustion chamber spaced diffuser, in which a compressed gas at a branch point in partial flows can be divided.
- Gas turbines are used in many areas to drive generators or work machines.
- the energy content of a fuel is used to generate a rotational movement of a turbine shaft.
- the fuel is burned in a combustion chamber, compressed air being supplied by an air compressor.
- the working medium produced in the combustion chamber by the combustion of the fuel, under high pressure and at high temperature, is guided via a turbine unit arranged downstream of the combustion chamber, where it relaxes to perform work.
- Cooling of the affected components in particular of running and / or vanes of the turbine unit, provided. Furthermore, it can be provided to cool the combustion chamber with a coolant, in particular cooling air.
- a gas turbine which has a combustion chamber upstream and opening into a diffuser air compressor.
- a partial flow of the compressed air can be branched out of the diffuser and used for cooling structural parts, for example turbine blades of the gas turbine.
- thede povertya stoodeist from the diffuser is only suitable for a branch of a relatively small partial flow from the air flow leaving the air compressor.
- the main air flow conducted through the diffuser is deflected in the diffuser in the direction of the combustion chamber and supplied to it as combustion air.
- a cooling of the downstream of the diffuser that is, based on the flow direction of the working medium flowing through the turbine downstream components is thus limited possible.
- DE 196 39 623 discloses a gas turbine with a diffuser, in which the removal of the cooling air takes place by means of a tube projecting into the outlet of the diffuser.
- the compressed air used for combustion in an annular combustion chamber is thereby diverted by means of a C-shaped plate in the direction of the burner. Both when removing the cooling air as well as in the leadership of the burner air flow losses can occur, which should be avoided.
- the invention has for its object to provide a equipped with an annular combustor compact gas turbine, which allows a favorable flow guidance of the compressor air for a particularly uniform and effective cooling of thermally loaded components.
- a gas turbine with the features of claim 1.
- the gas turbine on an annular combustion chamber and an upstream of this annular diffuser, which is at least partially disposed between the turbine longitudinal axis and the annular combustion chamber.
- the diffuser which can be flowed essentially parallel to the turbine longitudinal axis, a compressed gas can be divided into a plurality of partial flows.
- the diffuser has a main deflection region, which is directed at an acute angle from the turbine longitudinal axis in a pioneering manner onto the inner wall of the annular combustion chamber.
- the main deflection region is followed in the direction of the gas flowing through the diffuser, in particular air, a branching point, at which the gas flowing through the diffuser can be divided into partial flows by means of a flow dividing element.
- the annular and in cross-section wedge-shaped flow dividing element is arranged between the two diverging walls of the diffuser - the radially inner inner wall and the radially outer wall lying outside.
- Two deflecting flanks opposite the walls of the diffuser converge towards each other at an acute angle and meet at the branching point. There they include an angle bisector, which intersects the turbine longitudinal axis at an acute pitch angle greater than 15 °.
- the Hauptablenk Scheme is seen in the axial direction behind the compressor and in front of the annular combustion chamber, whereas the flow dividing element between the annular combustion chamber and the turbine longitudinal axis is arranged.
- This geometry allows for the gas turbine a compact and in particular a shortened in the axial direction design. Furthermore, the flow losses in the compressed refrigerant partial streams are reduced.
- the two partial streams divided in the diffuser are also used in connection for combustion.
- the outer wall of the diffuser and the outer deflecting flank of the flow-dividing element lying opposite to it extend approximately perpendicular to the turbine longitudinal axis behind the branching point. This ensures a low-loss supply of the outer partial flow to the outer flow passage space. A short and direct supply of the partial flow is achieved accordingly.
- the supply of the outer combustion chamber shell is quite simple.
- the individual flute-shaped combustion chambers are spaced apart on a ring concentrically enclosing the turbine longitudinal axis in the circumferential direction. The supply of cooling air to the radially outer combustion chamber shells can then take place between the individual Can combustion chambers.
- a low-loss supply of the inner partial flow to the inner flow passage space is ensured by the inner wall of the diffuser and the opposite inner deflecting edge of the flow dividing element extends approximately parallel to the turbine longitudinal axis.
- a wavy guide is proposed for the inner partial flow, which achieves an improvement over a linear guide in comparison to a straight guide with regard to the pressure losses and the flow losses in the partial flow.
- the compressed gas which leaves the diffuser at this point, is conducted directly into a flow transfer space at the branch point, which passes the fluidic connection to the wall cooling space produces the annular combustion chamber.
- the flow transfer space preferably adjoins the outside of the combustion chamber wall, so that an additional cooling of the combustion chamber wall is achieved as a result.
- the ring combustion chamber is preferably formed closed coolable.
- combustion air is preferably performed as a cooling medium in countercurrent to the flue gas through a wall space of the annular combustion chamber.
- the combustion air flowing through the combustion chamber wall is preferably identical here, at least with a partial flow of the compressed air, which has previously flowed through the diffuser.
- the air flowing through the diffuser is supplied completely to the wall of the annular combustion chamber as cooling air and further to the annular combustion chamber as combustion air.
- the division of the air flow at the branch point of the diffuser serves to provide several parts of the annular combustion chamber, such as an inner shell and an outer shell, evenly with cooling air.
- the wall angle of the annular combustion chamber is understood to mean that angle which the combustion chamber rear wall encloses with the turbine longitudinal axis.
- a particularly uniform all-round cooling of the combustion chamber wall is preferably achieved in that the pitch angle of the flow dividing element deviates from the wall angle of the combustion chamber rear wall by not more than 20 °, in particular by not more than 15 °.
- a pipe communicating with the lower part of the channel is provided for the removal of cooling air for the turbine.
- This allows a further division of the compressor air flow. If the tube protrudes into the lower part of the channel and faces with its pipe opening to the flow, the extraction of turbine cooling air is particularly favorable.
- the advantage of the invention lies in the fact that in a gas turbine compressed air, which serves as a cooling and then combustion air is supplied with low pressure loss of an air compressor through a compact diffuser of the annular combustion chamber, wherein a flow divider at the outlet of the diffuser uniform cooling air to the annular combustion chamber causes.
- the gas turbine 1 has a compressor 2 for combustion air, an annular combustion chamber 4 and a turbine 6 for driving the compressor 2 and a generator or a working machine (not shown).
- the turbine 6 and the compressor 2 are arranged on a common, also called turbine rotor turbine shaft 8, with which the generator or the working machine is connected, and which is rotatably mounted about its central axis 9.
- the annular combustion chamber 4 is equipped with a number of burners 10 for the combustion of a liquid or gaseous fuel. It is also provided on its combustion chamber wall 23 with a wall lining 24.
- the turbine 6 has a number of rotatable blades 12 connected to the turbine shaft 8.
- the blades 12 are arranged in a ring on the turbine shaft 8 and thus form a number of blade rows.
- the turbine 6 comprises a number of fixed vanes 14, which are also secured in a ring shape with the formation of vane rows on an inner housing 16 of the turbine 6.
- the blades 12 serve to drive the turbine shaft 8 by momentum transfer from the turbine 6 flowing through the flue gas or working medium M.
- the vanes 14, however, serve to guide the flow of the working medium M between two seen in the flow direction of the working medium M consecutive blade rows or blade rings.
- a successive pair of a ring of vanes 14 or a row of vanes and a ring of blades 12 or a blade row is also referred to as a turbine stage.
- Each vane 14 has a platform 18, also referred to as a vane foot 19, which is intended to fix the respective vane 14 in the gas turbine 1.
