EP1632742B1 - Heat exchanger, more particularly for air conditioning system - Google Patents

Heat exchanger, more particularly for air conditioning system Download PDF

Info

Publication number
EP1632742B1
EP1632742B1 EP05016196.7A EP05016196A EP1632742B1 EP 1632742 B1 EP1632742 B1 EP 1632742B1 EP 05016196 A EP05016196 A EP 05016196A EP 1632742 B1 EP1632742 B1 EP 1632742B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
flat tubes
rib
width
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05016196.7A
Other languages
German (de)
French (fr)
Other versions
EP1632742A2 (en
EP1632742A3 (en
Inventor
Walter Dipl.-Ing. Demuth
Martin Dipl.-Ing. Kotsch
Michael Dipl.-Ing. Kranich
Karl-Heinz Dipl.-Ing. Staffa
Christoph Dipl.-Ing. Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP1632742A2 publication Critical patent/EP1632742A2/en
Publication of EP1632742A3 publication Critical patent/EP1632742A3/en
Application granted granted Critical
Publication of EP1632742B1 publication Critical patent/EP1632742B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction

Definitions

  • the invention relates to a heat exchanger, in particular for air conditioning systems, according to the preamble of claim 1.
  • Pressure-stable heat exchangers are known in particular for automotive air conditioning systems which are operated with CO2 or R744.
  • the high pressures occurring in the supercritical refrigeration process require a pressure-stable design of the pipes carrying the refrigerant and the associated collection container, which are preferably designed as thick-walled headers.
  • the tubes are often designed as extruded multi-chamber tubes, in particular with circular or elliptical cross sections.
  • This design has the advantage, inter alia, that the diameter of the collecting pipes in relation to the pipe width (measured in the direction of air flow) can be chosen to be relatively small.
  • the flat tube ends are twisted by 90 ° and taken in such a compact manner in a preferably continuous longitudinal slot that their narrow sides (relative to the flat tube cross section) are close to each other.
  • the flat tube ends are soldered to the slotted manifold and thus form a pressure-stable heat exchanger, which withstands the occurring pressures of about 120 bar.
  • a problem with this construction is derived from the fact that between the block depth, which corresponds to the pipe and corrugated fin width (measured in the air flow direction), and the pipe pitch is a fixed relationship: the pitch of the tubes corresponds to their width or the sum of fin height and pipe thickness.
  • the block depth which is a measure of the efficiency of the heat exchanger, can not be increased without further ado - rather, this block design has a limitation on the block depth.
  • a so-called one-sided rib projection is provided for the corrugated ribs, d. H.
  • the corrugated fins arranged between the flat tubes protrude to one side over the narrow sides of the flat tubes and close flush with the other side (end face). With this fin overhang the advantage of a higher heat transfer performance is achieved by improving the air-side heat transfer.
  • one side (face) of the heat exchanger block is smooth and thus can be placed on a flat surface during "Kassettieren".
  • the fin projection can be arranged on the inflow side (windward side) or the outflow side (leeward side) of the heat exchanger.
  • a gas cooler or condenser which can preferably be arranged in the front engine compartment of a motor vehicle
  • a better condensate would result in circumstances, if the fin overhang on the leeward side of the evaporator is arranged.
  • Fig. 1 shows a perspective view of a heat exchanger block 1, hereinafter referred to as block, wherein the entire heat exchanger is not shown, but in its construction of the above-mentioned document of the Applicant, the DE-A 198 46 267 equivalent.
  • the block 1 has flat tubes 2, between which corrugated fins 3 are arranged, which are soldered with their wave crests with the flat sides of the flat tubes 2.
  • the flat tubes 2 are formed as extruded multi-chamber tubes with circular or elliptical flow channels 2a.
  • the ends of the flat tubes 2, not shown, are twisted and received in a longitudinal section, not shown, of a collecting tube. This results in a fixed relation between pipe pitch and pipe width, which will be discussed in more detail below.
  • the corrugated fins 3 have - what is known - gills or gill arrays 3a for improvement the heat transfer on.
  • the corrugated fins 3 are overflowed by ambient air, while the flow channels 2 a of the flat tubes 2 are traversed by a supercritical refrigerant, preferably R 744 or CO 2, which flows through a refrigerant circuit, not shown, of a motor vehicle air conditioner.
  • the corrugated fins 3 are on one side (in the drawing, the upper) in the air flow direction beyond the tubes, ie they form a so-called fin projection 4, which is only distorted recognizable in the perspective view and will therefore be explained in more detail below.
  • Fig. 2 shows the same section of the block 1 in a cross section through the flat tubes 2.
  • the flat tubes 2 have narrow sides 5 on one side of the block 1 and narrow sides 6 on the other side of the block 2.
  • the air flow direction is represented by arrows L.
  • the rib supernatant 4 is arranged in the illustrated embodiment on the air inflow side (windward side), that is, the corrugated fins 3 are opposite to the air flow direction L on the narrow sides 6 of the flat tubes by an amount Ü addition.
  • the width of the flat tubes 2, measured in the direction of air flow L, is B, while the total width of the corrugated fins 3, including the fin projection Ü, is marked B '.
  • the rib height is denoted by H
  • the tube thickness by D
  • the pitch of the flat tubes 2 ie their center distance with t.
  • the dimension Ü for the unilateral rib projection 4 is in a range of 5 to 20% of the flat tube width B. In this area, on the one hand there is an increase in the heat transfer and thus a performance improvement for the entire heat exchanger, on the other hand the risk of damage during transport or installation relatively low.
  • the rib supernatant 4 on the windward side is advantageous, for example, for a gas cooler, which is arranged in the front region of the engine compartment of a motor vehicle, because the rib projection 4 proves to protect the narrow sides 6 against falling rocks.
  • the rib supernatant may also be arranged on the leeward side, for. B. in an evaporator, which is located inside an air conditioner and therefore is not exposed to stone chipping.
  • condensate formation occurs in the evaporator. This condensate can flow better at a leeward rib protrusion.
  • the performance increase is due to the rib overhang, ie its measure Ü regardless of whether it is located on the upstream or the downstream side of the corrugated fins 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft einen Wärmeübertrager, insbesondere für Klimaanlagen, nach dem Oberbegriff des Patentanspruches 1.The invention relates to a heat exchanger, in particular for air conditioning systems, according to the preamble of claim 1.

