EP1647037B1 - Inductive component with a cooling device and use of said component - Google Patents

Inductive component with a cooling device and use of said component Download PDF

Info

Publication number
EP1647037B1
EP1647037B1 EP04763199A EP04763199A EP1647037B1 EP 1647037 B1 EP1647037 B1 EP 1647037B1 EP 04763199 A EP04763199 A EP 04763199A EP 04763199 A EP04763199 A EP 04763199A EP 1647037 B1 EP1647037 B1 EP 1647037B1
Authority
EP
European Patent Office
Prior art keywords
wire winding
inductive component
cooling device
thermally conductive
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04763199A
Other languages
German (de)
French (fr)
Other versions
EP1647037A1 (en
Inventor
Martin Honsberg-Riedl
Johann Otto
Eckhard Wolfgang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP1647037A1 publication Critical patent/EP1647037A1/en
Application granted granted Critical
Publication of EP1647037B1 publication Critical patent/EP1647037B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof

Definitions

  • the invention relates to an inductive component for forming a magnetic circuit having at least one wire winding and at least one cooling device for cooling the wire winding.
  • ECGs are used as an electronic voltage and / or current transformer in the lighting area.
  • ECGs have at least one inductive component.
  • the inductive component is, for example, a choke coil or a transformer.
  • the inductive component has a wire winding.
  • the wire winding has a number of turns of electrical conductor for generating a magnetic flux through the current flowing in the conductor.
  • the wire winding also serves to generate a voltage by changing the magnetic induction in the wire winding.
  • the wire winding is usually on a core with ferromagnetic material.
  • the ferromagnetic core material is, for example, a ferrite. The core ensures a closed magnetic circuit.
  • the miniaturization relates in particular to an inductive component of the electronic ballasts.
  • a small size of an inductive component can be achieved with a constant power throughput by a higher switching frequency.
  • a higher switching frequency leads to an increase in the electrical losses and thus to a reduction in the quality Q of the inductive component.
  • the quality is a measure of an electrical quality of the inductive Component.
  • the object of the present invention is to provide an inductive component with an efficient cooling device for cooling the wire winding.
  • the object is achieved by an inductive component for forming a magnetic circuit having at least one wire winding and at least one cooling device for cooling the wire winding.
  • the cooling device has at least one composite material with at least one polymer material and at least one thermally conductive filler.
  • a core with a ferromagnetic core material is available, which is suitable for high frequency.
  • the inductive component is characterized in that the cooling device (20) has at least one potting compound (22) which has at least one further composite material with at least one further polymer material and at least one further thermally conductive filler and which is in direct, thermally conductive contact with the wire winding (3), wherein a gap (27) between the potting compound (22) and the wire winding (3) comprises a thermally conductive material for thermal bridging of the gap (27), wherein the thermally conductive material is selected from the group consisting of oil, paste, wax and / or adhesive.
  • the composite material preferably consists of an electrically insulating or electrically poorly conductive polymer material with a thermally conductive and electrically poorly conductive filler.
  • the polymer material may comprise a natural and / or artificial polymer.
  • the natural polymer is, for example, rubber.
  • the artificial polymer is a plastic.
  • the polymer material forms as the base material of the composite material a matrix in which the filler is embedded.
  • the filler or the fillers may be powdery or fibrous.
  • a diameter of a filler particle is selected from the ⁇ m range, which ranges from 100 nm to 100 ⁇ m.
  • a degree of filling of the filler in the polymer material is preferably chosen so that a coagulation limit is exceeded. Below the coagulation limit there is a very low probability that individual filler particles will touch each other. This leads to a relatively low specific thermal conductivity coefficient. If the coagulation limit is exceeded, the filler particles touch with relatively high probability. This results in a relatively high specific thermal conductivity coefficient of the composite material.
  • the filler is thermally conductive and preferably also electrically insulating or electrically poorly conductive. This results in that the inductive component can be operated with a relatively high operating voltage. For example, the operating voltage is up to 2000 V.
  • the composite material is resistant to breakdown even at an operating voltage of this magnitude.
  • a thermally conductive and at the same time electrically insulating or electrically poorly conductive filler is particularly suitable a ceramic material.
  • a ceramic material with the properties mentioned is, for example, aluminum oxide (Al 2 O 3 ).
  • the composite material of the cooling device is preferably connected directly to the wire winding. A heat transfer away from the wire winding occurs by heat conduction.
  • the cooling device has at least one film with the composite material, which is in direct, thermally conductive contact with the wire winding.
  • the film and the wire winding are connected in such a way that heat conduction from the wire winding to the film can take place.
  • the foil and the wire wrap touch each other.
  • a film thickness (film thickness) of the film is for example 0.22 mm.
  • a specific thermal conductivity coefficient ⁇ of 0.15 K / Wm up to 6.5 K / Wm can be achieved.
  • the dielectric strength can be 1 kV to 6 kV despite the relatively low film thickness.
  • a soft film is used with the composite material.
  • the film is plastically and / or elastically deformable.
  • the wire winding may be approximately positively embedded in the film.
  • a thermal Contact surface between the film and the wire winding over which the heat conduction takes place is particularly large.
  • the cooling device has at least one potting compound which has at least one further composite material with at least one further polymer material and at least one further thermally conductive filler and which is in direct, thermally conductive contact with the wire winding and / or the film.
  • the composite material and the further composite material may be the same or different. The same applies to individual components of the composite material and of the further composite material.
  • the wire winding and / or the film are partly or completely embedded in the potting compound with the further composite material. Since the other composite material is thermally conductive and by embedding an almost complete positive connection between casting material and wire winding or film is present, the heat from the wire winding and the film on the casting material can be derived very efficiently.
  • the use of the potting compound leads to a homogeneous temperature distribution within the inductive component.
  • the wire winding of the device is cooled homogeneously. This also contributes to an increased quality of the inductive component.
  • a gap existing between the film and the wire winding and / or between the potting and the wire winding therefore has a thermally conductive material for thermal bridging of the interspace.
  • the gap is preferably complete with the thermally conductive material filled. This leads to improved heat dissipation away from the wire winding.
  • a thermally conductive material is used, which is additionally electrically insulating.
  • the thermally conductive material is selected from the group of oil, paste, wax and / or adhesive.
  • the cooling device of the inductive component is designed such that in the wire winding in the operation of the inductive component heat can be dissipated efficiently to the outside.
  • a further transport of heat away from the composite material of the cooling device is taken care of.
  • the further transport of the heat takes place for example by convection.
  • a fluid is passed past the cooling device with the composite material, which can absorb the heat.
  • the fluid is for example a liquid or a gas or gas mixture.
  • the further transport of the heat takes place by heat conduction.
  • the film with the composite material and / or the potting compound with the composite material is therefore thermally conductively connected to a heat sink by a heat conduction in the inductive component.
  • heat sink is preferably designed such that it can absorb a large amount of heat.
  • the heat capacity of the heat sink is large. It is also conceivable that the heat sink ensures efficient removal of the heat.
  • the heat sink is for example a heat sink made of a material that is characterized by a high thermal conductivity. To maintain the thermal gradient, the heat sink may be cooled by convection.
  • the inductive component is preferably a choke coil or a transformer.
  • An inductor is permeable to direct current. In contrast, alternating current is limited by the choke coil.
  • the choke coil has a high electrical reactance for a high frequency current.
  • the transformer consists of at least two wire windings. But it can also be arranged more than two wire windings to the transformer. Alternatively, there is the Transformer of a wire winding, which is divided by an electrical tap into two parts.
  • the inductive component is used according to a second aspect of the invention in an electronic ballast, in which an electrical input power is converted into an electrical output. Input power and output power are usually different.
  • the device is operated with an alternating voltage having a frequency in the range of 100 kHz inclusive up to and including 200 MHz. This frequency range is referred to as high frequency range.
  • the inductive component has, in particular, a core with a ferromagnetic core material that is suitable for high frequencies.
  • the core material is a ferrite in the form of an M33 core material with a cutoff frequency of about 10 MHz.
  • This core material has manganese and zinc.
  • a K1, K6 or K12 core material is conceivable. These core materials include nickel and zinc.
  • the K6 core material has a cutoff frequency of 7 MHz.
  • the wire winding advantageously has a high-frequency strand with a large number of individual wires insulated from one another.
  • a strand is a wire wound or braided from many metal threads (individual wires).
  • the individual wires are isolated from each other to reduce losses due to skin effect and eddy currents.
  • a lower high-frequency loss resistance is achieved in comparison to a strand with individual wires not insulated from one another with the same cross-section.
  • the individual wires have at least one selected from the range of 10 microns up to and including 50 microns single wire diameter.
  • the plurality is in the range of 10 to including 30 selected.
  • 10 or more individual wires are arranged to a high-frequency strand. This makes it possible to provide wire windings with a relatively large surface and thus with a relatively low high-frequency loss resistance.
  • an AC voltage of up to 2000 volts is used. It has been shown that with the help of the column, a high quality can be achieved even with a few hundred volts with a frequency of a few MHz. This results in that the inductive component can be miniaturized and still a high power throughput can be achieved with high quality and low internal losses.
  • the inductive component can thus be referred to as a miniaturized HF-HV (high-frequency high-voltage) component.
  • the inductive component can also be used in an ignition transformer for igniting a discharge lamp.
  • the discharge lamp is driven via an electrical circuit with a high alternating voltage (initial voltage).
  • a voltage pulse with an AC voltage of up to 40 kV is used.
  • the component is driven with this high AC voltage for a short time within a few microns (ignition duration).
  • the inductive component 1 is an HF-HV (high-frequency high-voltage) transformer ( FIG. 5 ).
  • the component 1 has a wire winding 3 and a core 4.
  • the wire winding is characterized by a winding axis 12, along which the wire of the wire winding 3 is wound.
  • the Wire winding 3 is a high-frequency strand 14 with 30 individual wires.
  • the wire diameter of a single wire is about 30 microns.
  • the core 4 is a ferrite core and consists of a M33 core material.
  • the core has an RM6 core form ( Figures 6a and 6b ).
  • the core is a combination of an E-core shape and a pot core shape with a central bore 15.
  • the core 4 has a core-centered gap 7, which is arranged around the central bore 15 in the inner region 10 of the wire winding 3.
  • Two further gaps 8 are arranged in the outer region 11 of the wire winding 3 in each case one of the core legs 6 of the core 4. All three columns 7 and 8 are air gaps.
  • the gap widths of gaps 7 and 8 are substantially equal, each about 3 mm.
  • the core is essentially symmetrical. It consists of two to the mirror plane 13 mirror-symmetrically arranged parts 5, which are arranged opposite one another at the columns 7 and 8 and spaced from each other by the gap widths 9.
  • the mirror plane 13 is located in the three columns 7 and 8.
  • the wire winding 3 is cooled.
  • a cooling device 20 for cooling the wire winding 3 is present.
  • the cooling device 20 has a foil 21 with a thermally conductive composite material.
  • the base material of the composite is a thermally and electrically poorly conductive polymer material.
  • a filler with high thermal and low electrical conductivity is embedded.
  • the film 21 has a film thickness of about 0.22 mm.
  • the specific thermal conductivity coefficient ⁇ is about 4 K / Wm.
  • the electrical dielectric strength reaches up to about 6 kV.
  • the high-frequency strand 14 of the wire winding 3 and the film 21 are wound around a wound body 30 adapted to the RM6 core shape.
  • the film 21 and the wire winding 3 are arranged around the winding body 30 such that the high-frequency strand 14 of the wire winding 3 and the films 21 alternate starting from the winding body 30 in the radial direction ( FIGS. 1 and 2 ).
  • the foil 21 used serves as an intermediate insulating layer of the high-frequency strand 14 of the wire winding 3.
  • An efficient heat-conducting path 24 results from the wire winding 3 in the radial direction.
  • the cherriesleitpfads 24 heat that is produced during operation of the inductive component in the Hochfrequenzlitze 14, derived efficiently.
  • the high-frequency strand 14 of the wire winding 3 and a plurality of films 21 are individually aligned radially relative to the winding body 30 (FIG. FIG. 3 ). It is a multi-chamber solution realized, which is also referred to as disk winding. Here, too, an efficient dissipation of heat via the heat conduction path 24 is provided.
  • the inductive component 1 or the cooling device 20 of the inductive component 1 is embedded in a potting compound 22 with a further thermally conductive composite material ( FIGS. 1 and 3 ).
  • the potting compound 22 is contacted with a portion of the wire winding 3 thermally conductive directly. This means that the heat can be dissipated via heat conduction via a thermal contact surface between the high-frequency winding 14 of the wire winding 3 and the film 21 or the films 21.
  • the potting compound 22 is thermally conductively connected to the heat sink 25 via heat conduction.
  • the heat sink 25 is a Board with a thermally highly conductive material. During operation of the inductive component, a relatively small temperature difference results between the wire winding 3 and the heat sink 25.
  • the heat is further dissipated by a discharge fin 26 having a relatively high coefficient of thermal conductivity ( FIG. 2 ).
  • a discharge fin 26 having a relatively high coefficient of thermal conductivity ( FIG. 2 ).
  • the Ableitfinne 26 which is connected via a spacer ceramic 28 with a relatively high thermal conductivity coefficient with the films 21, the heat from the films 21 and the wire winding 3 in the direction of heat sink 25 is forwarded.
  • gaps 27 may be present which reduce the efficiency with which the wire winding 3 is cooled ( FIG. 4 ).
  • These intermediate spaces 27 are filled according to a further embodiment with a thermally conductive and electrically insulating or poorly conductive paste.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Insulating Of Coils (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • General Induction Heating (AREA)

