EP1648344B1 - Magnetic resonance-compatible medical implant - Google Patents

Magnetic resonance-compatible medical implant Download PDF

Info

Publication number
EP1648344B1
EP1648344B1 EP04803507A EP04803507A EP1648344B1 EP 1648344 B1 EP1648344 B1 EP 1648344B1 EP 04803507 A EP04803507 A EP 04803507A EP 04803507 A EP04803507 A EP 04803507A EP 1648344 B1 EP1648344 B1 EP 1648344B1
Authority
EP
European Patent Office
Prior art keywords
layers
structural part
medical implant
instrument according
current path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04803507A
Other languages
German (de)
French (fr)
Other versions
EP1648344A2 (en
Inventor
Martin Busch
Dietrich H. W. Grönemeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1648344A2 publication Critical patent/EP1648344A2/en
Application granted granted Critical
Publication of EP1648344B1 publication Critical patent/EP1648344B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/852Two or more distinct overlapping stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0043Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in electric properties, e.g. in electrical conductivity, in galvanic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0043Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in electric properties, e.g. in electrical conductivity, in galvanic properties
    • A61F2250/0045Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in electric properties, e.g. in electrical conductivity, in galvanic properties differing in electromagnetical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • A61F2250/0063Nested prosthetic parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers

Definitions

  • the invention relates to a medical implant or instrument, in particular a vascular endoprosthesis, with a deformable structural part, which is constructed in two or more layers, wherein the layers have different electrical and / or magnetic properties, wherein the structural part by a metallic interconnected by a plurality of interconnected Struts formed, expandable framework structure, which is designed such that self-contained current paths are avoided within individual layers of the structural part, and wherein the skeleton structure has interruptions, which are located in different layers of the structural member respectively at different, not directly superimposed positions.
  • stents Vascular endoprostheses
  • other medical implants or instruments that have a deformable structural part, such.
  • intravascular filter systems are known from the prior art.
  • the structural part is usually formed by lattice-shaped metal filaments which are used to support and / or smooth a damaged coronary vessel wall.
  • a stent is - similar to a PTCA treatment - positioned by means of a balloon catheter in the damaged area of the vessel to be treated.
  • Stents are primarily used to prevent acute vascular occlusion or restenosis after PTCA treatment. So-called stent grafts are used to treat aneurysms.
  • an MR-compatible stent whose deformable structural part consists of metal filaments which have interruptions at certain points, so that self-contained current paths within the framework structure are prevented.
  • By preventing eddy currents is achieved so that the stent can not act as a Faraday cage.
  • the radiofrequency fields radiated in MR imaging can thus not induce eddy currents in the stent structure, and MR imaging of the interior of the stent is also possible.
  • the interruptions attached to prevent eddy currents must be bridged with suitable electrically non-conductive material.
  • adhesives, plastics or the like come into question.
  • the interruptions in the prior art stent must be additional have a special shape, in the mentioned US 2002/0188345 A1 is described in detail. The preparation of these specially shaped interruptions is particularly complex and technologically difficult.
  • a further disadvantage of the known stent is that no precautions have been taken to minimize the abovementioned susceptibility artifacts in the MR images.
  • An MR-compatible metallic endoprosthesis of the type mentioned is from the WO 03/015662 A1 previously known.
  • the previously known endoprosthesis is achieved by combining the manufacturing material with a special design of the framework structure of the structural part that the endoprosthesis in MR images does not cause any artifacts and possibly also an imaging of the lumen of the endoprosthesis by means of MR is possible.
  • the design of the prior art endoprosthesis is such that the struts of the framework structure extend substantially along the longitudinal axis of the endoprosthesis so as not to form closed flow paths in a plane substantially perpendicular to the endoprosthesis longitudinal axis.
  • the previously known prosthesis can have a multilayer structure. For example, a jacket with one or more membranes of polymer material is disclosed.
  • the US 6,231,516 B1 relates to an endoluminal implant connected to a radio frequency coil. Via the radio-frequency coil, electrical energy can be supplied to the implant for therapeutic purposes.
  • the previously known implant may have a multilayer structure, wherein the radio-frequency coil is wound helically around the circumference of a stent.
  • MR-compatible the prior art implant is disadvantageously not.
  • An MR-compatible stent is further from the US 6,280,385 B1 known.
  • This stent has a passive resonant circuit with an inductance and a capacitance, wherein the resonant frequency is tuned to the frequency of the MR system used.
  • the structural part of the prior art stent may have a multilayer structure, wherein the different layers have different electrical conductivities. By structuring the Layers the required for the formation of the resonant circuit inductance is generated.
  • vascular endoprosthesis is from the US 5,667,523 previously known.
  • This document relates to a stent with a radially expandable structural part, which has a multilayer structure.
  • MR-compatible is the prior art stent disadvantageously not.
  • the WO 2005/013856 A2 a document falling under Article 54 (3) EPC, relates to a multilayered MR-compatible stent structure, wherein two electrically conductive layers are provided, each interspersed to prevent unwanted formation of closed circuits intermittently inserted into the different layers are each arranged at different, non-superposed positions, whereby a total of a stent high structural integrity is provided, which is inexpensive to produce in comparison to the above-described embodiments of endoprostheses.
  • the object of the present invention is to provide an MR-compatible medical implant or instrument, in particular a stent, with which the MR imaging of the volume within a medical implant or instrument designed according to the invention is particularly well possible.
  • the MR compatibility of the medical implant according to the invention results, on the one hand, from its multilayer structure.
  • the multi-layer structure has the advantage of a particularly simple and cost-effective producibility of the medical implant according to the invention.
  • the deformable structural part of a stent constructed according to the invention may for example consist of two tube parts with different diameters, which are arranged coaxially with one another.
  • each individual tube part as in the case of conventional stents, can be structured, for example by means of a laser, by cutting out a framework structure from a continuous tube in such a way that the two tube parts have the desired different electrical properties.
  • After or structuring of the pipe parts these can be arranged one inside the other and glued together using a suitable adhesive.
  • the pipe parts can first be arranged inside each other and glued together and only then by means of a laser or otherwise structured in the manner according to the invention. Different magnetic properties result from a suitable choice of materials for the two pipe parts.
  • the structural part of the medical implant according to the invention has an expandable framework structure formed by a plurality of interconnected metallic struts. So that the desired MR compatibility is ensured, the framework structure, for example by cutting individual struts, interruptions, such that self-contained current paths are avoided within individual layers of the structural part. As a result, eddy currents occurring in the MR imaging are effectively prevented, so that the medical implant according to the invention does not shield the irradiated high-frequency fields. It is essential that the interruptions in different layers of the structural part are each at different, not directly superimposed positions.
  • the interruptions are arranged such that, within at least one layer, a continuous current path extending from one end region of the structural part to the opposite end region is formed.
  • This continuous current path can advantageously be helical, so that the individual layers each have the electrical properties of an inductance. It is useful here if the continuous current paths formed within different layers of the structural part are connected to one another, so that the inductances of the individual layers add up to an overall impedance as required in a suitable manner. It is particularly advantageous to connect the continuous current paths of the different layers to one another via at least one electrical capacitance. This results in a total of a resonator structure, which can be used in MR imaging.
  • the resonance frequency of the structure must be matched to the resonance frequency of the MR device.
  • the radiofrequency fields irradiated during MR imaging are then not shielded, as in conventional stents, but - on the contrary - even amplified inside the implant.
  • the MR imaging of the volume within a stent formed according to the invention is then particularly well possible.
  • the capacity required for the action as a resonator can be formed in a particularly simple manner by means of superimposed, electrically conductive regions of the layers of the structural part of the medical implant according to the invention.
  • the continuous current paths formed within the individual layers can also be connected to one another via plated-through holes in the end regions of the structural part.
  • the desired total impedance of the medical implant can be adjusted in a targeted manner. If the largest possible Inductance is sought, it is advantageous if the helically shaped current paths of different layers have opposite directions of rotation, such that add the inductances of the interconnected individual layers and not compensate.
  • An alternative possibility of generating a resonator structure by means of the implant or instrument according to the invention is to arrange the interruptions in the framework structure such that two or more substantially helical current path sections are formed within at least two superimposed layers of the structural part, the current path sections being different Layers of the structural part are at least partially overlapping each other. Accordingly, each one indicates single layer two or more series-connected helical current path sections, each contributing with their inductance to the total inductance of the resonator. The helical current path sections of different layers partially overlap, so that capacitances are formed in the coverage regions. Overall, this structure is constructed in the manner of a well-known in the field of high-frequency engineering, so-called split-ring resonator.
  • the series arrangement of two or more helical current path sections, each of which can have a plurality of helix turns, causes the total inductance of the structure to be sufficiently large for the resonance frequency to be within the range of conventional MR resonance frequencies of approximately 20 to 400 MHz.
  • At least two of the layers of the structural part are particularly expedient for at least two of the layers of the structural part to consist of materials having mutually opposite magnetic susceptibilities. Accordingly, at least one of the layers should consist of a diamagnetic material, while at least one further layer consists of a ferromagnetic or paramagnetic material.
  • the opposite susceptibilities largely compensate each other so that the overall effective susceptibility of the implant or instrument is reduced. Distortions of the magnetic fields in the surroundings of the implant then occur only to a reduced extent, and corresponding artifacts in the recorded MR images are reduced.
  • the layers of the structural part consisting of electrically conductive material are separated from one another by layers consisting of electrically insulating material. This ensures, above all, that the desired different electrical properties of the individual layers can be specified in a targeted manner.
  • targeted interruptions in the framework structure are to prevent the described effect of the structural part of the implant as Faraday cage attached electrical connections between the various layers are prevented, otherwise the interruptions could be bridged and thus ineffective.
  • the medical implant according to the invention can advantageously be used in an MR imaging method for generating an image of a patient located in the examination volume of an MR device.
  • a paramagnetic contrast agent can be intravenously applied to the patient during imaging, which is composed such that the paramagnetic susceptibility of the blood in the vicinity of the medical implant is substantially equal to the paramagnetic susceptibility of the medical implant itself.
  • Suitable paramagnetic contrast agents may contain at least one substance from the group of ferrites.
  • the now common GdDTPA contrast agent can also be used.
  • the medical implant shown in the figures is a stent that fits into the Fig. 1 and 3 is designated as a whole by the reference numeral 1.
  • the stent 1 has a deformable, expandable structural part with a two-layered construction.
  • An inner layer 2 and an outer layer 3 are arranged one above the other.
  • the layers 2 and 3 of the structural part are formed by two coaxially arranged tubular elements, which in the Fig. 3 are clearly visible.
  • the existing of electrically conductive material layers 2 and 3 are separated by an existing electrically insulating material interlayer 4 from each other. This may be, for example, a layer of adhesive, by means of which the mutually coaxially arranged tubular elements are interconnected.
  • the layers 2 and 3 which form the structural part of the stent, have an expandable framework structure formed by a plurality of interconnected metallic struts.
  • This structure is in the Fig. 2 and 3 to recognize.
  • the struts are metal filaments which together form a diamond-shaped grid in the embodiment.
  • the framework structure has interruptions 5, which in the Fig. 2 symbolized by open circles.
  • the Fig. 2 shows only a section of the overall structure of the stent. By the interruptions 5 self-contained current paths within the layers 2 and 3 of the structural part are avoided. Based on the developed in the drawing plane representation according to Fig. 2 It can clearly be seen that in the layers 2 and 3, the interruptions 5 are each at different, not directly superimposed positions.
  • the interruptions 5 are arranged such that the tubular layers 2 and 3 each have helical continuous current paths, which is shown in FIGS Fig. 2 and 3 is symbolized by arrows 6.
  • the helical current paths 6 form inductances, which are connected to one another via electrical capacitances are. These capacitances are formed by the superimposed, electrically conductive regions of the layers 2, 3 of the structural part.
  • FIG. 4 Based on the diagram according to Fig. 4 It becomes clear how the inductances and capacitances are interconnected.
  • An inductance 7 is assigned to the inner layer 2 of the stent 1.
  • the coaxial arrangement of the tubular elements of the stent 1 results in capacitances 8, via which the inductance 7 of the inner layer 2 is connected to an inductance 9 of the outer layer 3.
  • this creates a resonant circuit, the capacitance 8 and the inductances 7 and 9 formed by the current paths 6 being matched to one another in such a way that the resonant frequency is equal to the resonant frequency of an MR device, not illustrated in greater detail in the figures.
  • the Fig. 5 schematically shows the split-ring structure described above, which can be achieved according to the invention by suitable arrangement of the interruptions within the framework structure of the implant.
  • the solid lines symbolize current domain sections 6 'within the outer layer 3 of the resonator, while the dashed lines represent current domain sections 6 "formed by appropriate placement of the breaks within the layer 2.
  • the current path sections 6' and 6" are each helical in shape two full helix turns each.
  • vertically aligned lines in the top view symbolize the entire structure of the rearmost sections of the helical turns, while the oblique lines represent the frontmost sections of the helix.
  • the Fig. 5 schematically shows the split-ring structure described above, which can be achieved according to the invention by suitable arrangement of the interruptions within the framework structure of the implant.
  • the solid lines symbolize current domain sections 6 'within the outer layer 3 of the resonator, while the dashed lines represent current domain sections 6 "formed by appropriate placement of the breaks within the layer 2.