- Each blade 12 is attached to the turbine shaft 8 in an analogous manner via a blade root 19, also referred to as a platform 18, the blade root 19 each carrying a profiled blade 20 extended along a blade axis.
- each guide ring 21 on the inner housing 16 of the turbine 6 is arranged between the spaced-apart platforms 18 of the guide vanes 14 of two adjacent rows of guide vanes.
- the outer surface of each guide ring 21 is also exposed to the hot, the turbine 6 flowing through the working medium M and spaced in the radial direction from the outer end 22 of the blade 12 opposite him through a gap.
- the guide rings 21 arranged between adjacent rows of guide blades serve in particular as cover elements which protect the inner wall 16 or other housing installation parts from thermal overload by the hot working medium M flowing through the turbine 6.
- the gas turbine 1 is designed for a comparatively high outlet temperature of the working medium M emerging from the annular combustion chamber 4 from about 1200 ° C. to 1300 ° C.
- the combustion chamber wall 23 can be cooled with cooling air compressed in the compressor 2 as coolant K. Between the combustion chamber wall 23 and the wall lining 24, cooling air K flows in a wall space or wall lining space 26 in countercurrent to the working medium M onto the burner 10.
- the cooling air K which also serves as combustion air, is passed from the compressor 2 through a diffuser 27 in the direction of the annular combustion chamber 4. By the diffuser 27, the cooling and combustion air K defined split on the one hand to an outer combustion chamber shell 28 and on the other hand, an inner combustion chamber shell 29 is supplied.
- the diffuser 27 has a main deflection region 30, which adjoins the compressor 2.
- the compressed cooling air K flows out of the compressor 2 parallel to the central axis or turbine longitudinal axis 9 and into the main deflection region 30 of the diffuser 27.
- the main deflecting region 30 of the diffuser 27 arranged axially between the compressor 2 and the annular combustion chamber 4 extends radially outwards under cross-sectional expansion, ie. away from the turbine longitudinal axis 9. As a result, the flow velocity of the compressed gas used as coolant K is reduced in the main deflection region 30. If there is a flow separation on the inner wall and outer wall of the diffuser 27, such a separation occurs only at low flow velocity and correspondingly low pressure loss.
- a flow dividing element 32 is disposed adjacent to the outer combustion chamber shell 29.
- the arranged between the annular combustion chamber 4 and the turbine longitudinal axis 9 flow dividing element 32 has an approximately triangular in cross-section, also referred to as a dividing fork 33 shape with an outer Ablenkflanke 34 and an inner Ablenkflanke 35.
- the deflection flanks 34, 35 converge toward a division tip 36 directed towards the main deflection region 30 and enclose an acute angle of less than 90 °, in particular an angle of 60 °, in the division tip 36.
- the dividing point or edge 36 forming a branching point divides the cooling air K flowing through the main deflecting region 30 of the diffuser 27 approximately equally into an outer cooling air flow K a and an inner cooling air flow K i .
- the outer cooling air flow K a is fed through an outer flow transfer chamber 37 of an outer combustion chamber shell 28, while the inner cooling air flow K i is fed via an inner flow transfer chamber 38 of the inner combustion chamber shell 29.
- the diffuser 27 dividing the cooling air K at the flow dividing element 32 is also referred to as a split diffuser.
- the cooling air K flowing through the main deflecting region 30 is directed approximately C-shaped radially, relative to the turbine longitudinal axis 9, outwardly to the dividing point 36 of the flow dividing element 32.
- a line extending as an angle bisector 39 between the curved Ablenkflanken 34,35 through the divisional peak 36 includes with the turbine longitudinal axis 9 a pitch angle ⁇ of about 45 °.
- the bisector 39 includes an approximately right angle.
- the inner cooling air flow K i is, starting from the division tip 36, forced by the inner Ablenkflanke 35 first in a horizontal flow direction, ie parallel to the turbine longitudinal axis 9 and further through the outside of the combustion chamber wall 23 radially inward, ie towards the turbine longitudinal axis 9, directed.
- the inner cooling air flow K i is thus, initially still within the undivided in the main deflection region 30 cooling air K, guided in a roughly C-shaped curved path radially outward and thereby delayed and then guided in a direction in the opposite direction, approximately C-shaped curved path radially inward.
- the flow through the diffuser 27 and further into the internal flow transfer space 38 describes approximately a double S-shaped path. The radii of curvature within this path are large enough to cause only small energy losses in the flow.
- guide members or fixing members 41 are disposed both in the direction of the outer flow passage space 37 and the direction of the inner flow passage space 38.
- the outer cooling air flow K a is guided by the dividing fork 33 radially, perpendicular to the turbine longitudinal axis 9, to the outside. In the course of the outer cooling air flow K a is guided past the outer combustion chamber shell 28 and introduced into the wall lining room or wall cooling space 26. Again, similar to the inner cooling air flow K i results in a flow guidance with large deflection radii, with no sudden cross-sectional enlargements occur. Due to the cooling air streams or partial streams K a , K i , the combustion chamber shells 28, 29 are also cooled from the outside.
- the burner 10 is arranged approximately centrally in a combustion chamber rear wall 42.
- a straight line passing through the combustion chamber rear wall 42 encloses the turbine longitudinal axis 9 with a wall angle ⁇ of approximately 45 °.
- the wall angle ⁇ thus corresponds approximately to the pitch angle ⁇ .
- the flow splitting element 32 arranged at an angle to the turbine longitudinal axis 9 at a pitch angle ⁇ splits the main deflecting region 30 into an upper sub-channel 43 and a lower sub-channel 44, which both have approximately the same cross-section.
- offset arrangement of the flow dividing element 32 is also a targeted asymmetrical division of the cooling air flow in the diffuser 27 feasible, if, for example, the outer combustion chamber shell and the inner combustion chamber shell 29 have a different cooling air requirement.
- the removal for turbine cooling air is effected by a projecting into the lower part of the duct 44 tube 45.
- Whose end 46 is angled in the manner of a periscope and facing with its tube opening the inner air flow K i , so that a portion of the air flow K i can flow into the tube 45 as a turbine cooling air.
- the turbine cooling air flows at the other end of the tube 45 into an annular channel 47 extending along the rotor, which leads the turbine cooling air to the turbine 6. There, it is used for cooling the rotor blades and guide vanes 12, 14.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Die Erfindung betrifft eine Gasturbine mit einer Ringbrennkammer und einen dieser vorgeschalteten, im Wesentlichen parallel zu einer Turbinenlängsachse anströmbaren und von dieser geringer als die Ringbrennkammer beabstandeten Diffusor, in welchem ein verdichtetes Gas an einer Abzweigstelle in Teilströme aufteilbar ist.The invention relates to a gas turbine with an annular combustion chamber and one of these upstream, substantially parallel to a turbine longitudinal axis and flowed from this less than the annular combustion chamber spaced diffuser, in which a compressed gas at a branch point in partial flows can be divided.
Gasturbinen werden in vielen Bereichen zum Antrieb von Generatoren oder von Arbeitsmaschinen eingesetzt. Dabei wird der Energiegehalt eines Brennstoffs zur Erzeugung einer Rotationsbewegung einer Turbinenwelle genutzt. Der Brennstoff wird dazu in einer Brennkammer verbrannt, wobei von einem Luftverdichter verdichtete Luft zugeführt wird. Das in der Brennkammer durch die Verbrennung des Brennstoffs erzeugte, unter hohem Druck und unter hoher Temperatur stehende Arbeitsmedium wird dabei über eine der Brennkammer nachgeschaltete Turbineneinheit geführt, wo es sich arbeitsleistend entspannt.Gas turbines are used in many areas to drive generators or work machines. The energy content of a fuel is used to generate a rotational movement of a turbine shaft. For this purpose, the fuel is burned in a combustion chamber, compressed air being supplied by an air compressor. The working medium produced in the combustion chamber by the combustion of the fuel, under high pressure and at high temperature, is guided via a turbine unit arranged downstream of the combustion chamber, where it relaxes to perform work.
