EP1631393B1 - Method for sinter coating - Google Patents

Method for sinter coating Download PDF

Info

Publication number
EP1631393B1
EP1631393B1 EP04733794A EP04733794A EP1631393B1 EP 1631393 B1 EP1631393 B1 EP 1631393B1 EP 04733794 A EP04733794 A EP 04733794A EP 04733794 A EP04733794 A EP 04733794A EP 1631393 B1 EP1631393 B1 EP 1631393B1
Authority
EP
European Patent Office
Prior art keywords
temperature
workpiece
heating
work
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04733794A
Other languages
German (de)
French (fr)
Other versions
EP1631393A1 (en
Inventor
Hermann Stegmaier
Jürgen Eberle
Thomas Schiffer
Dirk Heinrich
Hans-Joachim WÖNICKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Publication of EP1631393A1 publication Critical patent/EP1631393A1/en
Application granted granted Critical
Publication of EP1631393B1 publication Critical patent/EP1631393B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/22Processes for applying liquids or other fluent materials performed by dipping using fluidised-bed technique
    • B05D1/24Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0218Pretreatment, e.g. heating the substrate
    • B05D3/0236Pretreatment, e.g. heating the substrate with ovens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0272After-treatment with ovens

Definitions

  • the present invention relates to a method for sintering a workpiece and a device suitable for carrying out the method.
  • Plastic powders suitable for carrying out such processes are e.g. from DEGUSSA AG, Marl, under the trade name VESTOSINT.
  • the sintering coating of a workpiece conventionally proceeds in such a way that the workpiece is first heated to a temperature above the melting temperature of the material to be sintered and then brought into contact with the material, which is generally pulverulent.
  • the contact takes place at ambient temperatures, which must necessarily be below the melting temperature of the sintered material, so that the workpiece loses heat during contact with the sintered material and finally falls below the melting temperature of the sintered material, whereby the sintering process comes to a standstill.
  • the thickness of the layer previously deposited on the workpiece is proportional to the time between the beginning of the contact with the sintering material and the time at which the melting temperature thereof is undershot.
  • the cooling proceeds faster than with a workpiece with higher material thickness, so that in order to achieve equal layer thicknesses on workpieces with different material thicknesses, the temperatures must be different, to which the workpieces are heated before they are brought into contact with the sintered material.
  • sintered coatings having a desired coating thickness can thus be achieved by suitably selecting the temperature at which workpieces are brought into contact with the sintered material.
  • shock-heating methods have been proposed in which the heating of the workpiece is stopped before it has reached a homogeneous temperature distribution.
  • portions of the workpiece having a low surface-related heat capacity have a higher temperature than those having a low surface-related heat capacity, so that the time periods until cooling below the melting temperature and thus the resulting layer thicknesses become approximately the same for both sections.
  • the object of the invention is therefore to provide a method and a device which allow the production of sintered layers of high quality and homogeneous thickness on workpieces having sections with different surface-related heat capacities.
  • this object can be attained by precedent to conventional preheating of a step of preheating the workpiece, wherein the preheating conditions are selected so as to bring it to a temperature between the melting temperature of the workpiece as it continues to act on the workpiece Coating material and the temperature that would reach the workpiece if it were constantly exposed to the conditions of shock heating.
  • the effectiveness of the method is based on reducing the high temperature gradient between the surface and the inside of a high surface heat capacity portion present in the conventional shock heating by the preheating step, and thereby the importance of internal temperature compensation within the workpiece is reduced for the cooling of its surface. While in the simple shock heating without preheating depressed surface regions of the workpiece, especially at a boundary between sections of different surface heat capacity take relatively little heat due to their protected position and accordingly cool quickly during coating, such areas retain in the inventive method by preheating suitable for sintering Temperature longer, so that even in these problem areas, a layer of good quality arises.
  • Both the preheating and the Schockerhitzen done preferably by introducing the workpiece in each case a heat bath, in particular in the form of a furnace.
  • the residence time of the workpiece in the second heat bath, ie the preheating step, should preferably take longer than the stay in the first heat bath, ie the shock heating.
  • these different residence times are preferably realized in that the expansion of the preheating furnace along a conveyor line for workpieces to be coated is greater than that of the oven for Schockerhitzen.
  • a rough surface may result in a final phase due to incomplete melting of the sintered material.
  • the application of the sintered material to the workpiece is preferably carried out by introducing the heated workpiece into the sintered material in a fluidized state.
  • a polyamide powder such as the already mentioned VESTOSINT powder is suitable. This has a melting point of 176 ° C; therefore, a temperature of the second heat bath between 240 and 340 ° C is suitable for preheating; For shock heating, a temperature of the first heat bath between 390 and 420 ° C is preferred.
  • Shock heating is conveniently stopped when the higher surface heat capacity section has reached an average temperature selected in a range between 300 and 370 ° C.
  • the specific temperature selected depends on the ratio of the surface-related heat capacities; the more different they are, the lower the quenching temperature must be selected in order to ensure equal layer thicknesses on the different sections of the workpiece.
  • a preferred application of the method according to the invention is the coating of a heat exchanger, in particular a condenser for a refrigerator, wherein the portion with high surface-related heat capacity is a pipe for a heat transfer fluid and the portion with low surface-related heat capacity is a wire attached to the pipe.
  • Fig. 1 shows a perspective view of a section of a known condenser in wire-tube construction for a refrigerator, to which the coating method of the invention is advantageously applicable.
  • Such an evaporator is basically composed of two different types of elements, a zigzag-shaped bent steel pipe 1 and a plurality of wires 2, which are respectively arranged transversely to rectilinear portions of the steel pipe 1 and connect them together.
  • the wires 2 thus serve simultaneously to stiffen the evaporator and to increase its heat-exchanging surface.
  • the steel pipe 1 typically has an outer diameter of 8 mm and a wall thickness of 1 mm.
  • the wires 2 are solid with a typical diameter of 1.6 mm.
  • the wires 2 are fixed to the steel pipe 1 by spot welding, soldering or other suitable techniques, wherein in the contact region 3 between pipe 1 and wire 2 narrow, difficult to reach angle 4 arise.
  • the amount of material per unit of surface area of tube 1 is significantly greater than that of the wires 2, namely by a factor of about 2.5 in the dimensions chosen here. Accordingly, the heat capacity per surface unit in the wires 2 is significantly lower than in the tube 1, so that the former heat up much faster in a heat bath than the latter.
  • a highly schematically illustrated coating device comprises a conveying device 5, on which groups of a plurality of heat exchangers 6 can be fastened.
  • the groups of heat exchangers 6 are conveyed by stepwise movements of the conveyor 5 through the coating apparatus, wherein the time intervals between successive conveyor steps may be, for example, 20 to 40 seconds.
  • the heat exchangers 6 first pass through a preheating oven 7, which is held by a preheating burner 8 at a fixed temperature between 200 and 340 ° C., in this case at 240 ° C.
  • the length of the preheating furnace 7 is chosen so that two groups of heat exchangers fit in or two conveying steps are required to convey a group through the preheating furnace 7.
  • the preheating furnace 7 is immediately followed by a shock-heating furnace 9, which is held by a further burner 10 at a temperature between 390 and 420 ° C.
  • the two furnaces 7, 9 may be delimited from one another by a lock 15 indicated in the figure as a dashed line; however, this is not mandatory.
  • the shock-heating furnace 9 accommodates a group of heat exchangers 6; Their residence time in the furnace 9 therefore corresponds to the time span between two conveying steps of the conveyor 5.
  • a fluidized bed 11 containing fluidized polyamide powder is provided.
  • the conveyor 5 has actuators (not shown) for lowering a group of heat exchangers 6 into the fluidized bed 11 and for re-lifting the group.
  • the fluidized bed 11 provides space for a group of heat exchangers 6, so that the maximum residence time of the heat exchangers therein corresponds to the time interval between two conveying steps of the conveyor 5.
  • the actual residence time in the fluidized bed 11, however, can be arbitrarily shortened by the heat exchangers 6 are lifted out of the fluidized bed 11 at an arbitrarily selectable time between two delivery steps of the conveyor 5.
  • the provided in the fluidized bed 11 with a polyamide coating heat exchanger 6 finally reach a Nachmoreofen 12, in which they are heated again to a temperature above the melting temperature of the polyamide powder.
  • the Nachmoreofen 12 is held for this purpose by a burner 13 at a temperature of 240 ° C.
  • This Nachmoreofen 12 serves to improve the quality of the deposited on the heat exchangers 6 polyamide layers. These may in fact have a certain roughness at their exit from the fluidized bed 11, which is due to the fact that towards the end of the deposition of the sintered material on the heat exchangers, the temperature may have fallen so far that it is no longer sufficient for complete melting of the sintered grains.
  • the post-heating oven 12 accommodates two groups of heat exchangers 6, so that two steps of the conveyor 3 are required to convey the heat exchangers 6 through the post-heating oven 12.
  • a plunge pool 14 is still provided, in which the finished coated heat exchanger 6 are quenched.
  • Fig. 3 shows the time course of the surface temperatures of wires and tube of a heat exchanger 6 on its way through the furnaces 7 and 9.
  • the temperature in the interior is 240 ° C. ; the temperature of the wires 2, represented by a curve 16, approaches this value faster than the temperature of the pipe 1 represented by a curve 17.
  • the temperature of the wires is nearly equalized after 60 s with about 220 ° C; the tube is at about 170 ° C, much lower.

