EP1618291B1 - Method for operating a hydraulic actuator, especially a gas exchange valve of an internal combustion engine - Google Patents

Method for operating a hydraulic actuator, especially a gas exchange valve of an internal combustion engine Download PDF

Info

Publication number
EP1618291B1
EP1618291B1 EP03770900A EP03770900A EP1618291B1 EP 1618291 B1 EP1618291 B1 EP 1618291B1 EP 03770900 A EP03770900 A EP 03770900A EP 03770900 A EP03770900 A EP 03770900A EP 1618291 B1 EP1618291 B1 EP 1618291B1
Authority
EP
European Patent Office
Prior art keywords
actuator
internal combustion
combustion engine
fluid
fluid accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03770900A
Other languages
German (de)
French (fr)
Other versions
EP1618291A1 (en
Inventor
Christian Grosse
Hubert Schweiggart
Ulf Pischke
Hermann Gaessler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1618291A1 publication Critical patent/EP1618291A1/en
Application granted granted Critical
Publication of EP1618291B1 publication Critical patent/EP1618291B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2815Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
    • F15B15/2838Position sensing, i.e. means for continuous measurement of position, e.g. LVDT with out using position sensors, e.g. by volume flow measurement or pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load

Definitions

  • the invention relates to a method for operating a hydraulic actuator, in particular for a gas exchange valve of an internal combustion engine, in which a movement of an actuating element of the actuator is effected in that a working space of the actuator by means of a valve device with a fluid reservoir, is stored in the hydraulic fluid under pressure, can be connected and disconnected from this, and in which the stroke of the actuating element of the actuator depends on a fluid volume present in the working space.
  • Such a method is for example from the DE 198 26 047 A1 known.
  • This describes a device for controlling a gas exchange valve of an internal combustion engine and the corresponding operating method.
  • hydraulic fluid is pumped by a high-pressure pump into a line system in which the hydraulic fluid is stored under very high pressure.
  • a workroom of a Hydraulic cylinder whose piston is connected to a valve element of a gas exchange valve of an internal combustion engine is connected via a 2/2-way valve to the fluid reservoir.
  • An outlet of the working space is also connected via a 2/2-way valve to a low pressure area.
  • a high or low pressure and a corresponding fluid volume is present in the working space, which influences the position of the piston.
  • the DE 42 18 320 A1 describes a method for testing a valve driven by a medium, in which variables are measured at different points in time during a switching process and from this function-specific quantities are derived and compared with one another.
  • the DE 101 38 777 A1 describes a method for monitoring the operation of supply lines for operated with a pressurized medium units in which an actual pressure profile is compared with a desired pressure profile.
  • the present invention has the object, a method of the type mentioned in such a way that the actuator of the actuator can be positioned as precisely as possible.
  • This object is achieved in a method of the type mentioned in that for determining a current operating behavior of the actuator of the working space briefly connected to the fluid reservoir, detects the corresponding pressure drop in the fluid reservoir, and from the pressure drop using known geometric variables of the actuator, the corresponding stroke is determined, and at least one of opening period and stroke existing value pair is formed.
  • the determined value pair can be compared, for example, with a value pair determined on a test bench or in a preceding process run. In this way, aging phenomena, changed environmental conditions, and so on, can be detected and taken into account in the control of the valve devices.
  • the output of information is also possible if the current operating behavior of the actuator has changed in an improper manner. This increases the safety in the operation of the actuator, since countermeasures are made possible before the operation of the actuator can lead to damage.
  • the pressure drop in the fluid reservoir be detected for different periods of time during which the working space of the actuator is connected to the fluid reservoir, and a current characteristic curve is formed from the determined value pairs.
  • the actuator of the hydraulic actuator can be positioned very precisely in this case in normal operation, without complex control and costly installation of a sensor which detects the stroke of the actuator of the hydraulic actuator is required. The precise positioning of the control element is therefore basically possible without additional hardware and therefore inexpensive.
  • the actuator can be brought into the initial or in the end position simply by the fact that the valve device is correspondingly long in one or the other position.
  • the achievement of the initial and / or end position of the actuating element can also be detected by means of a knock sensor. This improves the precision of the standardization or calibration mentioned above.
  • the at least one value pair be formed taking into account the modulus of elasticity of the hydraulic fluid and / or the elasticity of the fluid reservoir. This also leads to an even higher accuracy of the current characteristic of the hydraulic actuator.
  • the modulus of elasticity of the hydraulic fluid is temperature and pressure dependent.
  • the elasticity of the fluid reservoir, ie of its walls, can also change depending on the temperature.
  • the temperature and / or the viscosity of the hydraulic fluid detected during the determination of the current operating behavior of the actuator and the at least one pair of values for a specific viscosity and / or a specific temperature of the hydraulic fluid is formed.
  • a whole set of pairs of values or characteristics can be formed, wherein in each case a pair of values or a characteristic applies only for very specific operating or environmental conditions. This also ultimately leads to even better precision in the positioning of the actuating element of the hydraulic actuator.
  • the response time of the valve device is determined from the beginning of the pressure drop in the fluid reservoir.
