EP1618428A1 - Dispositif d aide a la conduite - Google Patents

Dispositif d aide a la conduite

Info

Publication number
EP1618428A1
EP1618428A1 EP04742857A EP04742857A EP1618428A1 EP 1618428 A1 EP1618428 A1 EP 1618428A1 EP 04742857 A EP04742857 A EP 04742857A EP 04742857 A EP04742857 A EP 04742857A EP 1618428 A1 EP1618428 A1 EP 1618428A1
Authority
EP
European Patent Office
Prior art keywords
driving
vehicle according
shooting
image
vision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04742857A
Other languages
German (de)
English (en)
Inventor
Jean-Loup Chretien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tietronix Optics SAS
Original Assignee
Tietronix Optics SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tietronix Optics SAS filed Critical Tietronix Optics SAS
Publication of EP1618428A1 publication Critical patent/EP1618428A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/23Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/10Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
    • B60R2300/106Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used using night vision cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/20Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of display used
    • B60R2300/205Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of display used using a head-up display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/30Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing
    • B60R2300/302Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of image processing combining image information with GPS information or vehicle data, e.g. vehicle speed, gyro, steering angle data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/8053Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for bad weather conditions or night vision

Definitions

  • the present invention relates to the field of driving assistance and more particularly equipment intended for improving vision in vehicles.
  • patent EP0686865 describes a night vision system for a motorized vehicle comprising an infrared camera mounted on the vehicle to examine a scene of a roadway in front of the vehicle and produce a video signal representing a thermal network of the scene.
  • a head-up display device coupled to the video signal produces a virtual image having a one-to-one aspect ratio with the images of the actual pavement scene seen by the driver of the vehicle.
  • the head-up display device comprises a mixer in the field of vision of a driver of the vehicle, a video display device for emitting an image based on the video signal, and an aspherical mirror for reflecting the image emitted on the mixer to be seen by the driver as a virtual image of the scene's thermal network.
  • the head-up display device superimposes the virtual image of the thermal network with an offset of a few degrees with respect to the pavement scene so that the driver observes the virtual image of the thermal pattern under the scene of the actual pavement, so as to warn the driver of the presence of objects beyond the driver's visible field of vision.
  • the problem posed by such equipment is that of processing high contrasts, for example the appearance of a lighthouse in the field of vision of the camera, as well as that of aberrations resulting from the shift between the virtual image and the image. real.
  • PCT patent WO0234572 describes another system for night vision intended for a motor vehicle.
  • a camera captures an image which is subsequently displayed on a display system which may be a head-up display system.
  • the camera includes a lens in alignment with a beam deflector which may consist of a mirror deflecting the beam so that it passes along a neck towards a sensor.
  • the camera can be relatively easily mounted in position in a motor vehicle.
  • PCT patent O8903059 describes an optical display system which allows the visual presentation of basic information to an observer. It includes a vision unit that has reflective surfaces across which the observer can watch a scene outside and which reflect basic information from an information source which displays it in front of the observer.
  • the optical display system described consists of a head-up display system for a motor vehicle and the observer is the driver of the vehicle.
  • the vision unit consists of a motor vehicle windshield with or without reflection-improving material and the internal and external surfaces of which reflect the basic information carried by light propagating from the information source, represented for example by a liquid crystal display unit (32).
  • a projection lens system placed between the internal surface of the windshield and the information source has optical light conduction properties which make it possible to compensate for optical aberrations generated by the non-planar surface of the windshield.
  • the projection lens system includes an aspherical element unique to a specific aspheric windshield shape and remaining elements common to a large number of different windshield shapes.
  • a positioning mechanism allows the driver to adjust the vertical position of the basic information reflected by the windshield in a field of vision with full display providing an optimal view to a seated driver. The positioning mechanism also automatically varies the distance between the displayed image and the driver according to the speed of the vehicle, which increases the safety of use of the vehicle.
  • Patent O03016983 relates to a vehicle provided with a camera generating infrared images of a scene situated in front of the vehicle, and a display which reflects images from the windshield of the vehicle. Are displayed: at night, images transmitted by the camera, and, by day, information on the vehicle.
  • the display device includes a mirror with reflecting surfaces for day and night which have different optical characteristics and which are arranged at an angle. The mirror rotates and switches the display unit from one display mode to another. In another display system, the radiation from the two-sided mirror directly reaches the driver, without reflection from the windshield.
  • the object of the present invention is to remedy these drawbacks by proposing a vision system for the driving a machine ensuring the formation of an infinite virtual image, in the driver's field of vision.
  • the invention relates, in its most general sense, to a device for assisting in driving a vehicle comprising a means for taking a picture and a means for projecting a virtual image in the field of driver's vision, characterized in that it comprises an opaque screen placed in the driver's field of vision for the formation of a virtual image projected to infinity in the driver's field of vision of the vehicle and in that it further includes means for filtering areas of high light intensity.
  • the optical axis of said shooting means corresponds substantially to the main axis of the driver's field of vision.
  • the optical axis of said shooting means corresponds substantially to the main axis of the driver's rear view field.
  • the optical axis of said shooting means corresponds to a lateral field of vision of the driver.
  • the shooting means comprises a camera and / or a transmission optical unit.
  • said means for taking pictures comprises a first means for taking pictures under daytime conditions and a second means for taking pictures under conditions and ways to select one of the two ways to shoot.
  • said means for filtering areas of high light intensity comprises an incident image analyzer controlling a means of inhibiting areas whose brightness exceeds a threshold value.
  • said means of inhibition consists of a coronograph.
  • said means of inhibition consists of a matrix of elements with variable transmission controlled by the image analyzer.
  • the night shooting means comprises a red filter.
  • the field of the shooting means is greater than or equal to 40 degrees.
  • the daytime shooting means comprises a first polarizer of the LCD matrix.
  • the daytime shooting means comprises a first optical unit comprising a UV filter, a color filter, and a safety diaphragm, a beam splitter reflecting a portion of the beam towards a detection CCD surface for 1 analysis of the incident image and a second optical unit comprising a coronograph, the LCD matrix, the second polarizer and the field lens.
  • the ae daytime shooting means comprises a semi-transparent mirror reflecting a part of the incident beam towards an image analyzer and allowing the other part of the incident beam to pass through by transmission.
  • the device comprises a mobile unit comprising the daytime shooting means and a monitor for displaying an image obtained by the nighttime camera, said mobile unit being movable between a first position in which the inlet of the daytime shooting means is located in the shooting axis and the outlet of said daytime shooting means is placed in the optical axis of the virtual imaging system , and a second position in which the entrance to the night shooting means is located in the shooting axis and the monitor is placed in the optical axis of the virtual image forming system.
  • the night shooting means comprises a means for occulting an area of at least high light intensity, placed in front of the camera lens.
  • said means for occulting a zone of high light intensity is constituted by a pierced mirror whose position is controlled by an incident image analyzer, said mirror being placed on the optical path to return the image to the camera. incident except the area of high light intensity.
  • the pierced mirror is replaced by a glass slide on which is a cone blocking / reflecting the image of the sun. This cone presents the size of the image of the sun plus 10 to 20%.
  • the operation is that of a coronograph, the reverse of the hole mirror system.
  • the device comprises means for calculating the theoretical position of the sun relative to the shooting axis and for controlling the position of the coronograph.
  • it comprises a processor for the transmission to an LCD matrix of negative images from the other sources which exceed a maximum adjustable value.
  • it includes a processor for controlling the safety diaphragm placed in front of the daytime shooting means.
  • the device comprises a gyroscopic platform intended for the stability of the coronograph and means for correcting any delays of the detection / control loop during rapid movements.
  • the screen includes a spherical mirror which ensures that the image is placed "at the location” and transferred to the opaque screen reflecting the final image;
  • the screen consists of a rectangular portion of a circular spherical mirror, its dimensions having to cover from the top from the windscreen to the lower part of a normal sun visor, and laterally cover the left upright up to the center of the windscreen.
  • the device according to the invention further comprises means for viewing specific data such as driving parameters (speed, consumption, etc.), navigation parameters (GPS or others), interactive information with the outside environment (from emissive terminals or various sensors located in the vehicle), imagery built from 2 specific cameras, one seeing the theater in normal conditions, including night vision, the other operating in the IR band and capable of seeing in degraded visibility situations.
  • driving parameters speed, consumption, etc.
  • navigation parameters GPS or others
  • interactive information with the outside environment from emissive terminals or various sensors located in the vehicle
  • imagery built from 2 specific cameras one seeing the theater in normal conditions, including night vision, the other operating in the IR band and capable of seeing in degraded visibility situations.
  • said data display means consist of a control circuit of an LCD matrix interposed between the shooting image and the opaque screen.
  • the device according to the invention comprises a surface entry window lower than the surface of the windshield, comprising means for combating pollution, rapid defrosting, rain and cleaning.
  • part of the shooting optics is movable about a main axis.
  • the object of the invention is to provide a device which is not vulnerable to excess power from sources which it may be able to encounter in the frequency bands where it is effective. To do this, in particular for ultra-sensitive systems (night vision, IR detection, military optics), it must be able to be selectively protected in order to eliminate the nuisance from the excessive source without altering other radiation.
  • the driver's vision is by far the most important instrument of driving.
  • the eye is the main detector from which the entire algorithm for navigating the vehicle on the road is built.
  • the margin of error has considerably weakened, while the performance of the driver, and in particular of his vision, has remained constant.
  • the protection of this essential instrument is therefore obvious.
  • Eclipse technology makes it possible to participate in this protection, as well as the protection of optical systems that are emerging to help the driver's vision.
  • the Eclipse system is not only a means of protection but also of increasing night vision.
  • the system is interactive and allows you to completely or partially neutralize dazzling light sources. Unselected sources (no dazzling) are not affected by this filtration. In certain applications, in case of insufficient light, weak sources can on the contrary be amplified.
  • the basic application is intended to protect against glare any optical system, ranging from the eye to cameras and other optical sensors.