Abstract

The invention relates to a medical implant or instrument, particularly a vascular endoprosthesis (stent), comprising a deformable structural part. In order to provide an implant of this type that is magnetic resonance-compatible and can be easily and economically produced, the invention provides that the structural part has a two-layer or multilayer design, whereby layers (2,3) have different electrical and/or magnetic properties. The invention particularly provides that the structural part has a frame structure with openings (5) whereby, in different layers (2,3) of the structural part, the openings (5) are each located at different positions not directly located one above the other.

Description

Die Erfindung betrifft ein medizinisches Implantat oder Instrument, insbesondere eine Gefäßendoprothese, mit einem deformierbaren Strukturteil, welches zwei- oder mehrschichtig aufgebaut ist, wobei die Schichten unterschiedliche elektrische und/oder magnetische Eigenschaften haben, wobei das Strukturteil eine durch eine Mehrzahl von miteinander verbundenen, metallischen Streben gebildete, ausdehnbare Gerüststruktur aufweist, die derart ausgebildet ist, dass in sich geschlossene Strompfade innerhalb einzelner Schichten des Strukturteils vermieden werden, und wobei die Gerüststruktur Unterbrechungen aufweist, die sich in unterschiedlichen Schichten des Strukturteils jeweils an unterschiedlichen, nicht direkt übereinander liegenden Positionen befinden.The invention relates to a medical implant or instrument, in particular a vascular endoprosthesis, with a deformable structural part, which is constructed in two or more layers, wherein the layers have different electrical and / or magnetic properties, wherein the structural part by a metallic interconnected by a plurality of interconnected Struts formed, expandable framework structure, which is designed such that self-contained current paths are avoided within individual layers of the structural part, and wherein the skeleton structure has interruptions, which are located in different layers of the structural member respectively at different, not directly superimposed positions.

Gefäßendoprothesen (so genannte "Stents") und andere medizinische Implantate oder Instrumente, die ein deformierbares Strukturteil aufweisen, wie z. B. intravaskuläre Filtersysteme, sind aus dem Stand der Technik bekannt. Das Strukturteil wird bei Stents üblicherweise durch gitterförmig angeordnete Metallfilamente gebildet, die zur Abstützung und/oder zur Glättung einer geschädigten Koronargefäßwand eingesetzt werden. Ein Stent wird - ähnlich wie bei einer PTCA-Behandlung - mittels eines Ballonkatheters im Bereich der geschädigten Stelle des zu behandelnden Gefäßes positioniert. Stents werden hauptsächlich eingesetzt, um akute Gefäßverschlüsse oder Restenosierungen nach PTCA-Behandlungen zu verhindern. So genannte Stent-Grafts werden zur Behandlung von Aneurysmen eingesetzt.Vascular endoprostheses (so-called "stents") and other medical implants or instruments that have a deformable structural part, such. As intravascular filter systems are known from the prior art. In the case of stents, the structural part is usually formed by lattice-shaped metal filaments which are used to support and / or smooth a damaged coronary vessel wall. A stent is - similar to a PTCA treatment - positioned by means of a balloon catheter in the damaged area of the vessel to be treated. Stents are primarily used to prevent acute vascular occlusion or restenosis after PTCA treatment. So-called stent grafts are used to treat aneurysms.