Druckstabile Wärmeübertrager sind insbesondere für Kraftfahrzeug-Klimaanlagen bekannt, die mit CO2 bzw. R744 betrieben werden. Die in dem überkritischen Kälteprozess auftretenden hohen Drücke erfordern eine druckstabile Ausbildung der das Kältemittel führenden Rohre sowie der zugehörigen Sammelbehälter, die vorzugsweise als dickwandige Sammelrohre ausgeführt sind. Die Rohre sind vielfach als extrudierte Mehrkammerrohre, insbesondere mit kreisförmigen oder elliptischen Querschnitten ausgebildet. Durch die DE-A 196 49 129 sowie die DE-A 198 46 267 der Anmelderin wurden druckstabile Wärmeübertrager mit Flachrohren bekannt, deren Endabschnitte um die Rohrlängsachse tordiert und in Öffnungen von Sammelrohren aufgenommen sind. Diese Bauweise hat u. a. den Vorteil, dass der Durchmesser der Sammelrohre in Relation zur Rohrbreite (gemessen in Luftströmungsrichtung) relativ gering gewählt werden kann. Bei der Bauweise nach der DE-A 198 46 267 sind die Flachrohrenden um 90° tordiert und in einem vorzugsweise durchgehenden Längsschlitz derart kompakt aufgenommen, dass ihre Schmalseiten (bezogen auf den Flachrohrquerschnitt) dicht aneinander liegen. Die Flachrohrenden werden mit dem geschlitzten Sammelrohr verlötet und bilden so einen druckstabilen Wärmeübertrager, welcher den auftretenden Drücken von ca. 120 bar standhält.Pressure-stable heat exchangers are known in particular for automotive air conditioning systems which are operated with CO2 or R744. The high pressures occurring in the supercritical refrigeration process require a pressure-stable design of the pipes carrying the refrigerant and the associated collection container, which are preferably designed as thick-walled headers. The tubes are often designed as extruded multi-chamber tubes, in particular with circular or elliptical cross sections. By the DE-A 196 49 129 as well as the DE-A 198 46 267 the applicant were known pressure-stable heat exchanger with flat tubes, the end portions are twisted around the pipe longitudinal axis and received in openings of headers. This design has the advantage, inter alia, that the diameter of the collecting pipes in relation to the pipe width (measured in the direction of air flow) can be chosen to be relatively small. In the construction after the DE-A 198 46 267 the flat tube ends are twisted by 90 ° and taken in such a compact manner in a preferably continuous longitudinal slot that their narrow sides (relative to the flat tube cross section) are close to each other. The flat tube ends are soldered to the slotted manifold and thus form a pressure-stable heat exchanger, which withstands the occurring pressures of about 120 bar.

