EP1625598B1 - Method for the production of an electrically insulating and mechanically structuring sleeve on an electric conductor - Google Patents

Method for the production of an electrically insulating and mechanically structuring sleeve on an electric conductor Download PDF

Info

Publication number
EP1625598B1
EP1625598B1 EP04767829A EP04767829A EP1625598B1 EP 1625598 B1 EP1625598 B1 EP 1625598B1 EP 04767829 A EP04767829 A EP 04767829A EP 04767829 A EP04767829 A EP 04767829A EP 1625598 B1 EP1625598 B1 EP 1625598B1
Authority
EP
European Patent Office
Prior art keywords
conductor
ceramic
precursor
heat treatment
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04767829A
Other languages
German (de)
French (fr)
Other versions
EP1625598A1 (en
Inventor
Alexandre Puigsegur
Françoise RONDEAUX
Eric Prouzet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat A L'energie Atomique En Centre Nation
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1625598A1 publication Critical patent/EP1625598A1/en
Application granted granted Critical
Publication of EP1625598B1 publication Critical patent/EP1625598B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/16Insulating conductors or cables by passing through or dipping in a liquid bath; by spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment

Definitions

  • the present invention relates to a method of manufacturing an electrically insulating and mechanically structuring sheath on an electrical conductor.
  • the invention makes it possible to obtain an electrically isolated conductor that can be used over a wide range of temperatures and more particularly at very low temperatures, less than or equal to 4.2K, corresponding to the operating range of the superconducting magnets used for generate strong magnetic fields.
  • the invention thus applies in particular to the manufacture of such superconducting magnets.
  • Superconductive electromagnets are already known, made from Nb 3 Sn type alloys. Such alloys are capable of producing intense magnetic fields of up to 24 Tesla, which gives them a definite advantage over the NbTi-type alloys usually employed in such electromagnets.
  • Nb 3 Sn make it difficult to implement because, unlike NbTi which is a very ductile and easily extrudable alloy, it is difficult to manufacture multi-filament Nb 3 Sn compounds.
  • Nb 3 Sn is a polycrystalline intermetallic material which, to be formed, must undergo a long heat treatment of up to 3 weeks at temperatures of 600 ° C to 720 ° C under an inert atmosphere. Once treated, it becomes brittle and its superconducting properties are very sensitive to any mechanical deformation.
  • the implementation of the electrical insulation of the cable is particularly difficult because, for this insulation, it is difficult to use a conventional material of organic type. Indeed, such a material is not resistant to a heat treatment during which the temperature exceeds 600 ° C.
  • This document discloses a method of manufacturing an electrically insulating and mechanically structuring sheath on an electrical conductor and proposes the use of a gelled solution, containing an organic binder, for the deposition of a ceramic precursor or directly on the conductor to isolate either on a ribbon serving to surround this conductor.
  • This document describes a method for coating superconductors with an electrical insulator.
  • this process also uses a sol-gel solution requiring oxides and organic solvents, i.e. isopropanol and acetyl-acetone, to form the ceramic precursor.
  • the present invention aims to overcome the above disadvantages.
  • the suspension for forming the ceramic precursor is not a gel but a fluid solution without any organic element.
  • the method which is the subject of the invention leads to a simplification of the compositions used for its implementation and to a clear separation of the phases of elaboration of the isolated conductor, as will be seen later.
  • the clay is selected from the group of smectites and in this group, montmorillonite is preferably selected.
  • the solution comprises, in weight percent, 35% to 50% water, 8% to 15% clay and 35% to 55% glass frit.
  • the conductor is a precursor of a superconductor, in particular Nb 3 Sn, and an overall heat treatment of this conductor provided with the coating is carried out. global heat treatment being able to form the superconductor and the ceramic.
  • the conductor is either a non-superconducting metal or a superconducting metal and a heat treatment of this conductor provided with the coating is carried out, this heat treatment being able to form the ceramic.
  • the step of forming the coating comprises a step of depositing the ceramic precursor on a fiber ribbon and then a step of arranging the ribbon provided with the ceramic precursor around the conductor.
  • the ceramic precursor there is a coating of the ribbon by the ceramic precursor and the fibers may be made of a material selected from type E glass, type C glass, type R glass, type S2 glass pure silica, an alumina and an aluminosilicate.
  • the fiber ribbon is previously desensitized, for example thermally or chemically.
  • the conductor provided with the coating is shaped before the heat treatment step capable of forming the ceramic.
  • the conductor can for example wind this conductor (provided with the coating), before the heat treatment step capable of forming the ceramic.
  • the electrical insulation technique proposed in the present invention makes it possible to deposit a ceramic cladding on an unreacted conductive cable (made of a Nb 3 Sn precursor), before forming a superconducting magnet coil.
  • the ceramic cladding will react simultaneously during the thermal cycle necessary for the formation of Nb 3 Sn superconductor and will thus contribute to the electrical insulation and mechanical cohesion of the coil (structuring function).
  • the phases of preparation of the ceramic precursor, preparation of the ceramic sheath (for example by coating a ribbon of glass fibers) and sheathing of the conductive cable (covering) are distinct.
  • the solution used in the invention for the formation of this precursor has no organic component, especially binder type, to prevent the formation of carbon residues that are known to be harmful to good electrical insulation.
  • This solution is preferably a ternary mixture of a montmorillonite-type clay, glass frit and water which form a ceramic suspension.
  • the montmorillonite used is produced by Arvel SA under the trade name Expans.
  • This clay makes it possible to give the necessary plasticity to the impregnated tape that will be used during the wrapping of the conductive cable (made of a precursor of the Nb 3 Sn alloy). In addition, it allows bending radii of about 2mm for the cladding tape.
  • the glass frit used is manufactured by Johnson & Mattey, under the reference 2495F. Its melting point is 538 ° C.
  • the glass frit is a fuse element that contributes to the cohesion of the ceramic insulation after the heat treatment.
  • the water makes it possible to adjust the viscosity of the suspension.
  • the clay and the glass frit are heated at 100 ° C for 12 hours in an oven to remove any traces of moisture. Then two powders of clay and glass frit are ground separately until a particle size of less than 20 .mu.m is obtained. The glass frit is then mixed with water with a magnetic stirrer.
  • the clay is then incorporated by successive additions, which facilitates the mixing of the whole, then the suspension obtained is again treated with the aid of the ultrasonic gun to obtain a homogeneous mixture.
  • This suspension is then stirred. To do this, in the example described, it is placed on a roller stirrer for 12 hours, in a polyethylene bottle containing twenty or so porcelain balls of diameter 20 mm. Thanks to this stirring technique, a good homogenization of the solution is obtained and the suspension is given a fluid appearance.
  • the reduced viscosity of the mixture is necessary for a good impregnation of the fiberglass ribbon which will be used for the cladding of the conductor.
  • a volume of about 600 milliliters of mixture is constituted for each preparation.
  • the ceramic sheath is made of a glass fiber ribbon which is impregnated with the ceramic suspension described above.
  • the fibers of this ribbon may be type E, C, R or S2 glass. These fibers may equally well be pure silica, alumina or aluminosilicate.
  • the ribbon Before being impregnated, the ribbon undergoes heat treatment - it is maintained at 350 ° C for 12 hours - to eliminate the organic size of the fibers of which it is made.
  • This size is indeed detrimental to good fiber coating by the ceramic suspension and is a source of carbon elements, which can reduce the insulating properties of the ceramic.
  • the coating of the glass fiber ribbon with the ceramic solution is carried out by means of an impregnation bench which is diagrammatically shown in FIG.
  • the desensitized ribbon in the form of a roller 2, is attached to a brake system 4 which allows unrolling the ribbon while keeping a constant tension.
  • Pulleys 6 guide the ribbon through the various components of the impregnation bench. The direction of movement is indicated by the arrow F.
  • the ribbon passes into an impregnating tank 8 containing the ceramic suspension 10. This is kept under stirring, thanks to a magnetic stirrer 12, during the impregnation phase of the ribbon, in order to preserve the homogeneity of the latter and avoid sedimentation problems.
  • the ribbon 2 passes through a scraper system 14 which limits the thickness of the ceramic deposit 16 formed on the ribbon (due to its passage through the ceramic suspension).
  • a drying column 18, heated to 150 ° C, allows complete evaporation of water from the ceramic solution deposited on the ribbon.
  • the sheath, ceramic precursor is completely dry. She is packaged in the form of a roller 20, thanks to a motor 22 which maintains a constant running speed of 20cm per minute.
  • the Rutherford cables are approximately trapezoidal in cross-section and consist of 36 conductive strands which are twisted together and finally made of Nb 3 Sn in the example.
  • These strands are distributed so as to form a flat two-layer conductor, the cross section of which has the following approximate dimensions: 1.3 mm for the short side, 1.6 mm for the long side and 15.1 mm for the width .
  • the ceramic cladding consisting of the glass fiber ribbon impregnated with the ceramic precursor, is wrapped around the Rutherford conductor cable (formed of the Nb 3 Sn precursor), in two layers offset by half a width, as it is see figure 2.
  • references 24, 26, 28 and 30 respectively represent the cable (before the treatment intended to form Nb 3 Sn), the strands of the cable, the first layer of the ribbon and the second layer of the ribbon.
  • the edge of one turn of ribbon is against the edge of the adjacent turn.
  • the first layer 28 is placed first on the cable and the second layer 30 ensures the continuity of the electrical insulation, as seen in Figure 2.
  • this cable After covering the conductor cable by means of the two ceramic cladding layers 28 and 30, this cable is formed into coils according to means known in the state of the art. Then the coils thus obtained from the conductive cable, consisting of the precursor covered with the ceramic sheath, are subjected to a heat treatment under a neutral gas such as argon.
  • a neutral gas such as argon
  • This treatment comprises a slow rise in temperature, at a speed close to 6 ° C. per hour, up to the temperature of 660 ° C., then a plateau at 660 ° C. for 240 hours, then a slow cooling down to the temperature ambient temperature (20 ° C to 23 ° C) in the furnace chamber.
  • This treatment allows the reaction of the precursor cable and obtaining a Nb 3 Sn superconducting material having the desired properties.
  • the glass frit used in the example of the invention has a melting point of 540 ° C. It therefore melts during the heat treatment necessary for the formation of the Nb 3 Sn superconductor (during which the temperature is maintained at 660 ° C.) and thus provides, after cooling to ambient temperature, the electrical insulation and the mechanical cohesion necessary for the applications of the invention, such as the formation of superconducting coils.
  • each coil is cooled to the temperature of liquid helium (4.2K at atmospheric pressure) or that of superfluid helium (temperature below 2.1K under reduced pressure) to superconducting the alloy Nb 3 Sn component conductor which is formed the winding cable.
  • any other clay from the group of smectites can be used.
  • Figure 3 corresponds to a first composition
  • Figure 4 to a second composition, different from the first.
  • Each of these flow curves represents the variations of the stress ⁇ (expressed in Pa) as a function of the shear rate ⁇ (expressed in s -1 ).
  • the low speed movement of the glass ribbon in the ceramic suspension creates low shear rates.
  • the experimental conditions are such that the rheological behavior corresponds to the beginning of the flow curves.
  • composition of the two suspensions is given in Table I below.
  • the clay used for the two suspensions is montmorillonite marketed by Arvel SA under the name Expans.
  • Table 1 Clay % by mass
  • Glass frit % by mass
  • Water % by mass
  • Suspension 1 11.5 46 42.5