Abstract

The invention relates to an inductive component (1), for the formation of a magnetic circuit, with at least one wire winding (3) and at least one cooling device (20), for cooling the wire winding. The inductive component is characterised in that the cooling device comprises at least one composite material with at least one polymer material and at least one thermally-conducting filler. Heat generated in the wire winding during operation of the inductive component can be efficiently removed by means of the cooling device. For high frequency applications, a wire winding made with a high frequency litz wire and a core made from a high-frequency core material are particularly used. A miniaturised inductive component is thus possible which has a high Q value, even with a high power throughput and thus has low electrical losses. The inductive component is of application in so-called electronic ballast devices in lighting equipment.

Description

Die Erfindung betrifft ein induktives Bauelement zur Bildung eines magnetischen Kreises, das mindestens eine Drahtwicklung und mindestens eine Kühlvorrichtung zum Kühlen der Drahtwicklung aufweist.The invention relates to an inductive component for forming a magnetic circuit having at least one wire winding and at least one cooling device for cooling the wire winding.

Ein elektronisches Vorschaltgerät (EVG) wird als elektronischer Spannungs- und/oder Stromwandler im Beleuchtungsbereich eingesetzt. EVGs weisen mindestens ein induktives Bauelement auf. Das induktive Bauelement ist beispielsweise eine Drosselspule oder ein Transformator. Das induktive Bauelement verfügt über eine Drahtwicklung. Die Drahtwicklung weist eine Anzahl von Windungen eines elektrischen Leiters zur Erzeugung eines magnetischen Flusses durch den in dem Leiter fließenden Strom auf. Die Drahtwicklung dient auch der Erzeugung einer Spannung durch Änderung der magnetischen Induktion in der Drahtwicklung. Zur Vergrößerung der magnetischen Induktion und zur Verringerung eines magnetischen Streuverlusts befindet sich die Drahtwicklung meist auf einem Kern mit ferromagnetischem Material. Das ferromagnetische Kernmaterial ist beispielsweise ein Ferrit. Der Kern sorgt für einen möglichst geschlossenen magnetischen Kreis.An electronic ballast (ECG) is used as an electronic voltage and / or current transformer in the lighting area. ECGs have at least one inductive component. The inductive component is, for example, a choke coil or a transformer. The inductive component has a wire winding. The wire winding has a number of turns of electrical conductor for generating a magnetic flux through the current flowing in the conductor. The wire winding also serves to generate a voltage by changing the magnetic induction in the wire winding. To increase the magnetic induction and to reduce a magnetic leakage, the wire winding is usually on a core with ferromagnetic material. The ferromagnetic core material is, for example, a ferrite. The core ensures a closed magnetic circuit.