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A method for sinter coating a work-piece is disclosed, the work-piece having at least two sections of different surface-related heat capacities. The method includes a first step of pre-heating the work-piece to a first temperature that is higher than a fusion temperature of a sinter coating material. The method also includes a step of rapidly heating of the work-piece to a second temperature that is higher than the first temperature. However, the rapid heating step is halted before the temperature of the work-piece section with the greater surface-related heat capacity matches the second temperature. The work-piece then has a subsequent step of application of the sinter material to the work-piece. The step of shock heating of the work-piece is preceded by a step of pre-heating the work-piece under conditions which, with continuing effect on the work-piece, bring the work-piece under conditions which, with continuing effect on the work-piece, bring the work-piece to a second temperature between the fusion temperature of the sinter material and the first temperature.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Sinterbeschichtung eines Werkstücks sowie eine zur Durchführung des Verfahrens geeignete Vorrichtung.The present invention relates to a method for sintering a workpiece and a device suitable for carrying out the method.

Verfahren zum Erzeugen von Schutzschichten auf Metalloberflächen, insbesondere von Drahtwaren und Metallkleinteilen, durch Aufsintern von Kunststoffpulver sind seit langem bekannt und gebräuchlich. Zur Durchführung derartiger Verfahren geeignete Kunststoffpulver werden z.B. von der DEGUSSA AG, Marl, unter dem Handelsnamen VESTOSINT angeboten.Methods for producing protective layers on metal surfaces, in particular of wire products and small metal parts, by sintering plastic powder have long been known and used. Plastic powders suitable for carrying out such processes are e.g. from DEGUSSA AG, Marl, under the trade name VESTOSINT.