  • the system allows you to add information of all kinds, both in image and text form.
  • optical input of the system can be privileged, so as to be the last input interface to be polluted in the event of deterioration of the direct input interface (windshield, for example).
  • a bandwidth selection function allows you to filter or amplify a given source category.
  • This system differs from existing systems by its selective interactivity, its ability to superimpose the transformed image exactly where the source is located (generally at infinity), and to bring to this image all the improvements requested for a given use. .
  • the invention relates to key fields which are road safety, the safety of aeronautical and maritime transport, the protection of individuals against terrorism and vandalism and, in general, which contribute to the comfort of people who are subjected to aggressive lights (sun, car headlights, laser, spotlights etc.)
  • the invention allows the following additional functions, in the case of use in land transport: superimposition of various information of the HUD type, amplification of the lights too weak, maintenance of an optimum level quality of the landscape observed in the event of deterioration of the normal input interface between the user and this landscape (windshield, for example)
  • the invention is particularly useful for land transport (car, coach, bus, motorcycle, etc.), during the night period.
  • the device then proceeds to a selective and dynamic filtration of the glare of the headlights of the car or any other headlamp located in the opposite direction of the vehicle.
  • it offers the possibility of amplifying weak light sources so as to considerably improve night vision.
  • the problem encountered by a night conductor is similar to the problem encountered in space, where the light source (the sun) is a source of intense light standing out against a black sky.
  • the theater is an identical black surface where the headlights of reverse cars (and other sources possibly) stand out, and the thin area illuminated by the headlights of the car.
  • FIG. 1 represents a schematic view of the device according to the invention, in the "night conditions" position;
  • FIG. 2 represents a schematic view of the device according to the invention, in the "daytime conditions" position;
  • FIG. 3 shows a detailed view of the elements of the device implemented in "daytime conditions"
  • FIG. 4 represents a detailed view of the elements of the device implemented in "night conditions"
  • FIG. 5 represents an overall view of the elements of the device implemented in "daytime conditions"
  • FIG. 6 represents an implantation view of the device seen from the side
  • FIG. 7 represents an implantation view of the device seen from above.
  • the device consists of a movable block (10) providing the functions of image analysis and filtration.
  • This block (10) can occupy two positions: nocturnal ( Figures 1 and 4), diurnal ( Figures 2, 3 and 5).
  • the night vision function includes a camera (1) receiving an image filtered by an optical module for filtering the incident beam (6) contained in the block (10), a red filter (5) and a monitor (3) comprising a screen on which the processed image is formed.
  • the "daytime vision" function includes an entry optic (4), and a filtration system (6) provided with a controlled coronograph (7).
  • the input optical unit has an angular field of approximately 40 degrees.
  • it contains a first polarizer (12) of the LCD matrix ensuring the first polarization and the distribution of the heat.
  • Block A shown for example in Figure 3, constitutes the entire filtration system. It moves laterally from the day position to the night position depending on the conditions of use. In the day position, the filtered light comes out of the optical unit A2 and is then received by the user's eye via the 2 mirrors M and P (21 and 30). The night function monitor is of course deleted. In the night position, block A and everything it contains is placed in front of the camera. The operation is the same, but this time the camera is protected. During this movement of block A, the monitor deploys and comes occupy a position such that in the optical system ⁇ / O the image on the monitor is seen endlessly.
  • block A is shown diagrammatically by a light gray horizontal support plate.
  • the blocks Al and A2 are 2 dark gray cylinders, A2 (6) and Al (4).
  • the red filter is located just below the CCD 17 sensor in the night position. It is fixed and does not move when moving the block A. This position is shown in Figures 3 and 4, but is not mechanically representative of reality as in Figures 1 and 2, for reasons of convenience diagram. (Instead of being perpendicular to the plane of the figure, the CCD and the red filter are actually parallel and above this plane.)
  • An image analysis module (10) detects areas of high light intensity. It includes a circuit for processing the incident image delivering a control signal from the filtration module contained in A
  • the device includes two optical filters placed at the input of the system.
  • the red filter (5) is intended for the camera only and remains fixed in the system. It is located in a plane parallel to the plane of the LCD so as to be just below the LCD at the end of the movement of the block A (10) towards the night position ( Figure 1). Its role is to prevent the system from filtering red lights from cars (or others) in the field of vision.
  • the second group (14) is intended to direct daytime observation and is placed before the first optical unit A1 (10) in the "daytime" position.
  • the analysis module (10) comprises a UV filter (13), a colored filter (14), and a safety diaphragm (15).
  • the analysis module (10) includes a beam splitter (16) which reflects a portion of the beam to a CCD detection surface (17).
  • the optical unit (6) contains the coronograph (7), the LCD matrix (18), the second polarizer and the field lens (19).
  • the camera (1) is in operation when the block (10) is in the "night” position. It is then protected by the anti-glare system (6) placed in front of the camera lens. The image transmitted from the camera to the monitor
  • LCD (3) is seen endlessly on an opaque screen (30).
  • the display module (20) comprises a semi-spherical mirror (21) ensuring the folding of the optical beams, the straightening of the image and the reduction of the bulk to allow the accommodation of the device in the passenger compartment of a vehicle , as well as a second semi-spherical mirror (30) placed in the driver's field of vision (100).
  • the spherical mirror (21) ensures the placing "at the location" of the image and its transfer to the opaque screen (30). It is a rectangular portion of a homothetic circular mirror of the mirror (30).
  • the spherical mirror (30) constitutes the “intelligent screen guard”.
  • the LCD monitor (3) has a “useful” surface allowing it to deliver an image which, when enlarged, will have a dimension greater than or equal to the field of P (40 degrees +).
  • the device comprises a processor (40) receiving the information. of the input CCD sensor (17). It delivers control signals from the filtration means (37) comprising an LCD matrix, and (7) (the coronograph). It also performs, if necessary, the lateral control of the reduced field. The goal is to obtain a field C which moves on P following the lateral position of the sun. One way would be to link the block A 2 to the motor X of the coronograph, and to let the motor Y train only the coronograph alone.
  • the processor can also operate a database.
  • This database notably contains information on the relative position of the sun. Beyond a given power the processor (40) decides that the emitting source is the sun. A GPS navigator communicates to this base the local coordinates, so as to correct the local time of sunrise and sunset entered in the database. The passage from the “day” to “night” position can thus be automated, and make it possible to avoid that in the presence of a strong light source the processor interprets it as “a sun”. This information will also make it possible to adapt the maximum theoretical value of the solar source to local time, and avoid the same problem during the day.
  • the position of the coronograph after detection of the sun is controlled by the processor (40).
  • the processor (40) also performs the processing of information relating to the other light sources: the processor (40) transmits to the LCD matrix the negative images of the other sources which exceed a maximum adjustable value.
  • the density of the cover (more or less black negative image) and its outline (diffuse or sharp) are also adjustable.
  • the processor (40) also performs the control of the safety diaphragm (15): beyond a maximum value predetermined and possibly delayed, the processor controls the progressive closing of the diaphragm (15). This security should only intervene in rare cases where the sun is high on the horizon. This would translate for the user, in addition to the eclipse of the sun, by a darkening of the landscape, which can be an advantage in periods of strong sunshine.
  • the gyroscopic platform (50) is associated with the processor (40) and continuously supplies information dX, dY which make it possible to correct any delays in the detection / control loop during rapid movements. It also makes it possible to maintain the position of the coronograph (7) during temporary disappearance of the sun.
  • the coronograph (7) conceals the sun. It is produced by a reflecting conical piece. The light that forms the image of the sun is therefore returned to the walls of the instrument. This prevents it from returning to the lens, because it would reflect a part of it which would interfere with the weak image of the crown. It is at the base of this cone that the image of the sun is formed.
  • the beam passes through the filtration system (6, 10).
  • the beam is processed at block A2 (fig. 3) or the field lens limits the exit angle to 22 degrees.
  • the beam is reflected by the first spherical mirror M capable of an angle of 40 degrees +.
  • the image is seen on the spherical mirror (30) in a circle C corresponding to the limit field of 20 ⁇ egres. re mirror (21) is also capable of an angle of 40 degrees +.
  • the analysis module (10) containing the input optics A 1 and the intermediate filtering optics + field lens, moves towards the camera so as to become the camera filter.
  • the input image is supplied by a camera (1) associated with anti-dazzle equipment, and transmitted to an LCD color monitor (3) or possibly to the LCD matrix normally used for filtration.
  • the field of view of the camera is adjusted so that we have a magnification of 1 at the output.
  • the image is seen at infinity in the output optics.
  • This system offers the possibility of circumventing the difficulty of the entry angle. He has an ability to deal with both filtering and amplifying very contrasting situations where the strong sources are too strong and the rest of the sources too weak. This is the case at night, and the problem of night vision appears to be one of the main concerns at the moment.
  • the implementation of the device can include several variants: Basic system: evolving optics for maximum entry angle. Strong source filtration by SHM / coronograph. Filtration of other sources by LCD matrix (or other active matrix such as DMD for example). PSD to SHM detection and camera to LCD detection. HUD info ability demonstrable via lap-top.
  • - Modified basic system a single filtration stage by LCD matrix (or other), after checking the limits of the matrix, and occasional addition of a color filter in addition to the UV filter. Detection by video camera.
  • - Advanced basic system capable of a field angle of at least 40 degrees using combinations of cylindrical lenses and spherical mirrors. Detection by stitching of a portion of the input beam to a CCD matrix as described above.
  • Advanced hybrid system capable of the HUD function, seen on an LCD matrix placed in another image plane and occupying only part of the field, seen at an adjustable distance less than infinity. Future system: allows the user to choose between the basic function and the hybrid function. Composed of:
  • an LCD matrix fulfilling 2 functions: filter function in the basic case, monitor function in the hybrid case.
  • the image supplied by the sensitive camera is delivered to the LCD matrix.
  • This matrix being normally used in video projectors, it will be easy to make a light monitor by means of a frosted glass and a lamp with adjustable power placed automatically downstream of the matrix in the case of the hybrid use.
  • specific data can be displayed on demand: driving parameters (speed, consumption, etc.), navigation parameters (GPS or other), interactive information with the outside environment (from terminals emissives or various sensors located in the venice, imagery constructed from 2 specific cameras, one seeing the theater in normal conditions, including night vision, the other operating in the IR band and able to see in situation degraded visibility.
  • driving parameters speed, consumption, etc.
  • navigation parameters GPS or other
  • interactive information with the outside environment from terminals emissives or various sensors located in the venice, imagery constructed from 2 specific cameras, one seeing the theater in normal conditions, including night vision, the other operating in the IR band and able to see in situation degraded visibility.
  • Figures 6 and 7 show schematic views of installation in the passenger compartment of a vehicle.

