EP1627143A1 - Driver stage for a solenoid valve - Google Patents

Driver stage for a solenoid valve

Info

Publication number
EP1627143A1
EP1627143A1 EP04739099A EP04739099A EP1627143A1 EP 1627143 A1 EP1627143 A1 EP 1627143A1 EP 04739099 A EP04739099 A EP 04739099A EP 04739099 A EP04739099 A EP 04739099A EP 1627143 A1 EP1627143 A1 EP 1627143A1
Authority
EP
European Patent Office
Prior art keywords
driver stage
diode
switching
connection
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04739099A
Other languages
German (de)
French (fr)
Inventor
Gianni Padroni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHO Holding GmbH and Co KG
Original Assignee
INA Schaeffler KG
Schaeffler KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INA Schaeffler KG, Schaeffler KG filed Critical INA Schaeffler KG
Publication of EP1627143A1 publication Critical patent/EP1627143A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08142Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2041Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit for controlling the current in the free-wheeling phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2075Type of transistors or particular use thereof

Definitions

  • the invention relates to a driver stage for a solenoid valve of an internal combustion engine.
  • a solenoid valve is used to control a valve lift of an intake or exhaust valve by a hydraulic system.
  • the control takes place as a function of a crankshaft angle, a cycle being generally achieved by two crankshaft revolutions (720 ° crankshaft angle).
  • Solenoid valves of this type generally require a comparatively large amount of energy when they are actuated, which correspondingly leads to additional consumption of the motor for generating the auxiliary energy and requires complex cooling of the valve and the driver stage in order to dissipate the heat generated.
  • JP 2000145568 A shows a driver stage for a solenoid injection valve, in which two inductors are each connected to ground with one connection via a transistor with a surge protection diode connected in parallel and with the other connection to another supply voltage connection.
  • the invention has for its object to provide a driver stage for a solenoid valve that enables safe operation and yet requires a relatively low amount of energy.
  • driver stage with the features of claim 1.
  • the sub-claims describe preferred further developments.
  • a driver device with the driver stage according to the invention and a control device is provided, which is implemented in the engine control unit of the vehicle or can also be provided as a separate device.
  • the invention relates to a driver stage for a solenoid valve of an internal combustion engine, which has the following components: a first and a second driver stage connection A1, A2 for applying a supply voltage, an inductance L of the solenoid valve, one arranged between a first inductance connection L1 and the first driver stage connection A1 first functional device T1 with a first control input G1, a second functional device T2 arranged between a second inductance connection L2 and the second driver stage connection A2, a third functional device T3 arranged between the first inductance connection L1 and the second driver stage connection A2, the third functional device T3 being a third diode device DM3 and a third switching device M3 bridging the third diode device DM3 with a third control input G3 and two third switching connections S3, D3 and the third Control input G3 is switchable depending on a crankshaft angle.
  • a driver device and a control device for this driver stage are provided, which transmit control signals to the control inputs G1, G2, G3 for setting conductive or blocking states of the switching devices M1, M2, M3 outputs.
  • an active functional device namely the third functional device
  • the third functional device has a diode junction and a switching device that short-circuits the diode junction.
  • the diode junction can be used as an internal diode of the switching device - i.e. a suitable pn junction of a semiconductor component - or as an external diode connected in parallel.
  • the diode transition is short-circuited by correspondingly controlling a control input of the third switching device, as a result of which the voltage drop in the forward voltage of the diode is eliminated and the electrical resistance is significantly reduced.
  • FIG. 1 is a block diagram of a driver stage according to the invention
  • FIG. 2 shows a time diagram of a switching-on process of the active third functional device with the courses of the relevant voltages and currents of the driver stage
  • FIG. 3 shows a time diagram of a switching-off process of the active third functional device with the courses of the relevant voltages and currents of the driver stage
  • the driver stage 1 shown in FIG. 1 has a first connection A1 for connection to a positive supply voltage and a second connection A2 for connection to a negative supply voltage terminal - generally ground GND - of a vehicle.
  • a solenoid valve with inductance L and a first and second inductance connection L1, L2 is provided for controlling a hydraulic circuit (not shown further).
  • a first functional device T1 is connected between the first inductance connection L1 and the first connection terminal A1
  • a third functional device T3 is connected between the first inductance connection L1 and the ground connection A2
  • a second functional device T2 is connected between the second inductance connection L2 and the ground connection A2.
  • Each functional device T1, T2, T3 each has an n-channel depletion mosfet M1, M2, M3 serving as a switching device and a diode transition DM1, DM2, running in the forward direction from the source S1, S2, S3 to the drain D1, D2, D3, DM3 on.
  • the diode transitions DM1, DM2, DM3 can each be connected in parallel as external components to the MOSFETs or as internal diode transitions of the MOSFETs, i.e. be designed as suitable pn junctions between correspondingly doped regions.
  • the switching devices M1, M2, M3 are designed as solid-state power switching devices, preferably as transistors such as MOSFETs, but in particular, as already mentioned, as n-channel enhancement MOSFETs and / or JFETs, HEXFETs or bipolar transistors.
  • FIG. 2 shows the switching-on process of the third functional device T3 serving as the active functional device. 2 shows:
  • the gate voltage Vgate M1 ie voltage between G1 and ground GND
  • the gate-source voltage Vgate-source M1 between gate G1 and Sour ce S1
  • the drain-source current Idrain-sourcel through M1 d) the voltage V DM3 dropping at DM3, e) the current I DM3 flowing through DM3, f) a voltage Vgate M3 present at the gate G3 of M3 (which is equal to the Gate-source voltage of M3 is, since the source S3 is grounded GND).
  • the voltage V DM3 present at the diode DM3 increases simultaneously according to FIG. 2d and reaches the limit voltage Vthreshold DM3 for controlling DM3 at t2, so that according to FIG. 2e the diode current I DM3 increases and the current Idrain-source M1 drops accordingly.
  • the limit voltage Vthreshold of M1 is reached, so that M1 completely blocks and I DM3 absorbs the complete solenoid current I solenoid.
  • the solenoid current I solenoid thus flows through DM3 instead of M1.
  • the control voltage required for a diode transition now drops at DM3, which does not drop in the initial state when the MOSFET M1 is conductive, so that the power consumption is initially increased.
  • the voltage Vgate M3 is reduced from t6, so that the gate-source voltage drops and the voltage V DM3 present at DM3 increases accordingly until the limit voltage V threshold DM3 is reached at t7 and an increasing current I DM3 flows through DM 3 , At t ⁇ locks M3, so the full solenoid current. I solenoid flows through DM 3. Furthermore, the voltage V gate M1 at G1 is increased and reaches the threshold value V threshold M1 for modulating M1 at t9, so that an increasing current flows through M1 according to FIG. 3g, which, when DM3 is blocked, the full value I solenoid at time t10 occupies.
  • the functional devices T1 and T3 can be operated alternately as active functional devices according to the invention, since a diode junction DM 1 is provided in parallel with M1.
  • M2 only serves as an enable input and is always open.
  • 4a shows the state when the Mosfet M1 is closed.
  • the time sequence and the respective relationships are shown by arrows in the characteristic fields of the Mosfet M1 and the diode DM3.
  • 4b shows the state when the Mosfet M3 is closed.
  • the time sequence and the respective relationships are also shown by arrows in the characteristic fields of the Mosfet M3 and the diode DM3.
  • FIGS. 4a, 4b show the time course of the phases shown in FIGS. 2 and 3 on the basis of the characteristic curves of the power devices.
  • Vcc is the supply voltage
  • Vd is the voltage drop across the diode
  • Vdson on the other hand, is the limit voltage from which the diode begins to conduct current
  • Vds is the drain-source voltage at the Mosfet
  • ld ! is the current through the diode
  • Vgs is the gate-source voltage on the Mosfet
  • Ids is the current flowing through the Mosfet.