Die Sinterbeschichtung eines Werkstücks läuft herkömmlicherweise in der Weise ab, dass das Werkstück zunächst auf eine Temperatur oberhalb der Schmelztemperatur des aufzusinternden Materials erhitzt wird und dann mit dem - im Allgemeinen pulverförmigen - Material in Kontakt gebracht wird. Der Kontakt findet bei Umgebungstemperaturen statt, die notwendigerweise unter der Schmelztemperatur des Sintermaterials liegen müssen, so dass das Werkstück während des Kontakts mit dem Sintermaterial Wärme verliert und schließlich die Schmelztemperatur des Sintermaterials unterschreitet, wodurch der Sinterprozess zum Erliegen kommt. Die Dicke der bis dahin auf dem Werkstück abgeschiedenen Schicht ist proportional zu der Zeitspanne zwischen dem Beginn des Kontakts mit dem Sintermaterial und dem Zeitpunkt, an dem dessen Schmelztemperatur unterschritten wird. Wenn das zu beschichtende Werkstück eine geringe Materialstärke hat, verläuft die Abkühlung schneller als bei einem Werkstück mit höherer Materialstärke, so dass, um gleiche Schichtdicken auf Werkstücken mit unterschiedlichen Materialstärken zu erzielen, die Temperaturen unterschiedlich sein müssen, auf die die Werkstücke erhitzt werden, bevor sie mit dem Sintermaterial in Kontakt gebracht werden. Bei einfach geformten Werkstücken mit homogener Materialzusammensetzung und gleichbleibender Wandstärke können somit Sinterbeschichtungen mit einer gewünschten Beschichtungsstärke durch geeignete Wahl der Temperatur, mit der Werkstücke mit dem Sintermaterial in Kontakt gebracht werden, erzielt werden.The sintering coating of a workpiece conventionally proceeds in such a way that the workpiece is first heated to a temperature above the melting temperature of the material to be sintered and then brought into contact with the material, which is generally pulverulent. The contact takes place at ambient temperatures, which must necessarily be below the melting temperature of the sintered material, so that the workpiece loses heat during contact with the sintered material and finally falls below the melting temperature of the sintered material, whereby the sintering process comes to a standstill. The thickness of the layer previously deposited on the workpiece is proportional to the time between the beginning of the contact with the sintering material and the time at which the melting temperature thereof is undershot. If the workpiece to be coated has a low material thickness, the cooling proceeds faster than with a workpiece with higher material thickness, so that in order to achieve equal layer thicknesses on workpieces with different material thicknesses, the temperatures must be different, to which the workpieces are heated before they are brought into contact with the sintered material. In the case of simply shaped workpieces with a homogeneous material composition and constant wall thickness, sintered coatings having a desired coating thickness can thus be achieved by suitably selecting the temperature at which workpieces are brought into contact with the sintered material.

Bei Werkstücken mit ungleichmäßigen Wandstärken oder inhomogener Materialzusammensetzung, allgemeiner gesagt bei Werkstücken, die Abschnitte mit unterschiedlicher oberflächenbezogener Wärmekapazität aufweisen, führt dies zu dem Problem, dass die Sinterschichten, die sich auf einem Abschnitt hoher oberflächenbezogener Wärmekapazität ablagern, bevor dieser unter die Schmelztemperatur des Sintermaterials abkühlt, größer sind als bei einem Abschnitt mit niedriger oberflächenbezogener Wärmekapazität. Es ist daher schwierig, solche Werkstücke mit einer Beschichtung von gleichbleibender Dicke zu versehen. Wenn auf den Abschnitten mit niedriger oberflächenbezogener Wärmekapazität eine Mindestschichtdicke erreicht werden muss, so muss in Kauf genommen werden, dass die entstehende Schicht an anderen Abschnitten dicker wird. Dies führt nicht nur zu unerwünschten Mehrkosten aufgrund unnötigen Verbrauchs an Sintermaterial, sondern die unterschiedlichen Schichtdicken erhöhen auch die Wahrscheinlichkeit von Defekten der Sinterschicht, die deren Schutzwirkung für das darunterliegende Werkstück beeinträchtigen.For workpieces having uneven wall thicknesses or inhomogeneous material composition, more generally workpieces having sections with different surface-related heat capacity, this results in the problem that the sintered layers that deposit on a high surface-area heat capacity section cools below the melting temperature of the sintered material , are larger than a section with low surface-related heat capacity. It is therefore difficult to provide such workpieces with a coating of uniform thickness. If a minimum layer thickness has to be achieved on the sections with low surface-related heat capacity, then it must be accepted that the resulting layer becomes thicker at other sections. This not only leads to undesirable additional costs due to unnecessary consumption of sintered material, but the different layer thicknesses also increase the likelihood of defects of the sintered layer, which affect their protective effect on the underlying workpiece.

Um dieses Problem zu lösen, sind Schockerhitzungsverfahren vorgeschlagen worden, bei denen die Erhitzung des Werkstücks abgebrochen wird, bevor dieses eine homogene Temperaturverteilung erreicht hat. Dadurch wird erreicht, dass beim Inkontaktbringen mit dem Sintermaterial Abschnitte des Werkstücks mit geringer oberflächenbezogener Wärmekapazität eine höhere Temperatur als solche mit niedriger oberflächenbezogener Wärmekapazität haben, so dass die Zeitspannen bis zum Abkühlen unter die Schmelztemperatur und damit die entstehenden Schichtdicken für beide Abschnitte ungefähr gleich werden. Prinzipiell sollte man annehmen, dass mit einem solchen Verfahren durch geeignete Wahl der Erhitzungsbedingungen, d.h. der Endtemperatur, die sich an einem Werkstück einstellen würde, wenn es ständig den Bedingungen der Schockerhitzung ausgesetzt wäre, und der Zeitspanne, in der das Werkstück der Schockerhitzung ausgesetzt ist, innerhalb gewisser Obergrenzen Temperaturunterschiede zwischen Abschnitten unterschiedlicher Wärmekapazität einstellen und auf gleiche Abscheideschichtdicken optimieren lassen. Es hat sich jedoch in Versuchen herausgestellt, dass auf diese Weise keine befriedigenden Schichtqualitäten zu erzielen waren, und dass insbesondere in Übergangsbereichen zwischen Abschnitten mit unterschiedlichen oberfiächenbezogenen Wärmekapazitäten die Neigung zu Schichtdefekten groß war.To solve this problem, shock-heating methods have been proposed in which the heating of the workpiece is stopped before it has reached a homogeneous temperature distribution. As a result, when contacted with the sintered material, portions of the workpiece having a low surface-related heat capacity have a higher temperature than those having a low surface-related heat capacity, so that the time periods until cooling below the melting temperature and thus the resulting layer thicknesses become approximately the same for both sections. In principle, it should be assumed that by such a method, by suitable choice of the heating conditions, ie the final temperature which would be set on a workpiece, if it were constantly exposed to the conditions of shock heating, and the time period in which the workpiece is exposed to shock heating , within certain upper limits, allow temperature differences between sections of different heat capacity to be set and optimized for identical deposition layer thicknesses. However, it has been found in experiments that satisfactory layer qualities could not be achieved in this way, and that in particular in transition areas between sections with different surface-related heat capacities, the tendency for layer defects was great.

Aufgabe der Erfindung ist daher, ein Verfahren und eine Vorrichtung anzugeben, die die Erzeugung von Sinterschichten hoher Qualität und homogener Dicke auf Werkstücken erlauben, die Abschnitte mit unterschiedlichen oberflächenbezogenen Wärmekapazitäten aufweisen.The object of the invention is therefore to provide a method and a device which allow the production of sintered layers of high quality and homogeneous thickness on workpieces having sections with different surface-related heat capacities.