Abstract

La présente invention concerne un dispositif d'aide à la conduite d'un véhicule comportant un moyen pour la prise de vue et un moyen de projection d'une image virtuelle dans le champ de vision du conducteur (100), caractérisé en ce qu'il comprend un écran opaque (30) placé dans le champ de vision du conducteur (100) pour la formation d'une image virtuelle projetée a 1'infini dans le champ de vision du conducteur (100) du vehicule et en ce qu'il comprend en outre des moyens pour la filtration des zones de forte intensité lumineuse.

Description

DISPOSITIF D'AIDE À LA CONDUITE
La présente invention concerne le domaine de l'aide à la conduite et plus particulièrement des équipements destinés à l'amélioration de la vision dans des véhicules.
On connaît dans l'état de la technique différentes solutions, basées généralement sur des systèmes de vision « tête haute ».
Ainsi, le brevet EP0686865 décrit un système de vision nocturne pour véhicule motorisé comprenant une caméra infrarouge montée sur le véhicule pour examiner une scène d'une chaussée devant le véhicule et produire un signal vidéo représentant un réseau thermique de la scène . Un dispositif d'affichage tête haute couplé au signal vidéo produit une image virtuelle ayant un rapport de taille de un à un avec les images de la scène de la chaussée réelle vue par le conducteur du véhicule. Le dispositif d'affichage tête haute comprend un mélangeur dans le champ de vision d'un conducteur du véhicule, un dispositif d'affichage vidéo pour émettre une image basée sur le signal vidéo, et un miroir asphérique pour réfléchir l'image émise sur le mélangeur pour être vue par le conducteur en tant qu'image virtuelle du réseau thermique de la scène. Le dispositif d'affichage tête haute superpose l'image virtuelle du réseau thermique avec un décalage de quelques degrés par rapport à la scène de la chaussée de sorte quel le conducteur observe l'image virtuelle du motif thermique sous la scène de la chaussée réelle, de manière à avertir le conducteur de la présence d'objets au-delà du champ de vision visible du conducteur.
Le problème que pose un tel équipement est celui du traitement des contrastes élevés, par exemple l'apparition d'un phare dans le champ de vision de la caméra, ainsi que celui des aberrations résultant du décalage entre l'image virtuelle et l'image réelle.
Le brevet américain US5903396 décrit un dispositif d'intensification de lumière pour la conduite automobile, utilisant des polarisateurs optiques pour améliorer l'image virtuelle vue par le conducteur.
Le brevet PCT WO0234572 décrit un autre système pour la vision de nuit destiné à un véhicule à moteur. Une caméra capture une image qui est subséquemment affichée sur un système de visualisation pouvant être un système de visualisation tête haute. La caméra comprend une lentille en alignement avec un déflecteur de faisceau pouvant être constitué d'un miroir déviant le faisceau de sorte qu'il passe le long d'un col en direction d'un capteur. La caméra peut être montée relativement facilement en position dans un véhicule à moteur.
On connaît également des systèmes pour l'affichage d'informations dans le champ de vision du conducteur.
Le brevet PCT O8903059 décrit un système d'affichage optique qui permet la présentation visuelle d'informations de base à un observateur. Il comprend une unité de vision qui comporte des surfaces réfléchissantes à travers lesquelles l'observateur peut regarder une scène à l'extérieur et qui réfléchissent des informations de base provenant d'une source d'information qui les affiche devant l'observateur. Dans un mode de réalisation préféré, le système d'affichage optique décrit est constitué par un système d'affichage du type tête haute pour un véhicule automobile et l'observateur est le conducteur du véhicule. L'unité de vision est constituée par un pare-brise de véhicule automobile avec ou sans matériau améliorant la réflexion et dont les surfaces interne et externe réfléchissent les informations de base véhiculées par de la lumière se propageant à partir de la source d'informations, représentée par exemple par une unité d'affichage à cristaux liquides (32) . Un système à lentille de projection placé entre la surface interne du pare-brise et la source d'informations présente des propriétés optiques de conduction de la lumière qui permettent de compenser des aberrations optiques engendrées par la surface non plane du pare-brise. Le système à lentille de projection comprend un élément asphérique unique à une forme de pare-brise asphérique spécifique et des éléments restants communs à un grand nombre de formes de pare-brise différentes. Un mécanisme de positionnement permet au conducteur de régler la position verticale des informations de base réfléchies par le pare-brise dans un champ de vision à affichage total offrant une vue optimale à un conducteur assis. Le mécanisme de positionnement permet également de faire varier automatiquement la distance qui sépare l'image affichée et le conducteur en fonction de la vitesse du véhicule, ce qui accroît la sécurité d'utilisation du véhicule.
D'autres documents concernent des solutions mixtes d'affichages d'informations et d'une image virtuelle acquise par une caméra .
Le brevet O03016983 concerne un véhicule doté d'une caméra générant des images infrarouges d'une scène située en avant du véhicule, et un affichage qui reflète des images à partir du pare-brise du véhicule. Sont affichées : de nuit, des images transmises par la caméra, et, de jour, des informations sur le véhicule. Le dispositif d'affichage comprend un miroir doté de surfaces réfléchissantes pour le jour et la nuit qui présentent des caractéristiques optiques différentes et qui sont disposées de biais. Le miroir pivote et fait passer l'unité d'affichage d'un mode d'affichage à l'autre. Dans un autre système d'affichage, le rayonnement du miroir biface atteint directement le conducteur, sans réflexion par le pare-brise.
Ces différentes solutions ne sont pas totalement satisfaisantes, car elles ne permettent pas de fournir une image virtuelle visible à l'infini dans l'intégralité des conditions de visibilité : jour, nuit, zones d'éblouissement par source fortement contrastée par rapport à l'éclairage ambiant.
Le but de la présente invention est de remédier à ces inconvénients en proposant un système de vision pour la conduite d'un engin assurant la formation d'une image virtuelle à l'infini, dans le champ de vision du conducteur.
A cet effet, l'invention concerne, selon son acception la plus générale, un dispositif d'aide à la conduite d'un véhicule comportant un moyen pour la prise de vue et un moyen de projection d'une image virtuelle dans le champ de vision du conducteur, caractérisé en ce qu'il comprend un écran opaque placé dans le champ de vision du conducteur pour la formation d'une image virtuelle projetée à l'infini dans le champ de vision du conducteur du véhicule et en ce qu'il comprend en outre des moyens pour la filtration des zones de forte intensité lumineuse.
Selon une première variante, l'axe optique dudit moyen de prise de vue correspond sensiblement à l'axe principal du champ de vision du conducteur.
Selon une deuxième variante, l'axe optique dudit moyen de prise de vue correspond sensiblement à l'axe principal du champ de rétrovision du conducteur.
Selon une troisième variante, l'axe optique dudit moyen de prise de vue correspond à un champ de vision latéral du conducteur.
Selon un mode de réalisation particulier, le moyen de prise de vue comprend une caméra et/ou un bloc optique à transmission.
De préférence, ledit moyen de prise de vue comprend un premier moyen pour la prise de vue en conditions diurnes et un deuxième moyen pour la prise de vue en conditions nocturnes et des moyens pour sélectionner l'un desûits moyens de prise de vue.
Avantageusement, ledit moyen pour la filtration des zones de forte intensité lumineuse comprend un analyseur d'image incidente commandant un moyen d'inhibition des zones dont la luminosité dépasse une valeur seuil.
Selon une variante préférée, ledit moyen d'inhibition est constitué par un coronographe.
Selon une autre variante, ledit moyen d'inhibition est constitué par une matrice d'éléments à transmission variable commandés par l'analyseur d'image.
Avantageusement, le moyen de prise de vue nocturne comprend un filtre rouge .