  • the response time ie the time between the generation of the drive signal and the beginning of the pressure drop caused by the movement of the actuating element.
  • the fluid reservoir is fluidically separated from a pressure accumulator and / or a high-pressure pump for supplying the fluid accumulator is switched off.
  • inventive method is basically also feasible when a pressure accumulator is connected to the fluid reservoir or promotes a high-pressure pump in the fluid reservoir; In these cases, however, a rather complex consideration of the change in shape of the pressure accumulator (for example by means of a displacement detection at the pressure accumulator) or the delivery rate of High pressure pump required. This can be dispensed with if, as proposed, the fluid reservoir is simply separated from the pressure accumulator or from the high-pressure pump.
  • this improves the accuracy of the method according to the invention, since the volume of the fluid reservoir is reduced by this measure, which results in a corresponding control of the valve device at the same stroke of the actuating element of the hydraulic actuator to a larger pressure drop, which can be measured with higher accuracy ,
  • the hydraulic actuator When the hydraulic actuator is used to actuate a gas exchange valve of an internal combustion engine, it is advantageous if the current operating behavior is determined after switching off the internal combustion engine or during a coasting operation of the internal combustion engine. In this case, the inventive method can be carried out without the normal operation of the internal combustion engine is impaired.
  • the invention also relates to a computer program which is programmed to carry out the above method and stored on a storage medium.
  • the subject matter of the present invention is also a control and / or regulating device for an internal combustion engine, which is programmed for use in a method of the above type.
  • the subject matter of the present invention is also an internal combustion engine, in particular for a motor vehicle, having a control and / or regulating device which is programmed for use in a method of the above type.
  • an internal combustion engine carries the overall reference numeral 10. It is used to drive a Motor vehicle 12, which in FIG. 1 only symbolically represented by a dashed line.
  • the internal combustion engine 10 is a multi-cylinder reciprocating internal combustion engine. For clarity, in FIG. 1 however, only the essential elements of a single cylinder are shown.
  • the in FIG. 1 The cylinder shown comprises a combustion chamber 14 which is delimited inter alia by a piston 16. Air is supplied to the combustion chamber 14 via an inflow pipe 18 and a first gas exchange valve 20. The first gas exchange valve 20 is thus the intake valve of the combustion chamber 14. The combustion exhaust gases are conducted from the combustion chamber 14 via a second gas exchange valve 22 into an exhaust gas pipe 24. The second gas exchange valve is thus an exhaust valve of the combustion chamber 14.
  • the intake valve 20 and the exhaust valve 22 are at the in FIG. 1 shown internal combustion engine 10 is not actuated by a camshaft, but in each case by a hydraulic actuator 26 and 28 respectively.
  • the hydraulic actuator 26 is controlled by a hydraulic system 30, the actuator 28 by a hydraulic system 31, the exact configuration is explained in detail below.
  • the hydraulic systems 30 and 31 are in turn controlled by a controller 32.
  • the injector 34 is connected to a fuel system 36.
  • the fuel-air mixture located in the combustion chamber 14 is ignited by a spark plug 38, which an ignition system 40 is driven.
  • elements 38 and 40 may be omitted.
  • a controllable high-pressure pump 44 which is driven by an electric motor 46, conveys the hydraulic fluid from the reservoir 42 via a check valve 48 into a high pressure line 50.
  • a pressure accumulator 52 is connected to the high pressure line 50. This may be, for example, a pressure accumulator with a spring-loaded piston.
  • a pressure sensor 54 detects the pressure in the high-pressure line 50 and transmits corresponding signals to the control unit 32.
  • the hydraulic actuator 26 is a two-way hydraulic cylinder.
  • a piston 58 is movably arranged in a housing 56.
  • a between the top of the piston 58 ("top” and “below” here and below only the representation in the figures) and the housing 56 existing fluid space forms a first working space 60.
  • a between the bottom of the piston 58, one with This connected piston rod 62 and the housing 56 existing fluid space forms a second working space 64.
  • a compression spring 66 is braced.
  • the piston rod 62 is connected to the intake valve 20.
  • a storage chamber 68 is present in the high pressure line 50, which is a manifold in the sense of "High pressure rail” forms.
  • the second working space 64 is constantly connected via a branch line 70 to the high-pressure line 50 or the storage chamber 68.
  • a 2/2-way valve 72 is arranged, which is closed in its spring-loaded rest position 74 and opened in its actuated position 76 (the 2/2-way valve 72 is actuated by an electromagnet 78).
  • the high-pressure line 50, the pressure accumulator 52, the storage chamber 68, the branch line 70 and the second working space 64 form a total of a fluid reservoir 80, which is completed in the direction of the high-pressure pump 44 through the check valve 48 and closed to the first working space 60 out through the valve 72 can be.
  • the first working chamber 60 is connected via a return line 82 to the reservoir 42.
  • a 2/2-way valve 84 and a check valve 86 are arranged in the return line 82.
  • the 2/2-way valve 84 is opened in its spring-loaded rest position 88 and closed in the actuated position 90. In the closed position 90, it is brought by an electromagnet 92.
  • a reciprocating movement of the intake valve 20 is effected by an alternating actuation of the two solenoid valves 72 and 84.
  • the solenoid valve 84 When the solenoid valve 84 is closed, it is determined by the opening duration of the solenoid valve 72 how much hydraulic fluid enters the working space 60 of the hydraulic actuator 26. The amount of hydraulic fluid present in the first working space 60, in turn, determines the position or the stroke of the piston 58 and ultimately also the stroke of the inlet valve 20 Inlet valve 20 is effected when the solenoid valve 72 is closed by opening the solenoid valve 84.
  • the high-pressure pump 44 is turned off in a block 98.