Die diagnostische Bildgebung von Bereichen in der Umgebung eines Stents oder eines ähnlichen medizinischen Implantats mittels magnetischer Resonanz (MR) erweist sich oft als problematisch. Dies kann zum einen darauf zurückzuführen sein, dass das Strukturteil des im Körper des untersuchten Patienten befindlichen Implantats aus paramagnetischem Material besteht. Durch die magnetische Suszeptibilität des Implantats wird das Magnetfeld in der ansonsten diamagnetischen Umgebung des Implantats verzerrt, so dass in den aufgenommenen Bildern Artefakte entstehen. Diese artefaktbehafteten Bilder sind dann für diagnostische Zwecke zumeist nicht brauchbar. Medizinische Implantate und Instrumente, die ein aus metallischen Filamenten bestehendes Strukturteil aufweisen, haben zudem den Nachteil, dass die gitter- oder netzartige Struktur bei der MR-Bildgebung als Faraday-Käfig wirkt, so dass die bei der MR-Bildgebung eingestrahlten Hochfrequenzfelder nicht in das Volumen innerhalb des Implantates eindringen. Aufgrund dieser Abschirmung bleibt das Innere eines herkömmlichen Stents bei der MR-Bildgebung nachteiligerweise oft unsichtbar. Nachteilig ist dies insbesondere, weil verhindert wird, dass mittels MR-Bildgebung eine Restenosierung im Inneren eines Stents frühzeitig diagnostiziert werden kann.Diagnostic imaging of areas around a stent or similar medical magnetic resonance (MR) implant often proves problematic. This may be due to the fact that the structural part of the implant located in the body of the examined patient consists of paramagnetic material. Due to the magnetic susceptibility of the implant, the magnetic field in the otherwise diamagnetic environment of the implant is distorted, so that artefacts occur in the recorded images. These artifact-related images are then mostly not useful for diagnostic purposes. Medical implants and instruments which have a metallic filament structural part also have the disadvantage that the lattice or net-like structure acts as a Faraday cage in MR imaging, so that the radiofrequency fields irradiated during MR imaging do not enter the MRI Penetrate volume within the implant. Due to this shield, the interior of a conventional stent disadvantageously often remains invisible in MR imaging. This is disadvantageous, in particular, because it is prevented that restenosis in the interior of a stent can be diagnosed early by means of MR imaging.

Aus der US 2002/0188345 A1 ist ein MR-kompatibler Stent bekannt, dessen deformierbares Strukturteil aus Metallfilamenten besteht, die an bestimmten Stellen Unterbrechungen aufweisen, so dass in sich geschlossene Strompfade innerhalb der Gerüststruktur unterbunden werden. Durch die Verhinderung von Wirbelströmen wird damit erreicht, dass der Stent nicht als Faraday-Käfig wirken kann. Die bei der MR-Bildgebung eingestrahlten Hochfrequenzfelder können also keine Wirbelströme in der Gerüststruktur des Stents induzieren, und eine MR-Bildgebung auch des Inneren des Stents wird ermöglicht. Nachteilig ist bei dem aus der genannten US-Offenlegungsschrift vorbekannten Stent allerdings, dass dessen Herstellung extrem aufwendig und teuer ist. Damit die strukturelle Integrität des Stents nicht leidet, müssen nämlich die zur Unterbindung von Wirbelströmen angebrachten Unterbrechungen mit geeignetem elektrisch nicht leitfähigem Material überbrückt werden. Hierzu kommen Klebstoffe, Kunststoffe oder Ähnliches in Frage. Damit die mit Unterbrechungen versehenen Metallfilamente außerdem eine ausreichende Stabilität bei Scherbelastungen aufweisen, müssen die Unterbrechungen bei dem vorbekannten Stent zusätzlich eine spezielle Formgebung aufweisen, die in der genannten US 2002/0188345 A1 im Einzelnen beschrieben ist. Die Herstellung dieser speziell geformten Unterbrechungen ist besonders aufwendig und technologisch schwierig. Nachteilig ist bei dem vorbekannten Stent ferner, dass keinerlei Vorkehrungen getroffen sind, um die oben erwähnten Suszeptibilitätsartefakte in den mittels MR-aufgenommenen Bildern zu minimieren.From the US 2002/0188345 A1 For example, an MR-compatible stent is known whose deformable structural part consists of metal filaments which have interruptions at certain points, so that self-contained current paths within the framework structure are prevented. By preventing eddy currents is achieved so that the stent can not act as a Faraday cage. The radiofrequency fields radiated in MR imaging can thus not induce eddy currents in the stent structure, and MR imaging of the interior of the stent is also possible. A disadvantage, however, in the stent known from the cited US-Offenlegungsschrift that its production is extremely complicated and expensive. In order for the structural integrity of the stent does not suffer, namely, the interruptions attached to prevent eddy currents must be bridged with suitable electrically non-conductive material. For this purpose, adhesives, plastics or the like come into question. In addition, in order for the intermittent metal filaments to have sufficient stability under shear loads, the interruptions in the prior art stent must be additional have a special shape, in the mentioned US 2002/0188345 A1 is described in detail. The preparation of these specially shaped interruptions is particularly complex and technologically difficult. A further disadvantage of the known stent is that no precautions have been taken to minimize the abovementioned susceptibility artifacts in the MR images.

Eine MR-kompatible metallische Endoprothese der eingangs genannten Art ist aus der WO 03/015662 A1 vorbekannt. Bei der vorbekannten Endoprothese wird durch Kombination des Herstellungsmaterials mit einem speziellen Design der Gerüststruktur des Strukturteils erzielt, dass die Endoprothese in MR-Bildern keinerlei Artefakte hervorruft und ggf. auch eine Bildgebung des Lumens der Endoprothese mittels MR möglich ist. Das Design der vorbekannten Endoprothese ist derart, dass die Streben der Gerüststruktur weitgehend entlang der Längsachse der Endoprothese verlaufen, um keine geschlossenen Strompfade in einer Ebene im Wesentlichen senkrecht zur Endoprothesenlängsachse zu bilden. Die vorbekannte Prothese kann einen mehrschichtigen Aufbau haben. Offenbart ist beispielsweise eine Ummantelung mit einer oder mehreren Membranen aus Polymermaterial. Nachteilig ist bei der vorbekannten Endoprothese wiederum vor allem deren vergleichsweise aufwendige Herstellung.An MR-compatible metallic endoprosthesis of the type mentioned is from the WO 03/015662 A1 previously known. In the previously known endoprosthesis is achieved by combining the manufacturing material with a special design of the framework structure of the structural part that the endoprosthesis in MR images does not cause any artifacts and possibly also an imaging of the lumen of the endoprosthesis by means of MR is possible. The design of the prior art endoprosthesis is such that the struts of the framework structure extend substantially along the longitudinal axis of the endoprosthesis so as not to form closed flow paths in a plane substantially perpendicular to the endoprosthesis longitudinal axis. The previously known prosthesis can have a multilayer structure. For example, a jacket with one or more membranes of polymer material is disclosed. A disadvantage of the previously known endoprosthesis, in turn, especially their comparatively complicated production.

Die US 6,231,516 B1 betrifft ein endoluminales Implantat, das mit einer Hochfrequenzspule verbunden ist. Über die Hochfrequenzspule kann dem Implantat elektrische Energie zu therapeutischen Zwecken zugeführt werden. Das vorbekannten Implantat kann einen mehrschichtigen Aufbau haben, wobei die Hochfrequenzspule helixförmig um den Umfang eines Stents herumgelegt ist. MR-kompatibel ist das vorbekannte Implantat nachteiligerweise nicht.The US 6,231,516 B1 relates to an endoluminal implant connected to a radio frequency coil. Via the radio-frequency coil, electrical energy can be supplied to the implant for therapeutic purposes. The previously known implant may have a multilayer structure, wherein the radio-frequency coil is wound helically around the circumference of a stent. MR-compatible, the prior art implant is disadvantageously not.

Ein MR-kompatibler Stent ist des Weiteren aus der US 6,280,385 B1 bekannt. Dieser Stent weist einen passiven Resonanzkreis mit einer Induktivität und einer Kapazität auf, wobei die Resonanzfrequenz auf die Frequenz des verwendeten MR-Systems abgestimmt ist. Das Strukturteil des vorbekannten Stents kann einen mehrschichtigen Aufbau haben, wobei die verschiedenen Schichten unterschiedliche elektrische Leitfähigkeiten haben. Durch Strukturierung der Schichten wird die für die Ausbildung des Resonanzkreises erforderliche Induktivität erzeugt.An MR-compatible stent is further from the US 6,280,385 B1 known. This stent has a passive resonant circuit with an inductance and a capacitance, wherein the resonant frequency is tuned to the frequency of the MR system used. The structural part of the prior art stent may have a multilayer structure, wherein the different layers have different electrical conductivities. By structuring the Layers the required for the formation of the resonant circuit inductance is generated.