Avantageusement, le champ des moyens de prise de vue est supérieur ou égal à 40 degrés.
Selon une variante, le moyen de prise de vue diurne comprend un premier polariseur de la matrice LCD.
Selon le mode de réalisation préféré, le moyen de prise de vue diurne comporte un premier bloc optique comprenant un filtre UV, un filtre coloré, et un diaphragme de sécurité, un diviseur de faisceau réfléchissant une portion du faisceau vers une surface CCD de détection pour 1 ' analyse de 1 ' image incidente et un deuxième bloc optique comprenant un coronographe, la matrice LCD, le deuxième polariseur et la lentille de champ. Selon un mode de réalisation particulier, le moyen αe prise de vue diurne comprend un miroir semi-transparent réfléchissant une partie du faisceau incident vers un analyseur d'image et laissant traverser par transmission l'autre partie du faisceau incident.
Selon un autre mode de réalisation avantageux, le dispositif comporte un bloc mobile comprenant les moyens de prise de vue diurne et un moniteur pour l'affichage d'une image obtenue par la caméra de prise de vue nocturne, ledit bloc mobile étant déplaçable entre une première position dans laquelle l'entrée du moyen de prise de vue diurne est située dans l'axe de prise de vue et la sortie dudit moyen de prise de vue diurne est placé dans l'axe optique du système de formation de l'image virtuelle, et une deuxième position dans laquelle l'entrée du moyen de prise de vue nocturne est située dans l'axe de prise de vue et le moniteur est placé dans l'axe optique du système de formation de l'image virtuelle.
De préférence, le moyen de prise de vue nocturne comprend un moyen d'occultation d'une zone de forte intensité lumineuse au moins, placé en avant de l'objectif de la caméra.
Avantageusement, ledit moyen d'occultation d'une zone de forte intensité lumineuse est constitué par un miroir percé dont la position est commandée par un analyseur d'image incidente, ledit miroir étant placé sur le trajet optique pour renvoyer vers la caméra l'image incidente hormis la zone de forte intensité lumineuse. Selon une variante, le miroir percé est remplace par une lame de verre sur laquelle se trouve un cône de blocage/réflexion de l'image du soleil. Ce cône présente la taille de l'image du soleil plus 10 à 20 %. Le fonctionnement est celui d'un coronographe, soit l'inverse du système miroir à trou.
Selon une variante particulière, le dispositif comporte des moyens de calcul de la position théorique du soleil par rapport à l'axe de prise de vue et pour la commande de la position du coronographe.
Selon une autre variante de mise en œuvre, il comprend un processeur pour la transmission à une matrice LCD des images négatives des autres sources qui dépassent une valeur maximum réglable.
Selon une autre variante encore, il comprend un processeur pour le contrôle du diaphragme de sécurité placé devant le moyen de prise de vue diurne.
Selon un mode de mise en œuvre particulier, le dispositif comprend une plate-forme gyroscopique destinée à la stabilité du coronographe et des moyens de correction des retards éventuels de la boucle détection/asservissement lors de mouvements rapides .
Avantageusement, il comprend un miroir sphérique qui assure la mise « à l'endroit » de l'image et son transfert vers l'écran opaque réfléchissant l'image finale ; l'écran est constitué par une portion rectangulaire d'un miroir sphérique circulaire, ses dimensions devant couvrir du haut du pare-brise à la partie basse d'un pare-soleil normal, et latéralement couvrir le montant gauche jusqu'au centre du pare-brise.
Selon un autre exemple de mise en œuvre, le dispositif selon l'invention comprend en outre des moyens de visualisation de données spécifiques telles que les paramètres de conduite (vitesse, consommation, etc..) , paramètres de navigation (GPS ou autres) , informations interactives avec le milieu extérieur (provenant de bornes émissives ou de senseurs divers situés dans le véhicule) , imagerie construite à partir de 2 caméras spécifiques, l'une voyant le théâtre en conditions normales, y compris la vision de nuit, l'autre fonctionnant dans la bande IR et capable de voir en situation de visibilité dégradée.
Selon une variante, lesdits moyens de visualisation de données sont constitués par un circuit de commande d'une matrice LCD interposée entre l'image de prise de vue et l'écran opaque.
Selon une autre variante, le dispositif selon l'invention comporte une fenêtre d'entrée de surface inférieure à la surface du pare-brise, comprenant des moyens de lutte contre la pollution, de dégivrage rapide, antipluie et de nettoyage.
Selon une autre variante encore, une partie de l'optique de prise de vue est mobile autour d'un axe principal. Le but de l'invention est de proposer un dispositif qui n'est pas vulnérable aux excès de puissances des sources qu'il pourrait être à même de rencontrer dans les bandes de fréquence où il est efficace. Pour ce faire, en particulier pour les systèmes ultra sensibles (vision de nuit, détection IR, optique militaire) , il doit pouvoir être protégé de façon sélective afin d'éliminer la nuisance de la source excessive sans altérer les autres rayonnements.
Dans le cas de la sécurité routière, la vision du conducteur est de loin l'instrument primordial de la conduite. L'œil est le détecteur principal à partir duquel se construit tout l'algorithme de la navigation du véhicule sur la route. Dans un contexte environnemental de plus en plus agressif, essentiellement dû à un encombrement toujours proche de la saturation, la marge d'erreur s'est considérablement affaiblie, alors que la performance du conducteur, et en particulier de sa vision est restée une constante. La protection de cet instrument essentiel est donc une évidence. La technologie Eclipse permet de participer à cette protection, ainsi que la protection des systèmes optiques qui voient le jour pour venir en aide à la vision du conducteur. Dans le cas particulier de la vision de nuit, ainsi que nous le verrons plus loin, le système Eclipse est non seulement un moyen de protection mais aussi d'accroissement de la vision de nuit.
Le système est interactif et permet de neutraliser totalement ou partiellement, de façon sélective, les sources de lumière éblouissantes. Les sources non sélectionnées (non éblouissantes) ne sont pas affectées par cette fîltration. Dans certaines applications, en cas de lumière insuffisante, les sources faibles peuvent au contraire être amplifiées.
L'application de base est destinée à protéger contre l' éblouissement tout système optique, allant de l'œil aux caméras et autres senseurs optiques.
En complément de cette fonction de filtration et d'amplification, le système permet d'ajouter des informations de toutes sortes, tant sous forme d'image que de texte.
Enfin l'entrée optique du système peut être privilégiée, de façon à être la dernière interface d'entrée à être polluée en cas de détérioration de l'interface d'entrée directe (pare-brise, par exemple) .
Une fonction sélection bande passante permet de filtrer ou amplifier une catégorie de sources donnée.
Ce système se différencie des systèmes existants par son interactivité sélective, sa faculté de superposer l'image transformée exactement là où se trouve la source (généralement à l'infini), et d'apporter à cette image toutes les améliorations demandées pour une utilisation donnée .
L'invention touche des domaines clés que sont la sécurité routière, la sécurité des transports aéronautiques et maritimes, la protection des individus contre le terrorisme et le vandalisme et, d'une manière générale, qui participent au confort des personnes qui sont soumises à des lumières agressives (soleil, phares de voitures, laser, projecteurs etc.)
Outre cette fonction de base (filtration) , l'invention permet les fonctions supplémentaires suivantes, dans le cas d'une utilisation en transports terrestres : superposition d'informations diverses de type HUD, amplification des lumières trop faibles, maintien d'un niveau optimum de qualité du paysage observé en cas de détérioration de l'interface d'entrée normale entre l'utilisateur et ce paysage (pare-brise, par ex.)