Bei der Auslegung derartiger Gasturbinen ist zusätzlich zur erreichbaren Leistung und neben einer kompakten Bauweise üblicherweise ein besonders hoher Wirkungsgrad ein Auslegungsziel. Eine Erhöhung des Wirkungsgrades lässt sich dabei aus thermodynamischen Gründen grundsätzlich durch eine Erhöhung der Austrittstemperatur erreichen, mit der das Arbeitsmedium aus der Brennkammer ab- und in die Turbineneinheit einströmt. Daher werden Temperaturen von etwa 1200°C bis 1300°C für derartige Gasturbinen angestrebt und auch erreicht.In the design of such gas turbines usually a particularly high efficiency is a design target in addition to the achievable performance and in addition to a compact design. An increase in the efficiency can be achieved for thermodynamic reasons basically by increasing the outlet temperature at which the working fluid from the combustion chamber and flows into the turbine unit. Therefore, temperatures of about 1200 ° C to 1300 ° C are sought for such gas turbines and achieved.
Bei derartig hohen Temperaturen des Arbeitsmediums sind jedoch die diesem ausgesetzten Komponenten und Bauteile hohen thermischen Belastungen ausgesetzt. Um dennoch bei hoher Zuverlässigkeit eine vergleichsweise lange Lebensdauer der betroffenen Komponenten zu gewährleisten, ist üblicherweise eine Kühlung der betroffenen Komponenten, insbesondere von Lauf- und/oder Leitschaufeln der Turbineneinheit, vorgesehen. Des Weiteren kann vorgesehen sein, die Brennkammer mit einem Kühlmittel, insbesondere Kühlluft, zu kühlen.At such high temperatures of the working medium, however, exposed to this components and components are exposed to high thermal loads. However, to ensure a comparatively long life of the affected components with high reliability, is usually a Cooling of the affected components, in particular of running and / or vanes of the turbine unit, provided. Furthermore, it can be provided to cool the combustion chamber with a coolant, in particular cooling air.
Aus der DE 195 44 927 A1 ist eine Gasturbine bekannt, welche einen einer Brennkammer vorgeschalteten und in einen Diffusor mündenden Luftverdichter aufweist. Ein Teilstrom der verdichteten Luft kann im Diffusor aus diesem abgezweigt und zur Kühlung von Strukturteilen, beispielsweise Turbinenschaufeln der Gasturbine, herangezogen werden. Die Kühlluftabzweigung aus dem Diffusor ist jedoch lediglich für eine Abzweigung eines relativ geringen Teilstroms aus dem den Luftverdichter verlassenden Luftstrom geeignet. Der durch den Diffusor geleitete Hauptluftstrom wird dagegen im Diffusor in Richtung zur Brennkammer hin abgelenkt und dieser als Verbrennungsluft zugeführt. Eine Kühlung von dem Diffusor nachgeschalteten, d.h., bezogen auf die Strömungsrichtung des die Turbine durchströmenden Arbeitsmediums, stromabwärts angeordneten Bauteilen ist damit höchstens eingeschränkt möglich.From DE 195 44 927 A1 a gas turbine is known which has a combustion chamber upstream and opening into a diffuser air compressor. A partial flow of the compressed air can be branched out of the diffuser and used for cooling structural parts, for example turbine blades of the gas turbine. However, the Kühlluftabzweigung from the diffuser is only suitable for a branch of a relatively small partial flow from the air flow leaving the air compressor. On the other hand, the main air flow conducted through the diffuser is deflected in the diffuser in the direction of the combustion chamber and supplied to it as combustion air. A cooling of the downstream of the diffuser, that is, based on the flow direction of the working medium flowing through the turbine downstream components is thus limited possible.
Ferner ist aus der DE 196 39 623 eine Gasturbine mit einem Diffusor bekannt, in der die Entnahme der Kühlluft mittels eines in den Ausgang des Diffusors hineinragenden Rohres erfolgt. Die zur Verbrennung in einer Ringbrennkammer genutzte verdichtete Luft wird dabei mittels eines C-förmigen Bleches in Richtung des Brenners umgeleitet. Sowohl bei der Entnahme der Kühlluft als auch bei der Führung der Brennerluft können Strömungsverluste entstehen, die es zu Vermeiden gilt.Furthermore, DE 196 39 623 discloses a gas turbine with a diffuser, in which the removal of the cooling air takes place by means of a tube projecting into the outlet of the diffuser. The compressed air used for combustion in an annular combustion chamber is thereby diverted by means of a C-shaped plate in the direction of the burner. Both when removing the cooling air as well as in the leadership of the burner air flow losses can occur, which should be avoided.
Der Erfindung liegt die Aufgabe zugrunde, eine mit einer Ringbrennkammer ausgestattete kompakte Gasturbine anzugeben, welche eine strömungstechnisch günstige Führung der Verdichterluft für eine besonders gleichmäßige und wirksame Kühlbarkeit thermisch belasteter Bauteile ermöglicht.The invention has for its object to provide a equipped with an annular combustor compact gas turbine, which allows a favorable flow guidance of the compressor air for a particularly uniform and effective cooling of thermally loaded components.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine Gasturbine mit den Merkmalen des Anspruches 1. Hierbei weist die Gasturbine eine Ringbrennkammer und einen dieser vorgeschalteten ringförmigen Diffusor auf, welcher zumindest teilweise zwischen der Turbinenlängsachse und der Ringbrennkammer angeordnet ist. Im Diffusor, welcher im Wesentlichen parallel zur Turbinenlängsachse anströmbar ist, ist ein verdichtetes Gas in mehrere Teilströme aufteilbar. Erfindungsgemäß weist der Diffusor einen Hauptablenkbereich auf, welcher in einem spitzen Winkel von der Turbinenlängsachse wegweisend auf die Innenwand der Ringbrennkammer gerichtet ist. Dem Hauptablenkbereich ist in Richtung des den Diffusor durchströmenden Gases, insbesondere Luft, eine Abzweigstelle nachgeschaltet, an welcher das den Diffusor durchströmende Gas in Teilströme mittels eines Strömungsteilungselementes aufteilbar ist. Das ringförmige und im Querschnitt keilförmige Strömungsteilungselement ist zwischen den beiden divergierenden Wänden des Diffusors - der radial innen liegenden Innenwand und der radial weiter außen liegenden Außenwand - angeordnet. Zwei den Wänden des Diffusors gegenüberliegende Ablenkflanken laufen in einem spitzen Winkel aufeinander zu und treffen sich an der Abzweigstelle. Dort schließen sie eine Winkelhalbierende ein, die die Turbinenlängsachse in einem spitzen Teilungswinkel größer als 15° schneidet.This object is achieved by a gas turbine with the features of claim 1. In this case, the gas turbine on an annular combustion chamber and an upstream of this annular diffuser, which is at least partially disposed between the turbine longitudinal axis and the annular combustion chamber. In the diffuser, which can be flowed essentially parallel to the turbine longitudinal axis, a compressed gas can be divided into a plurality of partial flows. According to the invention, the diffuser has a main deflection region, which is directed at an acute angle from the turbine longitudinal axis in a pioneering manner onto the inner wall of the annular combustion chamber. The main deflection region is followed in the direction of the gas flowing through the diffuser, in particular air, a branching point, at which the gas flowing through the diffuser can be divided into partial flows by means of a flow dividing element. The annular and in cross-section wedge-shaped flow dividing element is arranged between the two diverging walls of the diffuser - the radially inner inner wall and the radially outer wall lying outside. Two deflecting flanks opposite the walls of the diffuser converge towards each other at an acute angle and meet at the branching point. There they include an angle bisector, which intersects the turbine longitudinal axis at an acute pitch angle greater than 15 °.