Überraschenderweise hat sich herausgestellt, dass dieses Ziel erreichbar ist, indem dem herkömmlichen Schockerhitzen ein Schritt des Vorwärmens des Werkstücks vorgeschaltet wird, wobei die Vorwärmbedingungen so gewählt sind, dass sie bei fortlaufender Einwirkung auf das Werkstück dieses auf eine Temperatur bringen, die zwischen der Schmelztemperatur des Beschichtungsmaterials und derjenigen Temperatur liegt, die das Werkstück erreichen würde, wenn es den Bedingungen der Schockerhitzung ständig ausgesetzt wäre.Surprisingly, it has been found that this object can be attained by precedent to conventional preheating of a step of preheating the workpiece, wherein the preheating conditions are selected so as to bring it to a temperature between the melting temperature of the workpiece as it continues to act on the workpiece Coating material and the temperature that would reach the workpiece if it were constantly exposed to the conditions of shock heating.

Es wird vermutet, dass die Wirksamkeit des Verfahrens darauf beruht, dass der bei dem herkömmlichen Schockerhitzen vorhandene starke Temperaturgradient zwischen der Oberfläche und dem Inneren eines Abschnitts mit hoher oberflächenbezogener Wärmekapazität durch den Vorwärmschritt verringert ist, und dass dadurch die Bedeutung des internen Temperaturausgleichs innerhalb des Werkstücks für die Abkühlung von dessen Oberfläche verringert ist. Während bei der einfachen Schockerhitzung ohne Vorwärmen vertiefte Oberflächenregionen des Werkstücks, insbesondere an einer Grenze zwischen Abschnitten unterschiedlicher oberflächenbezogener Wärmekapazität, aufgrund ihrer geschützten Lage vergleichsweise wenig Wärme aufnehmen und dementsprechend beim Beschichten schnell auskühlen, behalten derartige Bereiche beim erfindungsgemäßen Verfahren durch die Vorwärmung eine zum Aufsintern geeignete Temperatur länger bei, so dass auch in diesen Problemzonen eine Schicht guter Qualität entsteht.It is believed that the effectiveness of the method is based on reducing the high temperature gradient between the surface and the inside of a high surface heat capacity portion present in the conventional shock heating by the preheating step, and thereby the importance of internal temperature compensation within the workpiece is reduced for the cooling of its surface. While in the simple shock heating without preheating depressed surface regions of the workpiece, especially at a boundary between sections of different surface heat capacity take relatively little heat due to their protected position and accordingly cool quickly during coating, such areas retain in the inventive method by preheating suitable for sintering Temperature longer, so that even in these problem areas, a layer of good quality arises.

Sowohl das Vorwärmen als auch das Schockerhitzen erfolgen vorzugsweise durch Einbringen des Werkstücks in jeweils ein Wärmebad, insbesondere in Form eines Ofens. Dabei sollte die Verweilzeit des Werkstücks im zweiten Wärmebad, d.h. der Vorwärmschritt, vorzugsweise länger dauern als der Aufenthalt im ersten Wärmebad, d.h. die Schockerhitzung. In einer Beschichtungsanlage werden diese unterschiedlichen Verweilzeiten vorzugsweise dadurch realisiert, dass die Ausdehnung des Vorwärmofens entlang einer Förderstrecke für zu beschichtende Werkstücke größer ist als die des Ofens zum Schockerhitzen.Both the preheating and the Schockerhitzen done preferably by introducing the workpiece in each case a heat bath, in particular in the form of a furnace. The residence time of the workpiece in the second heat bath, ie the preheating step, should preferably take longer than the stay in the first heat bath, ie the shock heating. In a coating system, these different residence times are preferably realized in that the expansion of the preheating furnace along a conveyor line for workpieces to be coated is greater than that of the oven for Schockerhitzen.

Wenn sich das Werkstück im Laufe des Aufsinterns langsam abkühlt, kann in einer Schlussphase durch unvollständiges Schmelzen des Sintermaterials einer raue Oberfläche entstehen. Um die Qualität der Oberfläche zu verbessern, ist es zweckmäßig, nach dem Aufbringen des Sintermaterials das Werkstück wenigstens oberflächlich zumindest bis auf die Schmelztemperatur des Beschichtungsmaterials nachzuerhitzen, um so eine Glättung der Oberfläche zu erreichen.If the workpiece slowly cools down in the course of sintering, a rough surface may result in a final phase due to incomplete melting of the sintered material. In order to improve the quality of the surface, it is expedient after the application of the sintered material to reheat the workpiece at least superficially, at least to the melting temperature of the coating material, so as to achieve a smoothing of the surface.

Das Aufbringen des Sintermaterials auf das Werkstück erfolgt vorzugsweise durch Einführen des erhitzten Werkstücks in das Sintermaterial in fluidisiertem Zustand.The application of the sintered material to the workpiece is preferably carried out by introducing the heated workpiece into the sintered material in a fluidized state.

Als Sintermaterial ist ein Polyamid-Pulver wie das bereits erwähnte VESTOSINT-Pulver geeignet. Dieses hat einen Schmelzpunkt von 176 °C; daher ist eine Temperatur des zweiten Wärmebades zwischen 240 und 340 °C zum Vorwärmen geeignet; zum Schockerhitzen ist eine Temperatur des ersten Wärmebades zwischen 390 und 420 °C bevorzugt.As a sintered material, a polyamide powder such as the already mentioned VESTOSINT powder is suitable. This has a melting point of 176 ° C; therefore, a temperature of the second heat bath between 240 and 340 ° C is suitable for preheating; For shock heating, a temperature of the first heat bath between 390 and 420 ° C is preferred.

Die Schockerhitzung wird zweckmäßigerweise abgebrochen, wenn der Abschnitt mit der höheren oberflächenbezogenen Wärmekapazität eine mittlere Temperatur erreicht hat, die in einem Bereich zwischen 300 und 370 °C ausgewählt ist. Die konkret ausgewählte Temperatur ist abhängig vom Verhältnis der oberflächenbezogenen Wärmekapazitäten; je unterschiedlicher diese sind, um so niedriger muss die Abbruchtemperatur gewählt werden, um gleiche Schichtdicken auf den verschiedenen Abschnitten des Werkstücks zu gewährleisten.Shock heating is conveniently stopped when the higher surface heat capacity section has reached an average temperature selected in a range between 300 and 370 ° C. The specific temperature selected depends on the ratio of the surface-related heat capacities; the more different they are, the lower the quenching temperature must be selected in order to ensure equal layer thicknesses on the different sections of the workpiece.