L'invention est particulièrement utile pour les transports terrestres (voiture, car, bus, moto etc.), durant la période nocturne. Le dispositif procède alors à une filtration sélective et dynamique de l' éblouissement des phares de voiture ou de tout autre projecteur situé dans le sens contraire du véhicule. Parallèlement à l'atténuation des sources fortes, il offre la possibilité d'amplifier les sources de lumière faible de façon à améliorer considérablement la vision de nuit. Le problème rencontré par un conducteur de nuit s'apparente au problème rencontré dans l'espace, où la source lumineuse (le soleil) est une source de lumière intense se détachant sur un ciel noir. En conduite de nuit, le théâtre est une surface noire identique où se détachent les phares des voitures inverses (et d'autres sources éventuellement), et la mince zone éclairée par les phares de la voiture. Il est facile d'imaginer les conditions obtenues dans la fenêtre Eclipse : un théâtre éclairé vu par la caméra amplifiant la lumière faible, la bande de route éclairée par les phares sous la tenetre Eclipse. La caméra est elle-même protégée par les moyens d'occultation des sources intenses qui évitent son propre aveuglement, les lumières adverses sont vues comme des taches lumineuses de faible intensité. En plus de cet avantage au niveau de la sécurité, le confort de conduite est grandement amélioré par le fait que la fenêtre lumineuse placée devant le conducteur permet de choisir l'intensité lumineuse moyenne correspondant au moment où la pupille de l'œil lutte pour rester ouverte à cause de la faible lumière du théâtre, alors qu'elle voudrait se fermer pour diminuer l'agressivité des sources adverses. La tendance sera donc à se trouver à un début de fermeture de la pupille tout en gardant une excellente vue de la zone essentielle.
La combinaison de deux ou plusieurs situations dégradées est en général une approche exponentielle de probabilité d'un accident. L'association pare-brise sale et éblouissement n'est pas une combinaison rare. Réduire l'un ou l'autre est un moyen d'aplatir cette probabilité. Réduire les deux est un moyen encore beaucoup plus efficace pour faire descendre ce facteur à quelques pour-cent. La surface d'un pare-brise est trop grande pour y introduire des moyens sophistiqués de protection autres que les moyens classiques. La fenêtre d'entrée du système Eclipse est par contre suffisamment petite pour y introduire des moyens de lutte sophistiquée contre la pollution, dégivrage rapide, antipluie, nettoyage, etc. La présente invention sera mieux comprise a la lecture de la description qui suit, se référant aux dessins annexés où :
la figure 1 représente une vue schématique du dispositif selon l'invention, en position "conditions nocturnes" ;
la figure 2 représente une vue schématique du dispositif selon l'invention, en position "conditions diurnes" ;
- la figure 3 représente une vue détaillée des éléments du dispositif mis en œuvre en "conditions diurnes" ;
la figure 4 représente une vue détaillée des éléments du dispositif mis en œuvre en "conditions nocturnes" ;
la figure 5 représente une vue d'ensemble des éléments du dispositif mis en œuvre en "conditions diurnes" ;
la figure 6 représente une vue d'implantation du dispositif vue de côté ;
la figure 7 représente une vue d'implantation du dispositif vue de dessus.
L'invention est représentée dans ce qui suit sous fonne d'exemples non limitatifs
Le dispositif se compose d'un bloc mobile (10) assurant les fonctions d'analyse d'image et de filtration. Ce bloc (10) peut occuper deux positions : nocturne (figures 1 et 4) , diurne (figures 2, 3 et 5) .
Dans les deux cas d'utilisation, l'image finale est vue à l'infini dans le système optique 20/30.
La fonction vision nocturne comprend une caméra (1) recevant une image filtrée par un module optique de filtration du faisceau incident (6) contenu dans le bloc (10), un filtre rouge (5) ainsi qu'un moniteur (3) comprenant un écran sur lequel se forme l'image traitée.
La fonction "vision diurne" comprend une optique d'entrée (4), et un système de filtration (6) muni d'un coronographe asservi (7). Le bloc optique d'entrée présente un champ angulaire de 40 degrés environ. Outre les lentilles (11) , il contient un premier polariseur (12) de la matrice LCD assurant la première polarisation et la répartition de la chaleur.
Le bloc A, représenté par exemple en figure 3, constitue tout le système de filtration. Il se déplace latéralement de la position jour à la position nuit suivant les conditions d'utilisation. En position jour, la lumière filtrée ressort du bloc optique A2 et est ensuite reçue par l'œil de l'utilisateur via les 2 miroirs M et P (21 et 30) . Le moniteur de la fonction nuit est bien sûr effacé. En position nuit, le bloc A et tout ce qu'il contient vient se placer devant la caméra. Le fonctionnement est le même, mais cette fois c'est la caméra qui est protégée. Pendant ce déplacement du bloc A, le moniteur se déploie et vient occuper une position telle que dans le système optique ±/ O l'image sur le moniteur soit vue à l'infini.
Dans les vues 3D, le bloc A est schématisé par un plateau support horizontal gris clair. Les blocs Al et A2 sont 2 cylindres gris foncé, A2 (6) et Al (4) .
Le filtre rouge se trouve juste sous le capteur CCD 17 en position de nuit. Il est fixe et ne se déplace pas lors du déplacement du bloc A. Cette position est reportée sur les figures 3 et 4, mais n'est pas mécaniquement représentative de la réalité telle que sur les figures 1 et 2, pour des raisons de commodité de schéma. (Au lieu d'être perpendiculaires au plan de la figure, la CCD et le filtre rouge sont en réalité parallèles et au-dessus de ce plan.)
Un module d'analyse d'image (10) assure la détection des zones de forte intensité lumineuse. Il comprend un circuit de traitement de l'image incidente délivrant un signal de pilotage du module de filtration contenu dans A
(LCD et coronographe) .
Le dispositif comprend deux filtres optiques placés à l'entrée du système.
Le filtre rouge (5) est destiné à la caméra seule et reste fixe dans le système. Il est situé dans un plan parallèle au plan de la LCD de façon à se trouver juste sous la LCD à la fin du déplacement du bloc A (10) vers la position de nuit (figure 1) . Son rôle est d'éviter au système de filtrer les feux rouges des voitures (ou autres) dans le champ de vision. Le deuxième groupe (14) est destiné à l'observation directe de jour et est placé αevant le premier bloc optique Al (10) dans la position « de jour ».
Il est également fixe et ne suivra pas le déplacement du module d'analyse (10). Il comporte un filtre UV (13), un filtre coloré (14) , et un diaphragme de sécurité (15) .
Le module d'analyse (10) comprend un diviseur de faisceau (16) qui réfléchit une portion du faisceau vers une surface CCD de détection (17) .
Le bloc optique (6) contient le coronographe (7), la matrice LCD (18), le deuxième polariseur et la lentille de champ (19) .
La caméra (1) est en fonction quand le bloc (10) est en position « de nuit ». Elle est alors protégée par le système anti-éblouissement (6) placé en avant de l'objectif de la caméra. L'image transmise depuis la caméra au moniteur
LCD (3) est vue à l'infini sur un écran opaque (30) .
Le module de visualisation (20) comprend un miroir semi-sphérique (21) assurant le repliement des faisceaux optiques, le redressement de l'image et la réduction de l'encombrement pour permettre le logement du dispositif dans l'habitacle d'un véhicule, ainsi qu'un deuxième miroir semi- sphérique (30) placé dans le champ de vision du conducteur (100) . Le miroir sphérique (21) assure la mise « à l'endroit » de l'image et son transfert vers l'écran opaque (30) . Il est une portion rectangulaire d'un miroir circulaire homothétique du miroir (30) . Le miroir sphérique (30) constitue le « pare-soien intelligent ». Il est également formé par une portion rectangulaire d'un miroir circulaire, ses dimensions devant couvrir du haut du pare-brise à la partie basse d'un pare- soleil normal, et latéralement couvrir le montant gauche jusqu'au centre du pare-brise (grosso modo) . Le champ réduit de 22 degrés dépasse les limites verticales du pare-brise, et sort donc des limites verticales du miroir (30) . En utilisation de nuit, l'image fournie au miroir (30) est volontairement plus grande que le champ du miroir (21) .