Ein Problem bei dieser Bauweise leitet sich daraus ab, dass zwischen der Blocktiefe, die der Rohr- und Wellrippenbreite (gemessen in Luftströmungsrichtung) entspricht, und der Rohrteilung ein fester Zusammenhang besteht: die Teilung der Rohre entspricht ihrer Breite bzw. der Summe aus Rippenhöhe und Rohrdicke. Bei vorgegebener Rippenhöhe lässt sich somit die Blocktiefe, welche ein Maß für die Leistungsfähigkeit des Wärmeübertragers ist, nicht ohne weiteres erhöhen - vielmehr liegt bei dieser Bauweise eine Beschränkung hinsichtlich der Blocktiefe vor.A problem with this construction is derived from the fact that between the block depth, which corresponds to the pipe and corrugated fin width (measured in the air flow direction), and the pipe pitch is a fixed relationship: the pitch of the tubes corresponds to their width or the sum of fin height and pipe thickness. With a given rib height, the block depth, which is a measure of the efficiency of the heat exchanger, can not be increased without further ado - rather, this block design has a limitation on the block depth.

Es ist Aufgabe der vorliegenden Erfindung, einen Wärmeübertrager der eingangs genannten Art hinsichtlich seiner Leistungsfähigkeit zu verbessern.It is an object of the present invention to improve a heat exchanger of the type mentioned in terms of its performance.

Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst. Erfindungsgemäß ist für die Wellrippen ein so genannter einseitiger Rippenüberstand vorgesehen, d. h. die zwischen den Flachrohren angeordneten Wellrippen stehen nach einer Seite über die Schmalseiten der Flachrohre vor und schließen mit der anderen Seite (Stimfläche) bündig ab. Mit diesem Rippenüberstand wird der Vorteil einer höheren Wärmeübertragungsleistung durch Verbesserung des luftseitigen Wärmeüberganges erzielt. Ferner ergeben sich bei der Herstellung Vorteile, weil eine Seite (Stirnfläche) des Wärmeübertragerblockes glatt ist und somit beim "Kassettieren" auf eine ebene Unterlage gelegt werden kann. Bei einem beiderseitigen Rippenüberstand beispielsweise wäre die Fertigung unter Umständen komplizierter, weil die Flachrohre in Luftströmungsrichtung zwischen den Schmalseiten (Anströmkanten und Abströmkanten) der Flachrohre exakt positioniert werden müssten. Dies würde spezielle Vorrichtungen erfordern, die im Falle des erfindungsgemäßen einseitigen Rippenüberstandes nicht notwendig sind.This object is solved by the features of claim 1. According to the invention, a so-called one-sided rib projection is provided for the corrugated ribs, d. H. the corrugated fins arranged between the flat tubes protrude to one side over the narrow sides of the flat tubes and close flush with the other side (end face). With this fin overhang the advantage of a higher heat transfer performance is achieved by improving the air-side heat transfer. Furthermore, there are advantages in the production, because one side (face) of the heat exchanger block is smooth and thus can be placed on a flat surface during "Kassettieren". For example, in the case of a rib projection on both sides, the production would possibly be more complicated because the flat tubes would have to be positioned exactly in the direction of air flow between the narrow sides (leading edges and outflow edges) of the flat tubes. This would require special devices which are not necessary in the case of the unilateral rib supernatant according to the invention.

Der Rippenüberstand kann - je nach Anwendungsfall - auf der Anströmseite (Luvseite) oder der Abströmseite (Leeseite) des Wärmeübertragers angeordnet sein: Beispielsweise bei einem Gaskühler oder Kondensator, welcher vorzugsweise im vorderen Motorraum eines Kraftfahrzeuges angeordnet sein kann, ergibt sich durch die vorstehenden Rippen ein Schutz der Flachrohre gegen Steinschlag - unter Umständen als zusätzlicher Vorteil zum verbesserten Wärmeübergang. Beispielsweise bei einem Verdampfer dagegen, auf dessen Rippen sich regelmäßig Kondensat sammelt, würde sich unter Umständen ein besserer Kondensatablauf dadurch ergeben, wenn der Rippenüberstand auf der Leeseite des Verdampfers angeordnet ist.Depending on the application, the fin projection can be arranged on the inflow side (windward side) or the outflow side (leeward side) of the heat exchanger. For example, in the case of a gas cooler or condenser, which can preferably be arranged in the front engine compartment of a motor vehicle, this results from the protruding ribs Protection of the flat pipes against falling rocks - under certain circumstances as an additional advantage to the improved heat transfer. For example, in an evaporator, on the other hand, collects regularly condensate on the ribs, a better condensate would result in circumstances, if the fin overhang on the leeward side of the evaporator is arranged.