Eine bevorzugte Anwendung des erfindungsgemäßen Verfahrens ist die Beschichtung eines Wärmetauschers, insbesondere eines Verflüssigers für ein Kältegerät, wobei der Abschnitt mit hoher oberflächenbezogener Wärmekapazität eine Rohrleitung für ein Wärmeträgerfluid ist und der Abschnitt mit niedriger oberflächenbezogener Wärmekapazität ein an der Rohrleitung befestigter Draht ist.A preferred application of the method according to the invention is the coating of a heat exchanger, in particular a condenser for a refrigerator, wherein the portion with high surface-related heat capacity is a pipe for a heat transfer fluid and the portion with low surface-related heat capacity is a wire attached to the pipe.

Weitere Merkmale und Vorteile des erfindungsgemäßen Verfahrens ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die beigefügten Figuren. Es zeigen:

Fig. 1
einen Wärmetauscher als Beispiel für ein Werkstück, an dem das Verfahren ausführbar ist;
Fig. 2
ein Blockdiagramm einer Anlage zur Durchführung des Verfahrens; und
Fig. 3
Oberflächentemperaturen des Verflüssigers als Funktion der Zeit beim Erhitzen gemäß dem erfindungsgemäßen Verfahren.
Further features and advantages of the method according to the invention will become apparent from the following description of an embodiment with reference to the accompanying figures. Show it:
Fig. 1
a heat exchanger as an example of a workpiece on which the method is executable;
Fig. 2
a block diagram of an installation for carrying out the method; and
Fig. 3
Surface temperatures of the condenser as a function of time when heated according to the inventive method.

Fig. 1 zeigt in perspektivischer Ansicht einen Ausschnitt eines an sich bekannten Verflüssigers in Draht-Rohr-Bauweise für ein Kältegerät, auf den das erfindungsgemäße Beschichtungsverfahren vorteilhaft anwendbar ist. Ein solcher Verdampfer ist im Wesentlichen aufgebaut aus zwei verschiedenen Typen von Elementen, einem zickzackförmig gebogenen Stahlrohr 1 und einer Vielzahl von Drähten 2, die jeweils quer zu geradlinigen Abschnitten des Stahlrohrs 1 angeordnet sind und diese miteinander verbinden. Die Drähte 2 dienen somit gleichzeitig zur Versteifung des Verdampfers als auch zur Vergrößerung von dessen wärmeaustauschender Oberfläche. Fig. 1 shows a perspective view of a section of a known condenser in wire-tube construction for a refrigerator, to which the coating method of the invention is advantageously applicable. Such an evaporator is basically composed of two different types of elements, a zigzag-shaped bent steel pipe 1 and a plurality of wires 2, which are respectively arranged transversely to rectilinear portions of the steel pipe 1 and connect them together. The wires 2 thus serve simultaneously to stiffen the evaporator and to increase its heat-exchanging surface.

Das Stahlrohr 1 hat typischerweise einen Außendurchmesser von 8 mm und eine Wandstärke von 1 mm. Die Drähte 2 sind massiv mit einem typischen Durchmesser von 1,6 mm. Die Drähte 2 sind an dem Stahlrohr 1 durch Punktschweißen, Löten oder andere geeignete Techniken befestigt, wobei im Kontaktbereich 3 zwischen Rohr 1 und Draht 2 enge, schlecht zugängliche Winkel 4 entstehen.The steel pipe 1 typically has an outer diameter of 8 mm and a wall thickness of 1 mm. The wires 2 are solid with a typical diameter of 1.6 mm. The wires 2 are fixed to the steel pipe 1 by spot welding, soldering or other suitable techniques, wherein in the contact region 3 between pipe 1 and wire 2 narrow, difficult to reach angle 4 arise.

Wie man leicht sieht, ist die Materialmenge pro Oberflächeneinheit beim Rohr 1 deutlich größer als bei den Drähten 2, und zwar bei den hier gewählten Abmessungen um einen Faktor von ca. 2,5. Dementsprechend ist auch die Wärmekapazität pro Oberflächeneinheit bei den Drähten 2 deutlich geringer als bei dem Rohr 1, so dass erstere sich in einem Wärmebad deutlich schneller erwärmen als letztere.As can easily be seen, the amount of material per unit of surface area of tube 1 is significantly greater than that of the wires 2, namely by a factor of about 2.5 in the dimensions chosen here. Accordingly, the heat capacity per surface unit in the wires 2 is significantly lower than in the tube 1, so that the former heat up much faster in a heat bath than the latter.

Die in Fig. 2 stark schematisiert dargestellte Beschichtungsvorrichtung umfasst eine Fördereinrichtung 5, an der jeweils Gruppen aus mehreren Wärmetauschern 6 befestigbar sind. Die Gruppen von Wärmetauschern 6 werden durch schrittweise Bewegungen der Fördereinrichtung 5 durch die Beschichtungsvorrichtung gefördert, wobei die Zeitspannen zwischen aufeinanderfolgenden Förderschritten z.B. 20 bis 40 s betragen können.In the Fig. 2 A highly schematically illustrated coating device comprises a conveying device 5, on which groups of a plurality of heat exchangers 6 can be fastened. The groups of heat exchangers 6 are conveyed by stepwise movements of the conveyor 5 through the coating apparatus, wherein the time intervals between successive conveyor steps may be, for example, 20 to 40 seconds.

Die Wärmetauscher 6 durchlaufen auf ihrem Weg durch die Beschichtungsvorrichtung zunächst einen Vorheizofen 7, der durch einen Vorheizbrenner 8 auf einer festen Temperatur zwischen 200 und 340 °C, hier bei 240 °C, gehalten wird. Die Länge des Vorheizofens 7 ist so gewählt, dass zwei Gruppen von Wärmetauschern hineinpassen bzw. zwei Förderschritte erforderlich sind, um eine Gruppe durch den Vorheizofen 7 hindurch zu befördern.On their way through the coating apparatus, the heat exchangers 6 first pass through a preheating oven 7, which is held by a preheating burner 8 at a fixed temperature between 200 and 340 ° C., in this case at 240 ° C. The length of the preheating furnace 7 is chosen so that two groups of heat exchangers fit in or two conveying steps are required to convey a group through the preheating furnace 7.