  • the magnets 78 and 92 of the two solenoid valves 72 and 84 are de-energized.
  • the solenoid valve 72 is thus closed, whereas the solenoid valve 84 is open.
  • the piston 58 is thereby in his in FIG. 2 pressed upper end position.
  • the solenoid valve 84 is brought into its closed position 90.
  • the solenoid valve 72 is opened during a defined period of time dt and then closed again.
  • the pressure drop dp in the fluid reservoir 80 is thereby detected by the pressure sensor 54 (block 104). This is stored with the corresponding period dt as a value pair dp, dt.
  • a block 106 it is queried whether the piston 58 into its in FIG. 2 has moved lower end position. This is done by one in the FIGS. 1 and 2 Knock sensor not shown detected. If the answer in block 106 is "no", the solenoid valve 84 is opened in block 108 and then closed again. As a result, the first working chamber 60 is relieved and the piston 58 returns to its in FIG. 2 upper initial position. In a time block 110, the period dt is increased by a fixed difference value dt1. It then returns to block 102.
  • the solenoid valve 72 is thus successively opened during an ever longer period of time, so that a correspondingly larger amount of hydraulic fluid from the fluid reservoir 80 flows into the first working chamber 60 and a correspondingly different pressure drop is detected by the pressure sensor 54. It is understood that a pressure drop at the pressure sensor 54 is detected only when the pressure accumulator 52 is blocked, for example. If this is not possible, the state change of the pressure accumulator 52 would have to be recorded alternatively.
  • the process loop is run through until the piston 58 at its in FIG. 2 reached the lower stop. In this case, a jump from block 106 to block 112, in which the quotient of pressure drop dpa and the corresponding maximum stroke dha between the upper stop and lower stop of the piston 58 is formed.
  • FIGS. 4 and 5 A second embodiment of a hydraulic system 30 is explained.
  • carry such elements and areas which equivalent functions to elements and areas of related to the Figures 2 and 3 described embodiment, the same reference numerals. They are not explained again in detail.
  • FIG. 4 shown hydraulic system 30 of that of the FIG. 2 by an additional solenoid valve 118, which is arranged between on the one hand the check valve 48 and the pressure accumulator 52 and on the other hand the pressure sensor 54.
  • the additional solenoid valve 118 so the fluid reservoir 80 can be separated from the pressure accumulator 52, which facilitates the detection of the pressure drop dp.
  • a temperature sensor 120 and a viscosity sensor 122 are provided, which detect the temperature or the viscosity of the hydraulic fluid present in the fluid reservoir 80 and pass corresponding signals to the control unit 32.
  • the valve 72 is opened during a same time interval dt1. So it is gradually opened up.
  • a counter n is incremented by one, and in block 124, a query is made as to whether counter n is greater than a threshold G. The number of measuring operations is thus limited by the limit value G to a fixed value.
  • the valve 72 is opened during a period dt2 which is so long that the piston 58 in any case in its in FIG. 4 reaches the lower end position. A detection of this process by means of a knock sensor is therefore not required here.
  • the in the Figures 3 and 5 specified methods are preferably initiated immediately after switching off the internal combustion engine 10 from the controller 32.
  • the control unit 32, the position of the piston 16 of the individual cylinder of the internal combustion engine 10 is known, and it will be in the Figures 3 5 or 5 is performed only for those cylinders which ensure that there is no collision between the inlet valve 22 and the corresponding piston 16 or with other valves.
  • the method is carried out with a certain degree of regularity after switching off the internal combustion engine, it is nevertheless ensured that the current operating behavior of the hydraulic actuators 26 of the intake valves 20 of all cylinders is known.
  • the current operating behavior of the hydraulic actuators 28 of the exhaust valves 22 is determined in an analogous manner. If necessary, it must also be considered that collisions between the inlet valve 20 and the outlet valve 22 of a cylinder can occur. In a repeated implementation of the in the Figures 3 and 5 In the case of recorded methods, mean values can also be formed, for example, over the last three procedural sequences in order to improve the accuracy of the method result. Furthermore, the response time of the solenoid valve 72 may be determined from the beginning of the pressure drop dp in the fluid reservoir 80.
  • the method described above is used in internal combustion engines with intake manifold injection and in diesel internal combustion engines.
  • valve 118 in an operating phase in which the exhaust valve 20 rests, the valve 118 is closed and the evolution of the pressure in the fluid reservoir 80 is monitored. If the pressure drops too much over a certain period of time, a message is displayed. This may consist in an entry in a fault memory, or it may light a warning display for the user of the internal combustion engine 10. It is also conceivable, in such a case, to lay the internal combustion engine 10 completely still or to allow only a limited safety operation in order to avoid further damage to the internal combustion engine 10.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren zum Betreiben eines hydraulischen Aktors, insbesondere für ein Gaswechselventil einer Brennkraftmaschine, bei dem eine Bewegung eines Stellelements des Aktors dadurch bewirkt wird, dass ein Arbeitsraum des Aktors mittels einer Ventileinrichtung mit einem Fluidspeicher, in dem Hydraulikfluid unter Druck gespeichert ist, verbunden und von diesem getrennt werden kann, und bei dem der Hub des Stellelements des Aktors von einem im Arbeitsraum vorhandenen Fluidvolumen abhängt.The invention relates to a method for operating a hydraulic actuator, in particular for a gas exchange valve of an internal combustion engine, in which a movement of an actuating element of the actuator is effected in that a working space of the actuator by means of a valve device with a fluid reservoir, is stored in the hydraulic fluid under pressure, can be connected and disconnected from this, and in which the stroke of the actuating element of the actuator depends on a fluid volume present in the working space.