Diese EVGs werden zunehmend miniaturisiert. Die Miniaturisierung betrifft insbesondere ein induktives Bauelement der EVGs. Eine kleine Baugröße eines induktiven Bauelements lässt sich bei einem gleichbleibenden Leistungsdurchsatz durch eine höhere Schaltfrequenz erreichen. Eine höhere Schaltfrequenz führt aber zu einer Erhöhung der elektrischen Verluste und damit zu einer Erniedrigung der Güte Q des induktiven Bauelements. Die Güte ist ein Maß einer elektrischen Qualität des induktiven Bauelements. Infolge der sinkenden Güte kann es bei einer zunehmenden Miniaturisierung des induktiven Bauelements insbesondere bei einer hohen Wechselspannung, mit der das induktive Bauelement betrieben wird, zu einer unzulässig hohen Betriebstemperatur kommen.
In der Schrift US 6259347 ist ein Hochleistungstransformator offenbart, bei dem zwischen den Wicklungen lie-gende Folien Wärme nach aussen transportieren, wo sie abgeleitet wird.
Bei einem induktiven Bauelement in Form eines Großtransformators ist beispielsweise eine Kühlvorrichtung zum Kühlen der Drahtwicklung mit einem Kühlkreislauf realisiert, der mit Hilfe eines Fluids betrieben wird. Eine solche Lösung gibt es für ein miniaturisiertes induktives Bauelement nicht. Das miniaturisierte induktive Bauelement wird normalerweise in einer Umgebung mit Luft betrieben. Dies bedeutet, dass die Drahtwicklung des Bauelements allein durch Konvektion gekühlt wird, die durch die Umgebungsluft hervorgerufen wird. Diese Art der Kühlung ist aber unter Umständen nicht ausreichend, um die Betriebstemperatur so weit zu reduzieren, dass die Güte des induktiven Bauelements den Anforderungen genügt.
Aufgabe der vorliegenden Erfindung ist es, ein induktives Bauelement mit einer effizienten Kühlvorrichtung zum Kühlen der Drahtwicklung bereitzustellen.
Die Aufgabe wird durch ein induktives Bauelement zur Bildung eines magnetischen Kreises gelöst, das mindestens eine Drahtwicklung und mindestens eine Kühlvorrichtung zum Kühlen der Drahtwicklung aufweist.Die Kühlvorrichtung weist mindestens einen Verbundwerkstoff mit mindestens einem Polymerwerkstoff und mindestens einem thermisch leitfähigen Füllstoff auf. Zudem ist ein Kern mit einem ferromagnetischen Kernmaterial vorhanden, das hochfrequenztauglich ist. Das induktive Bauelement ist dadurch gekennzeichnet, dass die Kühlvorrichtung (20) mindestens eine Vergussmasse (22) aufweist, die mindestens einen weiteren Verbundwerkstoff mit mindestens einem weiteren Polymerwerkstoff und mindestens einem weiteren thermisch leitfähigen Füllstoff aufweist und die mit der Drahtwicklung (3) in direktem, thermisch leitfähigen Kontakt steht,
wobei ein zwischen der Vergussmasse (22) und der Drahtwicklung (3) vorhandener Zwischenraum (27) ein thermisch leitfähiges Material zur thermischen Überbrückung des Zwischenraums (27) aufweist,
wobei das thermisch leitfähige Material aus der Gruppe Öl, Paste, Wachs und/oder Klebstoff ausgewählt ist.
These TOs are increasingly being miniaturized. The miniaturization relates in particular to an inductive component of the electronic ballasts. A small size of an inductive component can be achieved with a constant power throughput by a higher switching frequency. However, a higher switching frequency leads to an increase in the electrical losses and thus to a reduction in the quality Q of the inductive component. The quality is a measure of an electrical quality of the inductive Component. As a result of the decreasing quality, with an increasing miniaturization of the inductive component, in particular with a high alternating voltage, with which the inductive component is operated, an inadmissibly high operating temperature may occur.
In Scripture US 6259347 discloses a high power transformer in which foils lying between the windings carry heat to the outside where it is dissipated.
In an inductive component in the form of a large transformer, for example, a cooling device for cooling the wire winding is realized with a cooling circuit which is operated by means of a fluid. Such a solution does not exist for a miniaturized inductive component. The miniaturized inductive component is normally operated in an ambient environment with air. This means that the wire winding of the device is cooled solely by convection caused by the ambient air. However, this type of cooling may not be sufficient to reduce the operating temperature to such an extent that the quality of the inductive component meets the requirements.
The object of the present invention is to provide an inductive component with an efficient cooling device for cooling the wire winding.
The object is achieved by an inductive component for forming a magnetic circuit having at least one wire winding and at least one cooling device for cooling the wire winding. The cooling device has at least one composite material with at least one polymer material and at least one thermally conductive filler. In addition, a core with a ferromagnetic core material is available, which is suitable for high frequency. The inductive component is characterized in that the cooling device (20) has at least one potting compound (22) which has at least one further composite material with at least one further polymer material and at least one further thermally conductive filler and which is in direct, thermally conductive contact with the wire winding (3),
wherein a gap (27) between the potting compound (22) and the wire winding (3) comprises a thermally conductive material for thermal bridging of the gap (27),
wherein the thermally conductive material is selected from the group consisting of oil, paste, wax and / or adhesive.

Der Verbundwerkstoff besteht vorzugsweise aus einem elektrisch isolierenden beziehungsweise elektrisch schlecht leitenden Polymerwerkstoff mit einem thermisch leitfähigen und elektrisch schlecht leitenden Füllstoff. Der Polymerwerkstoff kann ein natürliches und/oder künstliches Polymer aufweisen. Das natürliche Polymer ist beispielsweise Kautschuk. Das künstliche Polymer ist ein Kunststoff.The composite material preferably consists of an electrically insulating or electrically poorly conductive polymer material with a thermally conductive and electrically poorly conductive filler. The polymer material may comprise a natural and / or artificial polymer. The natural polymer is, for example, rubber. The artificial polymer is a plastic.

Der Polymerwerkstoff bildet dabei als Basismaterial des Verbundwerkstoffes eine Matrix, in die der Füllstoff eingebettet ist. Dabei können mehrere Füllstoffe vorhanden sein. Der Füllstoff kann bzw. die Füllstoffe können pulverförmig oder faserförmig sein. Ein Durchmesser eines Füllstoffpartikels ist aus dem µm-Bereich ausgewählt, der von 100 nm bis 100 µm reicht. Ein Füllgrad des Füllstoffes im Polymerwerkstoff ist dabei vorzugsweise so gewählt, dass eine Koagulationsgrenze überschritten wird. Unterhalb der Koagulationsgrenze ist die Wahrscheinlichkeit dafür sehr gering, dass sich einzelne Füllstoffpartikel berühren. Dies führt zu einem relativ niedrigen spezifischen Wärmeleitfähigkeitskoeffizienten. Wenn die Koagulationsgrenze überschritten wird, berühren sich die Füllstoffpartikel mit relativ großer Wahrscheinlichkeit. Daraus ergibt sich ein relativ hoher spezifischer Wärmeleitfähigkeitskoeffizient des Verbundwerkstoffs.The polymer material forms as the base material of the composite material a matrix in which the filler is embedded. In this case, several fillers may be present. The filler or the fillers may be powdery or fibrous. A diameter of a filler particle is selected from the μm range, which ranges from 100 nm to 100 μm. A degree of filling of the filler in the polymer material is preferably chosen so that a coagulation limit is exceeded. Below the coagulation limit there is a very low probability that individual filler particles will touch each other. This leads to a relatively low specific thermal conductivity coefficient. If the coagulation limit is exceeded, the filler particles touch with relatively high probability. This results in a relatively high specific thermal conductivity coefficient of the composite material.

