EP1646408B1 - Device for purifying used air containing harmful substances - Google Patents
Device for purifying used air containing harmful substances Download PDFInfo
- Publication number
- EP1646408B1 EP1646408B1 EP04740589A EP04740589A EP1646408B1 EP 1646408 B1 EP1646408 B1 EP 1646408B1 EP 04740589 A EP04740589 A EP 04740589A EP 04740589 A EP04740589 A EP 04740589A EP 1646408 B1 EP1646408 B1 EP 1646408B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reaction stage
- air
- stage according
- emitter
- radiation emitted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000126 substance Substances 0.000 title claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims abstract description 79
- 239000003054 catalyst Substances 0.000 claims description 44
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 28
- 230000005855 radiation Effects 0.000 claims description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 25
- 239000004065 semiconductor Substances 0.000 claims description 25
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 15
- 239000004408 titanium dioxide Substances 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 6
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- QCUOBSQYDGUHHT-UHFFFAOYSA-L cadmium sulfate Chemical compound [Cd+2].[O-]S([O-])(=O)=O QCUOBSQYDGUHHT-UHFFFAOYSA-L 0.000 claims description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- 239000012286 potassium permanganate Substances 0.000 claims description 3
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 claims description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 2
- 229930195733 hydrocarbon Natural products 0.000 claims description 2
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- ZARVOZCHNMQIBL-UHFFFAOYSA-N oxygen(2-) titanium(4+) zirconium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4] ZARVOZCHNMQIBL-UHFFFAOYSA-N 0.000 claims description 2
- 239000000376 reactant Substances 0.000 claims description 2
- 230000000638 stimulation Effects 0.000 claims 1
- 238000007539 photo-oxidation reaction Methods 0.000 abstract description 3
- 238000000354 decomposition reaction Methods 0.000 abstract description 2
- 239000003344 environmental pollutant Substances 0.000 description 37
- 231100000719 pollutant Toxicity 0.000 description 37
- 238000006731 degradation reaction Methods 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 238000004887 air purification Methods 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000001699 photocatalysis Effects 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000007146 photocatalysis Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229910000331 cadmium sulfate Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 238000013032 photocatalytic reaction Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002927 oxygen compounds Chemical class 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000007591 painting process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/16—Disinfection, sterilisation or deodorisation of air using physical phenomena
- A61L9/18—Radiation
- A61L9/20—Ultraviolet radiation
- A61L9/205—Ultraviolet radiation using a photocatalyst or photosensitiser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/16—Disinfection, sterilisation or deodorisation of air using physical phenomena
- A61L9/18—Radiation
- A61L9/20—Ultraviolet radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/007—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/88—Handling or mounting catalysts
- B01D53/885—Devices in general for catalytic purification of waste gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/80—Type of catalytic reaction
- B01D2255/802—Photocatalytic
Definitions
- the invention relates to a device for cleaning polluted waste air in an exhaust duct.
- the invention relates to a reaction stage of an exhaust duct with a plurality of air ducts, in which a tubular UV radiator is arranged along the air flow of the exhaust air in each case.
- a catalyst unit which allows additional degradation reactions and in which excess ozone is degraded, so as to ensure that the harmful gas does not enter ozone into the environment.
- the catalyst known from EP 0 778 070 B1 is preferably an activated carbon catalyst.
- the activated carbon used is a highly porous material with an inner surface of about 1200 m 2 / g, which are used as a reaction surface.
- the task of the activated carbon is to retain compounds which are difficult to oxidize and thus to increase their residence time in the reactor.
- the concentration of these components is increased compared to the gas phase, resulting in an increase in the reaction rate with the formed Oxygen species on the activated carbon surface leads.
- EP 0 778 070 B1 discloses how the UV emitters can be arranged in the photooxidative reaction stage. However, corresponding reaction stages are already known from the prior art, which suggest preferred arrangements of UV lamps.
- JP 07-060-058 A discloses a device for cleaning polluted exhaust air in an exhaust duct, in which a UV radiator is arranged in an air duct parallel to the air flow and its UV radiation wavelengths both in the range of 185 nm and in the field of 254 nm.
- JP 07-060058 A proposes to coat the inner walls of the air duct with titanium dioxide in order to achieve a catalytic effect in the same reaction stage already.
- DE 197 40 053 A1 a further device for cleaning polluted waste air in an exhaust duct is known in which a plurality of tubular UV radiators in the photo-oxdative reaction stage are also arranged parallel to the air flow.
- DE 197 40 053 A1 likewise mentions the additional use of titanium dioxide as catalyst and proposes corresponding deflecting and / or perforated plates for a sufficient interaction between the pollutants contained in the exhaust air and the UV radiation.
- a reaction stage of an exhaust duct which has a plurality of parallel-connected air ducts with a square cross-section.
- the surface of the air ducts may be coated with a photocatalyst.
- a UV emitter may be located in front of the air ducts but not inside the air ducts.
- JP 07-060058 A proposes a square or rectangular cross-section of the air duct.
- the invention has shown that an increase in the rate of degradation within an air duct is possible if the cross section of the at least one air duct is a regular polygon with at least 5 sides.
- the invention provides that a plurality of air ducts are arranged honeycomb next to each other. Through several Gutleitkanäle the effect of the reaction stage is increased, wherein the reaction stage according to the invention can be made compact by the honeycomb arrangement.
- the cross section of the air ducts is a regular hexagon or a regular octagon.
- the limiting case of the invention is formed by a cross section in which the regular polygon is formed as a circle and thus consists virtually of an infinite number of pages. From the point of view of increasing the effectiveness of this borderline case of the circular cross-section is optimal, but the gap between different air ducts is unused, if several air ducts to be connected in parallel. As a favorable compromise between the known from the prior art rectangular cross-section and the circular cross-section has therefore turned out for parallel connection of multiple air ducts, the honeycomb structure with hexagonal or octagonal cross-sections.
- a UV radiator is held in an air duct by laterally mounted contact rails.
- the contact rails are preferably designed such that easy maintenance and replacement of tubular UV lamps is possible.
- the radiation emitted by a UV radiator causes the formation of reactive reactants such as ozone and / or oxygen-containing radicals in the exhaust air flowing along. It is known that such an effect can be achieved in particular if the wavelength of the radiation emitted by the respective UV emitter is in the region of 185 nm.
- the radiation emitted by a UV emitter causes the excitation of the hydrocarbons contained in the exhaust air to higher energy levels. It is known that such an effect can be achieved in particular if the wavelength of the radiation emitted by the respective UV emitter is in the region of 254 nm.
- UV emitters whose emitted wavelength lies in the region of the absorption spectra of the gaseous molecules contained in the exhaust air, whereby here the use of the wavelength ranges of 185 nm and 254 nm offers, since these wavelength ranges already with the Conventional mercury vapor lamps are available.
- an increase in performance of the UV lamps used in each case can be additionally provided.
- the light intensity of the higher-power UV emitter must be determined as a function of the wavelength, so that there is still a sufficient overlap of the absorption spectra of the pollutant molecules with the emission spectrum of the light source.
- a further realization of the invention is not to optimize the wavelengths emitted by the UV emitter to the absorption spectra of the gaseous molecules contained in the exhaust air, but to optimize the wavelengths with respect to that catalyst material, which are used for coating the inner walls of the air duct can.
- this finding of the invention thus relates to a reaction stage of an exhaust duct with at least one air duct, in which along the air flow of the exhaust air tubular UV emitter is arranged and whose inner walls are coated with a broadband semiconductor material as a catalyst material.
- titanium dioxide (TiO 2 ) is used as the catalyst material.
- the present object of the invention to increase the rate of degradation in a simple manner, with which the polluted exhaust air is cleaned within the air duct and freed of pollutants, based on the coating of the inner walls of the Beerleitkanals be solved with a semiconductor material in that the output from the respective UV lamp radiation has wavelengths greater than 254 nm- and whose emitted radiation energy is substantially greater than or equal to the energy difference between valence and conduction band of the semiconductor material.
- the irradiation of a photo semiconductor with photons whose energy is greater than or equal to the energy difference between valence and conduction band of the semiconductor leads to the generation of electron / hole pairs.
- the decisive finding of the invention lies in the fact that the wavelengths emitted by the UV emitter in the vicinity of the absorption edge of the semiconductor are particularly effective for the conversion of the photocatalytic reactions and lead to photocatalytic reactions. Decisive are thus not the wavelength ranges of 185 nm and 254 nm conventional mercury vapor lamps, but alternatively or additionally wavelength ranges with overlying wavelengths whose emitted radiation energy is correspondingly lower, but at the same time still sufficient to overcome the energy difference between valence and conduction band of the semiconductor material.
- all semiconductors with band gaps between approximately 2 eV and 4 eV are suitable, for example titanium dioxide (TiO 2 ), zinc oxide (ZnO), cadmium sulfate (CdS), zirconium dioxide (ZrO 2 ), tungsten trioxide (WO 3 ), ceria ( CeO 2 ), strontium titanium trioxide (SrTiO 3 ) or zirconium titanium oxide (ZrTiO 4 ).
- Particularly suitable titanium dioxide (TiO 2 ) or doped titanium dioxide has been found, since here the properties of reactivity, environmental compatibility, long-term stability and cost-effectiveness can be well combined. All photo-semiconductors can be activated by energy-equivalent light of the wavelengths between 340 nm and 500 nm.
- the desired catalyst effect in the range of the reaction stage according to the invention can be achieved if the inner walls of the air duct are coated with a broadband semiconductor material as the catalyst material. It must be ensured for the respective UV emitter that the range of the wavelength of the radiation emitted by the UV emitter is selected such that the emitted radiation energy is at least greater than or equal to the energy difference between the valence and conduction band of the semiconductor material.
- the semiconductor material consists of titanium dioxide in a known manner.
- the semiconductor material can also consist of doped titanium dioxide.
- UV radiation whose energy is greater than or equal to the energy difference between valence and conduction band of the semiconductor.
- electron / hole pairs are generated in the semiconductor material. This leads to the formation of oxygen-containing radicals, which effectively support the process of oxidation of pollutants. It has been shown that to achieve an optimal interaction between the UV radiation and the catalyst material, the distance between the UV radiator and the inner walls of the air duct is observed.