Abstract

The invention relates to a driver stage for a solenoid valve of an internal combustion engine. The aim of the invention is to ensure reliable operation thereof with relatively low energy consumption. To this end, said driver stage comprises: a first and a second driver stage connection (A1, A2) for applying a supply voltage; a first function device (T1) arranged between a first inductance connection (L1) and the first driver stage connection (A1); a second function device (T2) arranged between a second inductance connection (L2) and the second driver stage connection (A2); and a third function device (T3) arranged between the first inductance connection (L1) and the second driver stage connection (A2). According to the invention, said third function device comprises a diode device (DM3) and a switching device (M3) which bridges the diode device (DM3) and comprises a control input (G3) and two switching connections (S3, D3), and the control input (G3) can be switched according to a crankshaft angle.

Description

Bezeichnung der Erfindung Name of the invention
Treiberstufe für ein SolenoidventilDriver stage for a solenoid valve
Anwendungsgebiet der ErfindungField of application of the invention
Die Erfindung bezieht sich auf eine Treiberstufe für ein Solenoidventil eines Innenverbrennungsmotors. Ein derartiges Solenoidventil wird zur Steuerung eines Ventilhubs eines Ein- oder Auslassventils durch ein hydraulisches System verwendet. Die Steuerung erfolgt hierbei in Abhängigkeit von einem Kur- belwellenwinkel, wobei im Allgemeinen ein Zyklus durch zwei Kurbelwellenumdrehungen (720° Kurbelwellenwinkel) erreicht wird.The invention relates to a driver stage for a solenoid valve of an internal combustion engine. Such a solenoid valve is used to control a valve lift of an intake or exhaust valve by a hydraulic system. The control takes place as a function of a crankshaft angle, a cycle being generally achieved by two crankshaft revolutions (720 ° crankshaft angle).
Hintergrund der ErfindungBackground of the Invention
Derartige Solenoidventile benötigen in der Regel bei ihrer Betätigung eine vergleichbar große Energie, die entsprechend zu einem Mehrverbrauch des Motors zur Erzeugung der Hilfsenergie führt und eine aufwändige Kühlung des Ventils und der Treiberstufe zur Abführung der erzeugten Wärme erfordert.Solenoid valves of this type generally require a comparatively large amount of energy when they are actuated, which correspondingly leads to additional consumption of the motor for generating the auxiliary energy and requires complex cooling of the valve and the driver stage in order to dissipate the heat generated.
Die JP 2000145568 A zeigt eine Treiberstufe für ein Solenoid-Einspritzventil, bei der zwei Induktivitäten jeweils mit einem Anschluss über einen Transistor mit parallel geschalteter Überspannungs-Schutzdiode an Masse gelegt sind und mit dem anderen Anschluss an einen anderen Versorgungsspannungsan- schluss gelegt sind. Aufgabe der ErfindungJP 2000145568 A shows a driver stage for a solenoid injection valve, in which two inductors are each connected to ground with one connection via a transistor with a surge protection diode connected in parallel and with the other connection to another supply voltage connection. Object of the invention
Der Erfindung liegt die Aufgabe zugrunde, eine Treiberstufe für ein Solenoidventil zu schaffen, die einen sicheren Betrieb ermöglicht und dennoch einen relativ geringen Energieaufwand benötigt.The invention has for its object to provide a driver stage for a solenoid valve that enables safe operation and yet requires a relatively low amount of energy.
Zusammenfassung der ErfindungSummary of the invention
Diese Aufgabe wird durch eine Treiberstufe mit den Merkmalen des Anspruch 1 gelöst. Die Unteransprüche beschreiben bevorzugte Weiterbildungen. Hierbei ist insbesondere eine Treibervorrichtung mit der erfindungsgemäßen Treiberstufe und einer Steuereinrichtung vorgesehen, die in dem Motorsteuergerät des Fahrzeuges realisiert oder auch als separate Einrichtung vorgesehen sein kann.This object is achieved by a driver stage with the features of claim 1. The sub-claims describe preferred further developments. In particular, a driver device with the driver stage according to the invention and a control device is provided, which is implemented in the engine control unit of the vehicle or can also be provided as a separate device.
Demnach betrifft die Erfindung eine Treiberstufe für ein Solenoidventil eines Innenverbrennungsmotors, die über folgende Bestandteile verfügt: einen ersten und einen zweiten Treiberstufenanschluss A1 , A2 zum Anlegen einer Versorgungsspannung, eine Induktivität L des Solenoidventils, eine zwischen einem ersten Induktivitatsanschluss L1 und dem ersten Treiberstufenanschluss A1 angeordnete erste Funktionseinrichtung T1 mit einem ersten Steuereingang G1 , eine zwischen einem zweiten Induktivitatsanschluss L2 und dem zweiten Treiberstufenanschluss A2 angeordnete zweite Funktionseinrichtung T2, eine zwischen dem ersten Induktivitatsanschluss L1 und dem zweiten Treiberstufenanschluss A2 angeordnete dritte Funktionseinrichtung T3, wobei die dritte Funktionseinrichtung T3 eine dritte Diodeneinrichtung DM3 und eine die dritte Diodeneinrichtung DM3 überbrückende dritte Schalteinrichtung M3 mit einem dritten Steuereingang G3 und zwei dritten Schaltanschlüssen S3, D3 aufweist und der dritte Steuereingang G3 in Abhängigkeit von einem Kurbelwellenwinkel schaltbar ist.Accordingly, the invention relates to a driver stage for a solenoid valve of an internal combustion engine, which has the following components: a first and a second driver stage connection A1, A2 for applying a supply voltage, an inductance L of the solenoid valve, one arranged between a first inductance connection L1 and the first driver stage connection A1 first functional device T1 with a first control input G1, a second functional device T2 arranged between a second inductance connection L2 and the second driver stage connection A2, a third functional device T3 arranged between the first inductance connection L1 and the second driver stage connection A2, the third functional device T3 being a third diode device DM3 and a third switching device M3 bridging the third diode device DM3 with a third control input G3 and two third switching connections S3, D3 and the third Control input G3 is switchable depending on a crankshaft angle.