Der Hauptablenkbereich liegt in Axialrichtung gesehen hinter dem Verdichter und vor der Ringbrennkammer, wohingegen das Strömungsteilungselement zwischen Ringbrennkammer und Turbinenlängsachse angeordnet ist. Diese Geometrie ermöglicht für die Gasturbine eine kompakte und im Besonderen eine in Axialrichtung verkürzte Bauform. Ferner werden die Strömungsverluste in den verdichteten Kühlmittel-Teilströmen verringert.The Hauptablenkbereich is seen in the axial direction behind the compressor and in front of the annular combustion chamber, whereas the flow dividing element between the annular combustion chamber and the turbine longitudinal axis is arranged. This geometry allows for the gas turbine a compact and in particular a shortened in the axial direction design. Furthermore, the flow losses in the compressed refrigerant partial streams are reduced.
Durch die Führung des den Diffusor durchströmenden Gasstroms mit einer auf die Ringbrennkammer zu gerichteten Komponente der Strömungsrichtung ist eine besonders gute Kühlbarkeit von radial von der Turbinenlängsachse beabstandeten Bauteilen, insbesondere der Ringbrennkammer, erreicht. Vorzugsweise werden die beiden im Diffusor geteilten Teilströme in Anschluss auch zur Verbrennung genutzt.Due to the guidance of the gas flow flowing through the diffuser with a component of the flow direction which is to be directed toward the annular combustion chamber, a particularly good coolability of components spaced radially from the turbine longitudinal axis, in particular the annular combustion chamber reached. Preferably, the two partial streams divided in the diffuser are also used in connection for combustion.
In einer vorteilhaften Weiterbildung verläuft hinter der Abzweigstelle die Außenwand des Diffusors und die dieser gegenüberliegende äußere Ablenkflanke des Strömungsteilungselementes annähernd senkrecht zur Turbinenlängsachse. Dadurch wird eine verlustarme Zuführung des äußeren Teilstroms zum äußeren Strömungsüberleitungsraum gewährleistet. Eine kurze und direkte Zuführung des Teilstromes wird demgemäss erzielt.In an advantageous development, the outer wall of the diffuser and the outer deflecting flank of the flow-dividing element lying opposite to it extend approximately perpendicular to the turbine longitudinal axis behind the branching point. This ensures a low-loss supply of the outer partial flow to the outer flow passage space. A short and direct supply of the partial flow is achieved accordingly.
Bei Gasturbinen mit einer nicht als Ringbrennkammer ausgebildeten Brennkammer, z.B. bei Gasturbinen mit so- genannten Can-Brennkammern, ist die Versorgung der äußeren Brennkammerschale recht einfach. Bei Gasturbinen mit Can-Brennkammern liegen die einzelnen kannenförmigen Brennkammern auf einem die Turbinenlängsachse konzentrisch umgreifenden Ring in Umfangsrichtung zueinander beabstandet. Die Zuführung der Kühlluft zu den radial äußeren Brennkammerschalen kann dann zwischen den einzelnen Can-Brennkammern erfolgen.For gas turbines with a combustion chamber not designed as an annular combustion chamber, e.g. In gas turbines with so-called Can combustion chambers, the supply of the outer combustion chamber shell is quite simple. In gas turbines with Can combustion chambers, the individual flute-shaped combustion chambers are spaced apart on a ring concentrically enclosing the turbine longitudinal axis in the circumferential direction. The supply of cooling air to the radially outer combustion chamber shells can then take place between the individual Can combustion chambers.
Ferner wird eine verlustarme Zuführung des inneren Teilstroms zum inneren Strömungsüberleitungsraum gewährleistet, indem die Innenwand des Diffusors und die dieser gegenüberliegende innere Ablenkflanke des Strömungsteilungselementes annähernd parallel zur Turbinenlängsachse verläuft. Vom Verdichteraustritt bis zum Strömungsüberleitungsraum wird für den inneren Teilstrom eine wellenförmige Führung vorgeschlagen, die im Vergleich zu einer geraden Führung hinsichtlich der Druckverluste und der Strömungsverluste im Teilstrom eine Verbesserung gegenüber einer geradlinigen Führung erzielt.Furthermore, a low-loss supply of the inner partial flow to the inner flow passage space is ensured by the inner wall of the diffuser and the opposite inner deflecting edge of the flow dividing element extends approximately parallel to the turbine longitudinal axis. From the compressor outlet to the flow transfer space, a wavy guide is proposed for the inner partial flow, which achieves an improvement over a linear guide in comparison to a straight guide with regard to the pressure losses and the flow losses in the partial flow.
Nach einer bevorzugten Ausgestaltung wird an der Abzweigstelle das verdichtete Gas, welches an dieser Stelle den Diffusor verlässt, direkt in einen Strömungsüberleitungsraum geleitet, welcher die strömungstechnische Verbindung zu dem Wandungskühlraum der Ringbrennkammer herstellt. Vorzugsweise grenzt der Strömungsüberleitungsraum außen an die Brennkammerwandung, so dass hierdurch eine zusätzliche Kühlung der Brennkammerwandung erzielt ist.According to a preferred embodiment, the compressed gas, which leaves the diffuser at this point, is conducted directly into a flow transfer space at the branch point, which passes the fluidic connection to the wall cooling space produces the annular combustion chamber. The flow transfer space preferably adjoins the outside of the combustion chamber wall, so that an additional cooling of the combustion chamber wall is achieved as a result.
Die Ringbrennkammer ist vorzugsweise geschlossen kühlbar ausgebildet. Hierbei wird als Kühlmedium vorzugsweise Verbrennungsluft im Gegenstrom zum Rauchgas durch einen Wandungsraum der Ringbrennkammer geführt. Die durch die Brennkammerwandung fließende Verbrennungsluft ist hierbei bevorzugt zumindest mit einem Teilstrom der verdichteten Luft identisch, welche zuvor den Diffusor durchströmt hat. Vorzugsweise wird die den Diffusor durchströmende Luft vollständig der Wandung der Ringbrennkammer als Kühlluft und weiter der Ringbrennkammer als Verbrennungsluft zugeführt. Die Aufteilung des Luftstroms an der Abzweigstelle des Diffusors dient dabei dazu, mehrere Teile der Ringbrennkammer, beispielsweise eine Innenschale und eine Außenschale, gleichmäßig mit Kühlluft zu versorgen.The ring combustion chamber is preferably formed closed coolable. Here, combustion air is preferably performed as a cooling medium in countercurrent to the flue gas through a wall space of the annular combustion chamber. The combustion air flowing through the combustion chamber wall is preferably identical here, at least with a partial flow of the compressed air, which has previously flowed through the diffuser. Preferably, the air flowing through the diffuser is supplied completely to the wall of the annular combustion chamber as cooling air and further to the annular combustion chamber as combustion air. The division of the air flow at the branch point of the diffuser serves to provide several parts of the annular combustion chamber, such as an inner shell and an outer shell, evenly with cooling air.