Der Rippenüberstand, bezogen auf die Breite der Flachrohre (gemessen in Luftströmungsrichtung), liegt in einem Bereich von 5 - 20 % der Flachrohrbreite, wobei für große Breiten ein niedriger Prozentsatz und für kleine Breiten ein höherer Prozentsatz bevorzugt wird, so dass sich die absoluten Maße für den Rippenüberstand annähern.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher beschrieben. Es zeigen

Fig. 1
einen perspektivischen Ausschnitt eines Blockes für einen erfindungsgemäßen Wärmeübertrager mit einseitigem Rippenüberstand und
Fig. 2
den Blockausschnitt gemäß Fig. 1 als Querschnitt durch die Flachrohre.
The rib protrusion, based on the width of the flat tubes (measured in the direction of air flow), is in a range of 5-20% of the flat tube width, with a low percentage being preferred for large widths and a higher percentage for small widths, so that the absolute dimensions approximate for the rib supernatant.
An embodiment of the invention is illustrated in the drawing and will be described in more detail below. Show it
Fig. 1
a perspective section of a block for a heat exchanger according to the invention with one-sided rib supernatant and
Fig. 2
the block section according to Fig. 1 as a cross section through the flat tubes.

Fig. 1 zeigt eine perspektivische Darstellung eines Wärmeübertragerblockes 1, im Folgenden kurz Block genannt, wobei der gesamte Wärmeübertrager nicht dargestellt ist, jedoch in seiner Bauweise der eingangs genannten Druckschrift der Anmelderin, der DE-A 198 46 267 entspricht. Fig. 1 shows a perspective view of a heat exchanger block 1, hereinafter referred to as block, wherein the entire heat exchanger is not shown, but in its construction of the above-mentioned document of the Applicant, the DE-A 198 46 267 equivalent.

Der Block 1 weist Flachrohre 2 auf, zwischen denen Wellrippen 3 angeordnet sind, die mit ihren Wellenkämmen mit den flachen Seiten der Flachrohre 2 verlötet sind. Die Flachrohre 2 sind als extrudierte Mehrkammerrohre mit kreisförmig oder elliptisch ausgebildeten Strömungskanälen 2a ausgebildet. Die nicht dargestellten Enden der Flachrohre 2 sind tordiert und in einem nicht dargestellten Längsschnitt eines Sammelrohres aufgenommen. Dadurch ergibt sich eine feste Relation zwischen Rohrteilung und Rohrbreite, auf die unten noch genauer eingegangen wird. Die Wellrippen 3 weisen - was an sich bekannt ist - Kiemen bzw. Kiemenfelder 3a zur Verbesserung des Wärmeüberganges auf. Die Wellrippen 3 werden von Umgebungsluft überströmt, während die Strömungskanäle 2a der Flachrohre 2 von einem überkritischen Kältemittel, vorzugsweise R744 bzw. CO2 durchströmt werden, welches einen nicht dargestellten Kältemittelkreislauf einer Kraftfahrzeug-Klimaanlage durchströmt. Die Wellrippen 3 stehen auf einer Seite (in der Zeichnung die obere) in Luftströmungsrichtung über die Rohre hinaus, d. h. sie bilden einen so genannten Rippenüberstand 4, welcher in der perspektivischen Darstellung nur verzerrt erkennbar ist und daher im Folgenden genauer erläutert wird.The block 1 has flat tubes 2, between which corrugated fins 3 are arranged, which are soldered with their wave crests with the flat sides of the flat tubes 2. The flat tubes 2 are formed as extruded multi-chamber tubes with circular or elliptical flow channels 2a. The ends of the flat tubes 2, not shown, are twisted and received in a longitudinal section, not shown, of a collecting tube. This results in a fixed relation between pipe pitch and pipe width, which will be discussed in more detail below. The corrugated fins 3 have - what is known - gills or gill arrays 3a for improvement the heat transfer on. The corrugated fins 3 are overflowed by ambient air, while the flow channels 2 a of the flat tubes 2 are traversed by a supercritical refrigerant, preferably R 744 or CO 2, which flows through a refrigerant circuit, not shown, of a motor vehicle air conditioner. The corrugated fins 3 are on one side (in the drawing, the upper) in the air flow direction beyond the tubes, ie they form a so-called fin projection 4, which is only distorted recognizable in the perspective view and will therefore be explained in more detail below.