Darüber hinaus ist eine Treibervorrichtung und einer Steuervorrichtung für die- se Treiberstufe vorgesehen, die Steuersignale an die Steuereingänge G1 , G2, G3 zur Einstellung leitender oder sperrender Zustände der Schalteinrichtungen M1 , M2, M3 ausgibt.In addition, a driver device and a control device for this driver stage are provided, which transmit control signals to the control inputs G1, G2, G3 for setting conductive or blocking states of the switching devices M1, M2, M3 outputs.
Erfindungsgemäß wird somit eine aktive Funktionseinrichtung, nämlich die drit- te Funktionseinrichtung, als einstellbarer Widerstand verwendet. Hierbei weist die dritte Funktionseinrichtung einen Diodenübergang und eine den Diodenübergang kurzschließende Schalteinrichtung auf. Der Diodenübergang kann als interne Diode der Schalteinrichtung - d.h. eine geeigneter pn-Übergang eines Halbleiterbauelementes - oder als externe, parallel geschaltete Diode ausgebildet sein. Durch entsprechende Ansteuerung eines Steuereingangs der dritten Schalteinrichtung wird der Diodenübergang kurzgeschlossen, wodurch der Spannungsabfall der Durchgangsspannung der Diode entfällt und der e- lektrische Widerstand deutlich abgesenkt wird.According to the invention, an active functional device, namely the third functional device, is thus used as an adjustable resistor. Here, the third functional device has a diode junction and a switching device that short-circuits the diode junction. The diode junction can be used as an internal diode of the switching device - i.e. a suitable pn junction of a semiconductor component - or as an external diode connected in parallel. The diode transition is short-circuited by correspondingly controlling a control input of the third switching device, as a result of which the voltage drop in the forward voltage of the diode is eliminated and the electrical resistance is significantly reduced.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Die Erfindung wird im Folgenden anhand der beiliegenden Zeichnungen an einigen Ausführungsformen näher erläutert. Es zeigen:The invention is explained in more detail below with the aid of the accompanying drawings in some embodiments. Show it:
Fig. 1 ein Blockdiagramm einer erfindungsgemäßen Treiberstufe,1 is a block diagram of a driver stage according to the invention,
Fig. 2 ein Zeitdiagramm eines Einschaltvorganges der aktiven dritten Funktionseinrichtung mit den Verläufen der relevanten Spannungen und Strömen der Treiberstufe,2 shows a time diagram of a switching-on process of the active third functional device with the courses of the relevant voltages and currents of the driver stage,
Fig. 3 ein Zeitdiagramm eines Ausschaltvorganges der aktiven dritten Funktionseinrichtung mit den Verläufen der relevanten Spannungen und Strömen der Treiberstufe,3 shows a time diagram of a switching-off process of the active third functional device with the courses of the relevant voltages and currents of the driver stage,
Fig. 4a Kennlinienfelder des Strom-/Spannungsverhaltens des Mosfet und der Diode bei geschlossenem oberen Pfad der Treiberstufe aus Fig. 1 , und4a characteristic curve fields of the current / voltage behavior of the MOSFET and the diode with the upper path of the driver stage from FIG. 1 closed, and
Fig. 4b Kennlinienfelder des Strom-/Spannungsverhaltens des Mosfet und der Diode bei geschlossenem unteren linken Pfad der Treiberstufe aus Fig. 1. Ausführliche Beschreibung der Zeichnungen4b characteristic curve fields of the current / voltage behavior of the MOSFET and the diode when the lower left path of the driver stage from FIG. 1 is closed. Detailed description of the drawings
Die in Fig. 1 gezeigte Treiberstufe 1 weist einen ersten Anschluss A1 zum An- schluss an eine positive Versorgungsspannung und einen zweiten Anschluss A2 zum Anschluss an eine negative Versorgungsspannungsklemme - im allgemeinen Masse GND - eines Fahrzeuges auf.The driver stage 1 shown in FIG. 1 has a first connection A1 for connection to a positive supply voltage and a second connection A2 for connection to a negative supply voltage terminal - generally ground GND - of a vehicle.