Der Füllstoff ist thermisch leitfähig und vorzugsweise auch elektrisch isolierend bzw. elektrisch schlecht leitend. Dies führt dazu, dass das induktive Bauelement auch mit einer relativ hohen Betriebsspannung betrieben werden kann. Beispielsweise beträgt die Betriebsspannung bis zu 2000 V. Der Verbundwerkstoff ist auch bei einer Betriebsspannung in dieser Größenordnung durchschlagsfest. Als thermisch leitfähiger und gleichzeitig elektrisch isolierender beziehungsweise elektrisch schlecht leitender Füllstoff eignet besonders ein keramischer Werkstoff. Ein keramischer Werkstoff mit den genannten Eigenschaften ist beispielsweise Aluminiumoxid (Al2O3).The filler is thermally conductive and preferably also electrically insulating or electrically poorly conductive. This results in that the inductive component can be operated with a relatively high operating voltage. For example, the operating voltage is up to 2000 V. The composite material is resistant to breakdown even at an operating voltage of this magnitude. As a thermally conductive and at the same time electrically insulating or electrically poorly conductive filler is particularly suitable a ceramic material. A ceramic material with the properties mentioned is, for example, aluminum oxide (Al 2 O 3 ).

Zu einem effizienten Abtransport von Wärme, die im Betrieb des induktiven Bauelements in der Drahtwicklung entsteht, ist der Verbundwerkstoff der Kühlvorrichtung vorzugsweise direkt mit der Drahtwicklung verbunden. Ein Wärmetransport von der Drahtwicklung weg erfolgt durch Wärmeleitung.For efficient removal of heat, which arises during operation of the inductive component in the wire winding, the composite material of the cooling device is preferably connected directly to the wire winding. A heat transfer away from the wire winding occurs by heat conduction.

In einer besonderen Ausgestaltung weist die Kühlvorrichtung mindestens eine Folie mit dem Verbundwerkstoff auf, die mit der Drahtwicklung in direktem, thermisch leitfähigen Kontakt steht. Die Folie und die Drahtwicklung sind derart verbunden, dass eine Wärmeleitung von der Drahtwicklung zur Folie hin stattfinden kann. Die Folie und die Drahtwicklung berühren sich einander. Eine Foliedicke (Folienstärke) der Folie beträgt beispielsweise 0,22 mm. In Abhängigkeit vom Verbundwerkstoff (Art des Polymerwerkstoffes, Art und Füllgrad des Füllstoffes, etc,) ist dabei ein spezifischer Wärmeleitfähigkeitskoeffizient λ vom 0,15 K/Wm bis hin zu 6,5 K/Wm erreichbar. Die Spannungsfestigkeit kann trotz der relativ geringen Foliedicke dabei 1 kV bis 6 kV betragen.In a particular embodiment, the cooling device has at least one film with the composite material, which is in direct, thermally conductive contact with the wire winding. The film and the wire winding are connected in such a way that heat conduction from the wire winding to the film can take place. The foil and the wire wrap touch each other. A film thickness (film thickness) of the film is for example 0.22 mm. Depending on the composite material (type of polymer material, type and degree of filling of the filler, etc.), a specific thermal conductivity coefficient λ of 0.15 K / Wm up to 6.5 K / Wm can be achieved. The dielectric strength can be 1 kV to 6 kV despite the relatively low film thickness.

Um eine effiziente Wärmeableitung durch die Kühlvorrichtung zu gewährleisten, wird insbesondere eine weiche Folie mit dem Verbundwerkstoff verwendet. Die Folie ist plastisch und/oder elastisch verformbar. Die Drahtwicklung kann näherungsweise formschlüssig in die Folie eingebettet sein. Eine thermische Kontaktfläche zwischen der Folie und der Drahtwicklung, über die die Wärmeleitung stattfindet, ist dabei besonders groß.In order to ensure efficient heat dissipation by the cooling device, in particular a soft film is used with the composite material. The film is plastically and / or elastically deformable. The wire winding may be approximately positively embedded in the film. A thermal Contact surface between the film and the wire winding over which the heat conduction takes place is particularly large.

Die Kühlvorrichtung weist mindestens eine Vergussmasse auf, die mindestens einen weiteren Verbundwerkstoff mit mindestens einem weiteren Polymerwerkstoff und mindestens einem weiteren thermisch leitfähigen Füllstoff aufweist und die mit der Drahtwicklung und/oder der Folie in direktem, thermisch leitfähigen Kontakt steht. Der Verbundwerkstoff und der weitere Verbundwerkstoff können gleich oder verschieden sein. Gleiches gilt für einzelne Komponenten des Verbundwerkstoffs und des weiteren Verbundwerkstoffs. Die Drahtwicklung und/oder die Folie sind zum Teil oder ganz in die Vergussmasse mit dem weiteren Verbundwerkstoff eingebettet. Da der weitere Verbundwerkstoff thermisch leitfähig ist und durch das Einbetten ein nahezu kompletter Formschluss zwischen Gussmasse und Drahtwicklung bzw. Folie vorliegt, kann die Wärme von der Drahtwicklung und der Folie über die Gussmasse sehr effizient abgeleitet werden. Durch die Verwendung der Vergussmasse kommt es darüber hinaus zu einer homogenen Temperaturverteilung innerhalb des induktiven Bauelements. Die Drahtwicklung des Bauelements wird homogen gekühlt. Dies trägt ebenfalls zu einer erhöhten Güte des induktiven Bauelements bei.The cooling device has at least one potting compound which has at least one further composite material with at least one further polymer material and at least one further thermally conductive filler and which is in direct, thermally conductive contact with the wire winding and / or the film. The composite material and the further composite material may be the same or different. The same applies to individual components of the composite material and of the further composite material. The wire winding and / or the film are partly or completely embedded in the potting compound with the further composite material. Since the other composite material is thermally conductive and by embedding an almost complete positive connection between casting material and wire winding or film is present, the heat from the wire winding and the film on the casting material can be derived very efficiently. In addition, the use of the potting compound leads to a homogeneous temperature distribution within the inductive component. The wire winding of the device is cooled homogeneously. This also contributes to an increased quality of the inductive component.

Sowohl bei der Folie als auch bei der Vergussmasse ist es möglich, dass zwischen Vergussmasse, Folie und Drahtwicklung Zwischenräume (Hohlräume) vorhanden sind, die mit Luft gefüllt sind und daher zu einer thermischen Isolierung der Vergussmasse, Folie und der Drahtwicklung voneinander beitragen. Eine effiziente Ableitung von Wärme ist aufgrund der Zwischenräume nicht möglich. Ein zwischen der Folie und der Drahtwicklung und/oder zwischen dem Verguss und der Drahtwicklung vorhandener Zwischenraum weist daher ein thermisch leitfähiges Material zur thermischen Überbrückung des Zwischenraums auf. Der Zwischenraum ist vorzugsweise vollständig mit dem thermisch leitfähigen Material ausgefüllt. Dies führt zu einer verbesserten Wärmeableitung von der Drahtwicklung weg. Dazu wird ein thermisch leitfähiges Material verwendet, das zusätzlich elektrisch isolierend ist. Das thermisch leitfähige Material ist aus der Gruppe Öl, Paste, Wachs und/oder Klebstoff ausgewählt. Mit diesen thermisch leitfähigen und gleichzeitig elektrisch isolierenden Materialien ist gewährleistet, dass auch bei Verwendung von hohen Betriebsspannunqen eine dafür notwendige Spannungsfestigkeit gegeben ist.Both in the case of the film and in the potting compound, it is possible for intermediate spaces (cavities) to be present between potting compound, film and wire winding which are filled with air and therefore contribute to thermal insulation of the potting compound, film and wire winding from one another. An efficient dissipation of heat is not possible due to the gaps. A gap existing between the film and the wire winding and / or between the potting and the wire winding therefore has a thermally conductive material for thermal bridging of the interspace. The gap is preferably complete with the thermally conductive material filled. This leads to improved heat dissipation away from the wire winding. For this purpose, a thermally conductive material is used, which is additionally electrically insulating. The thermally conductive material is selected from the group of oil, paste, wax and / or adhesive. With these thermally conductive and at the same time electrically insulating materials it is ensured that even when using high operating voltages a necessary dielectric strength is given.