In dem Artikel " Reduzierung von NMR-Bildartefakte durch Benutzung optimierter Werkstoffe für diagnostische Hilfsmittel und Implantate" von S. Fritzsche, R. Thull und A. Haase in der Zeitschrift Biomedizinische Technik, Band 36, Heft 3/1994, Seiten 42 bis 46 , wird für medizinische Implantate die Verwendung von Werkstoffen angesprochen, die in ihrer magnetischen Suszeptibilität an die jeweilige Umgebung angepasst sind. Hierdurch soll erzielt werden, dass Artefakte und Signalverlust bei der MR-Bildgebung von Bereichen in der Umgebung eines Implantats im menschlichen Körper vermieden werden.In the article " Reduction of NMR image artifacts by using optimized materials for diagnostic aids and implants "by S. Fritzsche, R. Thull and A. Haase in the journal Biomedical Engineering, Volume 36, Issue 3/1994, pages 42 to 46 For medical implants, the use of materials that are adapted in their magnetic susceptibility to the respective environment is addressed. This is intended to avoid artifacts and signal loss in MR imaging of areas around an implant in the human body.

Eine weitere Gefäßendoprothese ist aus der US 5,667,523 vorbekannt. Diese Druckschrift betrifft einen Stent mit einem radial aufweitbaren Strukturteil, das einen mehrschichtigen Aufbau aufweist. MR-kompatibel ist der vorbekannte Stent nachteiligerweise nicht.Another vascular endoprosthesis is from the US 5,667,523 previously known. This document relates to a stent with a radially expandable structural part, which has a multilayer structure. MR-compatible is the prior art stent disadvantageously not.

Die WO 2005/013856 A2 , ein Dokument, welches unter Artikel 54(3) EPÜ fällt, betrifft eine mehrschichtige Ausgestaltung eines MR-kompatiblen Stents, wobei zwei elektrisch leitende Schichten vorgesehen sind, die jeweils zur Unterbindung der ungewünschten Ausbildung von geschlossenen Stromkreisen mit Unterbrechungen versehen sind, die in den unterschiedlichen Schichten jeweils an unterschiedlichen, nicht übereinanderliegenden Positionen angeordnet sind, wodurch insgesamt ein Stent hoher struktureller Integrität bereitgestellt wird, welcher im Vergleich zu den vorbeschriebenen Ausgestaltungen von Endoprothesen kostengünstig herstellbar ist.The WO 2005/013856 A2 , a document falling under Article 54 (3) EPC, relates to a multilayered MR-compatible stent structure, wherein two electrically conductive layers are provided, each interspersed to prevent unwanted formation of closed circuits intermittently inserted into the different layers are each arranged at different, non-superposed positions, whereby a total of a stent high structural integrity is provided, which is inexpensive to produce in comparison to the above-described embodiments of endoprostheses.

Davon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein MR-kompatibles medizinisches Implantat oder Instrument, insbesondere einen Stent, bereitzustellen, mit dem die MR-Bildgebung des Volumens innerhalb eines gemäß der Erfindung ausgebildeten medizinischen Implantats oder Instrumentes besonders gut möglich ist.Based on this, the object of the present invention is to provide an MR-compatible medical implant or instrument, in particular a stent, with which the MR imaging of the volume within a medical implant or instrument designed according to the invention is particularly well possible.

Diese Aufgabe löst die Erfindung ausgehend von einem medizinischen Implantat oder Instrument der eingangs genannten Art dadurch, dass die Unterbrechungen derart angeordnet sind, dass innerhalb wenigstens einer Schicht ein sich von einem Endbereich des Strukturteils zum gegenüberliegenden Endbereich hin erstreckender durchgehender Strompfad gebildet wird.This object is achieved by the invention on the basis of a medical implant or instrument of the type mentioned at the outset in that the interruptions are arranged in such a way that within at least one of the layers a an end region of the structural part is formed to the opposite end region extending through the current path.

Die MR-Kompatibilität des erfindungsgemäßen medizinischen Implantates resultiert zum einen aus dessen mehrschichtigem Aufbau. Der mehrschichtige Aufbau hat vor allem den Vorteil einer besonders einfachen und kostengünstigen Herstellbarkeit des erfindungsgemäßen medizinischen Implantates. Das deformierbare Strukturteil eines gemäß der Erfindung aufgebauten Stents kann beispielsweise aus zwei Rohrteilen mit unterschiedlichen Durchmessern bestehen, die koaxial ineinander angeordnet sind. Dabei kann jedes einzelne Rohrteil, wie bei herkömmlichen Stents, beispielsweise mittels eines Lasers durch Herausschneiden einer Gerüststruktur aus einem durchgehenden Rohr derart strukturiert werden, dass die beiden Rohrteile die gewünschten unterschiedlichen elektrischen Eigenschaften haben. Nach oder Strukturierung der Rohrteile können diese ineinander angeordnet und unter Verwendung eines geeigneten Klebers miteinander verklebt werden. Genauso gut können die Rohrteile zuerst ineinander angeordnet und miteinander verklebt werden und erst danach mittels eines Lasers oder sonst wie in der erfindungsgemäßen Weise strukturiert werden. Unterschiedliche magnetische Eigenschaften ergeben sich durch geeignete Wahl der Materialien für die beiden Rohrteile.The MR compatibility of the medical implant according to the invention results, on the one hand, from its multilayer structure. Above all, the multi-layer structure has the advantage of a particularly simple and cost-effective producibility of the medical implant according to the invention. The deformable structural part of a stent constructed according to the invention may for example consist of two tube parts with different diameters, which are arranged coaxially with one another. In this case, each individual tube part, as in the case of conventional stents, can be structured, for example by means of a laser, by cutting out a framework structure from a continuous tube in such a way that the two tube parts have the desired different electrical properties. After or structuring of the pipe parts, these can be arranged one inside the other and glued together using a suitable adhesive. Just as well, the pipe parts can first be arranged inside each other and glued together and only then by means of a laser or otherwise structured in the manner according to the invention. Different magnetic properties result from a suitable choice of materials for the two pipe parts.

Ähnlich wie bei herkömmlichen Stents weist das Strukturteil des erfindungsgemäßen medizinischen Implantats bzw. Instrumentes eine durch eine Mehrzahl von miteinander verbundenen metallischen Streben gebildete, ausdehnbare Gerüststruktur auf. Damit die gewünschte MR-Kompatibilität gewährleistet ist, weist die Gerüststruktur, beispielsweise durch Durchtrennung einzelner Streben, Unterbrechungen auf, derart, dass in sich geschlossene Strompfade innerhalb einzelner Schichten des Strukturteils vermieden werden. Dadurch werden bei der MR-Bildgebung auftretende Wirbelströme wirksam verhindert, so dass das erfindungsgemäße medizinische Implantat die eingestrahlten Hochfrequenzfelder nicht abschirmt. Wesentlich ist, dass sich die Unterbrechungen in unterschiedlichen Schichten des Strukturteils jeweils an unterschiedlichen, nicht direkt übereinanderliegenden Positionen befinden. Dadurch dass an einer Position, an der sich in einer Schicht eine Unterbrechung befindet, in einer anderen Schicht keine Unterbrechung vorgesehen ist, ist die strukturelle Integrität der erfindungsgemäßen Gesamtanordnung gewährleistet, was insbesondere bei Stents wichtig ist, damit diese den von den Gefäßwandungen aufgebrachten radialen Belastungen standhalten können. Zur Sicherstellung einer ausreichenden strukturellen Integrität ist gemäß der Erfindung ein deutlich geringerer Herstellungsaufwand nötig als dies bei vorbekannten Stent-Strukturen der Fall ist.Similar to conventional stents, the structural part of the medical implant according to the invention has an expandable framework structure formed by a plurality of interconnected metallic struts. So that the desired MR compatibility is ensured, the framework structure, for example by cutting individual struts, interruptions, such that self-contained current paths are avoided within individual layers of the structural part. As a result, eddy currents occurring in the MR imaging are effectively prevented, so that the medical implant according to the invention does not shield the irradiated high-frequency fields. It is essential that the interruptions in different layers of the structural part are each at different, not directly superimposed positions. By having a break in a layer at a position is located in another layer no interruption is provided, the structural integrity of the overall arrangement according to the invention is ensured, which is particularly important for stents, so that they can withstand the radial loads applied by the vessel walls. To ensure adequate structural integrity, according to the invention, a significantly lower production effort is required than is the case with previously known stent structures.