Sofern die Ringbrennkammer eine zumindest in einem Teilbereich im Wesentlichen ebene Brennkammerrückwand aufweist, wird unter dem Wandungswinkel der Ringbrennkammer derjenige Winkel verstanden, den die Brennkammerrückwand mit der Turbinenlängsachse einschließt. Eine besonders gleichförmige allseitige Kühlung der Brennkammerwandung ist vorzugsweise dadurch erreicht, dass der Teilungswinkel des Strömungsteilungselementes vom Wandungswinkel der Brennkammerrückwand um nicht mehr als 20°, insbesondere um nicht mehr als 15°, abweicht.If the annular combustion chamber has a combustion chamber rear wall which is essentially planar at least in a partial region, the wall angle of the annular combustion chamber is understood to mean that angle which the combustion chamber rear wall encloses with the turbine longitudinal axis. A particularly uniform all-round cooling of the combustion chamber wall is preferably achieved in that the pitch angle of the flow dividing element deviates from the wall angle of the combustion chamber rear wall by not more than 20 °, in particular by not more than 15 °.
Vorzugsweise ist zur Entnahme von Kühlluft für die Turbine ein mit dem unteren Teilkanal kommunizierendes Rohr vorgesehen. Hierdurch kann eine weitere, Aufteilung des Verdichterluftstrom erfolgen. Wenn das Rohr in den unteren Teilkanal hineinragt und mit seiner Rohröffnung der Strömung zugewandt ist, erfolgt die Auskopplung von Turbinenkühlluft besonders günstig.Preferably, a pipe communicating with the lower part of the channel is provided for the removal of cooling air for the turbine. This allows a further division of the compressor air flow. If the tube protrudes into the lower part of the channel and faces with its pipe opening to the flow, the extraction of turbine cooling air is particularly favorable.
Der Vorteil der Erfindung liegt insbesondere darin, dass in einer Gasturbine verdichtete Luft, die als Kühl- und anschließend als Verbrennungsluft dient, druckverlustarm von einem Luftverdichter durch einen kompakten Diffusor der Ringbrennkammer zugeführt wird, wobei ein Strömungsteilungselement am Ausgang des Diffusors eine gleichmäßige Kühlluftbeaufschlagung der Ringbrennkammer bewirkt.The advantage of the invention lies in the fact that in a gas turbine compressed air, which serves as a cooling and then combustion air is supplied with low pressure loss of an air compressor through a compact diffuser of the annular combustion chamber, wherein a flow divider at the outlet of the diffuser uniform cooling air to the annular combustion chamber causes.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Hierin zeigen:
- FIG 1
- einen Halbschnitt durch eine Gasturbine, und
- FIG 2
- im Querschnitt einen Diffusor und eine Ringbrennkammer der Gasturbine nach FIG 1.
- FIG. 1
- a half section through a gas turbine, and
- FIG. 2
- in cross-section a diffuser and an annular combustion chamber of the gas turbine according to FIG. 1
Einander entsprechende Teile sind in beiden Figuren mit denselben Bezugszeichen versehen.Corresponding parts are provided in both figures with the same reference numerals.
Die Gasturbine 1 gemäß FIG 1 weist einen Verdichter 2 für Verbrennungsluft, eine Ringbrennkammer 4 sowie eine Turbine 6 zum Antrieb des Verdichters 2 und eines nicht dargestellten Generators oder einer Arbeitsmaschine auf. Dazu sind die Turbine 6 und der Verdichter 2 auf einer gemeinsamen, auch als Turbinenläufer bezeichneten Turbinenwelle 8 angeordnet, mit der auch der Generator bzw. die Arbeitsmaschine verbunden ist, und die um ihre Mittelachse 9 drehbar gelagert ist.The gas turbine 1 according to FIG. 1 has a compressor 2 for combustion air, an
Die Ringbrennkammer 4 ist mit einer Anzahl von Brennern 10 zur Verbrennung eines flüssigen oder gasförmigen Brennstoffs bestückt. Sie ist weiterhin an ihrer Brennkammerwand 23 mit einer Wandauskleidung 24 versehen.The
Die Turbine 6 weist eine Anzahl von mit der Turbinenwelle 8 verbundenen, rotierbaren Laufschaufeln 12 auf. Die Laufschaufeln 12 sind kranzförmig an der Turbinenwelle 8 angeordnet und bilden somit eine Anzahl von Laufschaufelreihen. Weiterhin umfasst die Turbine 6 eine Anzahl von feststehenden Leitschaufeln 14, die ebenfalls kranzförmig unter der Bildung von Leitschaufelreihen an einem Innengehäuse 16 der Turbine 6 befestigt sind. Die Laufschaufeln 12 dienen dabei zum Antrieb der Turbinenwelle 8 durch Impulsübertrag vom die Turbine 6 durchströmenden Rauchgas oder Arbeitsmedium M. Die Leitschaufeln 14 dienen hingegen zur Strömungsführung des Arbeitsmediums M zwischen jeweils zwei in Strömungsrichtung des Arbeitsmediums M gesehen aufeinanderfolgenden Laufschaufelreihen oder Laufschaufelkränzen. Ein aufeinanderfolgendes Paar aus einem Kranz von Leitschaufeln 14 oder einer Leitschaufelreihe und aus einem Kranz von Laufschaufeln 12 oder einer Laufschaufelreihe wird dabei auch als Turbinenstufe bezeichnet.The turbine 6 has a number of
Jede Leitschaufel 14 weist eine auch als Schaufelfuß 19 bezeichnete Plattform 18 auf, die zur Fixierung der jeweiligen Leitschaufel 14 in der Gasturbine 1 bestimmt ist. Jede Laufschaufel 12 ist in analoger Weise über einen auch als Plattform 18 bezeichneten Schaufelfuß 19 an der Turbinenwelle 8 befestigt, wobei der Schaufelfuß 19 jeweils ein entlang einer Schaufelachse erstrecktes profiliertes Schaufelblatt 20 trägt.Each vane 14 has a
Zwischen den beabstandet voneinander angeordneten Plattformen 18 der Leitschaufeln 14 zweier benachbarter Leitschaufelreihen ist jeweils ein Führungsring 21 am Innengehäuse 16 der Turbine 6 angeordnet. Die äußere Oberfläche jedes Führungsrings 21 ist dabei ebenfalls dem heißen, die Turbine 6 durchströmenden Arbeitsmedium M ausgesetzt und in radialer Richtung vom äußeren Ende 22 der ihm gegenüber liegenden Laufschaufel 12 durch einen Spalt beabstandet. Die zwischen benachbarten Leitschaufelreihen angeordneten Führungsringe 21 dienen dabei insbesondere als Abdeckelemente, die die Innenwand 16 oder andere Gehäuse-Einbauteile vor einer thermischen Überbeanspruchung durch das die Turbine 6 durchströmende heiße Arbeitsmedium M schützt.Between the spaced-
Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Gasturbine 1 für eine vergleichsweise hohe Austrittstemperatur des aus der Ringbrennkammer 4 austretenden Arbeitsmediums M von etwa 1200 °C bis 1300 °C ausgelegt.To achieve a comparatively high efficiency, the gas turbine 1 is designed for a comparatively high outlet temperature of the working medium M emerging from the
Die Brennkammerwand 23 ist mit im Verdichter 2 verdichteter Kühlluft als Kühlmittel K kühlbar. Zwischen der Brennkammerwand 23 und der Wandauskleidung 24 strömt Kühlluft K in einem Wandungsraum oder Wandauskleidungsraum 26 im Gegenstrom zum Arbeitsmedium M auf den Brenner 10 zu. Die Kühlluft K, welche auch als Verbrennungsluft dient, wird vom Verdichter 2 aus durch einen Diffusor 27 in Richtung der Ringbrennkammer 4 geleitet. Durch den Diffusor 27 wird die Kühl- und Verbrennungsluft K definiert aufgeteilt einerseits einer äußeren Brennkammerschale 28 und andererseits einer inneren Brennkammerschale 29 zugeführt.The
