EP1629592A1 - Convertisseur de puissance electromecanique rotatif homopolaire - Google Patents

Convertisseur de puissance electromecanique rotatif homopolaire

Info

Publication number
EP1629592A1
EP1629592A1 EP04726562A EP04726562A EP1629592A1 EP 1629592 A1 EP1629592 A1 EP 1629592A1 EP 04726562 A EP04726562 A EP 04726562A EP 04726562 A EP04726562 A EP 04726562A EP 1629592 A1 EP1629592 A1 EP 1629592A1
Authority
EP
European Patent Office
Prior art keywords
rotor
stator
winding
windings
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04726562A
Other languages
German (de)
English (en)
Inventor
Michael Owen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1629592A1 publication Critical patent/EP1629592A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K47/00Dynamo-electric converters
    • H02K47/02AC/DC converters or vice versa
    • H02K47/08Single-armature converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/54Conversion of dc power input into ac power output without possibility of reversal by dynamic converters

Definitions

  • Electro-mechanical Rotary Power Converters are used for converting incoming electrical energy into outgoing electrical energy.
  • the energy transformation may be either an incoming Direct Current (DC) to outgoing single or polyphase Alternating Current (AC); or an incoming single or polyphase AC to outgoing DC; or an incoming single or polyphase AC to outgoing polyphase or single phase AC.
  • the ERPC rotor is driven by a motor to facilitate the electromagnetic phenomena, however in an ideal converter, the energy supplied by the motor, apart from accelerating the inertia! mass to its steady state speed, only feeds mechanical losses within the converter.
  • HVDC Power Electronic Converter In the rectifier mode, breaks up the AC waveform and reconstructs it into DC. It does the same in the inverter mode from DC to AC.
  • the disarrangement - rearrangement however is not a straight process reversal between the rectifier and inverter.
  • the resulting pieced together waveforms are imperfect and contain harmonics. Energy losses occur due to conduction and switching in the semiconductor devices. Reduction of the harmonics is possible by filtering, however energy losses are then also incurred in the filters. The overall amount of equipment required is substantial and costly. Because of their complexity and size, HVDC PECs are generally air insulated. The converter chambers contain exposed live parts and staff must follow special procedures when working within their vicinity.
  • ERPC namely the (Homopolar) HERPC
  • the HERPC would be substantially safer by not having exposed live parts; be relatively small and compact consisting only of a small number of assembled parts; be easy to manufacture due to its rotating homopolar machine construction; be extremely reliable, similar to that of an AC motor; have a high efficiency; retain the very stable output voltage level characteristic of the ERPC; and as with the transformer, the terminal output voltage would be determined in part by the number of turns on the respective windings. As an inverter it would develop near perfect AC waveforms.
  • Fig. 1 shows the basic arrangement for the Rotary Power Converter.
  • the upper part represents a cross section along axis of rotation.
  • Three other cross sections, perpendicular to the axis of rotation, at defining locations, are also depicted.
  • Fig. 2 shows the electrical interconnections between the coils, the source of DC excitation and load burdens connected to the three phase AC output coils.
  • Fig. 3 shows the mathematical function used for a particular shape of the stator AC winding limb face.
  • Fig. 4 shows the progression of the magnetically conductive portion of the rotor (rectangular section) across the stator limb faces at intervals of 30° degrees.
  • Magnetically conductive rotor parts 4.
  • Non-magnetically conductive rotor parts 5.
  • Each AC phase winding has coils 6, that encircle each stator limb that bears a pole 11 , in the respective phase set.
  • a principal winding 2 has coils that encircle all the stator limbs that bear poles 11 , on all the phase sets.
  • the principal winding is wound such that with a constant DC source, the flux always flows either radially inwards or radially outwards in all pole bearing stator limbs 11.
  • Energy conversion is performed by varying the reluctance of the three-phase sections of the magnetic circuit through turning the rotor.
  • the rotor 4 & 5 has no windings. Its function is to divert the magnetic flux on a time varying basis through each of the three-phase windings 6, on the stator pole limbs 11. It consists of some magnetically conducting portions 4, and some non-magnetically conducting portions 5. The non-magnetic portions 5, are required to channel the flux and prevent magnetic short circuits.
  • the output AC waveforms are determined by the shape of the AC winding limb faces.
  • the induced AC voltage is proportional to the rate of change of flux passing through the winding.
  • the flux however is distributed in proportion to the reluctance of the magnetic circuits - which is in turn proportional to the overlapping areas between the passing rotor and stator faces.
  • Fig. 3 The mathematical function used for a particular shape of the stator AC winding limb face is shown in Fig. 3. It shows an area that changes in the form of a sinusoid. It is created from a function that is itself the combination of a positive and negative sinusoid.
  • the sum of all the three-phase AC fluxes is equal to the flux flowing through the stator body 3.
  • the sum of all the three-phase AC fluxes also equates to the total flux generated by the principal winding 2.
  • the reluctance of the stator body, and all magnetic circuit paths in parallel with it remain constant.
  • Fig. 4 the overlapping area between all facing rotor and stator parts 14, is shown at intervals of 30 degrees. In particular it shows how the area corresponding to each phase, changes in a sinusoidal pattern 15, as a result of the shape of the AC winding limb faces.
  • An auxiliary motor 1 drives the rotor 4 & 5, at the appropriate speed to generate the desired output AC frequency. Unlike an alternator, no electromagnetic restraining force acts. The driving torque is required for inertial accelerations and to counter friction and windage losses.
  • the magnetic circuits are arranged such that flux links through windings rather than cutting across conductors.
  • a non-magnetically conductive spacer 8 is incorporated in the stator body 3.
  • the spacer is secured by means of a non-magnetically conductive locating pin 9.
  • Fig. 1 show two AC winding coils 6, per phase. As the rotor turns through one complete rotation, one frequency cycle of flux passes through each of the coils.
  • Fig. 2 therefore shows two series connected coils per phase, resulting in two cycles of output current per revolution of the rotor.
  • Frequency conversion also occurs between the input and output currents.
  • the frequency transformation is determined by the speed of the driven rotor.
  • the HERPC may be used to power installations from land based Combined Cycle Gas Turbine onshore power plants.
  • HVDC cables By interconnecting using HVDC cables, and replacing offshore Gas Turbines with electric motors, more reliable and near maintenance free offshore facilities with overall reductions in C0 2 emissions would be possible.
  • the HERPC could replace the PEC inverter, especially for the power conditioning of fuel cell output.
  • the HERPC may alternatively be applied as a brushless Synchro, generally used for position sensing applications, in which case the principal winding would be excited from an AC source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