- the distance will always be selected such that, given a catalyst material and a predetermined UV radiator, an optimum degradation rate of the respective pollutants can be achieved.
- the wavelength of the radiation emitted by the respective UV radiator to achieve the catalyst effect with titanium dioxide is preferably in the range between 350 nm and 420 nm.
- the reaction stage according to the invention can be used to improve the apparatus known from EP 0 778 070 B1 for the purification of polluted exhaust air in an exhaust duct in terms of degradation rate and dimensions.
- a further solution of the present invention accordingly consists in an apparatus for purifying contaminated exhaust air in an exhaust duct with the above-described reaction stage according to the invention and with a catalyst unit downstream of this reaction stage.
- the catalyst unit consists of an activated carbon catalyst.
- the downstream catalyst unit causes both an increase in the reaction rate of the air flow supplied by the reaction stage and the removal of ozone, which is still contained in the incoming air stream, but should not be discharged into the environment. If excess ozone thus reaches the activated carbon surface, it either reacts with pollutants adsorbed on the surface or oxidizes the carbon of the activated carbon. The latter means an energy loss, since the ozone generated with the help of light energy is unused, i. H. without having carried out a pollutant oxidation is lost.
- a redox system which certainly prevents the escape of ozone into the environment, but at the same time stores the oxidizing power of the ozone.
- potassium permanganate / manganese dioxide can be used as the redox couple. Due to the oxidation of organic pollutants by potassium permanganate forms manganese dioxide, which in turn is regenerated by the reaction with ozone to potassium permangan.
- the degradable in practice pollutant mixtures generally consist of a variety of different substances, as often pollutant mixtures are disposed of with one main component and several minor components.
- further pollutants are constantly generated which also have to be decomposed in the downstream catalyzer unit.
- the oxidation reactions are organic compounds According to complex reaction mechanisms, the oxidation of pollutants to CO 2 can often only be achieved by a series of oxidation steps. In the course of the overall reaction to the end product CO 2 , the polarity of the organic compounds increases.
- the complexity of the pollutant mixture leads to a competition of the components for the adsorption sites in the catalyst unit. However, this means that a single adsorbent material is no longer able to adequately adsorb all compounds of a complex pollutant mixture.
- activated carbon as a non-polar adsorber preferably also adsorbs nonpolar pollutants.
- the catalyst unit consists of catalysts of different polarity. In this way, an additional increase in the rate of degradation can be achieved if the pollutants have different polarities in the exhaust air supplied by the reaction stage.
- a plurality of units consisting of reaction stage and downstream catalyst unit are connected in series.
- the design of an exhaust air purification system can be optimized for transient pollutant loads of the raw gas to the average pollutant concentration.
- the design has to be carried out with regard to the maximum occurring pollutant concentration, which leads to large and thus expensive systems. In painting processes but are, for example due to production unsteady pollution of the Exhaust gas before.
- Fig. 1 shows the cross section and a perspective view of an air duct according to the invention.
- the air duct 101 has the cross section of a regular hexagon. Center in the air duct 101 is a tubular UV emitter 102 is arranged. The contaminated exhaust air enters the inlet 103 and is discharged from the outlet 104 again.
- the inner walls 105 are coated with a broadband semiconductor material, for example titanium dioxide or doped titanium dioxide.
- Fig. 2 shows a perspective view of a reaction stage according to the invention with a plurality of parallel air ducts.
- the individual air ducts 101 correspond to the air duct shown in Fig. 1 and are connected in parallel honeycomb.
- a tubular UV emitter is arranged in each air duct 101.
- the air ducts 101 connected together in this manner are surrounded by a metal housing and thus form the reaction stage 201.
- Contact rails 202 are provided at the air inlet opening 203 and the air outlet opening 204, which serve as cable ducts for the electrical supply of the UV lamps and on the other hand keep the UV lamps mechanically in the air ducts 101.
- ballasts 205 are provided laterally.
- Sliding rails 206 and 207 are provided on the lower sides of the reaction stage 201 so that the reaction stage 201 can be inserted or ejected onto corresponding rollers in the overall system for maintenance purposes.
- a further improvement of the degradation rate can be achieved if the inner walls of the air duct are coated with a catalyst material. Due to the honeycomb construction of the reaction stage with multiple air ducts large catalyst surfaces in be provided in the immediate vicinity of the UV radiation with low pressure loss. The direct irradiation of the catalyst surface affords the possibility of effectively utilizing broadband semiconductor materials for photocatalysis. Titanium dioxide in particular has proven to be suitable as the catalyst material. By irradiating the titanium dioxide with UV light whose energy is greater than or equal to the energy difference between valence and conduction band of the semiconductor, first electron / hole pairs are generated in the semiconductor material. This leads to the formation of reactive O 2 - species, which effectively support the process of oxidation of pollutants. To initiate this process UV emitters with wavelengths in the range between 340 nm and 420 nm are used.
- the exhaust air is directed into a reaction channel containing UV-activated titanium dioxide.
- the irradiation of the photo semiconductor leads to the generation of electron / hole pairs.
- adsorption of gas molecules takes place on the generated charges, wherein the energy gain in the adsorption decides which molecules preferentially interact with the electrons and which interact with the holes.
- ammonia and oxygen reacts due to the respective molecular properties of ammonia with the holes and oxygen with the electrons.
- the now coadsorbed molecules are activated and form a transition state, from which they react to form intermediates to the final products.
- the non-hazardous reaction products nitrogen and water desorb and can be released to the environment.
- FIG. 3 shows a perspective view of an exhaust-air purification system 301 with reaction stages 306 and 307 according to the invention.
- Reaction stages 306 and 307 correspond in each case to reaction stage 201 shown in FIG. 2.
- the polluted exhaust air is supplied to exhaust-air purification unit 301 via a feed pipe 302.
- two identical systems 303 and 304 may be provided to increase the amount of air to be cleaned, which are arranged one above the other in the illustration of FIG. For the sake of simplicity, only the system 304 will be described below individual components with the help of a breakthrough are shown in more detail.
- the supply pipe 302 is followed first by a distributor stage 305 which evenly distributes the incoming air and optionally filters out larger pollutant particles.
- the air passed on by the distributor stage 305 passes into the reaction stages 306 and 307 according to the invention.
- two identically constructed reaction stages 306 and 307 are connected in series.
- the exhaust air purification system 301 can also be constructed only with a reaction stage 306.
- the two reaction stages 306 and 307 are followed by a catalyst unit 308, which in the manner described above can consist, for example, of spilled highly porous activated carbon material having an inner surface area of about 1200 m 2 / g, which are used as the reaction surface.
- the air discharged from the catalyst unit 308 passes further into the blower unit 309, which provides for maintaining a corresponding pressure difference between the feed pipe 302 and the discharge pipe 310.
- the exhaust air purification system 301 is basically operated by the method according to EP 0 778 070 B1, but distinguishes itself according to the invention by one or more reaction stages 306, 307, as shown in FIG. 2.
- the contaminated exhaust air thus passes from the feed tube 302 via the distributor stage 304 into the reaction stages 306 and 307, in which short-wave UVC light initiates a chemical reaction. Odor and pollutant molecules are broken up. At the same time pollutant radicals and ozone as an oxidizing agent generated.
- the oxidation of the pollutants leads to the environmentally friendly products CO 2 and H 2 O.
- the downstream catalyst unit 308 difficult to oxidize compounds and excess ozone are degraded.
- the cleaned and odorless air is discharged through the blower unit 309 and the discharge pipe 310 to the environment.
- a further catalyst unit can be interposed at point 311 in the manner described above.
- the further intermediary catalyst unit makes it possible to reduce short-term pollutants with very high concentrations.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Toxicology (AREA)
- Biomedical Technology (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Treating Waste Gases (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zur Reinigung schadstoffhaltiger Abluft in einem Abluftkanal.The invention relates to a device for cleaning polluted waste air in an exhaust duct.
Eine derartige Vorrichtung zur Reinigung schadstoffhaltiger Abluft ist aus EP 0 778 080 B1 bekannt.Such a device for the purification of pollutant-containing exhaust air is known from EP 0 778 080 B1.
Darüber hinaus betrifft die Erfindung eine Reaktionsstufe eines Abluftkanals mit mehreren Luftleitkanälen, in denen längs zur Luftströmung der Abluft jeweils ein röhrenförmiger UV-Strahler angeordnet ist.In addition, the invention relates to a reaction stage of an exhaust duct with a plurality of air ducts, in which a tubular UV radiator is arranged along the air flow of the exhaust air in each case.
Eine derartige Reaktionsstufe eines Abluftkanals ist aus JP 07-060058 A bekannt.Such a reaction stage of an exhaust duct is known from JP 07-060058 A.
Aus EP 0 778 080 B1 ist es bekannt, Schadstoffe wie Lösungsmittel oder Geruchsstoffe in einer Reaktionsstufe photooxidativ durch Bestrahlung der Abluft mit energiereichem UVC-Licht in einem Luftleitkanal umzusetzen. Hierbei ist es grundsätzlich auch bekannt, zur Steigerung der Effektivität mehrere Luftleitkanäle parallel zu schalten. Infolge der Wechselwirkung von UVC-Strahlung und Abluft entstehen die für den Schadstoffabbau benötigten reaktiven Spezies. Durch die Absorption von UVC-Licht durch Sauerstoff- und Wassermoleküle der Abluft entstehen die Oxidationsmittel Ozon, Wasserstoffperoxid sowie O- und OH-Radikale. Diese besitzen hohe Oxidationspotentiale und sind daher in der Lage, Schadstoffe zu oxidieren. Hierbei wird eine Kettenreaktion angestoßen, bei der neue Radikale entstehen, die ihrerseits wieder andere Moleküle angreifen können. Daneben erfolgt eine Absorption der UVC-Strahlung durch die Schadstoffmoleküle und deren Zerfallsprodukte. Durch die Absorption der Lichtenergie werden die Schadstoffe auf höhere energetische Niveaus angeregt und damit für eine Umsetzung mit den reaktiven Spezies oder auch mit Luftsauerstoff aktiviert. Bei genügend hoher Zufuhr von Lichtenergie kommt es zum Zerfall des Moleküls. Die Zerfallsprodukte der Schadstoffphotolyse können ebenfalls OH-Radikale bilden oder radikalische Kettenreaktionen anstoßen. Infolge der Lichtanregung und der Gegenwart reaktiver Sauerstoffverbindungen starten homogene Gasphasenreaktionen.From EP 0 778 080 B1 it is known to convert pollutants such as solvents or odorous substances in a reaction stage photooxidatively by irradiating the exhaust air with high-energy UVC light in an air duct. In principle, it is also known to connect several air ducts in parallel to increase the effectiveness. Due to the interaction of UVC radiation and exhaust air, the reactive species required for pollutant degradation arise. The absorption of UVC light by oxygen and water molecules of the exhaust air causes the Oxidizing agents Ozone, hydrogen peroxide and O- and OH-radicals. These have high oxidation potentials and are therefore able to oxidize pollutants. This initiates a chain reaction that creates new radicals that in turn can attack other molecules. In addition, there is an absorption of UVC radiation by the pollutant molecules and their decay products. By absorbing the light energy, the pollutants are stimulated to higher energy levels and thus activated for reaction with the reactive species or even with atmospheric oxygen. If the supply of light energy is sufficiently high, the molecule breaks down. The decomposition products of Schadstoffphotolyse can also form OH radicals or initiate radical chain reactions. As a result of light excitation and the presence of reactive oxygen compounds, homogeneous gas phase reactions start.