Abstract

The fabrication of an electrically insulating sleeve mechanically structured on an electric conductor (2) comprises: (a) the formation of a ceramic precursor (10) in the form of a fluid solution; (b) the formation of a coating on the conductor with this ceramic precursor; and (c) the heat treatment of the coating to form the ceramic from this ceramic precursor.

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention concerne un procédé de fabrication d'une gaine électriquement isolante et mécaniquement structurante sur un conducteur électrique.The present invention relates to a method of manufacturing an electrically insulating and mechanically structuring sheath on an electrical conductor.

L'invention permet d'obtenir un conducteur électriquement isolé, utilisable dans une large gamme de températures et plus particulièrement aux très basses températures, inférieures ou égales à 4,2K, correspondant au domaine d'exploitation des aimants supraconducteurs que l'on utilise pour engendrer de forts champs magnétiques.The invention makes it possible to obtain an electrically isolated conductor that can be used over a wide range of temperatures and more particularly at very low temperatures, less than or equal to 4.2K, corresponding to the operating range of the superconducting magnets used for generate strong magnetic fields.

L'invention s'applique ainsi notamment à la fabrication de tels aimants supraconducteurs.The invention thus applies in particular to the manufacture of such superconducting magnets.

Elle s'applique aussi à la fabrication de pièces polaires de moteurs électriques.It also applies to the manufacture of polar parts of electric motors.

ETAT DE LA TECHNIQUE ANTERIEURESTATE OF THE PRIOR ART

On connaît déjà des électro-aimants supraconducteurs, faits à partir d'alliages de type Nb3Sn. De tels alliages sont capables de produire d'intenses champs magnétiques, allant jusqu'à 24 teslas, ce qui leur donne un avantage certain sur les alliages de type NbTi, habituellement employés dans de tels électro-aimants.Superconductive electromagnets are already known, made from Nb 3 Sn type alloys. Such alloys are capable of producing intense magnetic fields of up to 24 Tesla, which gives them a definite advantage over the NbTi-type alloys usually employed in such electromagnets.

Cependant, les caractéristiques de Nb3Sn rendent sa mise en oeuvre délicate car, contrairement à NbTi qui est un alliage très ductile et facilement extrudable, il est délicat de fabriquer des composés multi-filamentaires de Nb3Sn.However, the characteristics of Nb 3 Sn make it difficult to implement because, unlike NbTi which is a very ductile and easily extrudable alloy, it is difficult to manufacture multi-filament Nb 3 Sn compounds.

En effet, Nb3Sn est un matériau intermétallique polycristallin qui, pour être formé, doit subir un long traitement thermique pouvant aller jusqu'à 3 semaines à des températures de 600°C à 720°C sous atmosphère inerte. Une fois traité, il devient cassant et ses propriétés supraconductrices sont très sensibles à toute déformation mécanique.Indeed, Nb 3 Sn is a polycrystalline intermetallic material which, to be formed, must undergo a long heat treatment of up to 3 weeks at temperatures of 600 ° C to 720 ° C under an inert atmosphere. Once treated, it becomes brittle and its superconducting properties are very sensitive to any mechanical deformation.

Ainsi, lorsqu'on veut fabriquer un électro-aimant à partir de l'alliage Nb3Sn, il s'avère nécessaire de mettre en forme le bobinage de l'électro-aimant avec un câble formé à l'aide d'un « précurseur » de cet alliage et de lui faire subir ultérieurement un traitement, à savoir un cycle thermique, permettant la formation de Nb3Sn.Thus, when it is desired to manufacture an electromagnet from the alloy Nb 3 Sn, it is necessary to shape the winding of the electromagnet with a cable formed using a " precursor "of this alloy and to subsequently undergo a treatment, namely a thermal cycle, allowing the formation of Nb 3 Sn.