Die Kühlvorrichtung des induktiven Bauelements ist derart ausgestaltet, dass die in der Drahtwicklung im Betrieb des induktiven Bauelements entstehende Wärme effizient nach außen abgeführt werden kann. Dazu wird für einen Weitertransport der Wärme vom Verbundwerkstoff der Kühlvorrichtung weg gesorgt. Der Weitertransport der Wärme erfolgt beispielsweise durch Konvektion. Dazu wird an der Kühlvorrichtung mit dem Verbundwerkstoff ein Fluid vorbeigeleitet, das die Wärme aufnehmen kann. Das Fluid ist beispielsweise eine Flüssigkeit oder ein Gas bzw. Gasgemisch.The cooling device of the inductive component is designed such that in the wire winding in the operation of the inductive component heat can be dissipated efficiently to the outside. For this purpose, a further transport of heat away from the composite material of the cooling device is taken care of. The further transport of the heat takes place for example by convection. For this purpose, a fluid is passed past the cooling device with the composite material, which can absorb the heat. The fluid is for example a liquid or a gas or gas mixture.

Vorzugsweise erfolgt der Weitertransport der Wärme durch Wärmeleitung. In einer besonderen Ausgestaltung ist daher bei dem induktiven Bauelement die Folie mit dem Verbundwerkstoff und/oder die Vergussmasse mit dem Verbundwerkstoff mit einer Wärmesenke durch eine Wärmeleitung thermisch leitend verbunden. Mit Hilfe der Wärmesenke wird dafür gesorgt, dass im Betrieb des induktiven Bauelements ein möglichst kleiner Temperaturunterschied zwischen der Drahtwicklung, der Kühlvorrichtung und der Wärmesenke vorhanden ist. Dazu ist Wärmesenke vorzugsweise derart ausgestaltet, dass sie eine große Wärmemenge aufnehmen kann. Die Wärmekapazität der Wärmesenke ist groß. Denkbar ist auch, dass bei der Wärmesenke für einen effizienten Abtransport der Wärme gesorgt ist. Die Wärmesenke ist beispielsweise ein Kühlkörper aus einem Material, das sich durch eine hohe thermische Leitfähigkeit auszeichnet. Zum Aufrechterhalten des Wärmegradienten kann der Kühlkörper kann durch Konvektion gekühlt werden.Preferably, the further transport of the heat takes place by heat conduction. In a particular embodiment, the film with the composite material and / or the potting compound with the composite material is therefore thermally conductively connected to a heat sink by a heat conduction in the inductive component. With the help of the heat sink is ensured that the smallest possible temperature difference between the wire winding, the cooling device and the heat sink is present during operation of the inductive component. For this purpose, heat sink is preferably designed such that it can absorb a large amount of heat. The heat capacity of the heat sink is large. It is also conceivable that the heat sink ensures efficient removal of the heat. The heat sink is for example a heat sink made of a material that is characterized by a high thermal conductivity. To maintain the thermal gradient, the heat sink may be cooled by convection.

Das induktive Bauelement ist vorzugsweise eine Drosselspule oder ein Transformator. Eine Drosselspule ist für Gleichstrom durchlässig. Dagegen wird Wechselstrom durch die Drosselspule begrenzt. Die Drosselspule weist für einen Strom hoher Frequenz einen hohen elektrischen Blindwiderstand auf. Der Transformator besteht aus mindestens zwei Drahtwicklungen. Es können aber auch mehr als zwei Drahtwicklungen zum Transformator angeordnet sein. Alternativ dazu besteht der Transformator aus einer Drahtwicklung, die durch einen elektrischen Abgriff in zwei Teile unterteilt ist.The inductive component is preferably a choke coil or a transformer. An inductor is permeable to direct current. In contrast, alternating current is limited by the choke coil. The choke coil has a high electrical reactance for a high frequency current. The transformer consists of at least two wire windings. But it can also be arranged more than two wire windings to the transformer. Alternatively, there is the Transformer of a wire winding, which is divided by an electrical tap into two parts.

Das induktive Bauelement wird gemäß einem zweiten Aspekt der Erfindung in einem elektronischen Vorschaltgerät verwendet, bei dem eine elektrische Eingangsleistung in eine elektrische Ausgangsleistung umgewandelt wird. Eingangsleistung und Ausgangsleistung sind normalerweise unterschiedlich. Insbesondere wird dabei das Bauelement mit einer Wechselspannung mit einer Frequenz aus dem Bereich von einschließlich 100 kHz bis einschließlich 200 MHz betrieben. Dieser Frequenzbereich wird als Hochfrequenzbereich bezeichnet. Zur Anwendung in der Hochfrequenztechnik weist das induktive Bauelement insbesondere einen Kern mit einem ferromagnetischen Kernmaterial auf, das hochfrequenztauglich ist. Beispielsweise ist das Kernmaterial ein Ferrit in Form eines M33-Kernmaterials mit einer Grenzfrequenz von etwa 10 MHz. Dieses Kernmaterial weist Mangan und Zink auf. Ebenso ist ein K1, K6 oder K12-Kernmaterial denkbar. Diese Kernmaterialien weisen Nickel und Zink auf. Das K6-Kernmaterial weist beispielsweise eine Grenzfrequenz von 7 MHz auf.The inductive component is used according to a second aspect of the invention in an electronic ballast, in which an electrical input power is converted into an electrical output. Input power and output power are usually different. In particular, the device is operated with an alternating voltage having a frequency in the range of 100 kHz inclusive up to and including 200 MHz. This frequency range is referred to as high frequency range. For use in high-frequency engineering, the inductive component has, in particular, a core with a ferromagnetic core material that is suitable for high frequencies. For example, the core material is a ferrite in the form of an M33 core material with a cutoff frequency of about 10 MHz. This core material has manganese and zinc. Likewise, a K1, K6 or K12 core material is conceivable. These core materials include nickel and zinc. For example, the K6 core material has a cutoff frequency of 7 MHz.

Im Hinblick auf die Hochfrequenzanwendung weist die Drahtwicklung vorteilhaft eine Hochfrequenzlitze mit einer Vielzahl von voneinander elektrisch isolierten Einzeldrähten auf. Eine Litze ist ein aus vielen Metallfäden (Einzeldrähten) gewundener oder geflochtener Draht. Bei einer Hochfrequenzlitze sind die Einzeldrähte gegeneinander isoliert, um Verluste durch Skineffekt und Wirbelströme zu reduzieren. Dadurch wird im Vergleich zu einer Litze mit nicht voneinander isolierten Einzeldrähten bei gleichem Querschnitt ein niedrigerer Hochfrequenzverlustwiderstand erzielt. Insbesondere weisen die Einzeldrähte zumindest einen aus dem Bereich von einschließlich 10 µm bis einschließlich 50 µm ausgewählten Einzeldrahtdurchmesser aus. Insbesondere ist die Vielzahl aus dem Bereich von einschließlich 10 bis einschließlich 30 ausgewählt. Beispielsweise sind 10 und mehr Einzeldrähte zu einer Hochfrequenzlitze angeordnet. Damit lassen sich Drahtwicklungen mit einer relativ großen Oberfläche und damit mit einem relativ niedrigen Hochfrequenzverlustwiderstand bereitstellen.With regard to the high-frequency application, the wire winding advantageously has a high-frequency strand with a large number of individual wires insulated from one another. A strand is a wire wound or braided from many metal threads (individual wires). In a high-frequency strand, the individual wires are isolated from each other to reduce losses due to skin effect and eddy currents. As a result, a lower high-frequency loss resistance is achieved in comparison to a strand with individual wires not insulated from one another with the same cross-section. In particular, the individual wires have at least one selected from the range of 10 microns up to and including 50 microns single wire diameter. In particular, the plurality is in the range of 10 to including 30 selected. For example, 10 or more individual wires are arranged to a high-frequency strand. This makes it possible to provide wire windings with a relatively large surface and thus with a relatively low high-frequency loss resistance.