Ein Solenoidventil mit der Induktivität L und einem ersten und zweiten Induktivi- tätsanschluss L1 , L2 ist zur Steuerung eines nicht weiter gezeigten Hydraulikkreislaufs vorgesehen. Zwischen dem ersten Induktivitatsanschluss L1 und der ersten Anschlussklemme A1 ist eine erste Funktionseinrichtung T1 , zwischen dem ersten Induktivitatsanschluss L1 und dem Masseanschluss A2 ist eine dritte Funktionseinrichtung T3, und zwischen dem zweiten Induktivitätsan- schluss L2 und dem Masseanschluss A2 ist eine zweite Funktionseinrichtung T2 geschaltet. Jede Funktionseinrichtung T1 , T2, T3 weist jeweils einen als Schalteinrichtung dienenden n-Kanal Depletion-Mosfet M1 , M2, M3 und einen in Durchlassrichtung von der Source S1 , S2, S3 zu der Drain D1 , D2, D3 verlaufenden Diodenübergang DM1 , DM2, DM3 auf. Die Diodenübergänge DM1 , DM2, DM3 können hierbei jeweils als externe Bauelemente zu den MOSFETs parallel geschaltet sein oder als interne Diodenübergänge der MOSFETs, d.h. als geeignete pn-Übergange zwischen entsprechend dotierten Bereichen, ausgebildet sein.A solenoid valve with inductance L and a first and second inductance connection L1, L2 is provided for controlling a hydraulic circuit (not shown further). A first functional device T1 is connected between the first inductance connection L1 and the first connection terminal A1, a third functional device T3 is connected between the first inductance connection L1 and the ground connection A2, and a second functional device T2 is connected between the second inductance connection L2 and the ground connection A2. Each functional device T1, T2, T3 each has an n-channel depletion mosfet M1, M2, M3 serving as a switching device and a diode transition DM1, DM2, running in the forward direction from the source S1, S2, S3 to the drain D1, D2, D3, DM3 on. The diode transitions DM1, DM2, DM3 can each be connected in parallel as external components to the MOSFETs or as internal diode transitions of the MOSFETs, i.e. be designed as suitable pn junctions between correspondingly doped regions.
Die Schalteinrichtungen M1 , M2, M3 sind als Festkörper- Leistungsschalteinrich-tungen, vorzugsweise als Transistoren wie MOSFETs, insbesondere jedoch wie schon erwähnt als n-Kanal-Enhancement-MOSFETs und/oder JFETs, HEXFETs bzw. Bipolar-Transistoren ausgebildet.The switching devices M1, M2, M3 are designed as solid-state power switching devices, preferably as transistors such as MOSFETs, but in particular, as already mentioned, as n-channel enhancement MOSFETs and / or JFETs, HEXFETs or bipolar transistors.
Fig. 2 zeigt den Einschaltvorgang der als aktive Funktionseinrichtung dienenden dritten Funktionseinrichtung T3. In Fig. 2 sind dargestellt:2 shows the switching-on process of the third functional device T3 serving as the active functional device. 2 shows:
a) die Gatespannung Vgate M1 (d.h. Spannung zwischen G1 und Masse GND), b) die Gate-Source-Spannung Vgate-source M1 zwischen Gate G1 und Sour ce S1 , c) der Drain-Source-Strom Idrain-sourcel durch M1 , d) die an DM3 abfallende Spannung V DM3, e) der durch DM3 fließende Strom I DM3, f) eine am Gate G3 von M3 anliegende Spannung Vgate M3 (die gleich der Gate- Source-Spannung von M3 ist, da die Source S3 auf Masse GND liegt). g) der Drain-Source-Strom Idrain-source durch M3.a) the gate voltage Vgate M1 (ie voltage between G1 and ground GND), b) the gate-source voltage Vgate-source M1 between gate G1 and Sour ce S1, c) the drain-source current Idrain-sourcel through M1, d) the voltage V DM3 dropping at DM3, e) the current I DM3 flowing through DM3, f) a voltage Vgate M3 present at the gate G3 of M3 (which is equal to the Gate-source voltage of M3 is, since the source S3 is grounded GND). g) the drain-source current Idrain-source through M3.
Von dem Anfangszustand der Fig. 2 mit eingeschaltetem Mosfet M1 ausge- hend, bei dem der Solenoidstrom I solenoid vollständig durch M1 fließt (bei kurzgeschlossener Diode DM1 ), wird ab einem Zeitpunkt t1 die Gatespannung Vgate M1 ausgeschaltet und fällt nachfolgend gemäß Fig. 2a ab. Entsprechend reduziert sich auch die Gate-Source-Spannung Vgate-source M1. Da M1 weiterhin leitet, bleibt der Strom Idrain-source M1 zunächst bis t2 unverän- dert.Starting from the initial state of FIG. 2 with the Mosfet M1 switched on, in which the solenoid current I solenoid completely flows through M1 (with the diode DM1 short-circuited), the gate voltage Vgate M1 is switched off from a time t1 and subsequently drops according to FIG. 2a , The gate-source voltage Vgate-source M1 is also reduced accordingly. Since M1 continues to conduct, the current Idrain-source M1 initially remains unchanged until t2.
Da der Katodenanschluss von DM3 mit der Source S1 von M1 verbunden ist, steigt gleichzeitig gemäß Fig. 2d die an der Diode DM3 anliegende Spannung V DM3 und erreicht bei t2 die Grenzspannung Vthreshold DM3 zur Aussteue- rung von DM3, so dass daraufhin gemäß Fig. 2e der Diodenstrom I DM3 ansteigt und entsprechend der Strom Idrain-source M1 abfällt. Zu einem Zeitpunkt t3 ist die Grenzspannung Vthreshold von M1 erreicht, so dass M1 vollständig sperrt und I DM3 den vollständigen Solenoidstrom I solenoid aufnimmt. Der Solenoidstrom I solenoid fließt somit durch DM3 statt durch M1. Hierbei fällt nunmehr jedoch an DM3 die für einen Diodenübergang erforderliche Aussteuerspannung ab, die im Anfangszustand bei leitendem Mosfet M1 nicht abfiel, so dass zunächst der Leistungsverbrauch erhöht ist.Since the cathode connection of DM3 is connected to the source S1 of M1, the voltage V DM3 present at the diode DM3 increases simultaneously according to FIG. 2d and reaches the limit voltage Vthreshold DM3 for controlling DM3 at t2, so that according to FIG. 2e the diode current I DM3 increases and the current Idrain-source M1 drops accordingly. At a point in time t3, the limit voltage Vthreshold of M1 is reached, so that M1 completely blocks and I DM3 absorbs the complete solenoid current I solenoid. The solenoid current I solenoid thus flows through DM3 instead of M1. Here, however, the control voltage required for a diode transition now drops at DM3, which does not drop in the initial state when the MOSFET M1 is conductive, so that the power consumption is initially increased.