Ce traitement est aussi appelé « réaction » dans la suite de la description et le câble formé à l'aide d'un précurseur de Nb3Sn est appelé « câble non-réagi » (en anglais « non-reacted cable »).This treatment is also called "reaction" in the following description and the cable formed using a precursor Nb 3 Sn is called "unreacted cable" (in English "non-reacted cable").

La mise en oeuvre de l'isolation électrique du câble est particulièrement délicate car, pour cette isolation, il est difficile d'utiliser un matériau classique, de type organique. En effet, un tel matériau ne résiste pas à un traitement thermique au cours duquel la température dépasse 600°C.The implementation of the electrical insulation of the cable is particularly difficult because, for this insulation, it is difficult to use a conventional material of organic type. Indeed, such a material is not resistant to a heat treatment during which the temperature exceeds 600 ° C.

On se reportera au document suivant :

  • WO 03/010781A invention de Jean-Michel Rey, Sandrine Marchant, Arnaud Devred et Eric Prouzet.
We will refer to the following document:
  • WO 03 / 010781A invention of Jean-Michel Rey, Sandrine Marchant, Arnaud Devred and Eric Prouzet.

Ce document divulgue un procédé de fabrication d'une gaine électriquement isolante et mécaniquement structurante sur un conducteur électrique et propose l'emploi d'une solution gélifiée, contenant un liant organique, pour le dépôt d'un précurseur de céramique soit directement sur le conducteur à isoler soit sur un ruban servant à entourer ce conducteur.This document discloses a method of manufacturing an electrically insulating and mechanically structuring sheath on an electrical conductor and proposes the use of a gelled solution, containing an organic binder, for the deposition of a ceramic precursor or directly on the conductor to isolate either on a ribbon serving to surround this conductor.

Cependant, l'emploi d'un gel nécessite l'utilisation d'un acide pour engendrer ce gel. Par ailleurs, la présence d'un liant organique n'est pas souhaitable car elle peut conduire à la création de résidus carbonés qui sont néfastes aux propriétés isolantes de la céramique. Cet effet indésirable nécessite donc une phase d'élimination du liant organique.However, the use of a gel requires the use of an acid to generate this gel. Moreover, the presence of an organic binder is not desirable because it can lead to the creation of carbon residues which are detrimental to the insulating properties of the ceramic. This undesirable effect therefore requires a phase of elimination of the organic binder.

On se reportera également au document suivant :

  • US 6 387 852 B, E. Celik, Y. Hascicek et I. Mutlu.
We will also refer to the following document:
  • US 6,387,852 B, E. Celik, Y. Hascicek and I. Mutlu.

Ce document décrit un procédé pour recouvrir des supraconducteurs d'un isolant électrique. Cependant, ce procédé utilise également une solution sol-gel nécessitant des oxydes et des solvants organiques, à savoir l'isopropanol et l'acétyl-acétone, pour former le précurseur de céramique.This document describes a method for coating superconductors with an electrical insulator. However, this process also uses a sol-gel solution requiring oxides and organic solvents, i.e. isopropanol and acetyl-acetone, to form the ceramic precursor.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

La présente invention a pour but de remédier aux inconvénients précédents.The present invention aims to overcome the above disadvantages.

Dans l'invention, on n'utilise aucun liant organique et la suspension servant à la formation du précurseur céramique n'est pas un gel mais une solution fluide sans aucun élément organique.In the invention, no organic binder is used and the suspension for forming the ceramic precursor is not a gel but a fluid solution without any organic element.

Le procédé objet de l'invention conduit à une simplification des compositions employées pour sa mise en oeuvre et à une séparation nette des phases d'élaboration du conducteur isolé, comme on le verra par la suite.The method which is the subject of the invention leads to a simplification of the compositions used for its implementation and to a clear separation of the phases of elaboration of the isolated conductor, as will be seen later.

De façon précise, la présente invention a pour objet un procédé de fabrication d'une gaine électriquement isolante et mécaniquement structurante sur un conducteur électrique, en particulier un conducteur en métal non supraconducteur, un conducteur en métal supraconducteur ou un conducteur en précurseur de supraconducteur, ce procédé étant caractérisé en ce qu'il comprend les étapes de :

  • formation d'un précurseur de céramique sous forme d'une solution fluide, ce précurseur de céramique étant un liquide constitué par une solution comprenant de l'eau, de la fritte de verre et une argile en suspension dans l'eau, sans aucun élément organique,
  • formation d'un revêtement du conducteur avec ce précurseur de céramique, et
  • traitement thermique de ce revêtement, ce traitement thermique étant apte à former la céramique à partir du précurseur de céramique.
Specifically, the subject of the present invention is a method for manufacturing an electrically insulating and mechanically structuring sheath on an electrical conductor, in particular a non-superconducting metal conductor, a superconductive metal conductor or a superconducting precursor conductor, this method being characterized in that it comprises the steps of:
  • forming a ceramic precursor in the form of a fluid solution, said ceramic precursor being a liquid consisting of a solution comprising water, glass frit and a clay suspended in water, without any element organic,
  • forming a coating of the conductor with this ceramic precursor, and
  • heat treatment of this coating, this heat treatment being able to form the ceramic from the ceramic precursor.

De préférence, l'argile est choisie dans le groupe des smectites et, dans ce groupe, on choisit de préférence la montmorillonite.Preferably, the clay is selected from the group of smectites and in this group, montmorillonite is preferably selected.

Selon un mode de réalisation préféré de l'invention, la solution comprend, en pourcentage massique, 35% à 50% d'eau, 8% à 15% d'argile et 35% à 55% de fritte de verre.According to a preferred embodiment of the invention, the solution comprises, in weight percent, 35% to 50% water, 8% to 15% clay and 35% to 55% glass frit.

Selon un premier mode de mise en oeuvre particulier du procédé objet de l'invention, le conducteur est en précurseur d'un supraconducteur, en particulier Nb3Sn, et l'on effectue un traitement thermique global de ce conducteur pourvu du revêtement, ce traitement thermique global étant apte à former le supraconducteur et la céramique.According to a first particular embodiment of the method which is the subject of the invention, the conductor is a precursor of a superconductor, in particular Nb 3 Sn, and an overall heat treatment of this conductor provided with the coating is carried out. global heat treatment being able to form the superconductor and the ceramic.

Selon un deuxième mode de mise en oeuvre particulier, le conducteur est soit en métal non supraconducteur soit en métal supraconducteur et l'on effectue un traitement thermique de ce conducteur pourvu du revêtement, ce traitement thermique étant apte à former la céramique.According to a second particular embodiment, the conductor is either a non-superconducting metal or a superconducting metal and a heat treatment of this conductor provided with the coating is carried out, this heat treatment being able to form the ceramic.

Selon un mode de réalisation particulier de l'invention, l'étape de formation du revêtement comprend une étape de dépôt du précurseur de céramique sur un ruban de fibres puis une étape de disposition du ruban pourvu du précurseur de céramique autour du conducteur.According to a particular embodiment of the invention, the step of forming the coating comprises a step of depositing the ceramic precursor on a fiber ribbon and then a step of arranging the ribbon provided with the ceramic precursor around the conductor.

Dans ce cas, il se produit une enduction du ruban par le précurseur céramique et les fibres peuvent être faites d'un matériau choisi parmi le verre de type E, le verre de type C, le verre de type R, le verre de type S2, la silice pure, une alumine et un aluminosilicate.In this case, there is a coating of the ribbon by the ceramic precursor and the fibers may be made of a material selected from type E glass, type C glass, type R glass, type S2 glass pure silica, an alumina and an aluminosilicate.