Fig. 2 zeigt den gleichen Ausschnitt des Blockes 1 in einem Querschnitt durch die Flachrohre 2. Es werden die gleichen Bezugszahlen wie zuvor verwendet. Die Flachrohre 2 weisen Schmalseiten 5 auf einer Seite des Blockes 1 und Schmalseiten 6 auf der anderen Seite des Blockes 2 auf. Die Luftströmungsrichtung ist durch Pfeile L dargestellt. Der Rippenüberstand 4 ist bei dem dargestellten Ausführungsbeispiel auf der Luftanströmseite (Luvseite) angeordnet, das heißt die Wellrippen 3 stehen entgegen der Luftströmungsrichtung L über die Schmalseiten 6 der Flachrohre um einen Betrag Ü hinaus. Die Breite der Flachrohre 2, gemessen in Luftströmungsrichtung L beträgt B, während die Gesamtbreite der Wellrippen 3 einschließlich des Rippenüberstandes Ü mit B' gekennzeichnet ist. Die Rippenhöhe ist mit H, die Rohrdicke mit D und die Teilung der Flachrohre 2, d. h. ihr Mittenabstand mit t gekennzeichnet. Aufgrund der obigen Ausführungen ergibt sich für die Teilung folgende Relation: t = H + D .

Figure imgb0001
Andererseits entspricht die Teilung t aufgrund der um 90° tordierten Flachrohrenden der Flachrohrbreite B: t = B .
Figure imgb0002
Fig. 2 shows the same section of the block 1 in a cross section through the flat tubes 2. The same reference numbers are used as before. The flat tubes 2 have narrow sides 5 on one side of the block 1 and narrow sides 6 on the other side of the block 2. The air flow direction is represented by arrows L. The rib supernatant 4 is arranged in the illustrated embodiment on the air inflow side (windward side), that is, the corrugated fins 3 are opposite to the air flow direction L on the narrow sides 6 of the flat tubes by an amount Ü addition. The width of the flat tubes 2, measured in the direction of air flow L, is B, while the total width of the corrugated fins 3, including the fin projection Ü, is marked B '. The rib height is denoted by H, the tube thickness by D and the pitch of the flat tubes 2, ie their center distance with t. Based on the above, the following relation results for the division: t = H + D ,
Figure imgb0001
On the other hand, due to the 90 ° twisted flat tube ends, the pitch t corresponds to the flat tube width B: t = B ,
Figure imgb0002

Das Maß Ü für den einseitigen Rippenüberstand 4 liegt in einem Bereich von 5 bis 20 % der Flachrohrbreite B. In diesem Bereich ergibt sich einerseits eine Erhöhung des Wärmeübergangs und damit eine Leistungsverbesserung für den gesamten Wärmeübertrager, andererseits ist die Gefahr von Beschädigungen beim Transport oder der Montage relativ gering.The dimension Ü for the unilateral rib projection 4 is in a range of 5 to 20% of the flat tube width B. In this area, on the one hand there is an increase in the heat transfer and thus a performance improvement for the entire heat exchanger, on the other hand the risk of damage during transport or installation relatively low.