Erfindungsgemäß sind die Unterbrechungen derart angeordnet sind, dass innerhalb wenigstens einer Schicht ein sich von einem Endbereich des Strukturteils zum gegenüberliegenden Endbereich hin erstreckender durchgehender Strompfad gebildet wird. Dieser durchgehende Strompfad kann vorteilhafterweise helixförmig ausgebildet sein, so dass die einzelnen Schichten jeweils die elektrischen Eigenschaften einer Induktivität haben. Sinnvoll ist es dabei, wenn die innerhalb unterschiedlicher Schichten des Strukturteils gebildeten durchgehenden Strompfade miteinander verbunden sind, so dass sich die Induktivitäten der einzelnen Schichten je nach Bedarf in geeigneter Weise zu einer Gesamtimpedanz addieren. Besonders vorteilhaft ist es, die durchgehenden Strompfade der unterschiedlichen Schichten über wenigstens eine elektrische Kapazität miteinander zu verbinden. So entsteht insgesamt eine Resonatorstruktur, die bei der MR-Bildgebung genutzt werden kann. Hierzu muss die Resonanzfrequenz der Struktur auf die Resonanzfrequenz des MR-Gerätes abgestimmt sein. Die bei der MR-Bildgebung eingestrahlten Hochfrequenzfelder werden dann nicht, wie bei herkömmlichen Stents, abgeschirmt, sondern - im Gegenteil - im Inneren des Implantats sogar verstärkt. Damit ist dann die MR-Bildgebung des Volumens innerhalb eines gemäß der Erfindung ausgebildeten Stents besonders gut möglich. Die für die Wirkung als Resonator erforderliche Kapazität kann besonders einfach durch übereinander liegende, elektrisch leitende Bereiche der Schichten des Strukturteils des erfindungsgemäßen medizinischen Implantates gebildet werden. Je nach Anwendungsfall können die innerhalb der einzelnen Schichten gebildeten durchgehenden Strompfade auch über Durchkontaktierungen in den Endbereichen des Strukturteils miteinander verbunden sein. Durch derartige Verbindungen kann gezielt die gewünschte Gesamtimpedanz des medizinischen Implantates eingestellt werden. Wenn eine möglichst große Induktivität angestrebt wird, ist es zweckmäßig, wenn die helixförmig ausgebildeten Strompfade unterschiedlicher Schichten entgegengesetzten Drehsinn haben, derart, dass sich die Induktivitäten der miteinander verbundenen einzelnen Schichten addieren und nicht etwa kompensieren.According to the invention, the interruptions are arranged such that, within at least one layer, a continuous current path extending from one end region of the structural part to the opposite end region is formed. This continuous current path can advantageously be helical, so that the individual layers each have the electrical properties of an inductance. It is useful here if the continuous current paths formed within different layers of the structural part are connected to one another, so that the inductances of the individual layers add up to an overall impedance as required in a suitable manner. It is particularly advantageous to connect the continuous current paths of the different layers to one another via at least one electrical capacitance. This results in a total of a resonator structure, which can be used in MR imaging. For this purpose, the resonance frequency of the structure must be matched to the resonance frequency of the MR device. The radiofrequency fields irradiated during MR imaging are then not shielded, as in conventional stents, but - on the contrary - even amplified inside the implant. Thus, the MR imaging of the volume within a stent formed according to the invention is then particularly well possible. The capacity required for the action as a resonator can be formed in a particularly simple manner by means of superimposed, electrically conductive regions of the layers of the structural part of the medical implant according to the invention. Depending on the application, the continuous current paths formed within the individual layers can also be connected to one another via plated-through holes in the end regions of the structural part. By means of such connections, the desired total impedance of the medical implant can be adjusted in a targeted manner. If the largest possible Inductance is sought, it is advantageous if the helically shaped current paths of different layers have opposite directions of rotation, such that add the inductances of the interconnected individual layers and not compensate.

Eine alternative Möglichkeit, durch das erfindungsgemäße Implantat bzw. Instrument eine Resonatorstruktur zu erzeugen, besteht darin, die Unterbrechungen in der Gerüststruktur derart anzuordnen, dass innerhalb wenigstens zweier übereinander liegender Schichten des Strukturteils zwei oder mehr im Wesentlichen helixförmige Strompfadabschnitte gebildet werden, wobei die Strompfadabschnitte unterschiedlicher Schichten des Strukturteils einander zumindest teilweise überdeckend angeordnet sind. Demnach weist jede einzelne Schicht zwei oder mehr hintereinander geschaltete helixförmige Strompfadabschnitte auf, die jeweils mit ihrer Induktivität zu der Gesamtinduktivität des Resonators beitragen. Die helixförmigen Strompfadabschnitte unterschiedlicher Schichten überdecken sich dabei teilweise, so dass in den Überdeckungsbereichen Kapazitäten gebildet werden. Insgesamt ist diese Struktur nach Art eines auf dem Gebiet der Hochfrequenztechnik bekannten, so genannten Split-Ring-Resonators aufgebaut. Dabei bewirkt die Hintereinanderanordnung von zwei oder mehr helixförmigen Strompfadabschnitten, die jeweils mehrere Helixwindungen aufweisen können, dass die Gesamtinduktivität der Struktur ausreichend groß ist, damit die Resonanzfrequenz im Bereich üblicher MR-Resonanzfrequenzen von ca. 20 bis 400 MHz liegt.An alternative possibility of generating a resonator structure by means of the implant or instrument according to the invention is to arrange the interruptions in the framework structure such that two or more substantially helical current path sections are formed within at least two superimposed layers of the structural part, the current path sections being different Layers of the structural part are at least partially overlapping each other. Accordingly, each one indicates single layer two or more series-connected helical current path sections, each contributing with their inductance to the total inductance of the resonator. The helical current path sections of different layers partially overlap, so that capacitances are formed in the coverage regions. Overall, this structure is constructed in the manner of a well-known in the field of high-frequency engineering, so-called split-ring resonator. In this case, the series arrangement of two or more helical current path sections, each of which can have a plurality of helix turns, causes the total inductance of the structure to be sufficiently large for the resonance frequency to be within the range of conventional MR resonance frequencies of approximately 20 to 400 MHz.

Um die angesprochenen magnetischen Suszeptibilitätsartefakte bei Verwendung des erfindungsgemäßen medizinischen Implantates bei der MR-Bildgebung zu vermeiden, ist es besonders zweckmäßig, dass wenigstens zwei der Schichten des Strukturteils aus Materialien mit zueinander entgegengesetzten magnetischen Suszeptibilitäten bestehen. Demnach sollte wenigstens eine der Schichten aus einem diamagnetischen Material bestehen, während wenigstens eine weitere Schicht aus einem ferro- oder paramagnetischen Material besteht. Die entgegengesetzten Suszeptibilitäten kompensieren sich gegenseitig weitgehend, so dass die effektive Gesamtsuszeptibilität des Implantats bzw. des Instruments verringert wird. Es kommt dann nur noch in reduziertem Maße zu Verzerrungen der Magnetfelder in der Umgebung des Implantats, und entsprechende Artefakte in den aufgenommenen MR-Bildern treten vermindert auf.In order to avoid the mentioned magnetic susceptibility artifacts when using the medical implant according to the invention in MR imaging, it is particularly expedient for at least two of the layers of the structural part to consist of materials having mutually opposite magnetic susceptibilities. Accordingly, at least one of the layers should consist of a diamagnetic material, while at least one further layer consists of a ferromagnetic or paramagnetic material. The opposite susceptibilities largely compensate each other so that the overall effective susceptibility of the implant or instrument is reduced. Distortions of the magnetic fields in the surroundings of the implant then occur only to a reduced extent, and corresponding artifacts in the recorded MR images are reduced.

Es ist zweckmäßig, dass bei dem medizinischen Implantat gemäß der Erfindung die aus elektrisch leitendem Material bestehenden Schichten des Strukturteils durch aus elektrisch isolierendem Material bestehende Schichten voneinander getrennt sind. Dadurch wird vor allem sichergestellt, dass die gewünschten unterschiedlichen elektrischen Eigenschaften der einzelnen Schichten gezielt vorgegeben werden können. Insbesondere, wenn zur Unterbindung der beschriebenen Wirkung des Strukturteils des Implantats als Faraday-Käfig gezielt Unterbrechungen in der Gerüststruktur angebracht werden, müssen elektrische Verbindungen zwischen den verschiedenen Schichten verhindert werden, da ansonsten die Unterbrechungen überbrückt und damit wirkungslos werden könnten.It is expedient that, in the case of the medical implant according to the invention, the layers of the structural part consisting of electrically conductive material are separated from one another by layers consisting of electrically insulating material. This ensures, above all, that the desired different electrical properties of the individual layers can be specified in a targeted manner. In particular, if targeted interruptions in the framework structure are to prevent the described effect of the structural part of the implant as Faraday cage attached electrical connections between the various layers are prevented, otherwise the interruptions could be bridged and thus ineffective.