De préférence, le ruban de fibres est préalablement désensimé, par exemple de façon thermique ou chimique.Preferably, the fiber ribbon is previously desensitized, for example thermally or chemically.

Selon un mode de mise en oeuvre particulier du procédé objet de l'invention, on met en forme le conducteur pourvu du revêtement, avant l'étape de traitement thermique apte à former la céramique.According to a particular embodiment of the method which is the subject of the invention, the conductor provided with the coating is shaped before the heat treatment step capable of forming the ceramic.

Pour mettre en forme le conducteur, on peut par exemple bobiner ce conducteur (pourvu du revêtement), avant l'étape de traitement thermique apte à former la céramique.To shape the conductor, it can for example wind this conductor (provided with the coating), before the heat treatment step capable of forming the ceramic.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :

  • la figure 1 illustre schématiquement des étapes d'un mode de mise en oeuvre particulier du procédé objet de l'invention,
  • la figure 2 illustre schématiquement une application particulière de l'invention, et
  • les figures 3 et 4 montrent des courbes d'écoulement de suspensions céramiques ayant des compositions différentes.
The present invention will be better understood on reading the description of exemplary embodiments given below, purely by way of indication and in no way limiting, with reference to the appended drawings in which:
  • FIG. 1 schematically illustrates steps of a particular mode of implementation of the method which is the subject of the invention,
  • FIG. 2 schematically illustrates a particular application of the invention, and
  • Figures 3 and 4 show flow curves of ceramic suspensions having different compositions.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS

La technique d'isolation électrique proposée dans la présente invention permet de déposer un gainage céramique sur un câble conducteur non-réagi (fait d'un précurseur de Nb3Sn), avant la mise en forme d'une bobine d'aimant supraconducteur.The electrical insulation technique proposed in the present invention makes it possible to deposit a ceramic cladding on an unreacted conductive cable (made of a Nb 3 Sn precursor), before forming a superconducting magnet coil.

Le gainage céramique va réagir simultanément pendant le cycle thermique nécessaire à la formation du supraconducteur Nb3Sn et va contribuer ainsi à l'isolation électrique et à la cohésion mécanique de la bobine (fonction structurante).The ceramic cladding will react simultaneously during the thermal cycle necessary for the formation of Nb 3 Sn superconductor and will thus contribute to the electrical insulation and mechanical cohesion of the coil (structuring function).

Afin de faciliter l'exploitation industrielle du procédé d'isolation, les phases de préparation du précurseur céramique, de préparation de la gaine céramique (par enduction d'un ruban de fibres de verre par exemple) et de gainage du câble conducteur (guipage) sont distinctes.In order to facilitate the industrial exploitation of the insulation process, the phases of preparation of the ceramic precursor, preparation of the ceramic sheath (for example by coating a ribbon of glass fibers) and sheathing of the conductive cable (covering) are distinct.

Le gainage céramique du conducteur doit présenter certaines propriétés pour garantir le bon fonctionnement du câble supraconducteur qui sera finalement formé. Ce gainage doit :

  • assurer l'isolation électrique du câble conducteur,
  • garantir une cohésion mécanique à la bobine résultant de la mise en forme du conducteur isolé,
  • maintenir une bonne résistance mécanique dans une plage de températures allant de la température ambiante (environ 300K) jusqu'à 1,6K, et
  • présenter si possible une certaine porosité afin de permettre la diffusion d'hélium jusqu'à la surface du conducteur pour les applications relatives aux aimants supraconducteurs.
The ceramic cladding of the conductor must have certain properties to ensure the proper functioning of the superconducting cable that will eventually be formed. This sheathing must:
  • ensure the electrical insulation of the conductor cable,
  • guarantee a mechanical cohesion to the coil resulting from the shaping of the insulated conductor,
  • maintain good mechanical strength in a temperature range from room temperature (about 300K) up to 1.6K, and
  • if possible, provide a certain porosity in order to allow the diffusion of helium up to the surface of the conductor for applications relating to superconducting magnets.

Dans un exemple de l'invention, l'élaboration d'un câble supraconducteur en Nb3Sn électriquement isolé est réalisée en plusieurs phases bien distinctes, à savoir :

  • préparation d'une suspension formant un précurseur céramique,
  • fabrication d'un gainage céramique par enduction d'un ruban de fibres de verre au moyen de cette suspension,
  • guipage, au moyen de ce ruban, d'un câble conducteur constitué d'un précurseur de Nb3Sn non-réagi,
  • formation d'une bobine à partir du câble conducteur ainsi guipé, et
  • accomplissement d'un cycle thermique nécessaire à la réaction du précurseur de Nb3Sn. Ce cycle thermique réalise simultanément la transformation du précurseur Nb3Sn en supraconducteur et du revêtement en précurseur céramique en céramique.
In one example of the invention, the elaboration of an electrically insulated Nb 3 Sn superconducting cable is carried out in several distinct phases, namely:
  • preparation of a suspension forming a ceramic precursor,
  • manufacturing a ceramic cladding by coating a fiberglass ribbon with this suspension,
  • covering, by means of this ribbon, a conductive cable consisting of an unreacted Nb 3 Sn precursor,
  • forming a coil from the conductive cable thus covered, and
  • completion of a thermal cycle necessary for the reaction of the Nb 3 Sn precursor. This thermal cycle simultaneously performs the transformation of the Nb 3 Sn precursor into a superconductor and the ceramic ceramic precursor coating.

On obtient ainsi une bobine supraconductrice de Nb3Sn électriquement isolée et possédant une cohésion mécanique.Thus, a superconducting coil of Nb 3 Sn electrically insulated and having a mechanical cohesion is obtained.

On explique dans ce qui suit la préparation d'un précurseur de céramique.In the following, the preparation of a ceramic precursor is explained.

La solution utilisée dans l'invention pour la formation de ce précurseur ne possède aucun composant organique, notamment de type liant, pour éviter la formation de résidus carbonés que l'on sait être néfastes à une bonne isolation électrique.The solution used in the invention for the formation of this precursor has no organic component, especially binder type, to prevent the formation of carbon residues that are known to be harmful to good electrical insulation.

Cette solution est de préférence un mélange ternaire d'une argile de type montmorillonite, de fritte de verre et d'eau qui forment une suspension céramique.This solution is preferably a ternary mixture of a montmorillonite-type clay, glass frit and water which form a ceramic suspension.

Dans un exemple, la montmorillonite utilisée est produite par la société Arvel SA sous la dénomination commerciale Expans.In one example, the montmorillonite used is produced by Arvel SA under the trade name Expans.

Cette argile permet de donner la plasticité nécessaire au ruban imprégné qui sera utilisé lors du guipage du câble conducteur (fait d'un précurseur de l'alliage Nb3Sn). De plus, elle autorise des rayons de cintrage de l'ordre de 2mm pour le ruban de gainage.This clay makes it possible to give the necessary plasticity to the impregnated tape that will be used during the wrapping of the conductive cable (made of a precursor of the Nb 3 Sn alloy). In addition, it allows bending radii of about 2mm for the cladding tape.

Par comparaison avec d'autres argiles, son pouvoir plastifiant élevé permet de réduire la quantité utilisée et d'augmenter proportionnellement la fritte de verre.In comparison with other clays, its high plasticizing power makes it possible to reduce the quantity used and to proportionally increase the glass frit.

La fritte de verre utilisée est fabriquée par la société Johnson & Mattey, sous la référence 2495F. Son point de fusion est de 538°C.The glass frit used is manufactured by Johnson & Mattey, under the reference 2495F. Its melting point is 538 ° C.