In einer besonderen Ausgestaltung wird eine Wechselspannung von bis zu 2000 Volt verwendet. Es hat sich gezeigt, dass sich mit Hilfe der Spalte auch bei einigen hundert Volt mit einer Frequenz von einigen MHz eine hohe Güte erzielen lässt. Dies führt dazu, dass das induktive Bauelement miniaturisiert werden kann und trotzdem ein hoher Leistungsdurchsatz bei hoher Güte und niedrigen inneren Verlusten erreicht werden kann. Das induktive Bauelement kann somit als ein miniaturisiertes HF-HV (Hochfrequenz-Hochvolt)-Bauelement bezeichnet werden.In a particular embodiment, an AC voltage of up to 2000 volts is used. It has been shown that with the help of the column, a high quality can be achieved even with a few hundred volts with a frequency of a few MHz. This results in that the inductive component can be miniaturized and still a high power throughput can be achieved with high quality and low internal losses. The inductive component can thus be referred to as a miniaturized HF-HV (high-frequency high-voltage) component.

Das induktive Bauelement kann auch in einem Zündtrafo zum Zünden einer Entladungslampe eingesetzt werden. Zum Zünden der Entladungslampe wird die Entladungslampe über eine elektrische Schaltung mit einer hohen Wechselspannung (Initialspannung) angesteuert. In einer weiteren Ausgestaltung wird daher ein Spannungspuls mit einer Wechselspannung von bis zu 40 kV verwendet. Das Bauelement wird mit dieser hohen Wechselspannung kurzzeitig innerhalb weniger µm (Zünddauer) angesteuert.The inductive component can also be used in an ignition transformer for igniting a discharge lamp. To ignite the discharge lamp, the discharge lamp is driven via an electrical circuit with a high alternating voltage (initial voltage). In a further embodiment, therefore, a voltage pulse with an AC voltage of up to 40 kV is used. The component is driven with this high AC voltage for a short time within a few microns (ignition duration).

Zusammenfassend verbindet sich mit der Erfindung folgende wesentlichen Vorteile:

  • Mit Hilfe der Kühlvorrichtung kann die in der Drahtwicklung im Betrieb des induktiven Bauelements entstehende Wärme effizient abgeleitet werden. Durch das effiziente Ableiten der Wärme kommt es zu einer relativ geringen Temperaturerhöhung der Drahtwicklung. Die geringe Temperaturerhöhung führt zu einer relativ geringen Erhöhung des elektrischen Widerstands in der Drahtwicklung. Es resultiert eine im Vergleich zu einer ungekühlten Drahtwicklung erhöhte Güte des induktiven Bauelements.
  • Durch die Verwendung der Vergussmasse kommt es darüber hinaus zu einer homogenen Temperaturverteilung innerhalb des induktiven Bauelements. Die Drahtwicklung des Bauelements wird homogen gekühlt. Dies trägt ebenfalls zu einer erhöhten Güte des induktiven Bauelements bei.
  • Aufgrund der effizienten Kühlung kann ein miniaturisiertes induktives Bauelement mit hohem Leistungsdurchsatz auch bei Hochfrequenzanwendungen eingesetzt werden.
In summary, the following essential advantages are associated with the invention:
  • With the help of the cooling device, the heat generated in the wire winding during operation of the inductive component can be efficiently dissipated. The efficient dissipation of the heat leads to a relatively small increase in the temperature of the wire winding. The small increase in temperature leads to a relatively small increase in the electrical resistance in the Wire winding. This results in an increased quality of the inductive component compared to an uncooled wire winding.
  • In addition, the use of the potting compound leads to a homogeneous temperature distribution within the inductive component. The wire winding of the device is cooled homogeneously. This also contributes to an increased quality of the inductive component.
  • Due to the efficient cooling, a miniaturized inductive component with high power throughput can also be used in high-frequency applications.

Anhand mehrerer Ausführungsbeispiele und der dazugehörigen Figuren wird die Erfindung im Weiteren näher erläutert. Die Figuren sind schematisch und stellen keine maßstabsgetreuen Abbildungen dar.

Figuren 1 bis 3
zeigen jeweils ein induktives Bauelement mit einer Kühlvorrichtung in einem seitlichen Querschnitt.
Figur 4
zeigt einen Ausschnitt eines induktiven Bauelements mit Kühlvorrichtung im seitlichen Querschnitt.
Figur 5
zeigt ein induktives Bauelement von der Seite.
Figuren 6a und 6b
zeigen eine RM-Bauform des Kerns des induktiven Bauelements von oben und im Querschnitt entlang der Verbindungslinie I-I.
On the basis of several embodiments and the associated figures, the invention will be explained in more detail below. The figures are schematic and do not represent true to scale figures.
FIGS. 1 to 3
each show an inductive component with a cooling device in a lateral cross-section.
FIG. 4
shows a section of an inductive component with cooling device in the lateral cross-section.
FIG. 5
shows an inductive component from the side.
Figures 6a and 6b
show an RM design of the core of the inductive component from above and in cross section along the connecting line II.

Das induktive Bauelement 1 ist ein HF-HV-(Hochfrequenz-Hochvolt)Transformator (Figur 5). Das Bauelement 1 weist eine Drahtwicklung 3 und einen Kern 4 auf. Die Drahtwicklung zeichnet sich durch eine Wicklungsachse 12 aus, entlang der der Draht der Drahtwicklung 3 gewickelt ist. Die Drahtwicklung 3 ist eine Hochfrequenzlitze 14 mit 30 Einzeldrähten. Der Drahtdurchmesser eines Einzeldrahtes beträgt etwa 30 µm. Der Kern 4 ist ein Ferritkern und besteht aus einem M33-Kernmaterial. Der Kern weist eine RM6-Kernform auf (Figuren 6a und 6b). Der Kern ist eine Kombination einer E-Kernform und einer Topf-Kernform mit einer mittigen Bohrung 15. Der Kern 4 weist einen kernmittigen Spalt 7 auf, der um die mittige Bohrung 15 im Innenbereich 10 der Drahtwicklung 3 angeordnet ist. Zwei weitere Spalte 8 sind im Außenbereich 11 der Drahtwicklung 3 in jeweils einem der Kernschenkel 6 des Kerns 4 angeordnet. Alle drei Spalte 7 und 8 sind Luftspalte. Die Spaltweiten der Spalte 7 und 8 sind mit jeweils etwa 3 mm im Wesentlichen gleich.The inductive component 1 is an HF-HV (high-frequency high-voltage) transformer ( FIG. 5 ). The component 1 has a wire winding 3 and a core 4. The wire winding is characterized by a winding axis 12, along which the wire of the wire winding 3 is wound. The Wire winding 3 is a high-frequency strand 14 with 30 individual wires. The wire diameter of a single wire is about 30 microns. The core 4 is a ferrite core and consists of a M33 core material. The core has an RM6 core form ( Figures 6a and 6b ). The core is a combination of an E-core shape and a pot core shape with a central bore 15. The core 4 has a core-centered gap 7, which is arranged around the central bore 15 in the inner region 10 of the wire winding 3. Two further gaps 8 are arranged in the outer region 11 of the wire winding 3 in each case one of the core legs 6 of the core 4. All three columns 7 and 8 are air gaps. The gap widths of gaps 7 and 8 are substantially equal, each about 3 mm.