An den Vorheizofen 7 schließt sich unmittelbar ein Schockerhitzungsofen 9 an, der durch einen weiteren Brenner 10 auf einer zwischen 390 und 420 °C festgelegten Temperatur gehalten wird. Die zwei Öfen 7, 9 können durch eine in der Figur als gestrichelte Linie angedeutete Schleuse 15 voneinander abgegrenzt sein; dies ist jedoch nicht zwingend erforderlich. Der Schockerhitzungsofen 9 bietet Platz für eine Gruppe von Wärmetauschern 6; ihre Verweildauer in dem Ofen 9 entspricht daher der Zeitspanne zwischen zwei Förderschritten der Fördereinrichtung 5.The preheating furnace 7 is immediately followed by a shock-heating furnace 9, which is held by a further burner 10 at a temperature between 390 and 420 ° C. The two furnaces 7, 9 may be delimited from one another by a lock 15 indicated in the figure as a dashed line; however, this is not mandatory. The shock-heating furnace 9 accommodates a group of heat exchangers 6; Their residence time in the furnace 9 therefore corresponds to the time span between two conveying steps of the conveyor 5.

Im Anschluss an den Schockerhitzungsofen 9 ist ein Fließbett 11 vorgesehen, das fluidisiertes Polyamid-Pulver enthält. Die Fördereinrichtung 5 weist (nicht dargestellte) Stellglieder zum Absenken einer Gruppe von Wärmetauschern 6 in das Fließbett 11 und zum Wiederanheben der Gruppe auf. Das Fließbett 11 bietet Platz für eine Gruppe von Wärmetauschern 6, so dass die maximale Verweildauer der Wärmetauscher darin dem Zeitabstand zwischen zwei Förderschritten der Fördereinrichtung 5 entspricht. Die tatsächliche Verweildauer im Fließbett 11 kann jedoch demgegenüber beliebig abgekürzt werden, indem die Wärmetauscher 6 zu einem im Prinzip beliebig wählbaren Zeitpunkt zwischen zwei Förderschritten der Fördereinrichtung 5 aus dem Fließbett 11 herausgehoben werden.Following the shock-heating furnace 9, a fluidized bed 11 containing fluidized polyamide powder is provided. The conveyor 5 has actuators (not shown) for lowering a group of heat exchangers 6 into the fluidized bed 11 and for re-lifting the group. The fluidized bed 11 provides space for a group of heat exchangers 6, so that the maximum residence time of the heat exchangers therein corresponds to the time interval between two conveying steps of the conveyor 5. The actual residence time in the fluidized bed 11, however, can be arbitrarily shortened by the heat exchangers 6 are lifted out of the fluidized bed 11 at an arbitrarily selectable time between two delivery steps of the conveyor 5.

Die im Fließbett 11 mit einer Polyamid-Beschichtung versehenen Wärmetauscher 6 erreichen schließlich einen Nachheizofen 12, in dem sie erneut auf eine Temperatur oberhalb der Schmelztemperatur des Polyamid-Pulvers erhitzt werden. Der Nachheizofen 12 ist hierfür durch einen Brenner 13 auf einer Temperatur von 240 °C gehalten. Dieser Nachheizofen 12 dient der Verbesserung der Qualität der auf den Wärmetauschern 6 abgeschiedenen Polyamid-Schichten. Diese können nämlich bei ihrem Austritt aus dem Fließbett 11 eine gewisse Rauigkeit aufweisen, die darauf zurückzuführen ist, dass gegen Ende der Abscheidung des Sintermaterials auf den Wärmetauschern deren Temperatur soweit abgefallen sein kann, dass sie zum vollständigen Aufschmelzen der Sintermaterialkörner nicht mehr reicht. Der Nachheizofen 12 bietet Platz für zwei Gruppen von Wärmetauschern 6, so dass zwei Schritte der Fördereinrichtung 3 erforderlich sind, um die Wärmetauscher 6 durch den Nachheizofen 12 hindurch zu befördern.The provided in the fluidized bed 11 with a polyamide coating heat exchanger 6 finally reach a Nachheizofen 12, in which they are heated again to a temperature above the melting temperature of the polyamide powder. The Nachheizofen 12 is held for this purpose by a burner 13 at a temperature of 240 ° C. This Nachheizofen 12 serves to improve the quality of the deposited on the heat exchangers 6 polyamide layers. These may in fact have a certain roughness at their exit from the fluidized bed 11, which is due to the fact that towards the end of the deposition of the sintered material on the heat exchangers, the temperature may have fallen so far that it is no longer sufficient for complete melting of the sintered grains. The post-heating oven 12 accommodates two groups of heat exchangers 6, so that two steps of the conveyor 3 are required to convey the heat exchangers 6 through the post-heating oven 12.

Im Anschluss an den Nachheizofen 12 ist noch ein Tauchbecken 14 vorgesehen, in dem die fertig beschichteten Wärmetauscher 6 abgeschreckt werden.Subsequent to the Nachheizofen 12 a plunge pool 14 is still provided, in which the finished coated heat exchanger 6 are quenched.

Fig. 3 zeigt den zeitlichen Verlauf der Oberflächentemperaturen von Drähten und Rohr eines Wärmetauschers 6 auf dessen Weg durch die Öfen 7 und 9. Die Erwärmung beginnt zum Zeitpunkt t=0 mit dem Eintritt des Wärmetauschers in den Vorheizofen 7. Die Temperatur in dessen Innerem beträgt 240 °C; die Temperatur der Drähte 2, dargestellt durch eine Kurve 16, nähert sich diesem Wert schneller als die durch eine Kurve 17 dargestellte Temperatur des Rohrs 1. Während der Verweilzeit des Wärmetauschers 6 im Vorheizofen 7 erreichen weder die Drähte noch das Rohr die Lufttemperatur des Vorheizofens; die Temperatur der Drähte ist nach 60 s mit ca. 220 °C nahezu angeglichen; die des Rohrs liegt mit ca. 170 °C deutlich darunter. Fig. 3 shows the time course of the surface temperatures of wires and tube of a heat exchanger 6 on its way through the furnaces 7 and 9. The heating begins at time t = 0 with the entry of the heat exchanger in the preheating furnace 7. The temperature in the interior is 240 ° C. ; the temperature of the wires 2, represented by a curve 16, approaches this value faster than the temperature of the pipe 1 represented by a curve 17. During the residence time of the heat exchanger 6 in the preheating furnace 7, neither the wires nor the pipe reach the air temperature of the preheating furnace; the temperature of the wires is nearly equalized after 60 s with about 220 ° C; the tube is at about 170 ° C, much lower.