Le moniteur LCD (3) a une surface « utile » lui permettant de délivrer une image qui au grandisse ent 1 aura une dimension supérieure ou égale au champ de P (40 degrés +) • Le dispositif comprend un processeur (40) recevant les informations du senseur CCD d'entrée (17). Il délivre des signaux d'asservissement des moyens de filtration (37) comprenant une matrice LCD, et (7) (le coronographe) . Il réalise aussi le cas échéant l'asservissement latéral du champ réduit. Le but est d'obtenir un champ C qui se déplace sur P en suivant la position latérale du soleil. Un moyen consisterait à lier le bloc A 2 au moteur X du coronographe, et laisser le moteur Y n'entraîner que le coronographe seul.
La détection des autres sources est réalisée par une matrice CCD (17) placée derrière l'objectif d'entrée après séparation. Ce moyen de détection devra devenir le moyen unique de détection, en l'absence de coronographe possible dans la plupart des applications véhicules terrestres. Cette fonction sera maintenue dans les applications aéronautiques et spatiales.
Le processeur peut également exploiter une base de données. Cette base de donnée contient notamment des informations sur la position relative du soleil. Au-delà d'une puissance donnée le processeur (40) décide que la source émissive est le soleil. Un navigateur GPS communique à cette base les coordonnées locales, de façon à corriger l'heure locale de lever et coucher de soleil introduites dans la base de données. Le passage de la position « jour » à « nuit » pourra ainsi être automatisé, et permettre d'éviter qu'en présence d'une source de lumière forte le processeur l'interprète comme « un soleil ». Cette information permettra aussi d'adapter la valeur théorique maximum de la source solaire à l'heure locale, et éviter le même problème dans la journée.
La position du coronographe après détection du soleil est commandée par le processeur (40) .
Le processeur (40) réalise également le traitement des informations relatives aux autres sources de lumière : le processeur (40) transmet à la matrice LCD les images négatives des autres sources qui dépassent une valeur maximum réglable. Sont également réglables : la densité du cache (image négative plus ou moins noire) et son contour (diffus ou net) .
Le processeur (40) réalise également le contrôle du diaphragme de sécurité (15) : au-delà d'une valeur maximale prédéterminée et éventuellement temporisée, le processeur commande la fermeture progressive du diaphragme (15) . Cette sécurité ne devrait intervenir que dans des cas rares où le soleil est haut sur l'horizon. Cela se traduirait pour l'utilisateur, outre l'éclipsé du soleil, par un assombrissement du paysage, ce qui peut être un avantage en période de fort ensoleillement.
La plate-forme gyroscopique (50) est associée au processeur (40) et fournit en permanence des informations dX,dY qui permettent de corriger les retards éventuels de la boucle détection/asservissement lors de mouvements rapides. Elle permet également de maintenir la position du coronographe (7) lors de disparition momentanée du soleil.
Le coronographe (7) réalise l'occultation du soleil. II est réalisé par une pièce conique réfléchissante. La lumière qui forme l'image du soleil est donc renvoyée sur les parois de l'instrument. Ainsi on évite qu'elle retourne vers l'objectif, car celui-ci en réfléchirait une partie qui parasiterait la faible image de la couronne. C'est au niveau de la base de ce cône que l'image du soleil est formée.
Le fonctionnement du dispositif est le suivant :
De jour : le faisceau traverse le système de filtration (6, 10) . Le traitement du faisceau se fait au niveau du bloc A2 (fig.3) ou la lentille de champ limite l'angle de sortie à 22 degrés. Le faisceau est réfléchi par le premier miroir sphérique M capable d'un angle de 40 degrés +. L'image est vue sur le miroir sphérique (30) dans un cercle C correspondant au champ limite de 20 αegres . re miroir (21) est lui aussi capable d'un angle de 40 degrés +.
De nuit : le module d'analyse (10), contenant l'optique d'entrée A 1 et l'optique intermédiaire de filtrage + lentille de champ, se déplace vers la caméra de façon à devenir le filtre de la caméra. Les miroirs (21) et
(30) restent fixes. Un moniteur LCD (3) vient prendre la place du bloc (6) . La caméra voit un champ de 40 degrés qu'elle fournit à ce moniteur (3) . La taille du moniteur doit être telle que son image vue dans (30) ne soit jamais plus petite que le champ offert par (30) .
L'image d'entrée est fournie par une caméra (1) associée à un équipement anti-éblouissement, et transmise sur un moniteur couleur LCD (3) ou éventuellement à la matrice LCD utilisée normalement pour la filtration. Le champ de la caméra est ajusté de façon à ce que nous ayons en sortie un grossissement 1. L'image est vue à l'infini dans l'optique de sortie. Ce système offre la possibilité de contourner la difficulté de l'angle d'entrée. Il possède une aptitude à traiter de façon à la fois filtrante et amplificatrice les situations très contrastées où les sources fortes sont trop fortes et le reste des sources trop faibles. C'est le cas de nuit, et le problème de la vision nocturne apparaît comme une des préoccupations essentielles en ce moment .
La réalisation du dispositif peut comprendre plusieurs variantes : Système de base : optique en évolution pour angle d'entrée maxi. Filtration source forte par SHM/coronographe. Filtration autres sources par matrice LCD (ou autre matrice active telle que DMD par ex.). Détection PSD vers SHM et détection caméra vers LCD. Aptitude info HUD démontrable via lap-top.
Particularités : positionnement du premier polariseur, équipé d'un filtre UV d'entrée, et d'un filtre rouge éventuel pour éviter la filtration des feux rouges la nuit.
- Système de base modifié : un seul étage de filtration par matrice LCD (ou autre) , après vérification des limites de la matrice, et adjonction occasionnelle d'un filtre coloré en plus du filtre UV. Détection par caméra vidéo .
- Système de base évolué : capable d'un angle de champ d'au moins 40 degrés à l'aide de combinaisons de lentilles cylindriques et de miroirs sphériques. Détection par piquage d'une portion du faisceau d'entrée vers une matrice CCD tel que décrit plus haut.
- Système hybride de base : concevable après fabrication d'une caméra équipée d'un système anti- éblouissement (protection par matrice LCD + filtres) . Détection par caméra vidéo comme dans système précédent.
Système hybride évolué : capable de la fonction HUD, vue sur une matrice LCD placée dans un autre plan image et n'occupant qu'une partie du champ, vue à une distance ajustable inférieure à l'infini. Système futur : permet à l'utilisateur de choisir entre la fonction de base et la fonction hybride. Composé de :
l'objectif d'entrée et du piquage vers la matrice CCD,
une caméra sensible ayant de bonnes performances en éclairage faible et équipée de la protection anti- éblouissement, d'une protection complémentaire amont par filtre UV installé en permanence, filtre rouge et filtre coloré amovible automatiquement en fonction de la luminance détectée par le senseur, et éventuellement un diaphragme automatique après détection de risque d' échauffement,
une matrice LCD remplissant 2 fonctions : fonction filtre dans le cas de base, fonction moniteur dans le cas hybride. Dans ce dernier cas, l'image fournie par la caméra sensible est délivrée à la matrice LCD. Cette matrice étant normalement utilisée dans des projecteurs vidéo, il sera facile d'en faire un moniteur lumineux par le truchement d'un verre dépoli et d'une lampe à puissance ajustable se plaçant automatiquement en aval de la matrice dans le cas de l'utilisation hybride.
- Système avec affichage de données
Sur le pare-soleil intelligent des données spécifiques pourront être affichées à la demande : paramètres de conduite (vitesse, consommation, etc..) , paramètres de navigation (GPS ou autres) , informations interactives avec le milieu extérieur (provenant de bornes emissives ou de senseurs divers situés dans le venicuie , imagerie construite à partir de 2 caméras spécifiques, l'une voyant le théâtre en conditions normales, y compris la vision de nuit, l'autre fonctionnant dans la bande IR et capable de voir en situation de visibilité dégradée.
- Système avec entrée "Surface propre". Les figures 6 et 7 représentent des vues schématiques d'implantation dans l'habitacle d'un véhicule.