Bei t3 wird weiterhin die an das Gate G3 von M3 angelegte Gatespannung Vgate M3 - die gleich der Gate-Source-Spannung von M3 ist - erhöht und erreicht bei t4 die Grenzspannung V threshold M3, so dass der Mosfet M3 leitet. Es fließt nunmehr ein steigender Teil des Solenoidstroms I solenoid durch M3 statt durch DM3. Bei t5 fließt der ganze Solenoidstrom I solenoid durch M3. Die Dode DM3 sperrt. Es ist nunmehr wiederum ein Schaltzustand mit geringem Leistungsverbrauch erreicht. Der in Fig. 3 gezeigte Anschaltvorgang von M3 entspricht im wesentlichen einem Einschaltvorgang von M1. Es ergibt sich ein entsprechender zeitlicher Verlauf wie in Fig. 2 mit vertauschter Funktion zwischen M1 und M3, wobei wiederum DM3 zeitweise den Solenoidstrom aufnimmt. In Fig. 3 sind entspre- chend dargestellt:At t3 the gate voltage Vgate M3 applied to the gate G3 of M3 - which is equal to the gate-source voltage of M3 - continues to increase and reaches the threshold voltage V threshold M3 at t4, so that the MOSFET M3 conducts. An increasing part of the solenoid current I solenoid now flows through M3 instead of DM3. At t5, all solenoid current I solenoid flows through M3. The dode DM3 locks. A switching state with low power consumption is now again achieved. The turn-on process of M3 shown in FIG. 3 essentially corresponds to a turn-on process of M1. The result is a corresponding time profile as in FIG. 2 with the function interchanged between M1 and M3, DM3 again temporarily absorbing the solenoid current. 3 shows the following:
a) die Gatespannung Vgate M3, b) die Gate-Source-Spannung Vgate-source M3, c) der Source-Drain-Strom durch M3, d) die an DM3 abfallende Spannung V DM3, e) der durch DM3 fließende Strom I DM3, f) die am Gate G1 von M1 anliegende Spannung Vgate M1. g) der Drain-Source-Strom durch M1.a) the gate voltage Vgate M3, b) the gate-source voltage Vgate-source M3, c) the source-drain current through M3, d) the voltage V DM3 dropping at DM3, e) the current I DM3 flowing through DM3 , f) the voltage Vgate M1 present at the gate G1 of M1. g) the drain-source current through M1.
Somit wird ab t6 die Spannung Vgate M3 abgesenkt, so dass die Gate-Source- Spannung abfällt und entsprechend die an DM3 anliegende Spannng V DM3 ansteigt, bis bei t7 die Grenzspannung V threshold DM3 erreicht wird und ein zunehmender Strom I DM3 durch DM 3 fließt. Bei tδ sperrt M3, so dass der vollständige Solenoidstrom. I solenoid durch DM 3 fließt. Weiterhin wird die Spannung V gate M1 an G1 erhöht und erreicht bei t9 den Grenzwert V threshold M1 zur Aussteuerung von M1 , so dass ein zunehmender Strom gemäß Fig. 3g durch M1 fließt, der beim Sperren von DM3 zum Zeitpunkt t10 den vollständigen Wert I solenoid einnimmt.Thus, the voltage Vgate M3 is reduced from t6, so that the gate-source voltage drops and the voltage V DM3 present at DM3 increases accordingly until the limit voltage V threshold DM3 is reached at t7 and an increasing current I DM3 flows through DM 3 , At t δ locks M3, so the full solenoid current. I solenoid flows through DM 3. Furthermore, the voltage V gate M1 at G1 is increased and reaches the threshold value V threshold M1 for modulating M1 at t9, so that an increasing current flows through M1 according to FIG. 3g, which, when DM3 is blocked, the full value I solenoid at time t10 occupies.
Wie aus Fig. 1 und den Zeitverläufen von Fig. 2 beziehungsweise Fig. 3 ersichtlich ist, können die Funktionseinrichtungen T1 und T3 abwechselnd als erfindungsgemäße aktive Funktionseinrichtungen betrieben werden, da ein Diodenübergang DM 1 parallel zu M1 vorgesehen ist.As can be seen from FIG. 1 and the time profiles of FIGS. 2 and 3, the functional devices T1 and T3 can be operated alternately as active functional devices according to the invention, since a diode junction DM 1 is provided in parallel with M1.
M2 dient in der Schaltung der Fig. 1 lediglich als Enable-Eingang und ist hierbei immer offen.In the circuit of FIG. 1, M2 only serves as an enable input and is always open.
Fig. 4a zeigt den Zustand bei geschlossenem Mosfet M1. Hierbei sind in den Kennlinienfeldern des Mosfet M1 und der Diode DM3 der zeitliche Ablauf und die jeweiligen Beziehungen durch Pfeile eingezeichnet. Fig. 4b zeigt den Zustand bei geschlossenem Mosfet M3. Hierbei sind in den Kennlinienfeldern des Mosfet M3 und der Diode DM3 der zeitliche Ablauf und die jeweiligen Beziehungen ebenfalls durch Pfeile eingezeichnet.4a shows the state when the Mosfet M1 is closed. The time sequence and the respective relationships are shown by arrows in the characteristic fields of the Mosfet M1 and the diode DM3. 4b shows the state when the Mosfet M3 is closed. The time sequence and the respective relationships are also shown by arrows in the characteristic fields of the Mosfet M3 and the diode DM3.
Die Figuren 4a, 4b zeigen hierbei den zeitlichen Verlauf der in den Figuren 2 und 3 gezeigten Phasen anhand der Kennlinien der Leistungseinrichtungen. Vcc ist hierbei die Versorgungsspannung, Vd ist die an der Diode abfallende Spannung, Vdson ist dagegen diejenige Grenzspannung, ab der die Diode anfängt Strom zu leiten, Vds ist die Drain-Source-Spannung an dem Mosfet, ld! ist der Strom durch die Diode, Vgs ist die Gate-Source-Spannung an dem Mosfet und Ids ist der durch den Mosfet fließende Strom. FIGS. 4a, 4b show the time course of the phases shown in FIGS. 2 and 3 on the basis of the characteristic curves of the power devices. Vcc is the supply voltage, Vd is the voltage drop across the diode, Vdson, on the other hand, is the limit voltage from which the diode begins to conduct current, Vds is the drain-source voltage at the Mosfet, ld ! is the current through the diode, Vgs is the gate-source voltage on the Mosfet and Ids is the current flowing through the Mosfet.