In Kombination zu dieser photooxidativen Umsetzung befindet sich im Anschluss an die Reaktionsstufe eine Katalysatoreinheit, welche zusätzliche Abbaureaktionen erlaubt und in welcher überschüssiges Ozon abgebaut wird, so dass sichergestellt ist, dass das Schadgas Ozon nicht in die Umwelt gelangt.In combination with this photooxidative reaction is located downstream of the reaction stage, a catalyst unit which allows additional degradation reactions and in which excess ozone is degraded, so as to ensure that the harmful gas does not enter ozone into the environment.
Der aus der EP 0 778 070 B1 bekannte Katalysator ist vorzugsweise ein Aktivkohle-Katalysator. Die zur Anwendung kommende Aktivkohle ist ein hochporöses Material mit einer inneren Oberfläche von ca. 1200 m2/g, die als Reaktionsoberfläche genutzt werden. Die Aufgabe der Aktivkohle besteht zum einen darin, schwer oxidierbare Verbindungen zurückzuhalten und damit ihre Verweilzeit im Reaktor zu erhöhen. Dadurch wird die Konzentration dieser Komponenten im Vergleich zur Gasphase erhöht, was zu einer Steigerung der Reaktionsgeschwindigkeit mit den gebildeten Sauerstoffspezies auf der Aktivkohle-Oberfläche führt. Zum anderen wird durch die Verwendung der Aktivkohle als nachgeschalteter Katalysator sichergestellt, dass das Schadgas Ozon nicht in die Umwelt gelangt, da Aktivkohle als Ozonfilter wirkt.The catalyst known from EP 0 778 070 B1 is preferably an activated carbon catalyst. The activated carbon used is a highly porous material with an inner surface of about 1200 m 2 / g, which are used as a reaction surface. On the one hand, the task of the activated carbon is to retain compounds which are difficult to oxidize and thus to increase their residence time in the reactor. As a result, the concentration of these components is increased compared to the gas phase, resulting in an increase in the reaction rate with the formed Oxygen species on the activated carbon surface leads. On the other hand, it is ensured by the use of the activated carbon as a downstream catalyst, that the harmful gas ozone does not escape into the environment, since activated carbon acts as an ozone filter.
Zur Erzeugung der UV-Strahlung gemäß der EP 0 778 070 B1 werden üblicherweise röhrenförmige UV-Strahler verwendet. Die EP 0 778 070 B1 lässt es dabei offen, wie die UV-Strahler in der photooxidativen Reaktionsstufe angeordnet sein können. Aus dem Stand der Technik sind allerdings auch bereits entsprechende Reaktionsstufen bekannt, die bevorzugte Anordnungen der UV-Strahler vorschlagen.To generate the UV radiation according to EP 0 778 070 B1, tubular UV lamps are usually used. EP 0 778 070 B1 discloses how the UV emitters can be arranged in the photooxidative reaction stage. However, corresponding reaction stages are already known from the prior art, which suggest preferred arrangements of UV lamps.
Aus JP 07-060-058 A ist eine Vorrichtung zur Reinigung schadstoffhaltiger Abluft in einem Abluftkanal bekannt, bei der ein UV-Strahler in einem Luftleitkanal parallel zur Luftströmung angeordnet ist und dessen UV-Strahlung Wellenlängen sowohl im Bereich von 185 nm als auch im Bereich von 254 nm aufweist. Zusätzlich schlägt die JP 07-060058 A vor, die Innenwände des Luftleitkanals mit Titandioxyd zu beschichten, um in der gleichen Reaktionsstufe bereits eine Katalysatorwirkung zu erzielen.JP 07-060-058 A discloses a device for cleaning polluted exhaust air in an exhaust duct, in which a UV radiator is arranged in an air duct parallel to the air flow and its UV radiation wavelengths both in the range of 185 nm and in the field of 254 nm. In addition, JP 07-060058 A proposes to coat the inner walls of the air duct with titanium dioxide in order to achieve a catalytic effect in the same reaction stage already.
Aus DE 197 40 053 A1 ist eine weitere Vorrichtung zur Reinigung schadstoffhaltiger Abluft in einem Abluftkanal bekannt, bei der mehrere röhrenförmige UV-Strahler in der photooxdativen Reaktionsstufe ebenfalls parallel zum Luftstrom angeordnet sind. Die DE 197 40 053 A1 erwähnt ebenfalls die zusätzliche Verwendung von Titandioxyd als Katalysator und schlägt für eine ausreichende Wechselwirkung zwischen den in der Abluft enthaltenen Schadstoffen und der UV-Strahlung entsprechende Umlenk-und/oder Lochbleche vor.From DE 197 40 053 A1 a further device for cleaning polluted waste air in an exhaust duct is known in which a plurality of tubular UV radiators in the photo-oxdative reaction stage are also arranged parallel to the air flow. DE 197 40 053 A1 likewise mentions the additional use of titanium dioxide as catalyst and proposes corresponding deflecting and / or perforated plates for a sufficient interaction between the pollutants contained in the exhaust air and the UV radiation.
Aus US 2002/0160913 A1 ist eine Reaktionsstufe eines Abluftkanals bekannt, die mehrere parallel geschaltete Luftleitkanäle mit einem quadratischen Querschnitt aufweist. Die Oberfläche der Luftleitkanäle kann mit einem Photokatalysator beschichtet sein. Ein UV-Strahler kann vor den Luftleitkanälen, aber nicht innerhalb der Luftleitkanäle angeordnet sein.From US 2002/0160913 A1, a reaction stage of an exhaust duct is known which has a plurality of parallel-connected air ducts with a square cross-section. The surface of the air ducts may be coated with a photocatalyst. A UV emitter may be located in front of the air ducts but not inside the air ducts.
Aus US 2,413,704 ist eine Reaktionsstufe eines Abluftkanals bekannt, der aus einem Luftleitkanal mit einem runden Querschnitt besteht, in dem mehrere röhrenförmige UV-Strahler längs zur Luftströmung angeordnet sind.From US 2,413,704 a reaction stage of an exhaust duct is known, which consists of an air duct with a round cross-section in which a plurality of tubular UV radiators are arranged longitudinal to the air flow.
Es hat sich gezeigt, dass die Verfügbarkeit einer kostengünstigen, kompakten Abluftreinigungsanlage insbesondere für kleine Produktionseinheiten immer mehr an Bedeutung gewinnt. Ausgehend von der aus der JP 07-060058 bekannten Vorrichtung ist es daher Aufgabe der Erfindung, die Abbaurate auf einfache Weise zu steigern, mit der die schadstoffbelastete Abluft innerhalb des Luftleitkanals gereinigt und von Schadstoffen befreit wird, um somit eine kostengünstige und kompakte Abluftreinigungsanlage zur Verfügung stellen zu können.It has been shown that the availability of a cost-effective, compact exhaust air purification system is becoming increasingly important, especially for small production units. Starting from the device known from JP 07-060058, it is therefore an object of the invention to increase the rate of degradation in a simple manner, with the polluted exhaust air is cleaned within the air duct and freed of pollutants, thus providing a cost-effective and compact exhaust air purification system to be able to make.
Diese Aufgabe wird durch eine Reaktionsstufe eines Abluftkanals gemäß dem Patentanspruch 1 und eine Vorrichtung zur Reinigung schadstoffhaltiger Abluft gemäß dem Patentanspruch 15 gelöst.This object is achieved by a reaction stage of an exhaust duct according to the patent claim 1 and a device for the purification of pollutant-containing exhaust air according to the patent claim 15.
Eine wesentliche Erkenntnis der Erfindung besteht darin, dass bei einer geeigneten Änderung der Geometrie des Querschnitts des aus der JP 07-060058 A bekannten Luftleitkanals eine bessere Wechselwirkung zwischen der UV-Strahlung, den in der Abluft enthaltenen Schadstoffen sowie dem auf den Innenwänden des Luftleitkanals beschichteten Katalysators erreicht werden kann. Die JP 07-060058 A schlägt einen quadratischen oder rechteckigen Querschnitt des Luftleitkanals vor. Im Gegensatz dazu hat die Erfindung gezeigt, dass eine Steigerung der Abbaurate innerhalb eines Luftleitkanals möglich ist, wenn der Querschnitt des mindestens einen Luftleitkanals ein regelmäßiges Vieleck mit mindestens 5 Seiten ist. Darüber hinaus ist erfindungsgemäß vorgesehen, dass mehrere Luftleitkanäle wabenförmig nebeneinander angeordnet sind. Durch mehrere Luftleitkanäle wird die Wirkung der Reaktionsstufe gesteigert, wobei die erfindungsgemäße Reaktionsstufe durch die wabenförmige Anordnung kompakt gebaut werden kann.An essential finding of the invention is that with a suitable change in the geometry of the cross section of the known from JP 07-060058 A Luftleitkanals a better interaction between the UV radiation, the pollutants contained in the exhaust air and coated on the inner walls of the air duct Catalyst can be achieved. JP 07-060058 A proposes a square or rectangular cross-section of the air duct. In contrast, the invention has shown that an increase in the rate of degradation within an air duct is possible if the cross section of the at least one air duct is a regular polygon with at least 5 sides. In addition, the invention provides that a plurality of air ducts are arranged honeycomb next to each other. Through several Luftleitkanäle the effect of the reaction stage is increased, wherein the reaction stage according to the invention can be made compact by the honeycomb arrangement.