In FIG 2 ist die Strömungsführung der Kühlluft K durch den Diffusor 27 im Detail dargestellt. Der Diffusor 27 weist einen Hauptablenkbereich 30 auf, welcher sich an den Verdichter 2 anschließt. Die verdichtete Kühlluft K strömt parallel zur Mittelachse oder Turbinenlängsachse 9 aus dem Verdichter 2 aus und in den Hauptablenkbereich 30 des Diffusors 27 ein. Der in Axialrichtung gesehen zwischen dem Verdichter 2 und der Ringbrennkammer 4 angeordnete Hauptablenkbereich 30 des Diffusors 27 verläuft unter Querschnittsaufweitung radial nach außen, d.h. von der Turbinenlängsachse 9 weg. Hierdurch reduziert sich im Hauptablenkbereich 30 die Strömungsgeschwindigkeit des als Kühlmittel K genutzten verdichteten Gases. Sofern es zu einer Strömungsablösung an Innenwandung und Außenwandung des Diffusors 27 kommt, tritt eine solche Ablösung erst bei niedriger Strömungsgeschwindigkeit und entsprechend niedrigem Druckverlust auf.In FIG. 2, the flow guidance of the cooling air K through the
Am, bezogen auf die Kühlluft K, stromabwärtigen Ende 31 des Hauptablenkbereiches 30 ist, angrenzend an die äußere Brennkammerschale 29, ein Strömungsteilungselement 32 angeordnet.At, based on the cooling air K, the downstream end 31 of the
Das zwischen der Ringbrennkammer 4 und der Turbinenlängsachse 9 angeordnete Strömungsteilungselement 32 weist im Querschnitt eine annähernd dreieckige, auch als Teilungsgabel 33 bezeichnete Form mit einer äußeren Ablenkflanke 34 und einer inneren Ablenkflanke 35 auf. Die Ablenkflanken 34, 35 laufen zu einer zum Hauptablenkbereich 30 hin gerichteten Teilungsspitze 36 zusammen und schließen in der Teilungsspitze 36 einen spitzen Winkel kleiner als 90°, insbesondere einen Winkel von 60° ein. Die eine Abzweigstelle bildende Teilungsspitze oder -kante 36 teilt die durch den Hauptablenkbereich 30 des Diffusors 27 strömende Kühlluft K etwa gleichmäßig in einen äußeren Kühlluftstrom Ka und einen inneren Kühlluftstrom Ki auf. Der äußere Kühlluftstrom Ka wird durch einen äußeren Strömungsüberleitungsraum 37 einer äußeren Brennkammerschale 28 zugeleitet, während der innere Kühlluftstrom Ki über einen inneren Strömungsüberleitungsraum 38 der inneren Brennkammerschale 29 zugeleitet wird.The arranged between the
Der die Kühlluft K am Strömungsteilungselement 32 teilende Diffusor 27 wird auch als Splittdiffusor bezeichnet. Die den Hauptablenkbereich 30 durchströmende Kühlluft K wird annähernd C-förmig radial, bezogen auf die Turbinenlängsachse 9, nach außen bis zur Teilungsspitze 36 des Strömungsteilungselementes 32 gelenkt. Eine als Winkelhalbierende 39 zwischen den gekrümmten Ablenkflanken 34,35 durch die Teilungsspitze 36 verlaufende Gerade schließt mit der Turbinenlängsachse 9 einen Teilungswinkel α von ca. 45° ein. Mit der unteren Brennkammerschale 29 schließt die Winkelhalbierende 39 einen annähernd rechten Winkel ein. Der innere Kühlluftstrom Ki wird, von der Teilungsspitze 36 ausgehend, durch die innere Ablenkflanke 35 zunächst in eine horizontale Strömungsrichtung, d.h. parallel zur Turbinenlängsachse 9, gezwungen und weiter durch die Außenseite der Brennkammerwand 23 wieder radial nach innen, d.h. zur Turbinenlängsachse 9 hin, geleitet. Der innere Kühlluftstrom Ki wird somit, zunächst noch innerhalb der im Hauptablenkbereich 30 ungeteilten Kühlluft K, in einer etwa C-förmig gekrümmten Bahn radial nach außen geführt und dabei verzögert und anschließend in einer im umgekehrten Sinne etwa C-förmig gekrümmten Bahn radial nach innen geführt. Insgesamt beschreibt die Strömung durch den Diffusor 27 und weiter in den inneren Strömungsüberleitungsraum 38 etwa eine doppelt S-förmige Bahn. Die Krümmungsradien innerhalb dieser Bahn sind ausreichen groß, um lediglich geringe Energieverluste bei der Strömung zu bewirken.The
Am stromabwärtigen Ende 31 des Diffusors 27 sind des Weiteren sowohl in Richtung des äußeren Strömungsüberleitungsraums 37 als auch in Richtung des inneren Strömungsüberleitungsraums 38 Leitelemente oder Befestigungselemente 41 angeordnet.Further, at the downstream end 31 of the
Der äußere Kühlluftstrom Ka wird durch die Teilungsgabel 33 radial, senkrecht zur Turbinenlängsachse 9, nach außen geleitet. Im weiteren Verlauf wird der äußere Kühlluftstrom Ka an der äußeren Brennkammerschale 28 vorbeigeführt und in den Wandauskleidungsraum oder Wandungskühlraum 26 eingeleitet. Auch hier ergibt sich, ähnlich wie beim inneren Kühlluftstrom Ki eine Strömungsführung mit großen Umlenkradien, wobei keine sprunghaften Querschnittserweiterungen auftreten. Durch die Kühlluftströme oder Teilströme Ka, Ki werden die Brennkammerschalen 28,29 auch von außen gekühlt.The outer cooling air flow K a is guided by the dividing fork 33 radially, perpendicular to the turbine longitudinal axis 9, to the outside. In the course of the outer cooling air flow K a is guided past the outer
Der Brenner 10 ist etwa mittig in einer Brennkammerrückwand 42 angeordnet. Eine durch die Brennkammerrückwand 42 verlaufende Gerade schließt mit der Turbinenlängsachse 9 einen Wandungswinkel β von etwa 45° ein. Der Wandungswinkel β entspricht damit etwa dem Teilungswinkel α. Das um den Teilungswinkel α schräg zur Turbinenlängsachse 9 angeordnete Strömungsteilungselement 32 spaltet den Hauptablenkbereich 30 in einen oberen Teilkanal 43 und einen unteren Teilkanal 44 auf, welche beide etwa den gleichen Querschnitt aufweisen. Durch seitlich, d.h. längs der inneren Brennkammerschale 29 versetzte Anordnung des Strömungsteilungselements 32 ist ebenso eine gezielt unsymmetrische Aufteilung des Kühlluftstroms im Diffusor 27 realisierbar, falls beispielsweise die äußere Brennkammerschale und die innere Brennkammerschale 29 einen unterschiedlichen Kühlluftbedarf aufweisen.The
Die Entnahme für Turbinenkühlluft wird durch ein in den unteren Teilkanal 44 hineinragendes Rohr 45 bewirkt. Dessen Ende 46 ist nach Art eines Periskops abgewinkelt und mit seiner Rohröffnung dem inneren Luftstrom Ki zugewandt, so dass ein Teil des Luftstroms Ki in das Rohr 45 als Turbinenkühlluft einströmen kann. Die Turbinenkühlluft strömt am anderen Ende des Rohres 45 in einen entlang des Rotors sich erstreckenden Ringkanal 47, welcher die Turbinenkühlluft zur Turbine 6 führt. Dort wird sie zur Kühlung der Lauf- als auch Leitschaufeln 12, 14 eingesetzt.The removal for turbine cooling air is effected by a projecting into the lower part of the
Claims (11)
- Gas turbine (1) having an annular combustion chamber (4) which is inclined relative to the turbine longitudinal axis (9) and has a combustion chamber rear wall (42) in which a wall line runs which intersects the turbine longitudinal axis (9) at an acute wall angle β of at least 30°, having a compressor (2), downstream of which, in the axial direction, a diffuser (27) is fluidically connected which is arranged radially at least partly between annular combustion chamber (4) and turbine longitudinal axis (9), characterized in that a compressed gas (K) can be divided into partial flows (Ki, Ka) in the diffuser (27) at a branching point (36) by a wedge-shaped flow-dividing element (32) formed by two deflecting flanks (34, 35), the two deflecting flanks (34, 35) enclosing an angle of less than 90° at the branching point (36), and an angle bisector (39) enclosed between them intersecting the turbine longitudinal axis (9) at an acute dividing angle α greater than 15°, and the diffuser (27) having a main deflecting region (30) which is arranged upstream of the branching point (36) and which is directed at an acute angle pointing away from the turbine longitudinal axis (9) toward an inner combustion chamber shell (29), extending transversely to the combustion chamber rear wall (42), of the annular combustion chamber (4).