Claims

Patentansprüche claims
1. Treiberstufe für ein Solenoidventil eines Innenverbrennungsmotors, wobei die Stufe aufweist: einen ersten und einen zweiten Treiberstufenanschluss (A1 , A2) zum Anlegen einer Versorgungsspannung, eine Induktivität (L) des Solenoidventils, eine zwischen einem ersten Induktivitatsanschluss (L1 ) und dem ersten Treiberstufenanschluss (A1 ) angeordnete erste Funktionseinrichtung (T1 ) mit einem ersten Steuereingang (G1 ), eine zwischen einem zweiten Induktivitatsanschluss (L2) und dem zweiten Treiberstufenanschluss (A2) angeordnete zweite Funktionseinrichtung (T2), eine zwischen dem ersten Induktivitatsanschluss (L1 ) und dem zweiten Treiberstufenanschluss (A2) angeordnete dritte Funktionseinrichtung (T3), wobei die dritte Funktionseinrichtung (T3) eine dritte DiodeneinrichtungA driver stage for a solenoid valve of an internal combustion engine, the stage comprising: a first and a second driver stage connection (A1, A2) for applying a supply voltage, an inductance (L) of the solenoid valve, one between a first inductance connection (L1) and the first driver stage connection (A1) arranged first functional device (T1) with a first control input (G1), a second functional device (T2) arranged between a second inductance connection (L2) and the second driver stage connection (A2), one between the first inductance connection (L1) and the second Driver stage connection (A2) arranged third functional device (T3), the third functional device (T3) being a third diode device
(DM3) und eine die dritte Diodeneinrichtung (DM3) überbrückende dritte Schalteinrichtung (M3) mit einem dritten Steuereingang (G3) und zwei dritten Schaltanschlüssen (S3, D3) aufweist und der dritte Steuereingang (G3) in Abhängigkeit von einem Kurbelwellenwinkel schaltbar ist.(DM3) and a third switching device (M3) bridging the third diode device (DM3) with a third control input (G3) and two third switching connections (S3, D3) and the third control input (G3) being switchable as a function of a crankshaft angle.
2. Treiberstufe nach Anspruch 1 , dadurch gekennzeichnet, dass die erste Funktionseinrichtung (T1 ) eine erste Diodeneinrichtung (DM1 ) und eine die erste Diodeneinrichtung (DM1 ) überbrückende erste Schalteinrichtung (M1 ) mit dem ersten Steuereingang (G1 ) und zwei ersten Schaltanschlüssen (S1 , D1 ) aufweist und der erste Steuereingang (G1 ) in Abhängigkeit von einem2. Driver stage according to claim 1, characterized in that the first functional device (T1) comprises a first diode device (DM1) and a first switching device (M1) bridging the first diode device (DM1) with the first control input (G1) and two first switching connections (S1 , D1) and the first control input (G1) depending on one
Kurbelwellenwinkel schaltbar ist.Crankshaft angle is switchable.
3. Treiberstufe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zweite Funktionseinrichtung (T2) eine zweite Diodeneinrichtung (DM2) und eine die zweite Diodeneinrichtung (DM2) überbrückende zweite Schalteinrichtung (M2) mit einem zweiten Steuereingang (G2) und zwei zweiten Schaltanschlüssen (S2, D2) aufweist und der zweite Steuereingang (G2) in Abhängigkeit von einem Kurbelwellenwinkel schaltbar ist.3. Driver stage according to claim 1 or 2, characterized in that the second functional device (T2) has a second diode device (DM2) and a second switching device (M2) bridging the second diode device (DM2) with a second control input (G2) and two second ones Has switching connections (S2, D2) and the second control input (G2) is switchable as a function of a crankshaft angle.
4. Treiberstufe nach einem der vorherigen Ansprüche, dadurch gekenn- zeichnet, dass bei Anlegen einer Versorgungsspannung an die Treiberstufenanschlüsse (A1 , A2) die Diodeneinrichtungen (DM1 , DM2, DM3) in Sperrrichtung geschaltet sind.4. Driver stage according to one of the preceding claims, characterized in that when a supply voltage is applied to the driver stage connections (A1, A2), the diode devices (DM1, DM2, DM3) are switched in the reverse direction.