Zur Ausbildung der wabenförmigen Struktur bietet es sich an, dass der Querschnitt der Luftleitkanäle jeweils ein regelmäßiges Sechseck oder ein regelmäßiges Achteck ist.To form the honeycomb structure, it is recommended that the cross section of the air ducts is a regular hexagon or a regular octagon.
Den Grenzfall der Erfindung bildet ein Querschnitt, bei dem das regelmäßige Vieleck als Kreis ausgebildet ist und damit quasi aus unendlich vielen Seiten besteht. Aus der Sicht der Effektivitätssteigerung ist dieser Grenzfall des kreisförmigen Querschnitts optimal, allerdings bleibt der Zwischenraum zwischen verschiedenen Luftleitkanälen ungenutzt, wenn mehrere Luftleitkanäle parallel geschaltet sein sollen. Als ein günstiger Kompromiss zwischen dem aus dem Stand der Technik bekannten rechteckigen Querschnitt und dem kreisförmigen Querschnitt hat sich daher zur Parallelschaltung mehrerer Luftleitkanäle die wabenförmige Struktur mit sechs- oder achteckigen Querschnitten herausgestellt.The limiting case of the invention is formed by a cross section in which the regular polygon is formed as a circle and thus consists virtually of an infinite number of pages. From the point of view of increasing the effectiveness of this borderline case of the circular cross-section is optimal, but the gap between different air ducts is unused, if several air ducts to be connected in parallel. As a favorable compromise between the known from the prior art rectangular cross-section and the circular cross-section has therefore turned out for parallel connection of multiple air ducts, the honeycomb structure with hexagonal or octagonal cross-sections.
Nach einer bevorzugten Ausführungsform ist vorgesehen, dass ein UV-Strahler in einem Luftleitkanal durch seitlich angebrachte Kontaktschienen gehalten wird. Die Kontaktschienen sind vorzugsweise derart ausgestaltet, dass eine einfache Wartung und Auswechselung der röhrenförmigen UV-Strahler möglich ist.According to a preferred embodiment, it is provided that a UV radiator is held in an air duct by laterally mounted contact rails. The contact rails are preferably designed such that easy maintenance and replacement of tubular UV lamps is possible.
Nach einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass die von einem UV-Strahler abgegebene Strahlung die Bildung von reaktiven Reaktionsmitteln wie Ozon und/oder sauerstoffhaltige Radikale in der entlangströmenden Abluft bewirkt. Es ist bekannt, dass eine derartige Wirkung insbesondere dann erzielt werden kann, wenn die Wellenlänge der von dem jeweiligen UV-Strahler abgegebenen Strahlung im Bereich von 185 nm liegt.According to a further preferred embodiment, it is provided that the radiation emitted by a UV radiator causes the formation of reactive reactants such as ozone and / or oxygen-containing radicals in the exhaust air flowing along. It is known that such an effect can be achieved in particular if the wavelength of the radiation emitted by the respective UV emitter is in the region of 185 nm.
Nach einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass die von einem UV-Strahler abgegebene Strahlung die Anregung der in der Abluft enthaltenen Kohlenwasserstoffe auf höhere energetische Niveaus bewirkt. Es ist bekannt, dass eine derartige Wirkung insbesondere dann erzielt werden kann, wenn die Wellenlänge der von dem jeweiligen UV-Strahler abgegebenen Strahlung im Bereich von 254 nm liegt.According to a further preferred embodiment, it is provided that the radiation emitted by a UV emitter causes the excitation of the hydrocarbons contained in the exhaust air to higher energy levels. It is known that such an effect can be achieved in particular if the wavelength of the radiation emitted by the respective UV emitter is in the region of 254 nm.
Besonders vorteilhaft ist es damit, UV-Strahler zu verwenden, deren abgegebene Wellenlänge im Bereich der Absorptionsspektren von den in der Abluft enthaltenen gasförmigen Moleküle liegt, wobei sich hier die Verwendung der Wellenlängenbereiche von 185 nm und 254 nm anbietet, da diese Wellenlängenbereiche bereits mit den-herkömmlichen Quecksilberdampflampen zur Verfügung stehen. Um gleichzeitig die Bauform der Reaktionsstufe weiter zu verringern, kann zusätzlich eine Leistungserhöhung der jeweils verwendeten UV-Strahler vorgesehen sein. Dabei muss die Lichtintensität des leistungsstärkeren UV-Strahlers als Funktion der Wellenlänge bestimmt werden, damit weiterhin eine hinreichende Überlappung der Absorptionsspektren der Schadstoffmoleküle mit dem Emissionsspektrum der Lichtquelle vorliegt.It is thus particularly advantageous to use UV emitters whose emitted wavelength lies in the region of the absorption spectra of the gaseous molecules contained in the exhaust air, whereby here the use of the wavelength ranges of 185 nm and 254 nm offers, since these wavelength ranges already with the Conventional mercury vapor lamps are available. In order to simultaneously reduce the design of the reaction stage further, an increase in performance of the UV lamps used in each case can be additionally provided. The light intensity of the higher-power UV emitter must be determined as a function of the wavelength, so that there is still a sufficient overlap of the absorption spectra of the pollutant molecules with the emission spectrum of the light source.
Eine weitere Erkenntnis der Erfindung besteht darin, die von dem UV-Strahler abgegebenen Wellenlängen nicht auf die Absorptionsspektren der in der Abluft enthaltenen gasförmigen Moleküle zu optimieren, sondern die Wellenlängen im Hinblick auf dasjenige Katalysatormaterial zu optimieren, das zur Beschichtung der Innenwände des Luftleitkanals verwendet werden kann. Ausgehend von der JP 07-060058 A betrifft diese Erkenntnis der Erfindung damit eine Reaktionsstufe eines Abluftkanals mit mindestens einem Luftleitkanal, in dem längs zur Luftströmung der Abluft ein röhrenförmiger UV-Strahler angeordnet ist und dessen Innenwände mit einem breitbandigen Halbleitermaterial als Katalysatormaterial beschichtet sind. In der JP 07-060058 A wird dabei als Katalysatormaterial Titandioxyd (TiO2) verwendet.A further realization of the invention is not to optimize the wavelengths emitted by the UV emitter to the absorption spectra of the gaseous molecules contained in the exhaust air, but to optimize the wavelengths with respect to that catalyst material, which are used for coating the inner walls of the air duct can. Based on the JP 07-060058 A, this finding of the invention thus relates to a reaction stage of an exhaust duct with at least one air duct, in which along the air flow of the exhaust air tubular UV emitter is arranged and whose inner walls are coated with a broadband semiconductor material as a catalyst material. In JP 07-060058 A titanium dioxide (TiO 2 ) is used as the catalyst material.
Ausgehend von der aus der JP 07-060058 A bekannten Vorrichtung kann die vorliegende Aufgabe der Erfindung, die Abbaurate auf einfache Weise zu steigern, mit der die schadstoffbelastete Abluft innerhalb des Luftleitkanals gereinigt und von Schadstoffen befreit wird, auf der Grundlage der Beschichtung der Innenwände des Luftleitkanals mit einem Halbleitermaterial dadurch gelöst werden, dass die von dem jeweiligen UV-Strahler abgegebene Strahlung Wellenlängen aufweist, die größer als 254 nm- sind und deren abgegebene Strahlungsenergie im Wesentlichen größer oder gleich der Energiedifferenz zwischen Valenz-und Leitungsband des Halbleitermaterials ist.Starting from the device known from JP 07-060058 A, the present object of the invention to increase the rate of degradation in a simple manner, with which the polluted exhaust air is cleaned within the air duct and freed of pollutants, based on the coating of the inner walls of the Luftleitkanals be solved with a semiconductor material in that the output from the respective UV lamp radiation has wavelengths greater than 254 nm- and whose emitted radiation energy is substantially greater than or equal to the energy difference between valence and conduction band of the semiconductor material.
Grundsätzlich führt die Bestrahlung eines Photohalbleiters mit Photonen, deren Energie größer oder gleich der Energiedifferenz zwischen Valenz- und Leitungsband des Halbleiters ist, zur Generierung von Elektronen/Loch-Paaren. Die entscheidende Erkenntnis der Erfindung liegt dabei darin, dass die von dem UV-Strahler abgegebenen Wellenlängen in der Nähe der Absorptionskante des Halbleiters für den Umsatz der photokatalytischen Reaktionen besonders wirkungsvoll sind und zu photokatalytischen Reaktionen führen. Maßgeblich sind damit nicht die Wellenlängenbereiche von 185 nm und 254 nm herkömmlicher Quecksilberdampflampen, sondern alternativ oder ergänzend Wellenlängenbereiche mit darüber liegenden Wellenlängen, deren abgegebene Strahlungsenergie dementsprechend geringer ist, die aber gleichzeitig noch dazu ausreicht, um die Energiedifferenz zwischen Valenz-und Leitungsband des Halbleitermaterials zu überwinden.Basically, the irradiation of a photo semiconductor with photons whose energy is greater than or equal to the energy difference between valence and conduction band of the semiconductor, leads to the generation of electron / hole pairs. The decisive finding of the invention lies in the fact that the wavelengths emitted by the UV emitter in the vicinity of the absorption edge of the semiconductor are particularly effective for the conversion of the photocatalytic reactions and lead to photocatalytic reactions. Decisive are thus not the wavelength ranges of 185 nm and 254 nm conventional mercury vapor lamps, but alternatively or additionally wavelength ranges with overlying wavelengths whose emitted radiation energy is correspondingly lower, but at the same time still sufficient to overcome the energy difference between valence and conduction band of the semiconductor material.