Der Kern ist im Wesentlichen symmetrisch. Er besteht aus zwei zur Spiegelebene 13 spiegelsymmetrisch angeordneten Teilen 5, die an den Spalten 7 und 8 einander gegenüberliegend angeordnet und durch die Spaltweiten 9 voneinander beabstandet sind. Die Spiegelebene 13 befindet sich in den drei Spalten 7 und 8. Durch die Anordnung ist aber nicht nur der Kern 4, sondern auch die Drahtwicklung 3 im Wesentlichen symmetrisch angeordnet. Es resultiert ein induktives Bauelement, das im Wesentlichen zur Spiegelebene 13 symmetrisch ist.The core is essentially symmetrical. It consists of two to the mirror plane 13 mirror-symmetrically arranged parts 5, which are arranged opposite one another at the columns 7 and 8 and spaced from each other by the gap widths 9. The mirror plane 13 is located in the three columns 7 and 8. The arrangement, however, not only the core 4, but also the wire winding 3 is arranged substantially symmetrically. The result is an inductive component, which is symmetrical to the mirror plane 13 substantially.

Zum Erzielen einer relativ hohen Güte des HF-HV-Transformators wird die Drahtwicklung 3 gekühlt. Dazu ist eine Kühlvorrichtung 20 zum Kühlen der Drahtwicklung 3 vorhanden. Die Kühlvorrichtung 20 weist eine Folie 21 mit einem thermisch leitenden Verbundwerkstoff auf. Das Basismaterial des Verbundwerkstoffs ist ein thermisch und elektrisch schlecht leitender Polymerwerkstoff. In dem Polymerwerkstoff ist ein Füllstoff mit hoher thermischer und niedriger elektrischer Leitfähigkeit eingebettet. Die Folie 21 weist eine Foliendicke von etwa 0,22 mm auf. Der spezifische Wärmeleitfähigkeitskoeffizient λ beträgt etwa 4 K/Wm. Die elektrische Spannungsfestigkeit reicht bis etwa 6 kV.To achieve a relatively high quality of the HF-HV transformer, the wire winding 3 is cooled. For this purpose, a cooling device 20 for cooling the wire winding 3 is present. The cooling device 20 has a foil 21 with a thermally conductive composite material. The base material of the composite is a thermally and electrically poorly conductive polymer material. In the polymer material, a filler with high thermal and low electrical conductivity is embedded. The film 21 has a film thickness of about 0.22 mm. The specific thermal conductivity coefficient λ is about 4 K / Wm. The electrical dielectric strength reaches up to about 6 kV.

Die Hochfrequenzlitze 14 der Drahtwicklung 3 und die Folie 21 sind um einen an die RM6-Kernform angepassten Wickelkörper 30 gewickelt. Dabei sind die Folie 21 und die Drahtwicklung 3 derart um den Wickelkörper 30 angeordnet, dass sich die Hochfrequenzlitze 14 der Drahtwicklung 3 und die Folien 21 ausgehend vom Wickelkörper 30 in radialer Richtung abwechseln (Figuren 1 und 2). Die verwendete Folien 21 dient als Zwischenisolationsschicht der Hochfrequenzlitze 14 der Drahtwicklung 3. Es resultiert ein effizienter Wärmeleitpfad 24 von der Drahtwicklung 3 weg in der radialen.Richtung. Entlang des Wärmeleitpfads 24 wird Wärme, die im Betrieb des induktiven Bauelements in der Hochfrequenzlitze 14 entsteht, effizient abgeleitet.The high-frequency strand 14 of the wire winding 3 and the film 21 are wound around a wound body 30 adapted to the RM6 core shape. The film 21 and the wire winding 3 are arranged around the winding body 30 such that the high-frequency strand 14 of the wire winding 3 and the films 21 alternate starting from the winding body 30 in the radial direction ( FIGS. 1 and 2 ). The foil 21 used serves as an intermediate insulating layer of the high-frequency strand 14 of the wire winding 3. An efficient heat-conducting path 24 results from the wire winding 3 in the radial direction. Along the Wärmeleitpfads 24 heat that is produced during operation of the inductive component in the Hochfrequenzlitze 14, derived efficiently.

Gemäß einer dazu alternativen Ausführungsform sind die Hochfrequenzlitze 14 der Drahtwicklung 3 und mehrere Folien 21 jeweils für sich radial zum Wickelkörper 30 ausgerichtet (Figur 3). Es ist eine Vielkammerlösung realisiert, die auch als Scheibenwicklung bezeichnet wird. Auch hier ist für eine effiziente Ableitung der Wärme über den Wärmeleitpfad 24 gesorgt.According to an alternative embodiment, the high-frequency strand 14 of the wire winding 3 and a plurality of films 21 are individually aligned radially relative to the winding body 30 (FIG. FIG. 3 ). It is a multi-chamber solution realized, which is also referred to as disk winding. Here, too, an efficient dissipation of heat via the heat conduction path 24 is provided.

Zur weiteren Ableitung der Wärme ist das induktive Bauelement 1 bzw. die Kühlvorrichtung 20 des induktiven Bauelements 1 in eine Vergussmasse 22 mit einem weiteren thermisch leitfähigen Verbundwerkstoff eingebettet (Figuren 1 und 3). Die Vergussmasse 22 ist mit einem Teil der Drahtwicklung 3 thermisch leitend direkt kontaktiert. Dies bedeutet, dass über eine thermische Kontaktfläche zwischen der Hochfrequenzlizte 14 der Drahtwicklung 3 und der Folie 21 bzw. den Folien 21 die Wärme über Wärmeleitung abgeleitet werden kann. Zum effizienten Ableiten der Wärme ist die Vergussmasse 22 mit der Wärmsenke 25 über Wärmeleitung thermisch leitend verbunden. Die Wärmesenke 25 ist eine Platine mit einem thermisch hochleitfähigen Material. Es resultiert im Betrieb des induktiven Bauelements eine relativ kleine Temperaturdifferenz zwischen der Drahtwicklung 3 und der Wärmesenke 25.For further dissipation of the heat, the inductive component 1 or the cooling device 20 of the inductive component 1 is embedded in a potting compound 22 with a further thermally conductive composite material ( FIGS. 1 and 3 ). The potting compound 22 is contacted with a portion of the wire winding 3 thermally conductive directly. This means that the heat can be dissipated via heat conduction via a thermal contact surface between the high-frequency winding 14 of the wire winding 3 and the film 21 or the films 21. For efficient dissipation of heat, the potting compound 22 is thermally conductively connected to the heat sink 25 via heat conduction. The heat sink 25 is a Board with a thermally highly conductive material. During operation of the inductive component, a relatively small temperature difference results between the wire winding 3 and the heat sink 25.

Alternativ zur Vergussmasse 22 erfolgt das weitere Ableiten der Wärme durch eine Ableitfinne 26 mit einem relativ hohen Wärmeleitfähigkeitskoeffizienten (Figur 2). Über die Ableitfinne 26, die über eine Distanzkeramik 28 mit relativ hohem Wärmeleitkoeffizienten mit den Folien 21 verbunden ist, wird die Wärme von den Folien 21 bzw. der Drahtwicklung 3 in Richtung Wärmesenke 25 weitergeleitet.As an alternative to potting compound 22, the heat is further dissipated by a discharge fin 26 having a relatively high coefficient of thermal conductivity ( FIG. 2 ). About the Ableitfinne 26, which is connected via a spacer ceramic 28 with a relatively high thermal conductivity coefficient with the films 21, the heat from the films 21 and the wire winding 3 in the direction of heat sink 25 is forwarded.

Sowohl im Falle der Vergussmasse 22 als auch im Falle der Folie 21 können Zwischenräume 27 vorhanden sein, die die Effizienz verringern, mit der die Drahtwicklung 3 gekühlt wird (Figur 4). Diese Zwischenräume 27 werden gemäß einer weiteren Ausführungsform mit einer thermisch leitfähigen und elektrisch isolierenden beziehungsweise schlecht leitenden Paste gefüllt.Both in the case of the potting compound 22 and in the case of the film 21, gaps 27 may be present which reduce the efficiency with which the wire winding 3 is cooled ( FIG. 4 ). These intermediate spaces 27 are filled according to a further embodiment with a thermally conductive and electrically insulating or poorly conductive paste.