La fritte de verre est un élément fusible qui contribue à la cohésion de l'isolation céramique après le traitement thermique.The glass frit is a fuse element that contributes to the cohesion of the ceramic insulation after the heat treatment.

L'eau permet d'ajuster la viscosité de la suspension.The water makes it possible to adjust the viscosity of the suspension.

A la fin de la présente description, on a considéré le comportement rhéologique de deux compositions particulières de la suspension céramique. Comme cela est indiqué, les conditions expérimentales sont telles qu'on se situe dans le régime décrit par le démarrage des courbes de comportement.At the end of the present description, the rheological behavior of two particular compositions of the ceramic suspension has been considered. As indicated, the experimental conditions are such that we are in the regime described by the start of the behavior curves.

L'argile et la fritte de verre sont chauffées à 100°C pendant 12 heures dans une étuve pour éliminer les éventuelles traces d'humidité. Puis les deux poudres d'argile et de fritte de verre sont broyées séparément jusqu'à atteindre une granulométrie inférieure à 20µm. La fritte de verre est ensuite mélangée à l'eau avec un agitateur magnétique.The clay and the glass frit are heated at 100 ° C for 12 hours in an oven to remove any traces of moisture. Then two powders of clay and glass frit are ground separately until a particle size of less than 20 .mu.m is obtained. The glass frit is then mixed with water with a magnetic stirrer.

La solution résultant de ce mélange est alors soumise aux effets d'un canon à ultrasons de marque Bioblock Scientific, modèle Vibracell 72412, utilisé à une puissance de 300 watts. Ce traitement a pour but de casser les éventuels agrégats de particules.The solution resulting from this mixture is then subjected to the effects of a Bioblock Scientific brand ultrasound gun, Vibracell model 72412, used at a power of 300 watts. This treatment is intended to break the possible aggregates of particles.

Puis la solution est laissée sous agitation pendant 4 heures pour permettre la stabilisation de la valeur de son pH. Cette attente de stabilisation permet d'assurer la reproductibilité des conditions expérimentales dans la préparation du précurseur de céramique.Then the solution is left stirring for 4 hours to allow the stabilization of the pH value. This expectation of stabilization makes it possible to ensure the reproducibility of the experimental conditions in the preparation of the ceramic precursor.

L'argile est ensuite incorporée par ajouts successifs, ce qui facilite le mélange de l'ensemble, puis la suspension obtenue est à nouveau traitée à l'aide du canon à ultrasons afin d'obtenir un mélange homogène.The clay is then incorporated by successive additions, which facilitates the mixing of the whole, then the suspension obtained is again treated with the aid of the ultrasonic gun to obtain a homogeneous mixture.

On constate expérimentalement qu'on obtient une gélification de la suspension.It is found experimentally that a gelation of the suspension is obtained.

Cette suspension est alors agitée. Pour ce faire, dans l'exemple décrit, elle est mise sur un agitateur à rouleaux pendant 12 heures, dans un flacon en polyéthylène contenant une vingtaine de billes en porcelaine de diamètre 20mm. Grâce à cette technique d'agitation, on obtient une bonne homogénéisation de la solution et on confère à la suspension un aspect fluide.This suspension is then stirred. To do this, in the example described, it is placed on a roller stirrer for 12 hours, in a polyethylene bottle containing twenty or so porcelain balls of diameter 20 mm. Thanks to this stirring technique, a good homogenization of the solution is obtained and the suspension is given a fluid appearance.

En pratique, l'agitation brise le processus de gélification constaté précédemment.In practice, the agitation breaks the gelling process previously observed.

La viscosité réduite du mélange est nécessaire à une bonne imprégnation du ruban de fibres de verre qui sera utilisé pour le gainage du conducteur.The reduced viscosity of the mixture is necessary for a good impregnation of the fiberglass ribbon which will be used for the cladding of the conductor.

Un volume d'environ 600 millilitres de mélange est constitué pour chaque préparation.A volume of about 600 milliliters of mixture is constituted for each preparation.

On indique maintenant le domaine de composition de la suspension.The field of composition of the suspension is now indicated.

Dans le précurseur céramique, les pourcentages massiques peuvent varier dans les intervalles donnés ci-après (la somme des pourcentages devant bien entendu être égale à 100% pour un précurseur céramique donné) :

  • 35% à 50% pour l'eau,
  • 35% à 55% pour la fritte de verre, et
  • 8% à 15% pour l'argile de type montmorillonite.
In the ceramic precursor, the mass percentages may vary in the intervals given below (the sum of the percentages must of course be equal to 100% for a given ceramic precursor):
  • 35% to 50% for water,
  • 35% to 55% for the glass frit, and
  • 8% to 15% for montmorillonite clay.

On explique dans ce qui suit la fabrication du gainage céramique.In what follows, the manufacture of the ceramic sheath is explained.

Dans l'exemple décrit, la gaine céramique est constituée d'un ruban de fibres de verre qui est imprégné de la suspension céramique décrite ci-dessus. Les fibres de ce ruban peuvent être en verre de type E, C, R ou S2. Ces fibres peuvent tout aussi bien être en silice pure, alumine ou aluminosilicate.In the example described, the ceramic sheath is made of a glass fiber ribbon which is impregnated with the ceramic suspension described above. The fibers of this ribbon may be type E, C, R or S2 glass. These fibers may equally well be pure silica, alumina or aluminosilicate.

Avant d'être imprégné, le ruban subit un traitement thermique - il est maintenu à 350°C pendant 12 heures - pour éliminer l'ensimage organique des fibres dont il est constitué.Before being impregnated, the ribbon undergoes heat treatment - it is maintained at 350 ° C for 12 hours - to eliminate the organic size of the fibers of which it is made.

Cet ensimage est en effet néfaste à une bonne enduction des fibres par la suspension céramique et constitue une source d'éléments carbonés, susceptibles de diminuer les propriétés isolantes de la céramique.This size is indeed detrimental to good fiber coating by the ceramic suspension and is a source of carbon elements, which can reduce the insulating properties of the ceramic.

L'enduction du ruban de fibres de verre par la solution céramique est effectuée grâce à un banc d'imprégnation qui est schématiquement représenté sur la figure 1.The coating of the glass fiber ribbon with the ceramic solution is carried out by means of an impregnation bench which is diagrammatically shown in FIG.

Le ruban désensimé, sous la forme d'un rouleau 2, est fixé à un système de frein 4 qui permet de dérouler le ruban tout en gardant une tension constante. Des poulies 6 permettent de guider le ruban à travers les différents composants du banc d'imprégnation. Le sens de déplacement est indiqué par la flèche F.The desensitized ribbon, in the form of a roller 2, is attached to a brake system 4 which allows unrolling the ribbon while keeping a constant tension. Pulleys 6 guide the ribbon through the various components of the impregnation bench. The direction of movement is indicated by the arrow F.

Dans un premier temps, le ruban passe dans un bac d'imprégnation 8 contenant la suspension céramique 10. Celle-ci est maintenue sous agitation, grâce à un agitateur magnétique 12, pendant la phase d'imprégnation du ruban, pour conserver l'homogénéité de ce dernier et éviter les problèmes de sédimentation.In a first step, the ribbon passes into an impregnating tank 8 containing the ceramic suspension 10. This is kept under stirring, thanks to a magnetic stirrer 12, during the impregnation phase of the ribbon, in order to preserve the homogeneity of the latter and avoid sedimentation problems.

A la sortie du bac 8, le ruban 2 passe à travers un système de racleurs 14 qui permet de limiter l'épaisseur du dépôt céramique 16 formé sur le ruban (du fait de son passage dans la suspension céramique).At the outlet of the tray 8, the ribbon 2 passes through a scraper system 14 which limits the thickness of the ceramic deposit 16 formed on the ribbon (due to its passage through the ceramic suspension).