Für diese Photokatalyse sind prinzipiell alle Halbleiter mit Bandlücken etwa zwischen 2 eV und 4 eV geeignet, wie beispielsweise Titandioxyd (TiO2), Zinkoxid (ZnO), Cadmiumsulfat (CdS), Zirkoniumdioxid (ZrO2), Wolframtrioxid (WO3), Cerdioxid (CeO2), Strontiumtitantrioxid (SrTiO3) oder Zirkoniumtitanoxid (ZrTiO4). Besonders geeignet hat sich Titandioxyd (TiO2) oder auch dotiertes Titandioxyd herausgestellt, da sich hier die Eigenschaften von Reaktivität, Umweltverträglichkeit, Langzeitstabilität und auch Kosteneffektivität gut vereinen lassen. Sämtliche Photohalbleiter lassen sich durch energieäquivalentes Licht der-Wellenlängen zwischen 340 nm und 500 nm aktivieren.For this photocatalysis, in principle all semiconductors with band gaps between approximately 2 eV and 4 eV are suitable, for example titanium dioxide (TiO 2 ), zinc oxide (ZnO), cadmium sulfate (CdS), zirconium dioxide (ZrO 2 ), tungsten trioxide (WO 3 ), ceria ( CeO 2 ), strontium titanium trioxide (SrTiO 3 ) or zirconium titanium oxide (ZrTiO 4 ). Particularly suitable titanium dioxide (TiO 2 ) or doped titanium dioxide has been found, since here the properties of reactivity, environmental compatibility, long-term stability and cost-effectiveness can be well combined. All photo-semiconductors can be activated by energy-equivalent light of the wavelengths between 340 nm and 500 nm.
Allgemein hat sich gezeigt, dass die gewünschte Katalysatorwirkung im Bereich der erfindungsgemäßen Reaktionsstufe erzielt werden kann, wenn die Innenwände des Luftleitkanals mit einem breitbandigen Halbleitermaterial als Katalysatormaterial beschichtet sind. Für den jeweiligen UV-Strahler muss dabei gewährleistet sein, dass der Bereich der Wellenlänge der von dem UV-Strahler abgegebenen Strahlung derart gewählt wird, dass die abgegebene Strahlungsenergie zumindest größer oder gleich der Energiedifferenz zwischen Valenz- und Leitungsband des Halbleitermaterials ist.In general, it has been shown that the desired catalyst effect in the range of the reaction stage according to the invention can be achieved if the inner walls of the air duct are coated with a broadband semiconductor material as the catalyst material. It must be ensured for the respective UV emitter that the range of the wavelength of the radiation emitted by the UV emitter is selected such that the emitted radiation energy is at least greater than or equal to the energy difference between the valence and conduction band of the semiconductor material.
Nach einer bevorzugten Ausführungsform besteht das Halbleitermaterial dabei in bekannter Weise aus Titandioxyd. Das Halbleitermaterial kann aber auch aus dotiertem Titandioxyd bestehen. Durch Bestrahlung des Titandioxyds bzw. dotierten Titandioxid mit UV-Strahlung, deren Energie größer oder gleich der Energiedifferenz zwischen Valenz- und Leitungsband des Halbleiters ist, werden zunächst Elektron/Loch-Paare im Halbleitermaterial generiert. Daraufhin kommt es zur Bildung sauerstoffhaltiger Radikale, die den Prozess der Oxidation von Schadstoffen wirkungsvoll unterstützen. Hierbei hat sich gezeigt, dass zur Erzielung einer optimalen Wechselwirkung zwischen der UV-Strahlung und dem Katalysatormaterial der Abstand zwischen dem UV-Strahler und den Innenwänden des Luftleitkanals zu beachten ist. Zur Optimierung eines erfindungsgemäßen Luftleitkanals wird also der Abstand immer so gewählt sein, dass sich bei gegebenem Katalysatormaterial und vorgegebenem UV-Strahler eine optimale Abbaurate der jeweiligen Schadstoffe erzielen lässt. Versuche haben dabei gezeigt, dass die Wellenlänge der von dem jeweiligen UV-Strahler abgegebenen Strahlung zur Erreichung der Katalysatorwirkung mit Titandioxyd vorzugsweise im Bereich zwischen 350 nm und 420 nm liegt.According to a preferred embodiment, the semiconductor material consists of titanium dioxide in a known manner. The semiconductor material can also consist of doped titanium dioxide. By irradiation of the titanium dioxide or doped titanium dioxide with UV radiation whose energy is greater than or equal to the energy difference between valence and conduction band of the semiconductor, First, electron / hole pairs are generated in the semiconductor material. This leads to the formation of oxygen-containing radicals, which effectively support the process of oxidation of pollutants. It has been shown that to achieve an optimal interaction between the UV radiation and the catalyst material, the distance between the UV radiator and the inner walls of the air duct is observed. To optimize an air duct according to the invention, therefore, the distance will always be selected such that, given a catalyst material and a predetermined UV radiator, an optimum degradation rate of the respective pollutants can be achieved. Experiments have shown that the wavelength of the radiation emitted by the respective UV radiator to achieve the catalyst effect with titanium dioxide is preferably in the range between 350 nm and 420 nm.
Die erfindungsgemäße Reaktionsstufe kann dazu verwendet werden, um die aus der EP 0 778 070 B1 bekannte Vorrichtung zur Reinigung schadstoffhaltiger Abluft in einem Abluftkanal hinsichtlich Abbaurate und Abmessungen zu verbessern.The reaction stage according to the invention can be used to improve the apparatus known from EP 0 778 070 B1 for the purification of polluted exhaust air in an exhaust duct in terms of degradation rate and dimensions.
Eine weitere Lösung der vorliegenden Erfindung besteht demnach in einer Vorrichtung zur Reinigung schadstoffhaltiger Abluft in einem Abluftkanal mit der oben beschriebenen erfindungsgemäßen Reaktionsstufe und mit einer dieser Reaktionsstufe nachgeschalteten Katalysatoreinheit.A further solution of the present invention accordingly consists in an apparatus for purifying contaminated exhaust air in an exhaust duct with the above-described reaction stage according to the invention and with a catalyst unit downstream of this reaction stage.
Mit dieser Vorrichtung gelingt die Bereitstellung einer kostengünstigen Kompaktanlage, die insbesondere für geringe Volumenströme und kleine Produktionseinheiten geeignet ist, wie z. B. kleine Lackierbetriebe oder Restaurants.With this device, the provision of a cost-effective compact system, which is particularly suitable for low flow rates and small production units, such as. B. small paint shops or restaurants.
Nach einer bevorzugten Ausführungsform besteht die Katalysatoreinheit aus einem Aktivkohle-Katalysator. Wie bereits oben beschrieben, bewirkt die nachgeschaltete Katalysatoreinheit sowohl eine Steigerung der Reaktionsgeschwindigkeit des von der Reaktionsstufe gelieferten Luftstroms als auch den Abbau von Ozon, das in dem ankommenden Luftstrom noch enthalten ist, aber nicht in die Umwelt abgegeben werden soll. Gerät überschüssiges Ozon somit an die Aktivkohle-Oberfläche, so reagiert es entweder mit an der Oberfläche adsorbierten Schadstoffen oder oxidiert den Kohlenstoff der Aktivkohle. Letzteres bedeutet einen Energieverlust, da das mit Hilfe von Lichtenergie erzeugte Ozon ungenutzt, d. h. ohne eine Schadstoffoxidation durchgeführt zu haben, verloren geht.According to a preferred embodiment, the catalyst unit consists of an activated carbon catalyst. As described above, the downstream catalyst unit causes both an increase in the reaction rate of the air flow supplied by the reaction stage and the removal of ozone, which is still contained in the incoming air stream, but should not be discharged into the environment. If excess ozone thus reaches the activated carbon surface, it either reacts with pollutants adsorbed on the surface or oxidizes the carbon of the activated carbon. The latter means an energy loss, since the ozone generated with the help of light energy is unused, i. H. without having carried out a pollutant oxidation is lost.
Nach einer bevorzugten Ausführungsform wird daher vorgeschlagen, ein Redoxsystem bereitzustellen, das zwar den Austritt von Ozon in die Umwelt sicher verhindert, aber dabei die Oxidationskraft des Ozons speichert. Als Redox-Paar bietet sich dabei beispielsweise Kaliumpermangant/Mangandioxyd an. Durch die Oxidation von organischen Schadstoffen durch Kaliumpermangant bildet sich Mangandioxyd, das wiederum durch die Reaktion mit Ozon zum Kaliumpermangant regeneriert wird.According to a preferred embodiment, it is therefore proposed to provide a redox system, which certainly prevents the escape of ozone into the environment, but at the same time stores the oxidizing power of the ozone. For example, potassium permanganate / manganese dioxide can be used as the redox couple. Due to the oxidation of organic pollutants by potassium permanganate forms manganese dioxide, which in turn is regenerated by the reaction with ozone to potassium permangan.
Bei der Bereitstellung der nachgeschalteten Kathalysatoreinheit ist weiterhin zu beachten, dass die in der Praxis abzubauenden Schadstoffgemische im Allgemeinen aus einer Vielzahl unterschiedlicher Substanzen bestehen, da oftmals Schadstoffgemische mit einer Hauptkomponente und mehreren Nebenbestandteilen zu entsorgen sind. Daneben entstehen durch die Photooxidation in der Reaktionsstufe ständig weitere Schadstoffe, die ebenfalls noch in der nachgeschalteten Kathalysatoreinheit abgebaut werden müssen. Da die Oxidationsreaktionen organische Verbindungen nach komplexen Reaktionsmechanismen ablaufen, kann die Oxidation der Schadstoffe zu CO2 oft erst durch eine Abfolge mehrerer Oxidationsschritte erreicht werden. Im Verlauf der Gesamtreaktion zum Endprodukt CO2 steigt dabei die Polarität der organischen Verbindungen. Die Komplexität des Schadstoffgemisches führt dabei zu einer Konkurrenz der Komponenten um die Adsorptionsplätze in der Katalysatoreinheit. Dies bedeutet aber, dass ein einziges Adsorbermaterial nicht mehr in der Lage ist, sämtliche Verbindungen eines komplexen Schadstoffgemisches hinreichend zu adsorbieren. So adsorbiert beispielsweise Aktivkohle als unpolarer Adsorber bevorzugt auch unpolare Schadstoffe.When providing the downstream Kathalysatoreinheit is also to be noted that the degradable in practice pollutant mixtures generally consist of a variety of different substances, as often pollutant mixtures are disposed of with one main component and several minor components. In addition, due to the photo-oxidation in the reaction stage, further pollutants are constantly generated which also have to be decomposed in the downstream catalyzer unit. Since the oxidation reactions are organic compounds According to complex reaction mechanisms, the oxidation of pollutants to CO 2 can often only be achieved by a series of oxidation steps. In the course of the overall reaction to the end product CO 2 , the polarity of the organic compounds increases. The complexity of the pollutant mixture leads to a competition of the components for the adsorption sites in the catalyst unit. However, this means that a single adsorbent material is no longer able to adequately adsorb all compounds of a complex pollutant mixture. For example, activated carbon as a non-polar adsorber preferably also adsorbs nonpolar pollutants.