Ein solches Verfahren ist beispielsweise aus der DE 198 26 047 A1 bekannt. Diese beschreibt eine Vorrichtung zur Steuerung eines Gaswechselventils einer Brennkraftmaschine und das entsprechende Betriebsverfahren. Dabei wird Hydraulikfluid von einer Hochdruckpumpe in ein Leitungssystem gepumpt, in dem das Hydraulikfluid unter sehr hohem Druck gespeichert ist. Ein Arbeitsraum eines Hydraulikzylinders, dessen Kolben mit einem Ventilelement eines Gaswechselventils einer Brennkraftmaschine verbunden ist, ist über ein 2/2-Wegeventil mit dem Fluidspeicher verbunden. Ein Auslass des Arbeitsraums ist ebenfalls über ein 2/2-Wegeventil mit einem Niederdruckbereich verbunden. Je nach Ventilstellung herrscht in dem Arbeitsraum des hydraulischen Aktors ein hoher oder ein niedriger Druck, und ist im Arbeitsraum ein entsprechendes Fluidvolumen vorhanden, welches die Stellung des Kolbens beeinflusst.Such a method is for example from the DE 198 26 047 A1 known. This describes a device for controlling a gas exchange valve of an internal combustion engine and the corresponding operating method. In this case, hydraulic fluid is pumped by a high-pressure pump into a line system in which the hydraulic fluid is stored under very high pressure. A workroom of a Hydraulic cylinder whose piston is connected to a valve element of a gas exchange valve of an internal combustion engine is connected via a 2/2-way valve to the fluid reservoir. An outlet of the working space is also connected via a 2/2-way valve to a low pressure area. Depending on the valve position prevails in the working space of the hydraulic actuator, a high or low pressure, and a corresponding fluid volume is present in the working space, which influences the position of the piston.