Une colonne de séchage 18, chauffée à 150°C, permet l'évaporation complète de l'eau de la solution céramique déposée sur le ruban.A drying column 18, heated to 150 ° C, allows complete evaporation of water from the ceramic solution deposited on the ribbon.

A la sortie de la colonne, la gaine, en précurseur céramique, est complètement sèche. Elle est conditionnée sous la forme d'un rouleau 20, grâce à un moteur 22 qui maintient une vitesse de défilement constante de 20cm par minute.At the outlet of the column, the sheath, ceramic precursor, is completely dry. She is packaged in the form of a roller 20, thanks to a motor 22 which maintains a constant running speed of 20cm per minute.

On décrit dans ce qui suit la fabrication d'un électro-aimant quadripolaire en utilisant la présente invention.The following describes the manufacture of a quadrupole electromagnet using the present invention.

La construction d'un tel électro-aimant nécessite de fabriquer quatre bobinages identiques, chaque bobinage étant constitué de 75m de câble supraconducteur de type Rutherford.The construction of such an electromagnet requires the manufacture of four identical windings, each winding consisting of 75m of superconducting cable Rutherford type.

Les câbles de Rutherford ont une section approximativement trapézoïdale et sont constitués de 36 brins conducteurs qui sont torsadés entre eux et faits, finalement, de Nb3Sn dans l'exemple.The Rutherford cables are approximately trapezoidal in cross-section and consist of 36 conductive strands which are twisted together and finally made of Nb 3 Sn in the example.

Ces brins sont répartis de manière à former un conducteur plat à deux couches, dont la section droite a les dimensions approximatives suivantes : 1,3 mm pour le petit côté, 1,6 mm pour le grand côté et 15,1 mm pour la largeur.These strands are distributed so as to form a flat two-layer conductor, the cross section of which has the following approximate dimensions: 1.3 mm for the short side, 1.6 mm for the long side and 15.1 mm for the width .

Le gainage de céramique, constitué du ruban de fibres de verre imprégné du précurseur de céramique, est guipé autour du câble conducteur de Rutherford (formé du précurseur de Nb3Sn), en deux couches décalées d'une demi-largeur, comme on le voit sur la figure 2.The ceramic cladding, consisting of the glass fiber ribbon impregnated with the ceramic precursor, is wrapped around the Rutherford conductor cable (formed of the Nb 3 Sn precursor), in two layers offset by half a width, as it is see figure 2.

Sur cette figure, les références 24, 26, 28 et 30 représentent respectivement le câble (avant le traitement destiné à former Nb3Sn), les brins du câble, la première couche du ruban et la deuxième couche du ruban.In this figure, the references 24, 26, 28 and 30 respectively represent the cable (before the treatment intended to form Nb 3 Sn), the strands of the cable, the first layer of the ribbon and the second layer of the ribbon.

Pour chacune de ces couche s, le bord d'un tour de ruban se trouve contre le bord du tour adjacent. De plus, la première couche 28 est mise en place la première sur le câble et la deuxième couche 30 permet d'assurer la continuité de l'isolation électrique, comme on le voit sur la figure 2.For each of these layers, the edge of one turn of ribbon is against the edge of the adjacent turn. In addition, the first layer 28 is placed first on the cable and the second layer 30 ensures the continuity of the electrical insulation, as seen in Figure 2.

Après avoir guipé le câble conducteur au moyen des deux couches de gainage céramique 28 et 30, ce câble est mis sous forme de bobinages selon des moyens connus dans l'état de la technique. Puis les bobinages ainsi obtenus à partir du câble conducteur, constitué du précurseur guipé de la gaine céramique, sont soumis à un traitement thermique sous un gaz neutre tel que l'argon.After covering the conductor cable by means of the two ceramic cladding layers 28 and 30, this cable is formed into coils according to means known in the state of the art. Then the coils thus obtained from the conductive cable, consisting of the precursor covered with the ceramic sheath, are subjected to a heat treatment under a neutral gas such as argon.

Ce traitement comprend une montée lente en température, à une vitesse voisine de 6°C par heure, jusqu'à la température de 660°C, puis un palier à 660°C pendant 240 heures, puis un refroidissement lent jusqu'à la température ambiante (20°C à 23°C) dans l'enceinte du four de traitement.This treatment comprises a slow rise in temperature, at a speed close to 6 ° C. per hour, up to the temperature of 660 ° C., then a plateau at 660 ° C. for 240 hours, then a slow cooling down to the temperature ambient temperature (20 ° C to 23 ° C) in the furnace chamber.

Ce traitement permet la réaction du câble précurseur et l'obtention d'un matériau supraconducteur Nb3Sn ayant les propriétés recherchées.This treatment allows the reaction of the precursor cable and obtaining a Nb 3 Sn superconducting material having the desired properties.

Pendant ce traitement thermique, une circulation continue de gaz neutre a lieu à l'intérieur du four. L'utilisation d'une telle atmosphère inerte pendant le traitement thermique permet d'éviter les réactions néfastes entre le précurseur de Nb3Sn et l'oxygène de l'air qui peuvent former divers oxydes métalliques, susceptibles de diminuer les propriétés du supraconducteur formé.During this heat treatment, a continuous flow of neutral gas takes place inside the oven. The use of such an inert atmosphere during the heat treatment makes it possible to avoid the harmful reactions between the Nb 3 Sn precursor and the oxygen of the air, which can form various metal oxides, capable of reducing the properties of the superconductor formed. .

L'utilisation d'une température de 660°C sous gaz neutre est une contrainte importante pour la mise au point d'une isolation céramique adaptée.The use of a temperature of 660 ° C under neutral gas is an important constraint for the development of a suitable ceramic insulation.

En effet, la fritte de verre utilisée dans l'exemple de l'invention possède un point de fusion de 540°C. Elle fond donc pendant le traitement thermique nécessaire à la formation du supraconducteur Nb3Sn (au cours duquel on maintient la température à 660°C) et apporte ainsi, après refroidissement à la température ambiante, l'isolation électrique et la cohésion mécanique nécessaires aux applications de l'invention, telles que la formation de bobinages supraconducteurs.Indeed, the glass frit used in the example of the invention has a melting point of 540 ° C. It therefore melts during the heat treatment necessary for the formation of the Nb 3 Sn superconductor (during which the temperature is maintained at 660 ° C.) and thus provides, after cooling to ambient temperature, the electrical insulation and the mechanical cohesion necessary for the applications of the invention, such as the formation of superconducting coils.

Durant l'exploitation des électro-aimants supraconducteurs, chaque bobinage est refroidi à la température de l'hélium liquide (4,2K à la pression atmosphérique) ou à celle de l'hélium superfluide (température inférieure à 2,1K sous pression réduite) pour rendre supraconducteur l'alliage Nb3Sn composant le conducteur dont est formé le câble du bobinage.During the operation of the superconducting electromagnets, each coil is cooled to the temperature of liquid helium (4.2K at atmospheric pressure) or that of superfluid helium (temperature below 2.1K under reduced pressure) to superconducting the alloy Nb 3 Sn component conductor which is formed the winding cable.

Lorsque l'électro-aimant est parcouru par un courant d'excitation, des forces de Lorentz considérables apparaissent dans chaque bobinage. La cohésion mécanique apportée par l'isolation céramique facilite la manipulation des bobines après le traitement thermique et permet de résister aux efforts engendrés par le fonctionnement de l'électro-aimant à des champs magnétiques intenses.When the electromagnet is traversed by an excitation current, considerable Lorentz forces appear in each winding. The mechanical cohesion provided by the ceramic insulation facilitates the handling of the coils after the heat treatment and makes it possible to withstand the forces generated by the operation of the electromagnet to intense magnetic fields.