Nach einer weiteren bevorzugten Ausführungsform ist daher vorgesehen, dass die Katalysatoreinheit aus Katalysatoren unterschiedlicher Polarität besteht. Hierdurch kann eine zusätzliche Steigerung der Abbaurate erreicht werden, wenn die Schadstoffe in der von der Reaktionsstufe gelieferten Abluft verschiedene Polaritäten aufweisen.According to a further preferred embodiment, it is therefore provided that the catalyst unit consists of catalysts of different polarity. In this way, an additional increase in the rate of degradation can be achieved if the pollutants have different polarities in the exhaust air supplied by the reaction stage.
Nach einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass mehrere Einheiten bestehend aus Reaktionsstufe und nachgeschalteter Katalysatoreinheit hintereinander geschaltet sind. Durch die Bereitstellung mehrerer Katalysatoreinheiten mit jeweils nachfolgenden Reaktionsstufen kann die Auslegung einer Abluftreinigungsanlage bei instationären Schadstoffbelastungen des Rohgases auf die mittlere Schadstoffkonzentration optimiert werden. Bei nur einer Katalysatoreinheit muss die Auslegung hinsichtlich der maximal auftretenden Schadstoffkonzentration erfolgen, was zu großen und damit teuren Anlagen führt. Bei Lackierprozessen liegen aber beispielsweise produktionsbedingt instationäre Schadstoffbelastungen des Abgases vor. Durch den Einsatz zwischengeschalteter Katalysatoreinheiten mit nachfolgenden Reaktionsstufen werden dabei Schadstoffspitzen abgefangen und können nicht "durchbrechen". Trifft eine Schadstoff-Konzentrationsspitze auf eine Katalysatoreinheit, so werden die Schadstoffe adsorbiert und auf der Katalysatoroberfläche umgesetzt bzw. nur langsam wieder an die Gasphase abgegeben, um von einer weiteren nachfolgenden Reaktionsstufe abgebaut werden zu können. Hierdurch kann die Abbaurate des Gesamtsystems weiter erhöht werden und das System auch bei starken Konzentrationsschwankungen verlässlich ausgelegt werden. Somit führt die Hintereinanderschaltung mehrerer Reaktionsstufen und Katalysatoreinheiten letztlich zu einer kompakteren Anlage und damit zu einer Kostensenkung.According to a further preferred embodiment, it is provided that a plurality of units consisting of reaction stage and downstream catalyst unit are connected in series. By providing a plurality of catalyst units, each with subsequent reaction stages, the design of an exhaust air purification system can be optimized for transient pollutant loads of the raw gas to the average pollutant concentration. With only one catalyst unit, the design has to be carried out with regard to the maximum occurring pollutant concentration, which leads to large and thus expensive systems. In painting processes but are, for example due to production unsteady pollution of the Exhaust gas before. Through the use of intermediate catalyst units with subsequent reaction stages thereby pollutant peaks are intercepted and can not "break through". If a pollutant concentration peak hits a catalyst unit, then the pollutants are adsorbed and reacted on the catalyst surface or released only slowly back to the gas phase in order to be degraded by a further subsequent reaction stage can. As a result, the rate of degradation of the entire system can be further increased and the system can be reliably designed even with strong concentration fluctuations. Thus, the series connection of several reaction stages and catalyst units ultimately leads to a more compact system and thus to a cost reduction.
Im Folgenden wird die Erfindung anhand verschiedener Ausführungsbeispiele mit Bezug auf die beiliegenden Zeichnungen näher erläutert. Diese zeigen:
- Fig. 1:
- den Querschnitt und eine perspektivische Ansicht eines erfindungsgemäßen Luftleitkanals,
- Fig. 2:
- eine perspektivische Ansicht einer erfindungsgemäßen Reaktionsstufe mit mehreren parallelen Luftleitkanälen und
- Fig. 3:
- eine perspektivische Ansicht einer Abluftreinigungsanlage mit erfindungsgemäßen Reaktionsstufen.
- Fig. 1:
- the cross section and a perspective view of an air duct according to the invention,
- Fig. 2:
- a perspective view of a reaction stage according to the invention with a plurality of parallel air ducts and
- 3:
- a perspective view of an exhaust air purification system with reaction stages according to the invention.
Fig. 1 zeigt den Querschnitt und eine perspektivische Ansicht eines erfindungsgemäßen Luftleitkanals. Wie aus dem Querschnitt der Ebene A-B zu erkennen ist, weist der Luftleitkanal 101 den Querschnitt eines regelmäßigen Sechsecks auf. Mittig im Luftleitkanal 101 ist ein röhrenförmiger UV-Strahler 102 angeordnet. Die schadstoffbelastete Abluft tritt dabei in die Eintrittsöffnung 103 ein und wird aus der Austrittsöffnung 104 wieder abgegeben. Zur Erzielung einer Katalysatorwirkung bereits innerhalb des Luftleitkanals 101 sind die Innenwände 105 mit einem breitbandingen Halbleitermaterial beschichtet, beispielsweise Titandioxyd oder dotiertes Titandioxyd.Fig. 1 shows the cross section and a perspective view of an air duct according to the invention. As can be seen from the cross section of the plane AB, the
Fig. 2 zeigt eine perspektivische Ansicht einer erfindungsgemäßen Reaktionsstufe mit mehreren parallelen Luftleitkanälen. Die einzelnen Luftleitkanäle 101 entsprechen dabei dem in Fig. 1 dargestellten Luftleitkanal und sind wabenförmig parallel geschaltet. In entsprechender Weise ist in jedem Luftleitkanal 101 jeweils ein röhrenförmiger UV-Strahler angeordnet. Die in dieser Weise zusammen geschalteten Luftleitkanäle 101 sind von einem Metallgehäuse umgeben und bilden damit die Reaktionsstufe 201. An der Lufteintrittsöffnung 203 und der Luftaustrittsöffnung 204 sind jeweils Kontaktschienen 202 vorgesehen, die zum einen als Kabelkanäle für die elektrischen Zuführungen der UV-Strahler dienen und die zum anderen die UV-Strahler mechanisch in den Luftleitkanälen 101 halten. Zur elektrischen Ansteuerung der UV-Strahler sind seitlich entsprechende Vorschaltgeräte 205 vorgesehen. An den Unterseiten der Reaktionsstufe 201 sind Gleitschienen 206 und 207 vorgesehen, damit die Reaktionsstufe 201 im Gesamtsystem zu Wartungszwecken auf entsprechenden Rollen ein- bzw. ausgeschoben werden kann.Fig. 2 shows a perspective view of a reaction stage according to the invention with a plurality of parallel air ducts. The
Eine weitere Verbesserung der Abbaurate ist zu erreichen, wenn die Innenwandungen des Luftleitkanals mit einem Katalysatormaterial beschichtet werden. Durch die wabenförmige Konstruktion der Reaktionsstufe mit mehreren Luftleitkanälen können große Katalysatoroberflächen in direkter Nähe der UV-Strahlung mit geringem Druckverlust zur Verfügung gestellt werden. Durch die direkte Bestrahlung der Katalysatoroberfläche ergibt sich die Möglichkeit, breitbandige Halbleitermaterialien auf effektive Weise für eine Photokatalyse zu nutzen. Als Katalysatormaterial hat sich insbesondere Titandioxyd als geeignet herausgestellt. Durch Bestrahlung des Titandioxyds mit UV-Licht, dessen Energie größer oder gleich der Energiedifferenz zwischen Valenz- und Leitungsband des Halbleiters ist, werden zunächst Elektronen/Loch-Paare im Halbleitermaterial generiert. Daraufhin kommt es zur Bildung reaktiver O2 --Spezies, die den Prozess der Oxidation von Schadstoffen wirkungsvoll unterstützen. Zur Einleitung dieses Prozesses werden UV-Strahler mit Wellenlängen im Bereich zwischen 340 nm und 420 nm verwendet.A further improvement of the degradation rate can be achieved if the inner walls of the air duct are coated with a catalyst material. Due to the honeycomb construction of the reaction stage with multiple air ducts large catalyst surfaces in be provided in the immediate vicinity of the UV radiation with low pressure loss. The direct irradiation of the catalyst surface affords the possibility of effectively utilizing broadband semiconductor materials for photocatalysis. Titanium dioxide in particular has proven to be suitable as the catalyst material. By irradiating the titanium dioxide with UV light whose energy is greater than or equal to the energy difference between valence and conduction band of the semiconductor, first electron / hole pairs are generated in the semiconductor material. This leads to the formation of reactive O 2 - species, which effectively support the process of oxidation of pollutants. To initiate this process UV emitters with wavelengths in the range between 340 nm and 420 nm are used.