Zum Zeitpunkt t=60 s wird der Wärmetauscher 6 in den Schockerhitzungsofen 9 gebracht, wo er einer Temperatur von 420 °C ausgesetzt ist. Wenn zum Zeitpunkt t=90 s der Wärmetauscher aus dem Schockerhitzungsofen 9 entnommen und zum Fließbett 11 weiter transportiert wird, haben die Drähte eine Temperatur von knapp über 400 °C erreicht; die Oberflächentemperatur des Rohrs beträgt ca. 330 °C. Zwischen der Oberfläche des Rohrs und seinem Inneren besteht eine Temperaturdifferenz von 10 bis 15 °C. Dies bedeutet, dass auch Oberflächenbereiche des Rohrs, die unmittelbar einer Verbindungsstelle 3 zu einem Draht 2 benachbart sind, und die deshalb durch Kontakt mit heißem Gas in den Öfen 5 und 7 nur vergleichsweise wenig effizient erhitzt werden, eine Temperatur in gleicher Größenordnung erreicht haben. Sie kühlen daher nicht wie im herkömmlichen Falle des Schockerhitzens in einem einzigen Schritt stark durch Wärmeabfluss ins Innere des Rohrs aus, sondern im Wesentlichen nur dadurch, dass das Rohr Wärme an das Fließbett abgibt, in das es eingetaucht ist. Diese Abkühlung läuft an den Berührungsstellen 3 zwischen Draht 2 und Rohr 1 nicht schneller ab als an anderen Bereichen des Rohrs. Vielmehr ist an beim Beschichten problematischen Stellen wie etwa den engen Spalten 4 im Kontaktbereich zwischen Draht und Rohr die Wärmeabgabe an das Fließbett aufgrund der geschützten Lage dieser Stellen langsamer als an freiliegenden Oberflächenbereichen des Rohrs, so dass damit zu rechnen ist, dass an diesen Stellen eine zum Schmelzen des Beschichtungsmaterials ausreichende Temperatur länger bestehen bleibt als anderen Orts, wodurch der schwierige Zugang des Beschichtungsmaterials zu diesen Stellen kompensiert wird und eine Schicht mit gleichmäßiger Dicke und hoher Qualität auch an diesen Problemstellen erhalten wird.At time t = 60 s, the heat exchanger 6 is placed in the shock-heating furnace 9, where it is exposed to a temperature of 420 ° C. If at time t = 90 s, the heat exchanger is removed from the shock-heating furnace 9 and transported to the fluidized bed 11, the wires have reached a temperature of just over 400 ° C; the surface temperature of the pipe is approx. 330 ° C. There is a temperature difference between 10 and 15 ° C between the surface of the pipe and its interior. This means that even surface areas of the pipe, the immediately one Junction 3 are adjacent to a wire 2, and therefore heated by contact with hot gas in the ovens 5 and 7 only comparatively little efficient, have reached a temperature of the same order. Therefore, they do not largely cool, as in the conventional case of shock heating in a single step, by heat dissipation into the interior of the pipe, but essentially only by the pipe giving off heat to the fluidized bed in which it is immersed. This cooling does not occur at the points of contact 3 between wire 2 and tube 1 faster than at other areas of the tube. Rather, at the problematic coating areas such as the narrow gaps 4 in the contact area between wire and pipe, the heat transfer to the fluidized bed due to the protected position of these bodies is slower than exposed surface areas of the tube, so that it is expected that at these points sufficient temperature remains for melting the coating material longer than other location, whereby the difficult access of the coating material is compensated for these locations and a layer of uniform thickness and high quality is also obtained at these problem areas.

Claims (14)

  1. A method for sinter coating a workpiece (6) formed from at least two sections (1, 2) of different surface-related heat capacity, comprising a step of shock heating the workpiece (6) under conditions which, with continuing effect on the workpiece (6), bring this to a first temperature and which is stopped before the temperature of the section (1) with the greater surface-related heat capacity matches said first temperature, and the subsequent step of application of the sinter material to the workpiece (6), characterised in that the shock heating is preceded by a step of pre-heating the workpiece (6) under conditions which, with continuing effect on the workpiece (6), bring this to a second temperature between the fusion temperature of the coating material and the first temperature.
  2. The method according to claim 1, characterised in that the shock heating step involves inserting the workpiece (6) into a first thermal bath (9) at the first temperature.
  3. The method according to claim 1 or claim 2, characterised in that the pre-heating step involves inserting the workpiece (6) into a second thermal bath (7) at the second temperature.
  4. The method according to any one of the preceding claims, characterised in that the residence time of the workpiece (6) in the second thermal (9) bath is longer than that in the first thermal bath (9).
  5. The method according to any one of the preceding claims, characterised in that the application of the sinter material is followed by a step of after-heating at least the surface of the workpiece (6) to at least the fusion temperature of the coating material.
  6. The method according to any one of the preceding claims, characterised in that the application of the sinter material is accomplished by introducing the heated workpiece (6) into the fluidised sinter material.
  7. The method according to any one of the preceding claims, characterised in that the sinter material is a polyamide powder.
  8. The method according to any one of the preceding claims, characterised in that the temperature of the second thermal bath (7) is between 200 and 340 °C.
  9. The method according to any one of the preceding claims, characterised in that the temperature of the first thermal bath (9) is between 390 and 420 °C.
  10. The method according to claim 8 and claim 9, characterised in that the shock heating is interrupted when the section (1) having the higher surface-related heat capacity has reached an average temperature selected in a range between 300 and 370 °C.
  11. The method according to any one of the preceding claims, characterised in that the workpiece is a heat exchanger, wherein the section having the higher surface-related heat capacity is a pipe (1) and the section having the lower surface-related heat capacity is a wire (2) affixed to the pipe.
  12. The method according to claim 10, characterised in that the heat exchanger is a condenser for a refrigerator.
  13. A device for implementing the method according to any one of the preceding claims, comprising respectively one furnace (7, 9) for carrying out the pre-heating and the shock heating and a fluidised bed (11) for carrying out the coating which is arranged on a conveying section (5) for the workpieces (6) to be coated to the furnaces (7, 9).
  14. The device according to claim 13, characterised in that the extension of the furnace for the pre-heating (7) along the conveying section (5) is greater than the extension of the furnace for the shock heating (9).
EP04733794A 2003-05-20 2004-05-19 Method for sinter coating Expired - Lifetime EP1631393B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10322678A DE10322678A1 (en) 2003-05-20 2003-05-20 Process for sinter coating
PCT/EP2004/005442 WO2004103579A1 (en) 2003-05-20 2004-05-19 Method for sinter coating