Dans l'invention, à la place de la montmorillonite, on peut utiliser toute autre argile du groupe des smectites.In the invention, in place of montmorillonite, any other clay from the group of smectites can be used.

De plus, l'invention peut être mise en oeuvre avec d'autres conducteurs qu'un précurseur de Nb3Sn, par exemple :

  • un précurseur de Nb3Al ou
  • un précurseur d'un supraconducteur à base d'oxyde de cuivre, tel que YBa2Cu3O7, Bi2Sr2CaCu2O2 ou Bi2Sr2Ca2CU3O10, ou
  • un métal qui n'est pas supraconducteur, par exemple le cuivre, ou
  • tout conducteur y compris un supraconducteur supportant le traitement thermique que l'on fait subir au précurseur céramique.
In addition, the invention can be implemented with other conductors than a precursor of Nb 3 Sn, for example:
  • a precursor of Nb 3 Al or
  • a precursor of a superconductor based on copper oxide, such as YBa 2 Cu 3 O 7 , Bi 2 Sr 2 CaCu 2 O 2 or Bi 2 Sr 2 Ca 2 CU 3 O 10 , or
  • a metal that is not superconducting, for example copper, or
  • any conductor including a superconductor supporting the heat treatment that is subjected to the ceramic precursor.

L'invention s'applique notamment :

  • à la fabrication de petits solénoïdes supraconducteurs compacts, dépourvus d'éléments métalliques structurants, utilisés principalement à basse température,
  • à la fabrication de bobinages de machines électriques tournantes supraconductrices,
  • à la fabrication de bobinages de machines électriques tournantes non supraconductrices, destinées à fonctionner à des températures supérieures à 300°C, par utilisation de conducteurs classiques, et
  • à l'isolation électrique de câbles conducteurs devant résister pendant un certain temps à de fortes températures, sans dégagement de vapeurs nocives en cas d'incendie.
The invention applies in particular:
  • the manufacture of small compact superconducting solenoids, devoid of structuring metal elements, used mainly at low temperatures,
  • the manufacture of windings of superconducting rotating electrical machines,
  • the manufacture of windings of non-superconducting rotating electrical machines, intended to operate at temperatures above 300 ° C, using conventional conductors, and
  • the electrical insulation of conductor cables that must withstand high temperatures for a certain period without the release of harmful vapors in the event of fire.

Considérons maintenant le comportement rhéologique de deux suspensions céramiques particulières, utilisables dans l'invention.Let us now consider the rheological behavior of two particular ceramic suspensions, usable in the invention.

On se reportera aux figures 3 et 4 qui représentent les courbes d'écoulement pour deux suspensions céramiques ayant des compositions différentes : la figure 3 correspond à une première composition et la figure 4 à une deuxième composition, différente de la première.Referring to Figures 3 and 4 which show the flow curves for two ceramic suspensions having different compositions: Figure 3 corresponds to a first composition and Figure 4 to a second composition, different from the first.

Chacune de ces courbes d'écoulement représente les variations de la contrainte τ (exprimée en Pa) en fonction de la vitesse de cisaillement γ (exprimée en s-1).Each of these flow curves represents the variations of the stress τ (expressed in Pa) as a function of the shear rate γ (expressed in s -1 ).

Le comportement n'est pas de type newtonien, les viscosités moyennes des deux compositions sont proches, aux alentours de 45mPa.s, mais seule la première composition (figure 3) donne un dépôt suffisant sur le ruban de verre.The behavior is not Newtonian type, the average viscosities of the two compositions are close, around 45mPa.s, but only the first composition (Figure 3) gives a sufficient deposit on the glass ribbon.

Cette différence s'explique par la variation du comportement thixotropique des deux suspensions. En effet, les deux courbes de descente D1 et D2 sont équivalentes mais, pour les courbes de montée M1 et M2, la première composition possède un comportement plus rhéofluidifiant qui entraîne une thixotropie plus importante.This difference is explained by the variation of the thixotropic behavior of the two suspensions. Indeed, the two descent curves D1 and D2 are equivalent but, for the rise curves M1 and M2, the first composition has a more shear-thinning behavior which leads to a greater thixotropy.

Or, la circulation à faible vitesse du ruban de verre dans la suspension céramique crée de faibles vitesses de cisaillement. Ainsi, pendant la phase d'imprégnation, les conditions expérimentales sont telles que le comportement rhéologique correspondant au début des courbes d'écoulement.However, the low speed movement of the glass ribbon in the ceramic suspension creates low shear rates. Thus, during the impregnation phase, the experimental conditions are such that the rheological behavior corresponds to the beginning of the flow curves.

La composition des deux suspensions est donnée dans le tableau I ci-dessous. L'argile utilisée pour les deux suspensions est la montmorillonite commercialisée par la société Arvel SA sous la dénomination Expans. Tableau 1 Argile (% massique) Fritte de verre (% massique) Eau (% massique) Suspension 1 11,5 46 42,5 Suspension 2 10 50 40 The composition of the two suspensions is given in Table I below. The clay used for the two suspensions is montmorillonite marketed by Arvel SA under the name Expans. Table 1 Clay (% by mass) Glass frit (% by mass) Water (% by mass) Suspension 1 11.5 46 42.5 Suspension 2 10 50 40

Claims (12)

  1. Method for manufacturing an electrically insulating and mechanically structuring sheath on an electrical conductor (2), in particular a non-superconducting metal conductor, a superconducting metal conductor or a superconductor precursor conductor, said method comprising the steps of:
    - forming a ceramic precursor (10) in the form of a fluid solution, said ceramic precursor (10) being a liquid consisting of a solution containing water, glass frit and a suspension of clay in water,
    - forming a coating for the conductor with said ceramic precursor, and
    - heat-treating said coating, said heat treatment being capable of forming the ceramic from the ceramic precursor,
    said method being characterized in that in the step of forming a ceramic precursor said liquid contains no organic element.
  2. Method of claim 1, in which the clay is selected from the smectite group.
  3. Method of claim 2, in which the clay is montmorillonite.
  4. Method as claimed in any of claims 1 to 3, in which the solution comprises, in per cent by weight, 35% to 50% water, 8% to 15% clay and 35% to 55% glass frit.
  5. Method as claimed in any of claims 1 to 4, in which the conductor (2) is a superconductor precursor, in particular Nb3Sn, and a global heat treatment of said conductor provided with the coating is carried out, said global heat treatment being capable of forming the superconductor and the ceramic.
  6. Method as claimed in any of claims 1 to 4, in which the conductor (2) is made of either a non-superconducting metal or a superconducting metal, and a heat treatment of said conductor provided with the coating is carried out, said heat treatment being capable of forming the ceramic.
  7. Method as claimed in any of claims 1 to 6, in which the step of forming the coating comprises a step of depositing the ceramic precursor on a fiber tape, then a step of arranging the tape provided with the ceramic precursor around the conductor.
  8. Method of claim 7, in which the fibers are made of a material selected from among type E glass, type C glass, type R glass, type S2 glass, pure silica, an alumina and an aluminosilicate.
  9. Method as claimed in any of claims 7 and 8, in which the fiber tape is first desized.
  10. Method of claim 9, in which the fiber tape is first desized thermally or chemically.
  11. Method as claimed in any of claims 1 to 10, in which the conductor (2) provided with the coating is formed prior to the heat treatment step capable of forming the ceramic.
  12. Method of claim 11, in which the conductor (2) provided with the coating is wound prior to the heat treatment step capable of forming the ceramic.
EP04767829A 2003-05-19 2004-05-18 Method for the production of an electrically insulating and mechanically structuring sleeve on an electric conductor Not-in-force EP1625598B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350158A FR2855313A1 (en) 2003-05-19 2003-05-19 Fabrication of an electrically insulated sleeve and mechanically structured on an electric conductor, notably for superconducting magnets and electric motor components
PCT/FR2004/050200 WO2004105058A1 (en) 2003-05-19 2004-05-18 Method for the production of an electrically insulating and mechanically structuring sleeve on an electric conductor