Das erfindungsgemäße medizinische Implantat kann mit Vorteil bei einem MR-Bildgebungsverfahren zur Erzeugung eines Bildes eines im Untersuchungsvolumen eines MR-Gerätes befindlichen Patienten verwendet werden. Zur Unterdrückung von magnetischen Suszeptibilitätsartefakten kann dem Patienten während der Bildaufnahme ein paramagnetisches Kontrastmittel intravenös appliziert werden, das derart zusammengesetzt ist, dass die paramagnetische Suszeptibilität des Blutes in der Umgebung des medizinischen Implantates im Wesentlichen gleich der paramagnetischen Suszeptibilität des medizinischen Implantates selbst ist. Wenn demnach die Umgebung des medizinischen Implantates die im wesentlichen selben Suszeptibilitätseigenschaften hat wie das medizinischen Implantat selbst, kommt es nicht zu lokalen Verzerrungen der magnetischen Felder. Dementsprechend treten auch keine Artefakte in den aufgenommenen MR-Bildern auf. Geeignete paramagnetische Kontrastmittel können wenigstens einen Stoff aus der Gruppe der Ferrite enthalten. Das heute allgemein übliche Kontrastmittel GdDTPA kann ebenfalls eingesetzt werden.The medical implant according to the invention can advantageously be used in an MR imaging method for generating an image of a patient located in the examination volume of an MR device. To suppress magnetic susceptibility artifacts, a paramagnetic contrast agent can be intravenously applied to the patient during imaging, which is composed such that the paramagnetic susceptibility of the blood in the vicinity of the medical implant is substantially equal to the paramagnetic susceptibility of the medical implant itself. Thus, if the environment of the medical implant has substantially the same susceptibility properties as the medical implant itself, local distortions of the magnetic fields do not occur. Accordingly, no artifacts occur in the recorded MR images. Suitable paramagnetic contrast agents may contain at least one substance from the group of ferrites. The now common GdDTPA contrast agent can also be used.

Ausführungsbeispiele der Erfindung werden im Folgenden anhand der Figuren erläutert. Es zeigen:

Fig. 1
erfindungsgemäße Gefäßendoprothese im Querschnitt;
Fig. 2
in die Zeichnungsebene abgewickelte Darstellung der unterschiedlichen Strukturierungen der Schichten des Implantats gemäß Fig. 1;
Fig. 3
dreidimensionale Ansicht der Koronarendoprothese gemäß Fig. 1;
Fig. 4
Ersatzschaltbild zur Verdeutlichung der Resonatoreigenschaften des Implantats;
Fig. 5
schematische Darstellung des erfindungsgemäßen erweiterten Split-Ring- Resonators.
Embodiments of the invention are explained below with reference to the figures. Show it:
Fig. 1
Vascular endoprosthesis according to the invention in cross section;
Fig. 2
in the drawing plane developed representation of the different structurings of the layers of the implant according to Fig. 1 ;
Fig. 3
Three-dimensional view of the coronary endoprosthesis according to Fig. 1 ;
Fig. 4
Equivalent circuit diagram to illustrate the resonator properties of the implant;
Fig. 5
schematic representation of the inventive extended split-ring resonator.

Bei dem in den Figuren dargestellten medizinischen Implantat handelt es sich um einen Stent, der in den Fig. 1 und 3 als Ganzes mit der Bezugsziffer 1 bezeichnet ist. Der Stent 1 weist ein deformierbares, ausdehnbares Strukturteil mit einem zweischichtigen Aufbau aus. Eine innere Schicht 2 und eine äußere Schicht 3 sind übereinander liegend angeordnet. Die Schichten 2 und 3 des Strukturteils werden durch zwei koaxial angeordnete röhrenförmige Elemente gebildet, die in der Fig. 3 gut zu erkennen sind. Die aus elektrisch leitendem Material bestehenden Schichten 2 und 3 sind durch eine aus elektrisch isolierendem Material bestehende Zwischenschicht 4 voneinander getrennt. Dabei kann es sich beispielsweise um eine Schicht aus Klebstoff handeln, mittels welchem die ineinander koaxial angeordneten röhrenförmigen Elemente miteinander verbunden sind.The medical implant shown in the figures is a stent that fits into the Fig. 1 and 3 is designated as a whole by the reference numeral 1. The stent 1 has a deformable, expandable structural part with a two-layered construction. An inner layer 2 and an outer layer 3 are arranged one above the other. The layers 2 and 3 of the structural part are formed by two coaxially arranged tubular elements, which in the Fig. 3 are clearly visible. The existing of electrically conductive material layers 2 and 3 are separated by an existing electrically insulating material interlayer 4 from each other. This may be, for example, a layer of adhesive, by means of which the mutually coaxially arranged tubular elements are interconnected.

Bei dem in den Figuren dargestellten medizinischen Implantat weisen die Schichten 2 und 3, die das Strukturteil des Stents bilden, eine durch eine Mehrzahl von miteinander verbundenen metallischen Streben gebildete, ausdehnbare Gerüststruktur auf. Diese Struktur ist in den Fig. 2 und 3 zu erkennen. Die Streben sind Metallfilamente, die bei dem Ausführungsbeispiel insgesamt ein rautenförmiges Gitter bilden. Die Gerüststruktur weist Unterbrechungen 5 auf, die in der Fig. 2 durch offene Kreise symbolisiert sind. Die Fig. 2 zeigt lediglich einen Ausschnitt aus der Gesamtstruktur des Stents. Durch die Unterbrechungen 5 werden in sich geschlossene Strompfade innerhalb der Schichten 2 und 3 des Strukturteils vermieden. Anhand der in die Zeichnungsebene abgewickelten Darstellung gemäß Fig. 2 ist deutlich zu erkennen, dass sich in den Schichten 2 und 3 die Unterbrechungen 5 jeweils an unterschiedlichen, nicht direkt übereinander liegenden Positionen befinden. Dadurch wird, wie oben ausgeführt, sichergestellt, dass die strukturelle Integrität des Stents 1 insgesamt gewährleistet ist. Des Weiteren sind die Unterbrechungen 5 derart angeordnet, dass die röhrenförmigen Schichten 2 und 3 jeweils helixförmige durchgehende Strompfade aufweisen, was in den Fig. 2 und 3 durch Pfeile 6 symbolisiert ist. Die helixförmigen Strompfade 6 bilden Induktivitäten, die über elektrische Kapazitäten miteinander verbunden sind. Diese Kapazitäten werden durch die übereinander liegenden, elektrisch leitenden Bereiche der Schichten 2, 3 des Strukturteils gebildet.In the medical implant shown in the figures, the layers 2 and 3, which form the structural part of the stent, have an expandable framework structure formed by a plurality of interconnected metallic struts. This structure is in the Fig. 2 and 3 to recognize. The struts are metal filaments which together form a diamond-shaped grid in the embodiment. The framework structure has interruptions 5, which in the Fig. 2 symbolized by open circles. The Fig. 2 shows only a section of the overall structure of the stent. By the interruptions 5 self-contained current paths within the layers 2 and 3 of the structural part are avoided. Based on the developed in the drawing plane representation according to Fig. 2 It can clearly be seen that in the layers 2 and 3, the interruptions 5 are each at different, not directly superimposed positions. Thereby, as stated above, it is ensured that the structural integrity of the stent 1 as a whole is ensured. Furthermore, the interruptions 5 are arranged such that the tubular layers 2 and 3 each have helical continuous current paths, which is shown in FIGS Fig. 2 and 3 is symbolized by arrows 6. The helical current paths 6 form inductances, which are connected to one another via electrical capacitances are. These capacitances are formed by the superimposed, electrically conductive regions of the layers 2, 3 of the structural part.