Claims

REVENDICATIONS
1 - Dispositif d'aide à la conduite d'un véhicule comportant un moyen pour la prise de vue et un moyen de projection d'une image virtuelle dans le champ de vision du conducteur (100), caractérisé en ce qu'il comprend un écran opaque (30) placé dans le champ de vision du conducteur
(100) pour la formation d'une image virtuelle projetée à l'infini dans le champ de vision du conducteur (100) du véhicule, et en ce qu'il comprend en outre des moyens pour la filtration des zones de forte intensité lumineuse.
2 - Dispositif d'aide à la conduite d'un véhicule selon la revendication 1, caractérisé en ce que l'axe optique dudit moyen de prise de vue correspond sensiblement à l'axe principal du champ de vision du conducteur (100).
3 - Dispositif d'aide à la conduite d'un véhicule selon la revendication 1, caractérisé en ce que l'axe optique dudit moyen de prise de vue correspond sensiblement à l'axe principal du champ de rétrovision du conducteur (100) .
4 - Dispositif d'aide à la conduite d'un véhicule selon la revendication 1, caractérisé en ce que l'axe optique dudit moyen de prise de vue correspond à un champ de vision latéral du conducteur (100) .
5 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce que ledit moyen de prise de vue comprend une caméra (1) . 6 - Dispositif d'aide à la conduite d'un ve icuie selon l'une au moins des revendications précédentes, caractérisé en ce que ledit moyen de prise de vue est constitué par un bloc optique à transmission.
7 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce que ledit moyen de prise de vue comprend un premier moyen pour la prise de vue en conditions diurnes et un deuxième moyen pour la prise de vue en conditions nocturnes.
8 - Dispositif d'aide à la conduite d'un véhicule selon la revendication précédente, caractérisé en ce qu'il comprend des moyens pour sélectionner l'un desdits moyens de prise de vue. 9 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce que ledit moyen pour la filtration des zones de forte intensité lumineuse comprend un analyseur d'image incidente commandant un moyen d'inhibition des zones dont la luminosité dépasse une valeur seuil.
10 - Dispositif d'aide à la conduite d'un véhicule selon la revendication précédente, caractérisé en ce que ledit moyen d'inhibition est constitué par un coronographe.
11 - Dispositif d'aide à la conduite d'un véhicule selon la revendication 9, caractérisé en ce que ledit moyen d'inhibition est constitué par une matrice d'éléments à transmission variable commandés par l'analyseur d'image. 12 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce que ledit moyen de prise de vue nocturne comprend un filtre rouge.
13 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce que le champ des moyens de prise de vue est supérieur ou égal à 40 degrés.
14 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce que le moyen de prise de vue diurne comprend un premier polariseur de la matrice LCD.
15 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce que le moyen de prise de vue diurne comporte un premier bloc optique comprenant un filtre UV, un filtre coloré, et un diaphragme de sécurité, un diviseur de faisceau réfléchissant une portion du faisceau vers une surface CCD de détection pour l'analyse de l'image incidente et un deuxième bloc optique comprenant un coronographe, la matrice LCD, le deuxième polariseur et la lentille de champ.
16 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce que le moyen de prise de vue diurne comprend un miroir semi-transparent réfléchissant une partie du faisceau incident vers un analyseur d'image et laissant traverser par transmission l'autre partie du ramceαu incident.
17 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce qu'il comporte un bloc mobile comprenant les moyens de prise de vue diurne et un moniteur pour l'affichage d'une image obtenue par la caméra (1) de prise de vue nocturne, ledit bloc mobile étant déplaçable entre une première position dans laquelle l'entrée du moyen de prise de vue diurne est située dans l'axe de prise de vue et la sortie dudit moyen de prise de vue diurne est placé dans l'axe optique du système de formation de l'image virtuelle, et une deuxième position dans laquelle l'entrée du moyen de prise de vue nocturne est située dans l'axe de prise de vue et le moniteur est placé dans l'axe optique du système de formation, de l'image virtuelle.
18 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce que le moyen de prise de vue nocturne comprend un moyen d'occultation d'une zone de forte intensité lumineuse au moins, placé en avant de l'objectif de la caméra .
19 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce que ledit moyen d'occultation d'une zone de forte intensité lumineuse est constitué par un miroir percé dont la position est commandée par un analyseur d'image incidente, ledit miroir étant placé sur le trajet optique pour renvoyer vers la caméra (1) l'image incidente hormis la zone de forte intensité lumineuse.
20 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce qu'il comporte des moyens de calcul de la position théorique du soleil par rapport à l'axe de prise de vue et pour la commande de la position du coronographe.
21 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce qu'il comprend un processeur pour la transmission à une matrice LCD des images négatives des autres sources qui dépassent une valeur maximum réglable.
22 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce qu'il comprend un processeur pour le contrôle du diaphragme de sécurité placé devant le moyen de prise de vue diurne.
23 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce qu'il comprend une plate-forme gyroscopique destinée à stabiliser la position du coronographe et des moyens de correction des retards éventuels de la boucle détection/asservissement lors de mouvements rapides .
24 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce qu'il comprend un miroir sphérique qui assure la mise « à l'endroit » de l'image et son transrert vers l'écran opaque (30) .
25 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce que l'écran sphérique est constitué par une portion rectangulaire d'un miroir sphérique circulaire, ses dimensions devant couvrir du haut du pare-brise à la partie basse d'un pare-soleil normal, et latéralement couvrir le montant gauche jusqu'au centre du pare-brise.
26 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce que l'écran sphérique peut être constitué d'un assemblage comprenant des lentilles plates de type Fresnel et des miroirs plans ou sphériques.
27 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce qu'il comprend en outre des moyens de visualisation de données spécifiques telles que les paramètres de conduite (vitesse, consommation, etc..) , paramètres de navigation (GPS ou autres) , informations interactives avec le milieu extérieur (provenant de bornes emissives ou de senseurs divers situés dans le véhicule) , imagerie construite à partir de 2 caméras spécifiques, l'une voyant le théâtre en conditions normales, y compris la vision de nuit, l'autre fonctionnant dans la bande IR et capable de voir en situation de visibilité dégradée. 28 - Dispositif d'aide à la conduite d'un véhicule selon la revendication précédente, caractérisé en ce que lesdits moyens de visualisation de données sont constitués par un circuit de commande d'une matrice LCD interposée entre l'image de prise de vue et l'écran opaque (30) .
29 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce qu'il comporte une fenêtre d'entrée de surface inférieure à la surface du pare-brise, comprenant des moyens de lutte contre la pollution, de dégivrage rapide, anti-pluie et de nettoyage.
30 - Dispositif d'aide à la conduite d'un véhicule selon l'une au moins des revendications précédentes, caractérisé en ce qu'une partie de l'optique de prise de vue est mobile autour d'un axe principal.
EP04742857A 2003-04-25 2004-04-23 Dispositif d aide a la conduite Withdrawn EP1618428A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350133A FR2854251B1 (fr) 2003-04-25 2003-04-25 Dispositif d'aide a la conduite
PCT/FR2004/050171 WO2004097497A1 (fr) 2003-04-25 2004-04-23 Dispositif d'aide a la conduite