Anschließend erfolgt eine Adsorption von Gasmolekülen an den generierten Ladungen durch Lichteinstrahlung erzeugten Elektron/Loch-Paare. Die nun koadsorbierten Moleküle sind aktiviert und bilden einen Übergangszustand, aus dem heraus sie unter Bildung von Zwischenprodukten zu den Endprodukten reagieren. Die ungefährlichen Reaktionsprodukte desorbieren und können an die Umgebung abgegeben werden. Die photokatalytische Umsetzung läßt sich demnach in vier Schritte einteilen:
- 1. Erzeugung der Ladungspaare
- 2. Adsorption der Gase an den generierten Ladungen
- 3. Reaktion zwischen benachbart adsorbierten reaktiven Molekülen
- 4. Desorption der Produkte
- 1. Generation of the charge pairs
- 2. Adsorption of the gases on the generated charges
- 3. Reaction between adjacent adsorbed reactive molecules
- 4. desorption of the products
Mit Hilfe der heterogenen Photokatalyse ist es beispielsweise möglich, Verbindungen wie Ammoniak, Formaldehyd oder niedere Alkohole, die mit der Photooxidation nur schwer zu oxidieren sind, mit hoher Effizienz bei Raumtemperatur mit Luftsauerstoff zu Stickstoff bzw. CO2 und Wasser zu verbrennen. Der bereits allgemein beschriebene Reaktionsablauf ist in diesem Fall wie folgt:With the aid of heterogeneous photocatalysis, it is possible, for example, compounds such as ammonia, Formaldehyde or lower alcohols, which are difficult to oxidize with photooxidation, with high efficiency at room temperature with atmospheric oxygen to nitrogen or CO 2 and water to burn. The already generally described reaction sequence in this case is as follows:
Die Abluft wird in einen Reaktionskanal geleitet, in dem sich durch UV-Licht aktiviertes Titandioxid befindet. Die Bestrahlung des Photohalbleiters führt zur Generierung von Elektron/Loch-Paaren. Anschließend erfolgt eine Adsorption von Gasmolekülen an den generierten Ladungen, wobei der Energiegewinn bei der Adsorption entscheidet, welche Moleküle bevorzugt mit den Elektronen und welche mit den Löchern wechselwirken. Bei den Reaktionspartnern Ammoniak und Sauerstoff reagiert aufgrund der jeweiligen Moleküleigenschaften Ammoniak mit den Löchern und Sauerstoff mit den Elektronen. Die nun koadsorbierten Moleküle sind aktiviert und bilden einen Übergangszustand, aus dem heraus sie unter Bildung von Zwischenprodukten zu den Endprodukten reagieren. Die ungefährlichen Reaktionsprodukte Stickstoff und Wasser desorbieren und können an die Umgebung abgegeben werden.The exhaust air is directed into a reaction channel containing UV-activated titanium dioxide. The irradiation of the photo semiconductor leads to the generation of electron / hole pairs. Subsequently, adsorption of gas molecules takes place on the generated charges, wherein the energy gain in the adsorption decides which molecules preferentially interact with the electrons and which interact with the holes. In the reaction partners ammonia and oxygen reacts due to the respective molecular properties of ammonia with the holes and oxygen with the electrons. The now coadsorbed molecules are activated and form a transition state, from which they react to form intermediates to the final products. The non-hazardous reaction products nitrogen and water desorb and can be released to the environment.
Fig. 3 zeigt eine perspektivische Ansicht einer Abluftreinigungsanlage 301 mit erfindungsgemäßen Reaktionsstufen 306 und 307. Die Reaktionsstufen 306 und 307 entsprechen dabei jeweils der in Fig. 2 dargestellten Reaktionsstufe 201. Die schadstoffhaltige Abluft wird der Abluftreinigungsanlage 301 über ein Zuführrohr 302 zugeführt. Optional können zur Steigerung der zu reinigenden Luftmengen zwei baugleiche Systeme 303 und 304 vorgesehen sein, die in der Darstellung gemäß Fig. 3 übereinander angeordnet sind. Der Einfachheit halber wird im Folgenden nur das System 304 beschrieben, dessen einzelne Komponenten mit Hilfe eines Durchbruchs näher dargestellt sind.FIG. 3 shows a perspective view of an exhaust-
Demnach schließt sich dem Zuführrohr 302 zunächst eine Verteilerstufe 305 an, die die ankommende Luft gleichmäßig verteilt und gegebenenfalls größere Schadstoffpartikel herausfiltert. Die von der Verteilerstufe 305 weitergegebene Luft gelangt in die erfindungsgemäßen Reaktionsstufen 306 und 307. Zur Erhöhung der Abbaurate sind hierbei zwei baugleiche Reaktionsstufen 306 und 307 hintereinander geschaltet. Selbstverständlich kann die Abluftreinigungsanlage 301 aber auch nur mit einer Reaktionsstufe 306 aufgebaut werden. Den beiden Reaktionsstufen 306 und 307 schließt sich eine Katalysatoreinheit 308 an, die in der oben beschriebenen Weise beispielsweise aus geschüttetem hochporösen Aktivkohle-Material mit einer inneren Oberfläche von ca. 1200 m2/g bestehen kann, die als Reaktionsoberfläche genutzt werden.Accordingly, the
Die von der Katalysatoreinheit 308 abgegebene Luft gelangt weiter in die Gebläseeinheit 309, die für die Aufrechterhaltung eines entsprechenden Druckunterschiedes zwischen dem Zuführrohr 302 und dem Abführrohr 310 sorgt.The air discharged from the
Die Abluftreinigungsanlage 301 wird grundsätzlich nach dem Verfahren gemäß der EP 0 778 070 B1 betrieben, zeichnet sich allerdings erfindungsgemäß durch eine oder mehrere Reaktionsstufen 306, 307 aus, wie diese gemäß Fig. 2 dargestellt ist. Die schadstoffbelastete Abluft gelangt demnach von dem Zuführrohr 302 über die Verteilerstufe 304 in die Reaktionsstufen 306 und 307, in denen kurzwelliges UVC Licht eine chemische Reaktion einleitet. Geruchs- und Schadstoffmoleküle werden dabei aufgebrochen. Gleichzeitig werden Schadstoffradikale und Ozon als Oxidationsmittel erzeugt. Die Oxidation der Schadstoffe führt zu den umweltverträglichen Produkten CO2 und H2O. In der nachgeschalteten Katalysatoreinheit 308 werden schwer oxidierbare Verbindungen und überschüssiges Ozon abgebaut. Die gereinigte und geruchslose Luft wird über die Gebläseeinheit 309 und das Abführrohr 310 an die Umwelt abgegeben.The exhaust
Zur effektiven Behandlung instationärer Schadstoffbelastungen kann an der Stelle 311 in der oben beschriebenen Weise eine weitere Katalysatoreinheit zwischengeschaltet werden. Durch die weitere zwischengeschaltete Katalysatoreinheit gelingt es, auch kurzzeitig auftretende Schadstoffe mit sehr hohen Konzentrationen abzubauen.For the effective treatment of transient pollutant loads, a further catalyst unit can be interposed at point 311 in the manner described above. The further intermediary catalyst unit makes it possible to reduce short-term pollutants with very high concentrations.
Claims (19)
- Reaction stage of a used air duct comprising a plurality of air conduits, wherein the air conduits are arranged next to one another in a honeycombed configuration,
characterized in
that in the air conduits a respective tubular UV emitter is arranged longitudinally to the direction of flow of the used air,
wherein the cross section of each air conduit is configured as a regular polygon having at least five sides. - Reaction stage according to claim 1, characterized in that the cross section of the air conduits is configured as a respective regular hexagon.
- Reaction stage according to claim 1, characterized in that the cross section of the air conduits is configured as a respective circle.
- Reaction stage according to any one of claims 1 to 3, characterized in that a UV emitter is held in an air conduit by means of laterally attached contact rails.
- Reaction stage according to any one of claims 1 to 4, characterized in that the radiation emitted by a UV emitter causes the formation of reactive reactants such as ozone and/or oxygen-containing radicals in the used air as it flows along.
- Reaction stage according to claim 5, characterized in that the wavelength of the radiation emitted by the respective UV emitter is in the range of 185 nm.
- Reaction stage according to any one of claims 1 to 6, characterized in that the radiation emitted by a UV emitter causes the stimulation of the hydrocarbons contained in the used air to higher energy levels.
- Reaction stage according to claim 7, characterized in that the wavelength of the radiation emitted by the respective UV emitter is in the range of 254 nm.
- Reaction stage according to any one of claims 1 to 8, characterized in that the internal walls of the air conduits are coated with a broadband semiconductor material as a catalyst material.
- Reaction stage according to claim 9, characterized in that the radiation emitted by the respective UV emitter has wavelengths that are greater than 254 nm and the emitted radiation energy of which is substantially greater than or equal to the energy differential between the valence and conduction bands of the semiconductor material.
- Reaction stage according to either claim 9 or claim 10, characterized in that the radiation emitted by the respective UV emitter has wavelengths located in the range of the absorption edge of the semiconductor material.
- Reaction stage according to any one of claims 9 to 11, characterized in that the radiation emitted by the respective UV emitter has wavelengths located in the range between 340 nm and 500 nm, preferably between 350 nm and 420 nm.
- Reaction stage according to any one of claims 9 to 12, characterized in that the semiconductor material consists of titanium dioxide (TiO2) or doped titanium dioxide.
- Reaction stage according to any one of claims 9 to 12, characterized in that the semiconductor material consists of zinc oxide (ZnO), cadmium sulphate (CdS), zirconium dioxide (ZrO2), tungsten trioxide (WO3), cerium dioxide (CeO2), strontium titanium trioxide (SrTiO3) or zirconium titanium oxide (ZrTiO4).
- Device for purifying used air containing harmful substances in a used air duct, comprising a reaction stage according to any one of claims 1 to 14 and comprising a catalyst unit following the reaction stage.
- Device according to claim 15, characterized in that the catalyst unit consists of an activated carbon catalyst.
- Device according to claim 15, characterized in that the catalyst unit is based on a redox system.
- Device according to claim 17, characterized in that the redox system is formed by the components potassium permanganate/manganese dioxide.