5. Treiberstufe nach einem der vorherigen Ansprüche, dadurch gekenn- zeichnet, dass die Schalteinrichtungen (M1 , M2, M3) Festkörper-5. Driver stage according to one of the preceding claims, characterized in that the switching devices (M1, M2, M3)
Leistungsschaltein-richtungen, vorzugsweise Transistoren, z. B. MOSFETs, insbesondere n-Kanal-Enhancement-MOSFETs, und/oder JFETs, HEX- FETs, Bipolar-Transistoren sind.Power switching devices, preferably transistors, e.g. B. MOSFETs, in particular n-channel enhancement MOSFETs, and / or JFETs, HEX-FETs, bipolar transistors.
6. Treiberstufe nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest eine der Diodeneinrichtungen aus einem internen Diodenübergang (DM1 , DM2, DM3) der jeweiligen Schalteinrichtung (M1 , M2, M3) gebildet ist.6. Driver stage according to one of the preceding claims, characterized in that at least one of the diode devices is formed from an internal diode junction (DM1, DM2, DM3) of the respective switching device (M1, M2, M3).
7. Treiberstufe nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest eine der Diodeneinrichtungen als zu der jeweiligen Schaltein-richtung (M1 , M2, M3) parallel geschaltete externe Diode (DM1 , DM2, DM3) gebildet ist.7. Driver stage according to one of the preceding claims, characterized in that at least one of the diode devices is formed as an external diode (DM1, DM2, DM3) connected in parallel with the respective switching device (M1, M2, M3).
8. Treibervorrichtung mit einer Treiberstufe nach einem der vorherigen Ansprüche und einer Steuervorrichtung, die Steuersignale an die Steuereingänge (G1 , G2, G3) zur Einstellung leitender oder sperrender Zustände der Schalteinrichtungen (M1 , M2, M3) ausgibt.8. Driver device with a driver stage according to one of the preceding claims and a control device which outputs control signals to the control inputs (G1, G2, G3) for setting conductive or blocking states of the switching devices (M1, M2, M3).
9. Treibervorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Steuervorrichtung in einem Einschaltvorgang der dritten Funktionseinrichtung (T3) in einem ersten Schritt die erste Schalteinrichtung (M1 ) der ersten Funktionseinrichtung (T1 ) ausschaltet derartig, dass ein Solenoidstrom (I solenoid) durch die dritte Diodeneinrichtung (DM3) fließt und in einem zweiten Schritt die dritte Schalteinrichtung (M3) einschaltet und die dritte Diodeneinrichtung (DM3) kurzschließt.9. Driver device according to claim 8, characterized in that the control device in a switch-on operation of the third functional device (T3) in a first step, the first switching device (M1) of the first Functional device (T1) switches off in such a way that a solenoid current (I solenoid) flows through the third diode device (DM3) and, in a second step, switches on the third switching device (M3) and short-circuits the third diode device (DM3).
10. Treibervorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Steuervorrichtung in einem Ausschaltvorgang der dritten Funktionseinrichtung (T3) in einem ersten Schritt die dritte Schalteinrichtung (M3) ausschaltet derartig, dass ein Solenoidstrom (I solenoid) durch die dritte Diodenein- richtung (DM3) fließt, und in einem zweiten Schritt die erste Schalteinrichtung (M1 ) einschaltet derartig, dass der Solenoidstrom (I solenoid) durch die erste Schalteinrichtung (M1 ) fließt. 10. Driver device according to claim 9, characterized in that the control device in a switch-off process of the third functional device (T3) in a first step switches off the third switching device (M3) such that a solenoid current (I solenoid) through the third diode device (DM3 ) flows, and in a second step switches on the first switching device (M1) such that the solenoid current (I solenoid) flows through the first switching device (M1).
EP04739099A 2003-05-22 2004-04-23 Driver stage for a solenoid valve Withdrawn EP1627143A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10323172A DE10323172A1 (en) 2003-05-22 2003-05-22 Driver stage for a solenoid valve
PCT/EP2004/004310 WO2004104396A1 (en) 2003-05-22 2004-04-23 Driver stage for a solenoid valve