Im Ausführungsbeispiel gemäß Fig. 2 liegt der Rippenüberstand 4 auf der Luvseite. Diese Ausführung ist beispielsweise für einen Gaskühler, der im vorderen Bereich des Motorraumes eines Kraftfahrzeuges angeordnet ist, von Vorteil, weil sich der Rippenüberstand 4 als Schutz der Schmalseiten 6 gegen Steinschlag erweist. Andererseits kann der Rippenüberstand auch auf der Leeseite angeordnet sein, z. B. bei einem Verdampfer, der sich im Inneren eines Klimagerätes befindet und daher keinem Steinschlag ausgesetzt ist. Dagegen tritt beim Verdampfer Kondensatbildung auf. Dieses Kondensat kann bei einem leeseitigen Rippenüberstand besser abfließen. Grundsätzlich ist der Leistungszuwachs aufgrund des Rippenüberstandes, d. h. seines Maßes Ü unabhängig davon, ob er auf der stromaufwärtigen oder der stromabwärtigen Seite der Wellrippen 3 angeordnet ist.In the embodiment according to Fig. 2 is the rib supernatant 4 on the windward side. This embodiment is advantageous, for example, for a gas cooler, which is arranged in the front region of the engine compartment of a motor vehicle, because the rib projection 4 proves to protect the narrow sides 6 against falling rocks. On the other hand, the rib supernatant may also be arranged on the leeward side, for. B. in an evaporator, which is located inside an air conditioner and therefore is not exposed to stone chipping. Conversely, condensate formation occurs in the evaporator. This condensate can flow better at a leeward rib protrusion. Basically, the performance increase is due to the rib overhang, ie its measure Ü regardless of whether it is located on the upstream or the downstream side of the corrugated fins 3.

Claims (2)

  1. A heat exchanger with at least one collecting tank, such as a collecting tube, and a heat exchanger block (1) constructed from corrugated ribs (3) and flat tubes (2), wherein the ends of the flat tubes (2) are twisted by 90° and are received in longitudinal slots of the collecting tube and have straight sections with straight narrow sides (5, 6), characterised in that the corrugated ribs (3) arranged between the flat tubes (2) end flush with the narrow sides (5) on one side and extend beyond the other narrow sides (6) on the other side and form a rib overhang (4), wherein, as measured in the air flow direction L, the flat tubes (2) have a width B, the corrugated ribs have a width B' and the rib overhang has a measure Ü, wherein B' = B + Ü, and in that the measure Ü lies within the following range:
    0.05 B ≤ Ü ≤ 0.20 B, wherein the corrugated ribs have gills all over their width (B'), including the rib overhang (Ü).
  2. The heat exchanger according to claim 1, characterised in that the flat tubes (2) have a tube division t which corresponds to the width B and the sum of the rib height H and the flat tube thickness D.
EP05016196.7A 2004-09-01 2005-07-26 Heat exchanger, more particularly for air conditioning system Expired - Fee Related EP1632742B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004042692A DE102004042692A1 (en) 2004-09-01 2004-09-01 Heat exchanger, for a motor vehicle air conditioning system, has corrugated ribs between flat pipes in the exchanger block with rib projections at one side of the flat pipes

Publications (3)

Publication Number Publication Date
EP1632742A2 EP1632742A2 (en) 2006-03-08
EP1632742A3 EP1632742A3 (en) 2011-09-28
EP1632742B1 true EP1632742B1 (en) 2018-12-19

Family

ID=35432073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05016196.7A Expired - Fee Related EP1632742B1 (en) 2004-09-01 2005-07-26 Heat exchanger, more particularly for air conditioning system

Country Status (2)

Country Link
EP (1) EP1632742B1 (en)
DE (1) DE102004042692A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103649667B (en) * 2011-07-14 2016-02-03 松下知识产权经营株式会社 Outdoor heat exchanger and air conditioner for vehicles
FR2991034B1 (en) * 2012-05-25 2014-06-06 Valeo Systemes Thermiques INTERCALAR FOR THERMAL EXCHANGER AND THERMAL EXCHANGER
JP2015200442A (en) * 2014-04-07 2015-11-12 株式会社デンソー heat exchanger
EP3255368A1 (en) 2016-06-09 2017-12-13 Valeo Systemes Thermiques Heat exchanger, especially a gas radiator or a condenser for a car

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147785A (en) * 1992-11-04 1994-05-27 Hitachi Ltd Outdoor heat exchanger for heat pump
EP1164345A1 (en) * 1999-12-14 2001-12-19 Denso Corporation Heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328861A (en) * 1979-06-21 1982-05-11 Borg-Warner Corporation Louvred fins for heat exchangers
DE19649129A1 (en) 1996-11-27 1998-05-28 Behr Gmbh & Co Flat tube heat exchanger with shaped flat tube end section
DE19846267A1 (en) 1998-10-08 2000-04-13 Behr Gmbh & Co Collector tube unit for a heat exchanger
DE20010994U1 (en) * 2000-06-21 2000-08-31 Behr Gmbh & Co Network for a heat exchanger
DE10221457A1 (en) * 2002-05-15 2003-11-27 Behr Gmbh & Co Heat exchanger with manifold for air-conditioning abuts and diverges edges of manifold slotways to form post-sealed openings for flat pipes.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147785A (en) * 1992-11-04 1994-05-27 Hitachi Ltd Outdoor heat exchanger for heat pump
EP1164345A1 (en) * 1999-12-14 2001-12-19 Denso Corporation Heat exchanger