Publications (2)

Publication Number Publication Date
EP1631393A1 EP1631393A1 (en) 2006-03-08
EP1631393B1 true EP1631393B1 (en) 2009-03-18

Family

ID=33441016

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04733794A Expired - Lifetime EP1631393B1 (en) 2003-05-20 2004-05-19 Method for sinter coating

Country Status (8)

Country Link
US (1) US7790224B2 (en)
EP (1) EP1631393B1 (en)
CN (1) CN100500305C (en)
AT (1) ATE425816T1 (en)
DE (2) DE10322678A1 (en)
ES (1) ES2322810T3 (en)
RU (1) RU2335349C2 (en)
WO (1) WO2004103579A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106922169B (en) * 2014-11-20 2018-02-16 日产自动车株式会社 Coating, drying device and coating, drying method
CN108273711A (en) * 2018-01-05 2018-07-13 青岛乙顺铁塑制品有限公司 A kind of Dipping plastic machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3028251A (en) * 1956-11-20 1962-04-03 Polymer Corp Method of coating an article with a powdered resin composition and method of making the composition
US2974060A (en) * 1958-07-18 1961-03-07 Polymer Corp Fluidized bed coating method
US3479200A (en) * 1965-03-12 1969-11-18 Western Electric Co Method of and apparatus for coating articles
FR2638466B1 (en) * 1988-11-03 1993-05-07 Atochem PROCESS FOR COATING METAL SUBSTRATES USING A POWDER PRIMER AND A DIP APPLIED COATING, POWDER PRIMER COMPOSITIONS USED AND COMPOSITE MATERIALS OBTAINED
DE19624071A1 (en) * 1996-06-17 1997-12-18 Bayer Ag Process for the production of sheet-like metal-coated foils
US6537610B1 (en) * 2001-09-17 2003-03-25 Springco Metal Coating, Inc. Method for providing a dual-layer coating on an automotive suspension product

Also Published As

Publication number Publication date
WO2004103579A1 (en) 2004-12-02
DE502004009179D1 (en) 2009-04-30
ATE425816T1 (en) 2009-04-15
US7790224B2 (en) 2010-09-07
DE10322678A1 (en) 2004-12-09
EP1631393A1 (en) 2006-03-08
CN1826184A (en) 2006-08-30
CN100500305C (en) 2009-06-17
ES2322810T3 (en) 2009-06-29
RU2005135736A (en) 2006-07-10
US20070062616A1 (en) 2007-03-22
RU2335349C2 (en) 2008-10-10

Similar Documents

Publication Publication Date Title
DE69628918T2 (en) METHOD FOR FORMING WELDED METAL TUBES
DE69721508T2 (en) FILLING POROSITY OR CAVITY OF PARTS PRODUCED IN A SPRAYING PROCESS
EP3600694B1 (en) Method for coating a pipe and coating system
EP1152864B1 (en) Method for partially or completely coating the surfaces of components produced from aluminum or its alloys with solders, fluxing agents or binders for brazing
DE2442180C3 (en) Method and apparatus for melting a solder applied to an object
DE2757457C3 (en) Process for fluxless brazing of aluminum components
DD141797A5 (en) METHOD AND DEVICE FOR WELDING METALLIC, PROCESSED WORKPIECES
DE102017125597A1 (en) 3D metal printing method and arrangement for such
DE4010178C1 (en)
EP1631393B1 (en) Method for sinter coating
EP0472546B1 (en) Process for manufacturing plated hollow blocks
DE69303118T2 (en) Process for the continuous production of steel pipes clad with metal by melt plating treatment
DE4332136A1 (en) Manufacturing process for seamless tubes made of non-ferrous metals, especially copper and copper alloys
DE102016108278A1 (en) Multilayer band-shaped composite material and method for its production
DE2432923C2 (en) Method and device for continuous hardening, in particular thick-walled steel pipes
DE102017203784A1 (en) Process for the production, heat treatment and hot forming of sheet metal elements
DE60015432T2 (en) Apparatus and method for heat treating metallic material
DE2300528A1 (en) COMPOSITE METAL PIPE, IN PARTICULAR PIPE BLANK, AND PROCESS FOR ITS MANUFACTURING
EP0083091A2 (en) Process and apparatus for coating articles with molten metal
DE1932488A1 (en) Process for making solder connections
DE102019133979A1 (en) Process for laser deposition welding with granular filler material
DE2042064A1 (en) Method and device for the production of hollow cylindrical bodies
EP0394754A2 (en) Process and device for the selective heat treatment of the weld seam region of a longitudinally welded pipe
DE2364495C2 (en) Process for the production of large components by arc or plasma form welding
DE2326418A1 (en) Heat treating ribbed tubes - for improving adhesion of zinc dip coatings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004009179

Country of ref document: DE

Date of ref document: 20090430

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2322810

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090618

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

BERE Be: lapsed

Owner name: BSH BOSCH UND SIEMENS HAUSGERATE G.M.B.H.

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090618

26N No opposition filed

Effective date: 20091221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170519

Year of fee payment: 14

Ref country code: FR

Payment date: 20170523

Year of fee payment: 14

Ref country code: DE

Payment date: 20170523

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170526

Year of fee payment: 14

Ref country code: ES

Payment date: 20170628

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004009179

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180519

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180519

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180520