Publications (1)

Publication Number Publication Date
EP1627143A1 true EP1627143A1 (en) 2006-02-22

Family

ID=33441152

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04739099A Withdrawn EP1627143A1 (en) 2003-05-22 2004-04-23 Driver stage for a solenoid valve

Country Status (3)

Country Link
EP (1) EP1627143A1 (en)
DE (1) DE10323172A1 (en)
WO (1) WO2004104396A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005022714A1 (en) * 2005-05-18 2006-11-23 Schaeffler Kg Device with an electric camshaft adjuster, a control unit and a central control unit
CN1948722A (en) * 2005-10-10 2007-04-18 贺雷 Permanent magnet electric door and its control system
CA2719735A1 (en) 2008-03-27 2009-10-01 Gruenenthal Gmbh Substituted 4-aminocyclohexane derivatives
EP2322176A1 (en) 2009-11-11 2011-05-18 Almirall, S.A. New 7-phenyl-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one derivatives
TWI582092B (en) 2010-07-28 2017-05-11 歌林達股份有限公司 Cis-tetrahydro-spiro(cyclohexane-1,1'-pyrido[3,4-b]indole)-4-amine derivatives

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4307835A1 (en) * 1992-03-25 1993-09-30 Volkswagen Ag Precise timing circuit e.g. for diesel engine fuel injector electromagnets - retains holding current in coil by abrupt discharge of stored energy through short-circuiting transistor switch
DE4403375A1 (en) * 1993-03-04 1994-09-08 Siemens Ag Device and method for controlling an inductive load
DE19747033A1 (en) * 1997-10-24 1999-04-29 Daimler Chrysler Ag Electronic switching device for magnets, esp. electromagnetic valve control elements for an internal combustion engine
JP2000145568A (en) * 1998-11-10 2000-05-26 Hitachi Ltd Driving circuit for solenoid fuel injection valve
US6249418B1 (en) * 1999-01-27 2001-06-19 Gary Bergstrom System for control of an electromagnetic actuator
US6577488B1 (en) * 2000-01-14 2003-06-10 Motorola, Inc. Inductive load driver utilizing energy recovery
DE10018175A1 (en) * 2000-04-12 2001-10-25 Bayerische Motoren Werke Ag Circuit arrangement for operating a highly dynamic electromagnetic lifting armature actuator
DE10020896A1 (en) * 2000-04-29 2001-10-31 Lsp Innovative Automotive Sys Position detection method for armature of electromagnetic setting device e..g. for gas changing valve of IC engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004104396A1 *

Also Published As

Publication number Publication date
DE10323172A1 (en) 2004-12-09
WO2004104396A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
DE19902520B4 (en) Hybrid power MOSFET
DE112017006120B4 (en) BOOTSTRAP CAPACITOR OVERVOLTAGE MONITORING CIRCUIT FOR CONVERTERS BASED ON GAN TRANSISTORS
DE102010027832B3 (en) Semiconductor switching arrangement, has drive circuit switched between control terminal and load track terminals of semiconductor component, where track terminals are arranged between component and another component
EP2412096B1 (en) Jfet-mosfet cascode circuit
DE102006029474A1 (en) Cascode circuit for driving high electron mobility transistor, has controller that controls low voltage MOSFET for faster charging of capacitor
EP3503365B1 (en) Method and device for controlling mosfet switching modules
DE102009016627A1 (en) Without control blocking switching system
DE102014110985A1 (en) MOSFET driver device
DE102005027442B4 (en) Circuit arrangement for switching a load
EP1352471A1 (en) Electronic switching device and an operating method therefor
EP0717886B1 (en) Current limiting device
DE10056833C2 (en) Integrated driver circuit for half-bridge circuit with two power transistors
EP0817380B1 (en) Device for switching an inductive consumer
EP1627143A1 (en) Driver stage for a solenoid valve
EP1094605B1 (en) Circuit arrangement for controlling a load with reduced stray radiation
DE102017120399A1 (en) switching device
WO2018041971A1 (en) Controlling a semiconductor switch in a switched mode
EP1850470B1 (en) Synchronous rectifier and method for the operation of a synchronous rectifier
DE10050287A1 (en) Protective device for control of clocked electromagnetic consumer such as motor has freewheel device consisting of transistor , reverse battery protection having further transistor and freewheel
DE10228340B3 (en) Control circuit for inductive load e.g. electric motor, relay or valve, has free-running circuit with diode and Zener diode connected across connection terminals for switched inductive load
DE102016223312A1 (en) Power semiconductor module for a motor vehicle, motor vehicle and method for operating a power semiconductor module
EP1489743B1 (en) Direct switching between power components
DE102007050710A1 (en) Inductive load e.g. stepper motor, operating method, involves detecting voltage between control connection of transistor and bridge center, and terminating switching operation of transistor when voltage exceeds predetermined value
DE19512911C1 (en) Circuit for switching electrical load contg. inductive component
DE102014114954A1 (en) Half bridge with two semiconductor switches for operating a load

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHAEFFLER KG

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR IT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060726