Also Published As

Publication number Publication date
EP1632742A2 (en) 2006-03-08
EP1632742A3 (en) 2011-09-28
DE102004042692A1 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
EP0519334B1 (en) Flat tube heat exchanger, process for manufacturing same, applications and flat tubes for heat exchanger
EP1613916B1 (en) Heat exchanger
DE102006054814B4 (en) Soldered flat tube for capacitors and / or evaporators
DE69911131T2 (en) heat exchangers
EP1701125A2 (en) Heat exchanger with flat tubes and flat tube for heat exchanger
DE10354382A1 (en) Heat exchangers, in particular intercoolers for motor vehicles
EP1544564A1 (en) Heat exchanger with flat tubes and flat heat exchanger tube
EP1774245A1 (en) Fully-metal heat exchanger and method for its production
WO2006077044A1 (en) Heat exchanger, in particular a charge intercooler or coolant cooler for motor vehicles
DE102004057407A1 (en) Flat tube for heat exchanger, especially condenser, has insert with central, essentially flat steel band from which structural elements are cut, turned out of band plane by angle with axis of rotation essentially arranged in flow direction
DE102007031824A1 (en) Heat exchanger tube comprises first thin sheet of material partially forming broad and narrow sides of tube body and partially enclosing an interior space, and second sheet of material partially forming fin brazed to tube body
DE102006053702B4 (en) Heat exchangers, in particular gas coolers
EP1632742B1 (en) Heat exchanger, more particularly for air conditioning system
EP1657512A1 (en) Heat exchanger with open profile as housing
EP2394126B1 (en) Heating element for motor vehicles
EP1640684A1 (en) heat exchanger with flat tubes and corrugated fins
EP1567819A1 (en) Heat exchanger unit, in particular for a motor vehicle and method for producing said unit
WO2003060412A2 (en) Welded multi-chamber tube
EP2096397A2 (en) Ridge for a heat exchanger and manufacturing method
DE6602685U (en) HEAT EXCHANGERS, IN PARTICULAR COOLERS FOR COMBUSTION VEHICLE ENGINES, WITH THE SAME SPACER PLATES ARRANGED BETWEEN THE COOLANT PIPES FOR THE SUPPLY OF THE COOLING AIR FLOW
DE102008020230A1 (en) Heat exchanger for vehicle combustion engine coolant radiator has exchanger tube wall perpendicular to longitudinal direction with zigzag profile and/or zigzag flow cross-section for first medium; cross-section can also have interruptions
DE102007001430A1 (en) A method for forming the collector sides of gas cooler heat exchangers has the individual flow tubes terminating in a rolled section bonded to square wave fin elements
DE102005048227A1 (en) Radiator, cooling circuit, air conditioner for a motor vehicle air conditioning system and air conditioning for a motor vehicle
DE10319226B4 (en) Device for cooling or heating a fluid
EP1764571B1 (en) Heat exchanger, especially radiator, for air conditioning system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 1/053 20060101ALI20110824BHEP

Ipc: F28F 1/12 20060101AFI20110824BHEP

17P Request for examination filed

Effective date: 20120328

AKX Designation fees paid

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 20130102

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEMUTH, WALTER, DIPL.-ING.

Inventor name: KRANICH, MICHAEL, DIPL.-ING.

Inventor name: STAFFA, KARL-HEINZ, DIPL.-ING.

Inventor name: WALTER, CHRISTOPH, DIPL.-ING.

Inventor name: KOTSCH, MARTIN, DIPL.-ING.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STAFFA, KARL-HEINZ, DIPL.-ING.

Inventor name: WALTER, CHRISTOPH, DIPL.-ING.

Inventor name: KOTSCH, MARTIN, DIPL.-ING.

Inventor name: KRANICH, MICHAEL, DIPL.-ING.

Inventor name: DEMUTH, WALTER, DIPL.-ING.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

INTG Intention to grant announced

Effective date: 20181113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015970

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015970

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190920

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005015970

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731