Claims (9)

  1. Inductive component (1) for the purpose of forming a magnetic circuit which has at least one wire winding (3) and at least one cooling device (20) for the purpose of cooling the wire winding (3), the cooling device (20) having at least one composite material having at least one polymer material and at least one thermally conductive filler, a core being provided having a ferromagnetic core material which is suitable for radiofrequencies, characterized in that the cooling device (20) has at least one encapsulation compound (22) which has at least one further composite material having at least one further polymer material and at least one further thermally conductive filler and which is in direct, thermally conductive contact with the wire winding (3), an intermediate space (27), which is provided between the encapsulation compound (22) and the wire winding (3), having a thermally conductive material for the purpose of thermally bridging the intermediate space (27), the thermally conductive material being selected from the group consisting of oil, paste, wax and/or adhesive.
  2. Component according to Claim 1, the cooling device (20) having at least one film (21) having the composite material, said film (21) being in direct, thermally conductive contact with the wire winding.
  3. Component according to Claim 2, the encapsulation compound (22) being in direct, thermally conductive contact with the wire winding (3) and/or the film (21).
  4. Component according to Claim 3, an intermediate space (27), which is provided between the film (21) and the wire winding (3) and/or the encapsulation compound (22) and the wire winding (3), having the thermally conductive material for the purpose of thermally bridging the intermediate space(27).
  5. Component according to one of Claims 1 to 4, the film (21) having the composite material and/or the encapsulation compound (22) having the further composite material being thermally conductively connected to a heat sink (25) by means of thermal conduction.
  6. Component according to one of Claims 1 to 5, the wire winding (3) having a radiofrequency litz wire (14) having a large number of individual wires which are electrically insulated from one another.
  7. Component according to Claim 6, the individual wires having at least one individual wire diameter which is selected from the range from 10 µm to 50 µm, inclusive.
  8. Component according to Claim 7, the large number being selected from the range from 10 to 30, inclusive.
  9. Component according to one of Claims 1 to 8, the component being an inductor coil or a transformer.
EP04763199A 2003-07-18 2004-07-13 Inductive component with a cooling device and use of said component Expired - Lifetime EP1647037B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10332842A DE10332842A1 (en) 2003-07-18 2003-07-18 Inductive component with cooling device and use of the device
PCT/EP2004/007739 WO2005013296A1 (en) 2003-07-18 2004-07-13 Inductive component with a cooling device and use of said component

Publications (2)

Publication Number Publication Date
EP1647037A1 EP1647037A1 (en) 2006-04-19
EP1647037B1 true EP1647037B1 (en) 2009-11-11

Family

ID=34041955

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04763199A Expired - Lifetime EP1647037B1 (en) 2003-07-18 2004-07-13 Inductive component with a cooling device and use of said component

Country Status (7)

Country Link
EP (1) EP1647037B1 (en)
KR (1) KR20060037366A (en)
CN (1) CN1839450B (en)
AT (1) ATE448555T1 (en)
DE (2) DE10332842A1 (en)
TW (1) TW200509154A (en)
WO (1) WO2005013296A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005008521A1 (en) 2005-02-24 2006-08-31 OCé PRINTING SYSTEMS GMBH Arrangement and method for cooling a power semiconductor
DE102005019114A1 (en) 2005-04-25 2006-10-26 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Electronic device, especially voltage adapter, has electric coil arranged on component reservoir and arrangement for carrying away heat generated by electric coil via component reservoir
KR100774673B1 (en) * 2006-08-11 2007-11-08 현대자동차주식회사 Heat radiation structure for transformer of dc/dc converter
EP2521730A4 (en) * 2010-01-04 2013-06-12 Lineagen Inc Gene biomarkers of lung function
FR2959858B1 (en) * 2010-05-04 2012-07-13 Adeneo DEVICE FOR COOLING A MAGNETIC COMPONENT
DE102011080256A1 (en) * 2011-08-02 2012-10-04 Osram Ag Transformer for ballast used for LED lamp, has primary-side connecting pin and secondary-side connection pin which are provided on mounting face of base, and spacer devices are adapted to vary spacing of mounting face of base to the board
DE102011082045A1 (en) 2011-09-02 2013-03-07 Schmidhauser Ag Throttle and related manufacturing process
DE102013208653A1 (en) * 2013-05-10 2014-11-13 Sts Spezial-Transformatoren-Stockach Gmbh & Co. Kg Inductive component
DE102013217728A1 (en) * 2013-09-05 2015-03-05 Siemens Aktiengesellschaft coil assembly

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6916811U (en) * 1969-04-25 1969-10-02 Schlenker Maier Elektro Joh TRANSFORMER WITH HOUSING
JPS5928975B2 (en) * 1975-06-16 1984-07-17 松下電器産業株式会社 transformer
JPH01154488A (en) * 1987-12-09 1989-06-16 Toshiba Corp Stepup transformer for microwave oven
DE8903618U1 (en) * 1989-03-22 1989-05-03 Blaupunkt-Werke Gmbh, 3200 Hildesheim transformer
US5189080A (en) * 1989-04-25 1993-02-23 Robert Bosch Gmbh Epoxy resin composition for encapsulating electric circuit components
DE4317368A1 (en) * 1993-05-25 1994-12-01 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method for operating a high-pressure discharge lamp
US6198373B1 (en) * 1997-08-19 2001-03-06 Taiyo Yuden Co., Ltd. Wire wound electronic component
US6259347B1 (en) * 1997-09-30 2001-07-10 The United States Of America As Represented By The Secretary Of The Navy Electrical power cooling technique
EP1523748B1 (en) * 2002-07-19 2008-04-23 Siemens Aktiengesellschaft Inductive component and use of said component

Also Published As

Publication number Publication date
CN1839450B (en) 2010-12-08
WO2005013296A1 (en) 2005-02-10
CN1839450A (en) 2006-09-27
DE10332842A1 (en) 2005-02-10
EP1647037A1 (en) 2006-04-19
KR20060037366A (en) 2006-05-03
DE502004010352D1 (en) 2009-12-24
TW200509154A (en) 2005-03-01
ATE448555T1 (en) 2009-11-15

Similar Documents

Publication Publication Date Title
DE69232551T2 (en) Transformers and methods to control the leakage inductance in transformers
DE102011086940B4 (en) inductor
EP2463871B1 (en) Amorphous transformer core
EP0215286B1 (en) High power pulse transformer for short high-voltage and/or high-current pulses
EP1523748B1 (en) Inductive component and use of said component
DE3836415A1 (en) ELECTROMAGNETIC DEVICE WITH COOLING DEVICE
EP1647037B1 (en) Inductive component with a cooling device and use of said component
EP2751815B1 (en) Inductor
DE102007024890A1 (en) High voltage generator and high pressure discharge lamp with such a generator
DE10058080A1 (en) Medium-frequency transformer
EP2751814B1 (en) Transformer and method of manufacturing thereof
DE102013111433A1 (en) Planar balanced coil for integrated RF circuits
EP1782440B1 (en) Coil form for forming an inductive element
WO2020074718A1 (en) Method for producing a ceramic material having permeability gradients that can be set locally, use of said ceramic material in a coating method, and use of said coating method
DE102010012517B4 (en) throttle
DE102013200265A1 (en) Small transformer for high output voltage, used in e.g. motor car, has two neighboring winding portions of second winding separated by appropriate winding portion of first winding, and a core material set as non-closed magnetic circuit
DE19627817A1 (en) Pancake coil electronic component
DE3546410C2 (en)
DE102008017314B4 (en) Inductive component and electronic circuit for controlling a luminaire
DE69809460T2 (en) TRANSFORMER / CHOKE COIL
DE69716482T2 (en) CONTROLLABLE INDUCTOR
EP4055619A1 (en) Assembly comprising a toroidal core inductor and a heat sink
DE19927299C2 (en) Switching power supply transformer of high performance
EP3561824A1 (en) Coil assembly for a resonance converter
DE202010016732U1 (en) Plasma supply device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20061229

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502004010352

Country of ref document: DE

Date of ref document: 20091224

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100311

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100211

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100212

BERE Be: lapsed

Owner name: OSRAM G.M.B.H.

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110801

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110720

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004010352

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091111

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004010352

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120713

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004010352

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140721

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004010352

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202