L'invention concerne un convertisseur de puissance électromécanique rotatif homopolaire, qui convertit l'énergie électrique mais non l'énergie mécanique. Ce convertisseur peut servir d'onduleur transformant le courant CC en courant CA polyphasé, de convertisseur de CA monophasé en CA polyphasé, ou de convertisseur de CA polyphasé en CA monophasé. La ou les formes du signal de sortie sont gouvernées par les formes des faces polaires du stator et du rotor. Le rotor (4) et (5), qui est entraîné par un moteur (1), comporte des segments (4) conducteurs magnétiques et ne comprend pas de bobines. Le couple appliqué au rotor n'est nécessaire que pour les accélérations inertielles et pour la compensation des pertes énergétiques mécaniques. La réluctance du circuit magnétique principal demeure constante. Le réluctance des sous-sections varie avec la position du rotor. Ce dispositif est homopolaire car lors d'une excitation par un courant CC, tous les trajets de flux sont unidirectionnels et sont canalisés à travers le corps du rotor, en direction du pôle du rotor. La vitesse du rotor détermine la fréquence de sortie.
EP04726562A 2003-05-30 2004-04-08 Convertisseur de puissance electromecanique rotatif homopolaire Withdrawn EP1629592A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0312378A GB0312378D0 (en) 2003-05-30 2003-05-30 Electro-mechanical rotary power converter
PCT/GB2004/001501 WO2004107549A1 (fr) 2003-05-30 2004-04-08 Convertisseur de puissance electromecanique rotatif homopolaire

Publications (1)

Publication Number Publication Date
EP1629592A1 true EP1629592A1 (fr) 2006-03-01

Family

ID=9959001

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04726562A Withdrawn EP1629592A1 (fr) 2003-05-30 2004-04-08 Convertisseur de puissance electromecanique rotatif homopolaire

Country Status (3)