- Gas turbine (1) according to Claim 1, in which the outer deflecting flank (34), defining the radially outer partial flow (Ka), and an outer wall, opposite this deflecting flank (34), of the diffuser (27) run behind the branching point (36) approximately perpendicularly to the turbine longitudinal axis (9).
- Gas turbine (1) according to Claim 1 or 2, in which the inner deflecting flank (35), defining the radially inner partial flow (Ki), and an inner wall, opposite this deflecting flank (35), of the diffuser (27) run behind the branching point (36) approximately parallel to the turbine longitudinal axis (9).
- Gas turbine (1) according to Claim 3, in which the radially inner partial flow (Ki) can be directed obliquely in the direction of the turbine longitudinal axis (9) after leaving the diffuser (27).
- Gas turbine (1) according to one of Claims 1 to 4, having a wall cooling space (26), designed as inner combustion chamber shell (29) and as outer combustion chamber shell (28), of the annular combustion chamber (4).
- Gas turbine (1) according to Claim 5, having a flow transfer space (37, 38) which adjoins the annular combustion chamber (4) and connects the diffuser (27) to the wall cooling space (26).
- Gas turbine (1) according to one of Claims 1 to 6, having a closed cooled annular combustion chamber (4).
- Gas turbine (1) according to one of Claims 1 to 7, in which the annular combustion chamber (4) is cooled by the counterflow method.
- Gas turbine (1) according to one of Claims 1 to 8, in which the dividing angle α deviates from the wall angle β by not more than 20°.
- Gas turbine (1) according to one of Claims 1 to 9, in which a tube (45) communicating with the bottom sectional passage (44) is provided in order to bleed cooling air for the turbine.
- Gas turbine (1) according to Claim 10, in which the tube (45) projects into the bottom sectional passage (44), and its tube opening faces the flow.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL04741084T PL1656497T3 (en) | 2003-08-18 | 2004-07-16 | Diffuser located between a compressor and a combustion chamber of a gasturbine |
EP04741084A EP1656497B1 (en) | 2003-08-18 | 2004-07-16 | Diffuser located between a compressor and a combustion chamber of a gasturbine |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03018565A EP1508680A1 (en) | 2003-08-18 | 2003-08-18 | Diffuser located between a compressor and a combustion chamber of a gasturbine |
EP04741084A EP1656497B1 (en) | 2003-08-18 | 2004-07-16 | Diffuser located between a compressor and a combustion chamber of a gasturbine |
PCT/EP2004/007946 WO2005019621A1 (en) | 2003-08-18 | 2004-07-16 | Diffuser arranged between the compressor and the combustion chamber of a gas turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1656497A1 EP1656497A1 (en) | 2006-05-17 |
EP1656497B1 true EP1656497B1 (en) | 2006-11-02 |
Family
ID=34042857
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03018565A Withdrawn EP1508680A1 (en) | 2003-08-18 | 2003-08-18 | Diffuser located between a compressor and a combustion chamber of a gasturbine |
EP04741084A Expired - Lifetime EP1656497B1 (en) | 2003-08-18 | 2004-07-16 | Diffuser located between a compressor and a combustion chamber of a gasturbine |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03018565A Withdrawn EP1508680A1 (en) | 2003-08-18 | 2003-08-18 | Diffuser located between a compressor and a combustion chamber of a gasturbine |
Country Status (7)
Country | Link |
---|---|
US (1) | US8082738B2 (en) |
EP (2) | EP1508680A1 (en) |
CN (1) | CN100390387C (en) |
DE (1) | DE502004001924D1 (en) |
ES (1) | ES2275226T3 (en) |
PL (1) | PL1656497T3 (en) |
WO (1) | WO2005019621A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1508747A1 (en) * | 2003-08-18 | 2005-02-23 | Siemens Aktiengesellschaft | Gas turbine diffusor and gas turbine for the production of energy |
US8474266B2 (en) | 2009-07-24 | 2013-07-02 | General Electric Company | System and method for a gas turbine combustor having a bleed duct from a diffuser to a fuel nozzle |
US8381532B2 (en) * | 2010-01-27 | 2013-02-26 | General Electric Company | Bled diffuser fed secondary combustion system for gas turbines |
US20110303390A1 (en) * | 2010-06-14 | 2011-12-15 | Vykson Limited | Combustion Chamber Cooling Method and System |
US9476429B2 (en) | 2012-12-19 | 2016-10-25 | United Technologies Corporation | Flow feed diffuser |
WO2014134523A1 (en) * | 2013-02-28 | 2014-09-04 | United Technologies Corporation | Method and apparatus for handling pre-diffuser flow for cooling high pressure turbine components |
US10267229B2 (en) | 2013-03-14 | 2019-04-23 | United Technologies Corporation | Gas turbine engine architecture with nested concentric combustor |
EP3022421B1 (en) * | 2013-07-17 | 2020-03-04 | United Technologies Corporation | Gas turbine engine comprising a cooling airflow conduit |
US11732892B2 (en) | 2013-08-14 | 2023-08-22 | General Electric Company | Gas turbomachine diffuser assembly with radial flow splitters |
US20150047358A1 (en) * | 2013-08-14 | 2015-02-19 | General Electric Company | Inner barrel member with integrated diffuser for a gas turbomachine |
US10060631B2 (en) | 2013-08-29 | 2018-08-28 | United Technologies Corporation | Hybrid diffuser case for a gas turbine engine combustor |
EP2921779B1 (en) * | 2014-03-18 | 2017-12-06 | Ansaldo Energia Switzerland AG | Combustion chamber with cooling sleeve |
EP3023695A1 (en) * | 2014-11-20 | 2016-05-25 | Siemens Aktiengesellschaft | Thermal energy machine |
US10465907B2 (en) | 2015-09-09 | 2019-11-05 | General Electric Company | System and method having annular flow path architecture |
JP6625427B2 (en) * | 2015-12-25 | 2019-12-25 | 川崎重工業株式会社 | Gas turbine engine |
JP6586389B2 (en) * | 2016-04-25 | 2019-10-02 | 三菱重工業株式会社 | Compressor diffuser and gas turbine |
US10598380B2 (en) | 2017-09-21 | 2020-03-24 | General Electric Company | Canted combustor for gas turbine engine |
US11808178B2 (en) * | 2019-08-05 | 2023-11-07 | Rtx Corporation | Tangential onboard injector inlet extender |
EP4033073A1 (en) * | 2021-01-25 | 2022-07-27 | Siemens Energy Global GmbH & Co. KG | Combustion section with a casing shielding |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2541170A (en) * | 1946-07-08 | 1951-02-13 | Kellogg M W Co | Air intake arrangement for air jacketed combustion chambers |