- Device according to claim 15, characterized in that the catalyst unit consists of catalysts of different polarities.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10330114A DE10330114A1 (en) | 2003-07-03 | 2003-07-03 | Device for cleaning polluted exhaust air |
PCT/EP2004/007237 WO2005002638A2 (en) | 2003-07-03 | 2004-07-02 | Device for purifying used air containing harmful substances |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1646408A2 EP1646408A2 (en) | 2006-04-19 |
EP1646408B1 true EP1646408B1 (en) | 2006-12-27 |
Family
ID=33521316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04740589A Expired - Lifetime EP1646408B1 (en) | 2003-07-03 | 2004-07-02 | Device for purifying used air containing harmful substances |
Country Status (12)
Country | Link |
---|---|
US (1) | US20060153749A1 (en) |
EP (1) | EP1646408B1 (en) |
JP (1) | JP2009513315A (en) |
KR (1) | KR20060035721A (en) |
CN (1) | CN100473420C (en) |
AT (1) | ATE349230T1 (en) |
AU (1) | AU2004253291A1 (en) |
CA (1) | CA2572581A1 (en) |
DE (2) | DE10330114A1 (en) |
ES (1) | ES2280030T3 (en) |
HK (1) | HK1090857A1 (en) |
WO (1) | WO2005002638A2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2289850B1 (en) * | 2005-02-01 | 2009-01-16 | Ambito De Investigacion Tecnologica, S.L. | AUTONOMOUS AIR QUALITY CONTROLLING DEVICE THROUGH A CHEMIOADSORBENT-PHOTOCATALITICAL MULTIFUNCTIONAL MATERIAL. |
US20070251812A1 (en) * | 2006-03-27 | 2007-11-01 | Hayman John J Jr | Photocatalytic air treatment system and method |
US20090280027A1 (en) * | 2006-03-27 | 2009-11-12 | Hayman Jr John J | Photocatalytic air treatment system and method |
US7820100B2 (en) | 2007-05-17 | 2010-10-26 | Garfield Industries, Inc. | System and method for photocatalytic oxidation air filtration using a substrate with photocatalyst particles powder coated thereon |
US9308492B2 (en) * | 2007-06-22 | 2016-04-12 | Carrier Corporation | Method and system for using an ozone generating device for air purification |
US8747737B2 (en) * | 2008-07-14 | 2014-06-10 | Food Safety Technology, Llc | Air decontamination unit |
US9095704B2 (en) * | 2009-11-19 | 2015-08-04 | Uv Technologies, Llc | Ultraviolet light applicator system and method |
US10549268B2 (en) | 2013-07-05 | 2020-02-04 | Nitto Denko Corporation | Filter element for decomposing contaminants, system for decomposing contaminants and method using the system |
KR102597360B1 (en) * | 2016-12-12 | 2023-11-03 | 오씨아이 주식회사 | Manufactuing apparatus of carbon black and method of manufacturing the same |
CN108211712B (en) * | 2018-01-23 | 2024-04-05 | 江苏华纳环保科技有限公司 | UV photodissociation oxidation unit |
CN110433655B (en) * | 2019-08-19 | 2022-01-25 | 中国商用飞机有限责任公司 | Photocatalyst core assembly and photocatalyst purification device |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE396270A (en) * | 1932-05-12 | |||
US2413704A (en) * | 1944-12-04 | 1947-01-07 | Art Metal Company | Ultraviolet sterilizer |
DE2518165A1 (en) * | 1975-04-24 | 1976-11-04 | Georg Horstmann | DEVICE FOR DESTININATING LIQUIDS AND GASES |
EP0325133B1 (en) * | 1988-01-22 | 1993-01-13 | Hitachi, Ltd. | Apparatus for removing unpleasant odours |
JPH062736Y2 (en) * | 1988-09-30 | 1994-01-26 | ウシオ電機株式会社 | Air purifier |
JP3217101B2 (en) * | 1991-12-12 | 2001-10-09 | 日本化学工業株式会社 | Method for producing air purifier |
JPH11512301A (en) * | 1995-09-06 | 1999-10-26 | ユニヴァーサル・エアー・テクノロジー,インコーポレイテッド | Photocatalytic air disinfection |
DE19546061C5 (en) * | 1995-12-09 | 2008-02-28 | Schröder, Werner | Process for the purification of exhaust air |
JP3383932B2 (en) * | 1996-02-27 | 2003-03-10 | 飯村 惠次 | Photocatalyst device |
ES2534892T3 (en) * | 1998-07-30 | 2015-04-30 | Toto Ltd. | Procedure to produce high performance material that has photocatalytic function and device for it |
CA2249924A1 (en) * | 1998-10-09 | 2000-04-09 | Leonid Pavlov | Method and portable apparatus for improving indoor air quality by means of ultraviolet radiation sterilization |
JP2001009016A (en) * | 1999-06-30 | 2001-01-16 | Toshiba Lighting & Technology Corp | Photocatalytic cleaning unit and air purifier and light emitting diode |
GB2367495B (en) * | 1999-07-19 | 2004-06-16 | Mitsui Shipbuilding Eng | Method and apparatus for purifying oxygen containing gas |
US6649561B2 (en) * | 2001-02-26 | 2003-11-18 | United Technologies Corporation | Titania-coated honeycomb catalyst matrix for UV-photocatalytic oxidation of organic pollutants, and process for making |
US6730265B2 (en) * | 2001-11-02 | 2004-05-04 | Remote Light, Inc. | Air UV disinfection device and method |
-
2003
- 2003-07-03 DE DE10330114A patent/DE10330114A1/en not_active Withdrawn
-
2004
- 2004-07-02 EP EP04740589A patent/EP1646408B1/en not_active Expired - Lifetime
- 2004-07-02 JP JP2006516094A patent/JP2009513315A/en active Pending
- 2004-07-02 CA CA002572581A patent/CA2572581A1/en not_active Abandoned
- 2004-07-02 AT AT04740589T patent/ATE349230T1/en not_active IP Right Cessation
- 2004-07-02 KR KR1020067000123A patent/KR20060035721A/en not_active Application Discontinuation
- 2004-07-02 CN CNB2004800209897A patent/CN100473420C/en not_active Expired - Fee Related
- 2004-07-02 WO PCT/EP2004/007237 patent/WO2005002638A2/en active Application Filing
- 2004-07-02 AU AU2004253291A patent/AU2004253291A1/en not_active Abandoned
- 2004-07-02 ES ES04740589T patent/ES2280030T3/en not_active Expired - Lifetime
- 2004-07-02 DE DE502004002469T patent/DE502004002469D1/en not_active Expired - Fee Related
-
2005
- 2005-12-27 US US11/317,250 patent/US20060153749A1/en not_active Abandoned
-
2006
- 2006-10-19 HK HK06111532A patent/HK1090857A1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CN100473420C (en) | 2009-04-01 |
JP2009513315A (en) | 2009-04-02 |
EP1646408A2 (en) | 2006-04-19 |
HK1090857A1 (en) | 2007-01-05 |
KR20060035721A (en) | 2006-04-26 |
ES2280030T3 (en) | 2007-09-01 |
DE10330114A1 (en) | 2005-01-20 |
US20060153749A1 (en) | 2006-07-13 |
CN1826144A (en) | 2006-08-30 |
AU2004253291A1 (en) | 2005-01-13 |
WO2005002638A3 (en) | 2005-03-03 |
ATE349230T1 (en) | 2007-01-15 |
DE502004002469D1 (en) | 2007-02-08 |
WO2005002638A2 (en) | 2005-01-13 |
CA2572581A1 (en) | 2005-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19546061C2 (en) | Exhaust air purification process | |
EP2854877B1 (en) | Air cleaning device | |
WO2006042740A2 (en) | Process and device for sterilising ambient air | |
EP2581127B1 (en) | Method for air purification, preferably of volatile organic compounds | |
DE60011282T2 (en) | METHOD FOR EXHAUST PLASMA TREATMENT | |
EP1646408B1 (en) | Device for purifying used air containing harmful substances | |
WO2006134149A1 (en) | Method and system for photocatalytically cleaning air and waste water | |
DE202006020800U1 (en) | Air disinfection device | |
EP2583846A1 (en) | Air purification device | |
DE10049595A1 (en) | Cleaning assembly, for incinerator exhaust gas emissions, is cylinder structure with photo catalyst balls in contact with the gas flow which are excited by light to destroy hazardous matter in gas | |
DE102006023069B4 (en) | Plasma reactor and process for the purification of airborne pollutants and germs, as well as bulk material for filling the plasma reactor | |
WO2022029079A1 (en) | Gas purification device and method for purifying a gas | |
EP2674208A1 (en) | UV irradiator module for a ventilation, waste gas or air purification device | |
DE19717889C1 (en) | Silent discharge from selectively-doped, porous silicon carbide electrode, treating variety of flue- and exhaust gases | |
DE19740401C1 (en) | Process breaks down industrial particulate or gaseous wastes in foam | |
EP1844796A2 (en) | Method and device for processing the exhaust air from an electric or electronic device, in particular from a photocopier or a printer | |
DE19511643A1 (en) | Process and device for cleaning pollutant-containing exhaust gases by chemical conversion | |
DE10147703A1 (en) | Process to clean effluent air containing small quantities of volatile compounds e.g. hydrocarbons by admixture with ozone under ultra-violet light | |
EP1543873B1 (en) | Device and process for decomposing, at least one organic compound contained in a gas, in particular, in an exhaust gas | |
DE102022211984A1 (en) | Method and device for reducing ethylene oxide emissions | |
DE20011151U1 (en) | Exhaust air purification device | |
DE19917510B4 (en) | Reactor and method for plasma-chemically induced reactions | |
DE29823392U1 (en) | Air purification device for air disinfection | |
DE202005006454U1 (en) | Air purifier module, e.g. for household or automobile ventilation, heating or air conditioner systems, comprises zeolite-doped contact surfaces | |
EP1161979A1 (en) | Method and device for the purification of exhaust air |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060203 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061227 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061227 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061227 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061227 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061227 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061227 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061227 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061227 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1090857 Country of ref document: HK |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502004002469 Country of ref document: DE Date of ref document: 20070208 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070327 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070528 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070503 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: NOVAGRAAF INTERNATIONAL SA |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1090857 Country of ref document: HK |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2280030 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070328 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070731 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20080912 Year of fee payment: 5 Ref country code: DE Payment date: 20080711 Year of fee payment: 5 Ref country code: ES Payment date: 20080821 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20080711 Year of fee payment: 5 Ref country code: FR Payment date: 20080718 Year of fee payment: 5 Ref country code: IT Payment date: 20080729 Year of fee payment: 5 Ref country code: NL Payment date: 20080703 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080702 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061227 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20080709 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20090126 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061227 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070628 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061227 |
|
BERE | Be: lapsed |
Owner name: SCHRODER, WERNER Effective date: 20090731 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090702 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20100201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100202 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090702 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100201 |