Publications (1)

Publication Number Publication Date
EP1618428A1 true EP1618428A1 (fr) 2006-01-25

Family

ID=33104526

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04742857A Withdrawn EP1618428A1 (fr) 2003-04-25 2004-04-23 Dispositif d aide a la conduite

Country Status (5)

Country Link
US (1) US20060132600A1 (fr)
EP (1) EP1618428A1 (fr)
JP (1) JP2006527387A (fr)
FR (1) FR2854251B1 (fr)
WO (1) WO2004097497A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877619B1 (fr) * 2004-11-05 2008-06-13 Tietronix Optics Soc Par Actio Systeme d'eclairage a rayonnement infrarouge pour vehicule automobile
US20090027497A1 (en) 2007-07-26 2009-01-29 Stephen Thomas Peacock Camera light
DE102012201441A1 (de) * 2012-02-01 2013-08-01 Rheinmetall Defence Electronics Gmbh Verfahren und Vorrichtung zum Führen eines Fahrzeugs
JP5656131B2 (ja) * 2012-02-13 2015-01-21 株式会社リコー 撮像ユニット及びその設置方法
KR101327032B1 (ko) * 2012-06-12 2013-11-20 현대자동차주식회사 카메라 영상의 반사광 제거 장치 및 방법
US9578215B2 (en) * 2015-02-10 2017-02-21 Tsung-Ming Wang Event data recorder

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276813A (en) * 1964-07-14 1966-10-04 Pittsburgh Plate Glass Co Glare shielding and instrument viewing arrangement
US5001558A (en) * 1985-06-11 1991-03-19 General Motors Corporation Night vision system with color video camera
US5638119A (en) * 1990-02-16 1997-06-10 Scanera S.C. Device for increasing the dynamic range of a camera
US5343313A (en) * 1990-03-20 1994-08-30 James L. Fergason Eye protection system with heads up display
US5305012A (en) * 1992-04-15 1994-04-19 Reveo, Inc. Intelligent electro-optical system and method for automatic glare reduction
US5249080A (en) * 1992-07-01 1993-09-28 The United States Of America As Represented By The Secretary Of The Air Force Square telescope and apodized coronagraph for imaging nonsolar planets and the like
US5298732A (en) * 1993-02-18 1994-03-29 Emee, Inc. Automatic visor for continuously repositioning a shading object to shade a designated location from a direct radiation source
WO1997048002A1 (fr) * 1996-06-12 1997-12-18 Levy George S Dispositif optique anti-eblouissement
SE513224C2 (sv) * 1998-12-01 2000-08-07 Foersvarets Forskningsanstalt Anordning för att avskärma störande strålning från en strålkälla från att nå en strålningsmottagare
DE19916000A1 (de) * 1999-04-09 2000-10-12 Harald Paleske Koronografisches Teleskop für die erdgebundene astronomische Beobachtung
DE19950681A1 (de) * 1999-10-21 2001-04-26 Volkswagen Ag Bilderfassungssystem
GB2368403B (en) * 2000-10-26 2004-04-28 Autoliv Dev Improvements in or relating to a head-up display
US6731435B1 (en) * 2001-08-15 2004-05-04 Raytheon Company Method and apparatus for displaying information with a head-up display

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004097497A1 *

Also Published As

Publication number Publication date
FR2854251B1 (fr) 2005-11-04
FR2854251A1 (fr) 2004-10-29
WO2004097497B1 (fr) 2005-01-27
US20060132600A1 (en) 2006-06-22
JP2006527387A (ja) 2006-11-30
WO2004097497A1 (fr) 2004-11-11

Similar Documents

Publication Publication Date Title
CN106796349B (zh) 分割出瞳平视显示系统和方法
FR2993509A1 (fr) Dispositif electronique de protection contre l'eblouissement d'un pilote ou d'un conducteur.
FR2721872A1 (fr) Dispositif d'amelioration de la vision d'une scene routiere
EP0455524B1 (fr) Système d'éclairage et de visualisation pour véhicules
CN104428655A (zh) 成像单元、附着物质检测器、用于车辆的控制系统以及车辆
FR2999311A1 (fr) Systeme de visualisation comportant un dispositif de visualisation semi-transparent adaptif et des moyens de detection du paysage regarde par l'utilisateur
FR3068314A1 (fr) Systeme lumineux pour vehicule automobile
FR2986624A1 (fr) Projecteur optique a ecran de projection semi-transparent
EP1618428A1 (fr) Dispositif d aide a la conduite
FR2705293A1 (fr) Système d'aide à la vision dans un véhicule automobile.
FR2902381A1 (fr) Fusion d'images entre un systeme de navigation et un systeme de vision de nuit
WO2014083103A1 (fr) Dispositif de visualisation comprenant un ecran de visualisation a transparence controlee
WO2015044143A1 (fr) Lunettes à affichage de données munies d'un écran anti-éblouissement
FR3035519B1 (fr) Dispositif d'affichage pour vehicule automobile
FR3014567A1 (fr) Systeme de visualisation comprenant un ecran comportant un reseau de microstructures tridimensionnelles reflechissantes
FR2700215A1 (fr) Système de visualisation monté sur casque.
WO2015044286A1 (fr) Lunettes anti-éblouissement et de vision à trois dimensions
EP3542207B1 (fr) Afficheur tête-haute pour véhicule automobile
WO2019121969A1 (fr) Système de projection d'images, dispositif d'affichage tête-haute comportant un tel système et méthode de conception optique associée
FR3101963A1 (fr) Afficheur tête-haute comportant un masque avec une ouverture
EP1941305A1 (fr) Equipement anti-eblouiss ment et camera de surveillance munie d ' un tel equipement
WO2021078905A1 (fr) Afficheur tete-haute pour vehicule automobile et vehicule automobile comportant un tel afficheur
EP0891267B1 (fr) Dispositif de retrovision pour vehicule automobile
FR3115894A1 (fr) Appareil de projection d’images et unité de pilotage associée
WO2008047033A1 (fr) Installation de détection de l'unicité d'une personne dans un volume

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080313