Anhand des Schaltbildes gemäß Fig. 4 wird deutlich, wie die Induktivitäten und Kapazitäten miteinander verschaltet sind. Eine Induktivität 7 ist der inneren Schicht 2 des Stents 1 zugeordnet. Durch die koaxiale Anordnung der röhrenförmigen Elemente des Stents 1 entstehen Kapazitäten 8, über welche die Induktivität 7 der inneren Schicht 2 mit einer Induktivität 9 der äußeren Schicht 3 verbunden ist. Insgesamt entsteht so ein Resonanzkreis, wobei die Kapazität 8 und die durch die Strompfade 6 gebildeten Induktivitäten 7 und 9 derart aufeinander abgestimmt sind, dass die Resonanzfrequenz gleich der Resonanzfrequenz eines in den Figuren nicht näher dargestellten MR-Gerätes ist.Based on the diagram according to Fig. 4 It becomes clear how the inductances and capacitances are interconnected. An inductance 7 is assigned to the inner layer 2 of the stent 1. The coaxial arrangement of the tubular elements of the stent 1 results in capacitances 8, via which the inductance 7 of the inner layer 2 is connected to an inductance 9 of the outer layer 3. Overall, this creates a resonant circuit, the capacitance 8 and the inductances 7 and 9 formed by the current paths 6 being matched to one another in such a way that the resonant frequency is equal to the resonant frequency of an MR device, not illustrated in greater detail in the figures.

Die Fig. 5 zeigt schematisch die oben beschriebene Split-Ring-Struktur, die sich gemäß der Erfindung durch geeignete Anordnung der Unterbrechungen innerhalb der Gerüststruktur des Implantats erzielen lässt. In der Darstellung gemäß Fig. 5 symbolisieren die durchgezogenen Linien Strompfandabschnitte 6' innerhalb der äußeren Schicht 3 des Resonators, während die gestrichelten Linien Strompfandabschnitte 6" darstellen, die durch geeignete Anordnung der Unterbrechungen innerhalb der Schicht 2 gebildet werden. Die Strompfadabschnitte 6' und 6" sind jeweils helixförmig ausgebildet und umfassen jeweils zwei vollständige Helixwindungen. In der Darstellung der Fig. 5 symbolisieren vertikal ausgerichtete Linien in der Draufsicht auf die gesamte Struktur hinten liegende Abschnitte der Helixwindungen, während die schrägen Linien die vorne liegenden Helixabschnitte darstellen. In der Fig. 5 ist zu erkennen, dass in den Schichten 2 und 3 jeweils vier Strompfadabschnitte 6' bzw. 6" hintereinander angeordnet sind, wobei die einzelnen Strompfadabschnitte jeweils durch isolierende Abschnitte 10 voneinander getrennt sind. Die Anordnung ist derart, dass sich ein isolierender Abschnitt 10 der inneren Schicht 2 etwa im mittleren Bereich eines Strompfadabschnitts 6' der äußeren Schicht 3 befindet. Dadurch ergibt sich insgesamt die einander zumindest teilweise überdeckende Anordnung der Strompfadabschnitte. So entsteht eine erweitere Split-Ring-Struktur, die als MR-Resonator in der oben beschriebenen Weise nutzbar ist.The Fig. 5 schematically shows the split-ring structure described above, which can be achieved according to the invention by suitable arrangement of the interruptions within the framework structure of the implant. In the illustration according to Fig. 5 The solid lines symbolize current domain sections 6 'within the outer layer 3 of the resonator, while the dashed lines represent current domain sections 6 "formed by appropriate placement of the breaks within the layer 2. The current path sections 6' and 6" are each helical in shape two full helix turns each. In the presentation of the Fig. 5 vertically aligned lines in the top view symbolize the entire structure of the rearmost sections of the helical turns, while the oblique lines represent the frontmost sections of the helix. In the Fig. 5 4, four current path sections 6 'and 6 "are arranged one behind the other in layers 2 and 3, the individual current path sections being separated from each other by insulating sections 10. The arrangement is such that an insulating section 10 of the inner This results in a total of the at least partially overlapping arrangement of the current path sections, thus creating an extended split-ring structure which can be used as an MR resonator in the manner described above is.

Claims (12)

  1. A medical implant or instrument, in particular a vascular endoprosthesis (1), comprising a deformable structural part which is of a two-layer or multi-layer structure, wherein the layers (2, 3) have different electrical and/or magnetic properties, wherein the structural part has an expandable frame structure which is formed by a plurality of interconnected metallic struts and which is so designed that current paths which are closed in themselves within individual layers (2, 3) of the structural part are avoided, and wherein the frame structure has interruptions disposed in different layers (2, 3) of the structural part at respective different positions which are not in directly mutually superposed relationship, wherein the interruptions (5) are so arranged that within at least one layer (2, 3) there is formed a continuous current path (6) extending from an end region of the structural part to the opposite end region.
  2. A medical implant or instrument according to claim 1 characterised in that the continuous current path (6) is of a helical configuration.
  3. A medical implant or instrument according to claim 1 characterised in that the interruptions (5) are so arranged that within at least two mutually superposed layers (2, 3) two or more substantially helical current path portions (6', 6") are formed, wherein the current path portions (6', 6") of different layers (2, 3) of the structural part are arranged in at least partially mutually overlapping relationship.
  4. A medical implant or instrument according to one of claims 1 to 3 characterised in that the continuous current paths (6) or current path portions (6', 6") formed within different layers (2, 3) of the structural part are connected together.
  5. A medical implant or instrument according to claim 4 characterised in that the current paths (6) or current path portions (6', 6") are connected together by way of at least one electrical capacitor (8).
  6. A medical implant or instrument according to claim 5 characterised in that the capacitor (8) is formed by mutually superposed, electrically conducting regions of the layers (2, 3) of the structural part.
  7. A medical implant or instrument according to one of claims 1 to 7 characterised in that the current paths (6) or current path portions (6', 6") are connected together by way of through-contacting means between the layers (2, 3).
  8. A medical implant or instrument according to claim 2 or claim 3 characterised in that the helical current paths (6) or current path portions (6', 6") of different layers (2, 3) are of opposite directions of rotation.
  9. A medical implant or instrument according to claim 5 characterised in that the capacitor (8) and the inductances (7, 9) formed by the current paths (6) or current path portions (6', 6") are matched to each other in such a way that a high frequency generator is formed, the resonance frequency of which is equal to the resonance frequency of an MR apparatus.
  10. A medical implant or instrument according to one of claims 1 to 9 characterised in that at least two of the layers (2, 3) of the structural part comprise metals of mutually opposite magnetic susceptibilities.
  11. A medical implant or instrument according to one of claims 1 to 10 characterised in that the layers (2, 3) of the structural part are formed by two or more coaxially arranged tubular elements.
  12. A medical implant or instrument according to one or more of claims 1 to 11 characterised in that layers (2, 3) of the structural part, that comprise electrically conducting material, are separated from each other by intermediate layers (4) comprising electrically insulating material.
EP04803507A 2003-12-05 2004-12-03 Magnetic resonance-compatible medical implant Not-in-force EP1648344B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10357334A DE10357334A1 (en) 2003-12-05 2003-12-05 MR compatible medical implant
PCT/EP2004/013786 WO2005053575A2 (en) 2003-12-05 2004-12-03 Magnetic resonance-compatible medical implant

Publications (2)

Publication Number Publication Date
EP1648344A2 EP1648344A2 (en) 2006-04-26
EP1648344B1 true EP1648344B1 (en) 2009-09-16

Family

ID=34638496

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04803507A Not-in-force EP1648344B1 (en) 2003-12-05 2004-12-03 Magnetic resonance-compatible medical implant

Country Status (6)