US3631674A (en) * | 1970-01-19 | 1972-01-04 | Gen Electric | Folded flow combustion chamber for a gas turbine engine |
US4796429A (en) * | 1976-11-15 | 1989-01-10 | General Motors Corporation | Combustor diffuser |
US4194359A (en) * | 1977-12-12 | 1980-03-25 | United Technologies Corporation | Means for improving the performance of burner shroud diffusers |
US4297842A (en) * | 1980-01-21 | 1981-11-03 | General Electric Company | NOx suppressant stationary gas turbine combustor |
GB8928378D0 (en) * | 1989-12-15 | 1990-02-21 | Rolls Royce Plc | A diffuser |
US5077967A (en) * | 1990-11-09 | 1992-01-07 | General Electric Company | Profile matched diffuser |
US5197289A (en) * | 1990-11-26 | 1993-03-30 | General Electric Company | Double dome combustor |
US5269133A (en) * | 1991-06-18 | 1993-12-14 | General Electric Company | Heat exchanger for cooling a gas turbine |
FR2706534B1 (en) * | 1993-06-10 | 1995-07-21 | Snecma | Multiflux diffuser-separator with integrated rectifier for turbojet. |
DE4415315A1 (en) * | 1994-05-02 | 1995-11-09 | Abb Management Ag | Power plant |
US5555721A (en) * | 1994-09-28 | 1996-09-17 | General Electric Company | Gas turbine engine cooling supply circuit |
DE19544927A1 (en) * | 1995-12-01 | 1997-04-17 | Siemens Ag | Gas turbine for driving generator or machinery |
DE19639623A1 (en) * | 1996-09-26 | 1998-04-09 | Siemens Ag | Mixing two fluid flows on one compressor |
GB9917957D0 (en) * | 1999-07-31 | 1999-09-29 | Rolls Royce Plc | A combustor arrangement |
DE50109870D1 (en) * | 2001-03-26 | 2006-06-29 | Siemens Ag | gas turbine |
DE50107283D1 (en) * | 2001-06-18 | 2005-10-06 | Siemens Ag | Gas turbine with a compressor for air |
EP1400751A1 (en) * | 2002-09-17 | 2004-03-24 | Siemens Aktiengesellschaft | Combustion chamber for a gas turbine |
GB0229307D0 (en) * | 2002-12-17 | 2003-01-22 | Rolls Royce Plc | A diffuser arrangement |
-
2003
- 2003-08-18 EP EP03018565A patent/EP1508680A1/en not_active Withdrawn
-
2004
- 2004-07-16 PL PL04741084T patent/PL1656497T3/en unknown
- 2004-07-16 WO PCT/EP2004/007946 patent/WO2005019621A1/en active Application Filing
- 2004-07-16 US US10/568,736 patent/US8082738B2/en not_active Expired - Fee Related
- 2004-07-16 CN CNB2004800235393A patent/CN100390387C/en not_active Expired - Fee Related
- 2004-07-16 DE DE502004001924T patent/DE502004001924D1/en not_active Expired - Lifetime
- 2004-07-16 EP EP04741084A patent/EP1656497B1/en not_active Expired - Lifetime
- 2004-07-16 ES ES04741084T patent/ES2275226T3/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ES2275226T3 (en) | 2007-06-01 |
EP1508680A1 (en) | 2005-02-23 |
DE502004001924D1 (en) | 2006-12-14 |
CN1836097A (en) | 2006-09-20 |
WO2005019621A1 (en) | 2005-03-03 |
CN100390387C (en) | 2008-05-28 |
US20100257869A1 (en) | 2010-10-14 |
US8082738B2 (en) | 2011-12-27 |
EP1656497A1 (en) | 2006-05-17 |
PL1656497T3 (en) | 2007-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1656497B1 (en) | Diffuser located between a compressor and a combustion chamber of a gasturbine | |
DE69516423T2 (en) | SEALING POINT ARRANGEMENT FOR GAS TURBINE STEEL POWER PLANTS | |
DE60128319T2 (en) | Shroud segment for a turbine | |
EP1834066B1 (en) | Turbine blade for a gas turbine, use of a turbine blade and method for cooling a turbine blade | |
EP0313826B1 (en) | Axial gas turbine | |
DE60031744T2 (en) | Turbine combustor assembly | |
EP1505254B1 (en) | Gas turbine and associated cooling method | |
EP1736635B1 (en) | Air transfer system between compressor and turbine of a gas turbine engine | |
EP2179143B1 (en) | Gap cooling between combustion chamber wall and turbine wall of a gas turbine installation | |
EP2084368B1 (en) | Turbine blade | |
DE102008002890A1 (en) | Alternately cooled turbine stator | |
DE2907748A1 (en) | DEVICE FOR MINIMIZING AND MAINTAINING THE SHOVEL TIP GAMES EXISTING WITH AXIAL TURBINES, IN PARTICULAR FOR GAS TURBINE ENGINES | |
DE19617539B4 (en) | Rotor for a thermal turbomachine | |
EP2818724B1 (en) | Fluid flow engine and method | |
CH708326A2 (en) | Gas turbine shroud cooling. | |
EP2184445A1 (en) | Axial segmented vane support for a gas turbine | |
EP1245806A1 (en) | Cooled gas turbine balde | |
EP1249578B1 (en) | Cooling of a gas turbine | |
DE102015121651A1 (en) | Internal cooling channels in turbine blades | |
EP0838595A2 (en) | Blade support for a compressor | |
DE112017002151B4 (en) | COMPRESSOR DIFFUSER AND GAS TURBINE | |
EP2823154B1 (en) | Coolant bridging line, corresponding turbine vane, gas turbine and power plant | |
EP1117913B1 (en) | Fuel preheating in a gas turbine | |
WO2000060219A1 (en) | Turbo-engine with an array of wall elements that can be cooled and method for cooling an array of wall elements | |
EP2196628A1 (en) | Lead rotor holder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060111 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE ES GB IT LI PL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE ES GB IT LI PL |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES GB IT LI PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 502004001924 Country of ref document: DE Date of ref document: 20061214 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070212 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2275226 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070803 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20160624 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160727 Year of fee payment: 13 Ref country code: DE Payment date: 20160920 Year of fee payment: 13 Ref country code: GB Payment date: 20160713 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20160826 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20161012 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE) |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004001924 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170716 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180201 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170716 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170717 |