Publications (2)

Publication Number Publication Date
EP1625598A1 EP1625598A1 (en) 2006-02-15
EP1625598B1 true EP1625598B1 (en) 2006-10-18

Family

ID=33396869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767829A Not-in-force EP1625598B1 (en) 2003-05-19 2004-05-18 Method for the production of an electrically insulating and mechanically structuring sleeve on an electric conductor

Country Status (9)

Country Link
US (1) US20070042910A1 (en)
EP (1) EP1625598B1 (en)
JP (1) JP2007510257A (en)
CN (1) CN1791949A (en)
AT (1) ATE343212T1 (en)
DE (1) DE602004002867T2 (en)
ES (1) ES2273285T3 (en)
FR (1) FR2855313A1 (en)
WO (1) WO2004105058A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047938B4 (en) 2005-10-06 2022-01-27 Bruker Biospin Gmbh Superconducting magnet coil system with quench protection
KR100945195B1 (en) * 2008-08-27 2010-03-03 한국전기연구원 Current lead using rutherford cable
DE102014207373A1 (en) * 2014-04-17 2015-10-22 Siemens Aktiengesellschaft Method for producing an electrical coil winding with a double-connected band conductor
CN109509590A (en) * 2018-12-24 2019-03-22 上海申远高温线有限公司 A kind of dedicated unit of silicone rubber for cable wet process powder coating
CN114446536A (en) * 2022-02-24 2022-05-06 福建师范大学 Improved Nb preparation method3Method for preparing Al superconductive long wire

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3298936A (en) * 1961-04-17 1967-01-17 North American Aviation Inc Method of providing high temperature protective coatings
US3352009A (en) * 1962-12-05 1967-11-14 Secon Metals Corp Process of producing high temperature resistant insulated wire, such wire and coils made therefrom
US4342814A (en) * 1978-12-12 1982-08-03 The Fujikura Cable Works, Ltd. Heat-resistant electrically insulated wires and a method for preparing the same
DE3168609D1 (en) * 1980-07-15 1985-03-14 Imi Kynoch Ltd Flexible insulation for filamentary intermetallic superconductor wire
US5246729A (en) * 1986-06-30 1993-09-21 United States Of America As Represented By The Secretary Of The Air Force Method of coating superconductors with inorganic insulation
US5587226A (en) * 1993-01-28 1996-12-24 Regents, University Of California Porcelain-coated antenna for radio-frequency driven plasma source
AU5057096A (en) * 1995-04-24 1996-11-07 Rohm And Haas Company Method for forming extruded parts from inorganic material
US6344287B1 (en) * 1997-04-14 2002-02-05 Florida State University High temperature compatible insulation for superconductors and method of applying insulation to superconductors
FR2827699B1 (en) * 2001-07-20 2007-04-13 Commissariat Energie Atomique METHOD FOR MANUFACTURING AN ELECTRICALLY INSULATING AND MECHANICALLY STRUCTURING SHEATH ON AN ELECTRICAL CONDUCTOR

Also Published As

Publication number Publication date
DE602004002867D1 (en) 2006-11-30
JP2007510257A (en) 2007-04-19
ATE343212T1 (en) 2006-11-15
FR2855313A1 (en) 2004-11-26
DE602004002867T2 (en) 2007-05-10
CN1791949A (en) 2006-06-21
WO2004105058A1 (en) 2004-12-02
ES2273285T3 (en) 2007-05-01
EP1625598A1 (en) 2006-02-15
US20070042910A1 (en) 2007-02-22

Similar Documents

Publication Publication Date Title
EP1816654B1 (en) Electrical transport conductor for overhead line
US6387852B1 (en) Method of applying high temperature compatible insulation to superconductors
EP0054421B1 (en) Method of manufacture of multifilamentary intermetallic superconductors
EP0138719B1 (en) Method of making multifilament superconductors from ternary molybdenum chalcogenide
EP1410405B1 (en) Method for making an electrically insulating and mechanically structuring sheath on an electrical conductor
EP1625598B1 (en) Method for the production of an electrically insulating and mechanically structuring sleeve on an electric conductor
EP0318921B1 (en) High critical temperature superconducting composite wire, and method of making the same
EP0867950B1 (en) Method of decoupling a HTc multifilamentary wire with silver matrix and so produced multifilamentary wire
FR2539550A1 (en) PROCESS FOR THE MANUFACTURE OF ALUMINUM-STABILIZED SUPERCONDUCTORS, AND SUPERCONDUCTOR THUS PRODUCED
FR2599189A1 (en) SUPERCONDUCTING HYBRID STRAND OR TAPE, PREPARING METHOD THEREOF, AND MULTI-FILAMENTARY STRANDS OBTAINED BY ASSOCIATING SUCH HYBRID STRANDS
EP0390016B1 (en) Superconducting oxide tape manufacturing method
US5814122A (en) Method of making hollow high temperature ceramic superconducting fibers
AU619468B2 (en) Ceramic superconducting devices and fabrication methods
US5811376A (en) Method for making superconducting fibers
EP0141124B2 (en) Superconducting filaments for industrial frequencies
FR2783084A1 (en) HIGH CRITICAL AC CURRENT MULTI-CORE SUPERCONDUCTOR AND MANUFACTURING METHOD THEREOF
KR101017779B1 (en) APPARATUS AND METHOD FOR MANUFACTURING MgB2 SUPERCONDUCTING MULTI-CORE WIRE/TAPES AND MgB2 SUPERCONDUCTING MULTI-CORE WIRE/TAPES THEREOF
BE1003160A5 (en) Incorporation of long ceramic elements in a metal matrix in order to obtaina composite supra-conductor
EP0357480B1 (en) Compound elements having a superconducting material core, and process for their manufacture
FR2787785A1 (en) PROCESS FOR THE PREPARATION OF AN OXIDE SUPERCONDUCTOR HAVING A LARGE PART OF THE BISMUTH PHASE OF TYPE 2223 AND USE OF THE PROCESS
EP1252662A1 (en) Supraconductive conductor comprising an aluminium-based cryogenic stabiliser
EP0390018A2 (en) Method of making a multifilamentary superconductor for applications at industrial frequencies and resulting conductor
EP0823737A1 (en) Stranded HTC cable with internal braided conductors
JPH04362076A (en) Production of bismuth series superconductor
JPH0221513A (en) Oxide superconductive wire and manufacture thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061018

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE-CNRS

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 602004002867

Country of ref document: DE

Date of ref document: 20061130

Kind code of ref document: P

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE EN CENTRE NATION

Effective date: 20061102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070319

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2273285

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070719

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE-CNRS

Effective date: 20070531

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080527

Year of fee payment: 5

Ref country code: ES

Payment date: 20080423

Year of fee payment: 5

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20080601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080501

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070518

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070419

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100611

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100521

Year of fee payment: 7

Ref country code: IT

Payment date: 20100521

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100519

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110518

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004002867

Country of ref document: DE

Effective date: 20111201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111201