Country Link
US (1) US8298282B2 (en)
EP (1) EP1648344B1 (en)
AT (1) ATE442821T1 (en)
DE (2) DE10357334A1 (en)
ES (1) ES2336679T3 (en)
WO (1) WO2005053575A2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002345328A1 (en) 2001-06-27 2003-03-03 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
GB0206061D0 (en) 2002-03-14 2002-04-24 Angiomed Ag Metal structure compatible with MRI imaging, and method of manufacturing such a structure
IL154733A0 (en) * 2003-03-04 2003-10-31 Financial transaction authorization apparatus and method
US7344559B2 (en) * 2003-08-25 2008-03-18 Biophan Technologies, Inc. Electromagnetic radiation transparent device and method of making thereof
GB0400571D0 (en) * 2004-01-12 2004-02-11 Angiomed Gmbh & Co Implant
US20050278017A1 (en) * 2004-06-09 2005-12-15 Scimed Life Systems, Inc. Overlapped stents for scaffolding, flexibility and MRI compatibility
US20060105016A1 (en) * 2004-11-12 2006-05-18 Gray Robert W Device compatible with magnetic resonance imaging
US20060122694A1 (en) * 2004-12-03 2006-06-08 Stinson Jonathan S Medical devices and methods of making the same
US8071155B2 (en) * 2005-05-05 2011-12-06 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
DE102005047235A1 (en) * 2005-10-01 2007-04-05 Grönemeyer, Dietrich H. W., Prof. Dr.med. MR-compatible vascular endoprosthesis
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US9037257B2 (en) * 2006-04-07 2015-05-19 Medtronic, Inc. Resonance tuning module for implantable devices and leads
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
JP2009545407A (en) 2006-08-02 2009-12-24 ボストン サイエンティフィック サイムド,インコーポレイテッド End prosthesis with 3D decomposition control
JP2010503485A (en) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Medical device and method for manufacturing the same
ATE517590T1 (en) 2006-09-15 2011-08-15 Boston Scient Ltd BIOLOGICALLY ERODABLE ENDOPROTHESES
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
ES2368125T3 (en) 2006-09-15 2011-11-14 Boston Scientific Scimed, Inc. BIOEROSIONABLE ENDOPROOTHESIS WITH BIOESTABLE INORGANIC LAYERS.
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US8768486B2 (en) 2006-12-11 2014-07-01 Medtronic, Inc. Medical leads with frequency independent magnetic resonance imaging protection
ATE488259T1 (en) 2006-12-28 2010-12-15 Boston Scient Ltd BIOERODIBLE ENDOPROTHES AND PRODUCTION METHODS THEREOF
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
EP2403546A2 (en) 2009-03-02 2012-01-11 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US9283095B2 (en) * 2010-07-06 2016-03-15 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Systems and methods for magnetized stent having growth-promoting properties
US9017246B2 (en) 2010-11-19 2015-04-28 Boston Scientific Scimed, Inc. Biliary catheter systems including stabilizing members
WO2012131671A2 (en) 2011-03-28 2012-10-04 Technion Research & Development Foundation Ltd. Stent for restenosis prevention
US10413395B2 (en) 2013-03-28 2019-09-17 Indiana University Research And Technology Corporation Modular stent grafting methods and apparatus
CN110420075B (en) * 2019-06-27 2022-04-05 深圳市先健畅通医疗有限公司 Covered stent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013856A2 (en) * 2003-08-07 2005-02-17 Boston Scientific Limited Stent designs which enable the visibility of the inside of the stent during mri

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161547A (en) * 1990-11-28 1992-11-10 Numed, Inc. Method of forming an intravascular radially expandable stent
US5680046A (en) * 1994-08-05 1997-10-21 General Electric Company Double-sided RF shield for RF coil contained within gradient coils used in high speed NMR imaging
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5846517A (en) * 1996-09-11 1998-12-08 Imarx Pharmaceutical Corp. Methods for diagnostic imaging using a renal contrast agent and a vasodilator
DE19746735C2 (en) * 1997-10-13 2003-11-06 Simag Gmbh Systeme Und Instr F NMR imaging method for the display, position determination or functional control of a device inserted into an examination object and device for use in such a method
US6231516B1 (en) * 1997-10-14 2001-05-15 Vacusense, Inc. Endoluminal implant with therapeutic and diagnostic capability
DE19916086B4 (en) * 1998-04-11 2004-11-11 Inflow Dynamics Inc. Implantable prosthesis, especially vascular prosthesis (stent)
DE29810483U1 (en) * 1998-06-12 1999-10-14 Micro Science Medical Ag Surface implantation or surface coating for stents or other implants
DE19855786A1 (en) * 1998-12-03 2000-06-08 Lothar Sellin Expandable stent, especially useful for preventing restenosis of coronary arteries, is implanted with carbon to improve hemocompatibility and provided with a radioactive material to inhibit restenosis
US7226475B2 (en) * 1999-11-09 2007-06-05 Boston Scientific Scimed, Inc. Stent with variable properties
GB0003387D0 (en) * 2000-02-14 2000-04-05 Angiomed Ag Stent matrix
IL137860A0 (en) * 2000-08-15 2001-10-31 Baruch David Coronary membrane covered stent
US6802857B1 (en) 2000-10-11 2004-10-12 Uab Research Foundation MRI stent
US6767360B1 (en) * 2001-02-08 2004-07-27 Inflow Dynamics Inc. Vascular stent with composite structure for magnetic reasonance imaging capabilities
US6712844B2 (en) * 2001-06-06 2004-03-30 Advanced Cardiovascular Systems, Inc. MRI compatible stent
DE50204695D1 (en) 2001-08-08 2005-12-01 Alexander Ruebben Magnetresonanzkompatible metallische endoprothese
DE10200387B4 (en) * 2002-01-08 2009-11-26 Translumina Gmbh stent
US7029495B2 (en) * 2002-08-28 2006-04-18 Scimed Life Systems, Inc. Medical devices and methods of making the same
US7172624B2 (en) * 2003-02-06 2007-02-06 Boston Scientific Scimed, Inc. Medical device with magnetic resonance visibility enhancing structure
US20040230290A1 (en) * 2003-05-15 2004-11-18 Jan Weber Medical devices and methods of making the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013856A2 (en) * 2003-08-07 2005-02-17 Boston Scientific Limited Stent designs which enable the visibility of the inside of the stent during mri

Also Published As

Publication number Publication date
ATE442821T1 (en) 2009-10-15
WO2005053575A3 (en) 2005-11-03
DE10357334A1 (en) 2005-07-07
ES2336679T3 (en) 2010-04-15
DE502004010079D1 (en) 2009-10-29
US20070168016A1 (en) 2007-07-19
WO2005053575A2 (en) 2005-06-16
US8298282B2 (en) 2012-10-30
EP1648344A2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
EP1648344B1 (en) Magnetic resonance-compatible medical implant
EP1023609B1 (en) Stent and mr imaging method for representing and determining the position of a stent
DE10202459A1 (en) Apparatus, in particular stent, for use in connection with an NMR imaging system
EP1570284B1 (en) Vascular filter for mr-imaging methods
EP1414374B1 (en) Metallic endoprosthesis compatible with magnetic resonance
EP1990027B1 (en) Medical implant, in particular stent for use in body lumen
DE69914965T2 (en) Expandable facility for radiation therapy
DE602004012816T2 (en) Self-expanding stent and stent delivery system for the treatment of vascular disease
DE60121213T2 (en) A collapsible blood filter provided with a vascular geometry
DE60317883T2 (en) MRI-COMPATIBLE STENT AND PROCESS FOR ITS MANUFACTURE
EP2526897B1 (en) Biological or artificial valve prosthetic for use in human and/or animal bodies for replacing an organ valve or vessel valve
DE69631008T2 (en) Method and device for magnetic resonance
DE10249239A1 (en) Magnetic resonance imaging device with additional electrical equipment
EP2359896A1 (en) Electrode unit for carrying current or voltage between an implantable electromedical device and a treatment and/or diagnosis site in the human body
EP3509521A1 (en) Device and method for preventing and treating a vasospasm
EP1769778A1 (en) Magnetic resonance compatible vascular prosthesis
WO2009010303A2 (en) System for administering active substances to an organism, devices for use in said type of system and method for producing said type of devices
EP2380489A1 (en) Discharge device and MRI-safe catheter system
EP2848281B1 (en) Electrode device for a medical implant, and medical implant comprising an electrode device
DE102022201102A1 (en) Coil arrangement for a magnetic resonance tomography system
DE10127850A1 (en) Endoscope device for nuclear magnetic resonance spectroscopic examination of internal organs has flexible electrical conductor for magnetic resonance coil contained within expandable elastic sleeve
DE102004046819A1 (en) Magnetically-coupled current loops for magnetic resonance tomography has compensation inductance between current loops in parallel to parasitic coupling capacitance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050924

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080211

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUSCH, MARTIN

Inventor name: GROENEMEYER, DIETRICH H. W.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUSCH, MARTIN

Inventor name: GROENEMEYER, DIETRICH H. W.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502004010079

Country of ref document: DE

Date of ref document: 20091029

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS & PARTNER PATENTANWAELTE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2336679

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100118

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

26N No opposition filed

Effective date: 20100617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110329

Year of fee payment: 7

Ref country code: IT

Payment date: 20110328

Year of fee payment: 7

Ref country code: SE

Payment date: 20110321

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100317

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110321

Year of fee payment: 7

Ref country code: FR

Payment date: 20110412

Year of fee payment: 7

Ref country code: BE

Payment date: 20110317

Year of fee payment: 7

Ref country code: CH

Payment date: 20110331

Year of fee payment: 7

Ref country code: GB

Payment date: 20110330

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090916

BERE Be: lapsed

Owner name: GRONEMEYER, DIETRICH H.W.

Effective date: 20111231

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111204

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111203

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120102

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200219

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004010079

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701