Country Link
EP (1) EP1629592A1 (fr)
GB (1) GB0312378D0 (fr)
WO (1) WO2004107549A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1879280B1 (fr) 2006-07-14 2014-03-05 OpenHydro Group Limited Turbine hydroélectrique
EP1878912B1 (fr) 2006-07-14 2011-12-21 OpenHydro Group Limited Turbines hydroélectriques submergées ayant des chambres de flotabilité
EP1878913B1 (fr) 2006-07-14 2013-03-13 OpenHydro Group Limited Turbine maremotrice bidirectionnelle
DE602006002883D1 (de) 2006-07-14 2008-11-06 Openhydro Group Ltd Turbinen mit einer Rutsche zum Durchfluss von Fremdkörpern
EP1980746B2 (fr) 2007-04-11 2013-08-07 OpenHydro Group Limited Procédé d'installation d'une turbine hydroélectrique
EP2088311B1 (fr) 2008-02-05 2015-10-14 OpenHydro Group Limited Turbine hydroélectrique avec rotor flottant
EP2110910A1 (fr) 2008-04-17 2009-10-21 OpenHydro Group Limited Procédé amélioré d'installation de turbine
ATE556218T1 (de) 2008-12-18 2012-05-15 Openhydro Ip Ltd Hydroelektrische turbine mit passiver bremse und verfahren zum betrieb
ATE481764T1 (de) 2008-12-19 2010-10-15 Openhydro Ip Ltd Verfahren zum installieren eines hydroelektrischen turbinengenerators
ATE548562T1 (de) 2009-04-17 2012-03-15 Openhydro Ip Ltd Verbessertes verfahren zur steuerung der ausgabe eines hydroelektrischen turbinengenerators
EP2302755B1 (fr) * 2009-09-29 2012-11-28 OpenHydro IP Limited Système et procédé de conversion d'alimentation électrique
EP2302204A1 (fr) 2009-09-29 2011-03-30 OpenHydro IP Limited Système de turbine hydroélectrique
EP2302766B1 (fr) 2009-09-29 2013-03-13 OpenHydro IP Limited Turbine hydroélectrique avec refroidissement de bobine
EP2450562B1 (fr) 2010-11-09 2015-06-24 Openhydro IP Limited Système de récupération pour une turbine hydroélectrique et procédé de récupération
EP2469257B1 (fr) 2010-12-23 2014-02-26 Openhydro IP Limited Procédé de test de turbine hydroélectrique
US9513614B2 (en) * 2013-09-11 2016-12-06 General Electric Company Auxiliary electric power system and method of regulating voltages of the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191207651A (en) * 1912-03-29 1913-06-27 Electric Construction Co Improvements in and relating to Dynamo-electric Machines.
US2769106A (en) * 1953-02-06 1956-10-30 United Aircraft Corp Reaction inductor alternator
JP2001275321A (ja) * 2000-03-27 2001-10-05 Shr Ltd Bvi インダクタ型交流電力発電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004107549A1 *

Also Published As

Publication number Publication date
WO2004107549A1 (fr) 2004-12-09
GB0312378D0 (en) 2003-07-02

Similar Documents

Publication Publication Date Title
EP2122805B1 (fr) Alternateur haute fréquence sans balai et procédé d'excitation pour une génération de puissance de haute fréquence en courant alternatif triphasée
US8076814B2 (en) Brushless high-frequency alternator and excitation method for DC, single-phase and multi-phase AC power-frequency generation
EP1629592A1 (fr) Convertisseur de puissance electromecanique rotatif homopolaire
US20130181688A1 (en) System and method for variable speed generation of controlled high-voltage dc power
CN1835351A (zh) 可旋转电力电子变换器同步电机励磁装置
EP0648006B1 (fr) Stator pour dispositif electrique utilisant du courant alternatif
RU2437202C1 (ru) Магнитоэлектрическая бесконтактная машина с аксиальным возбуждением
Chen et al. Capacitor-assisted excitation of permanent-magnet generators
Beik et al. High voltage generator for wind turbines
RU204405U1 (ru) Синхронный генератор
CN203445712U (zh) 一种变压器式交流发电机
US20140265709A1 (en) Steered Flux Generator
CN202759356U (zh) 一种交流发电机
McGrow et al. Low cost brushless generators
RU2414793C1 (ru) Бесконтактная модульная магнитоэлектрическая машина
Owen Homopolar electro-mechanical rotary power converter (HERPC)
RU2279173C2 (ru) Индукторный двигатель
RU2723297C1 (ru) Статор электродвигателя
Sinnadurai et al. Modeling and design analysis of a three phase linear generator for sea waves energy conversion
RU206433U1 (ru) Трехфазный генератор
RU2414794C1 (ru) Бесконтактная модульная синхронная магнитоэлектрическая машина
Dezhin et al. 12-phases magneto-electric direct drive turbo generator
RU2414790C1 (ru) Синхронная электрическая машина с модулированной мдс якоря
Mehrizi-Sani Electrical Machines and Their Applications
SU1282271A1 (ru) Синхронный бесконтактный генератор

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071101