Der Vorteil eines derartigen Gaswechselventils liegt darin, dass es unabhängig von einer Stellung einer Nockenwelle der Brennkraftmaschine angesteuert werden kann. Aus Kostengründen wird auf eine Erfassung der aktuellen Kolbenstellung verzichtet. Dies hat zur Folge, dass die Positionierung des Kolbens des hydraulischen Aktors nicht geregelt, sondern nur gesteuert werden kann.The advantage of such a gas exchange valve is that it can be controlled independently of a position of a camshaft of the internal combustion engine. For cost reasons, a detection of the current piston position is dispensed with. This has the consequence that the positioning of the piston of the hydraulic actuator is not regulated, but can only be controlled.

Die DE 42 18 320 A1 beschreibt ein Verfahren zur Prüfung einer durch ein Medium angetriebenen Armatur, bei der zu unterschiedlichen Zeitpunkten während eines Schaltvorgangs Größen gemessen und hieraus funktionsspezifische Größen abgeleitet und miteinander verglichen werden. Die DE 101 38 777 A1 beschreibt ein Verfahren zur Funktionsüberwachung von Zuleitungen für mit einem druckbeaufschlagten Medium betriebene Aggregate, bei dem ein Ist-Druckverlauf mit einem Soll-Druckverlauf verglichen wird.The DE 42 18 320 A1 describes a method for testing a valve driven by a medium, in which variables are measured at different points in time during a switching process and from this function-specific quantities are derived and compared with one another. The DE 101 38 777 A1 describes a method for monitoring the operation of supply lines for operated with a pressurized medium units in which an actual pressure profile is compared with a desired pressure profile.

Die vorliegende Erfindung hat die Aufgabe, ein Verfahren der eingangs genannten Art so weiterzubilden, dass das Stellelement des Aktors möglichst präzise positioniert werden kann.The present invention has the object, a method of the type mentioned in such a way that the actuator of the actuator can be positioned as precisely as possible.

Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass zum Ermitteln eines aktuellen Betriebsverhaltens des Aktors der Arbeitsraum kurzzeitig mit dem Fluidspeicher verbunden, der entsprechende Druckabfall im Fluidspeicher erfasst, und aus dem Druckabfall unter Verwendung bekannter geometrischer Größen des Aktors der entsprechende Hub ermittelt wird, und mindestens ein aus Öffnungszeitraum und Hub bestehendes Wertepaar gebildet wird.This object is achieved in a method of the type mentioned in that for determining a current operating behavior of the actuator of the working space briefly connected to the fluid reservoir, detects the corresponding pressure drop in the fluid reservoir, and from the pressure drop using known geometric variables of the actuator, the corresponding stroke is determined, and at least one of opening period and stroke existing value pair is formed.

Vorteile der ErfindungAdvantages of the invention

Das ermittelte Wertepaar kann beispielsweise mit einem auf einem Prüfstand oder bei einem vorhergehenden Verfahrensdurchlauf ermittelten Wertepaar verglichen werden. Auf diese Weise können Alterungserscheinungen, veränderte Umgebungsbedingungen, und so weiter, erfasst und bei der Ansteuerung der Ventileinrichtungen berücksichtigt werden. Auch ist die Ausgabe einer Information möglich, wenn das aktuelle Betriebsverhalten des Aktors sich unzulässiger Weise verändert hat. Dies erhöht die Sicherheit im Betrieb des Aktors, da Gegenmaßnahmen ermöglicht werden, noch bevor der Betrieb des Aktors zu einem Schaden führen kann.The determined value pair can be compared, for example, with a value pair determined on a test bench or in a preceding process run. In this way, aging phenomena, changed environmental conditions, and so on, can be detected and taken into account in the control of the valve devices. The output of information is also possible if the current operating behavior of the actuator has changed in an improper manner. This increases the safety in the operation of the actuator, since countermeasures are made possible before the operation of the actuator can lead to damage.

Besonders vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind in Unteransprüchen angegeben.Particularly advantageous embodiments of the method according to the invention are specified in subclaims.

In einer ersten vorteilhaften Weiterbildung wird vorgeschlagen, dass der Druckabfall im Fluidspeicher für verschiedene Zeiträume, während denen der Arbeitsraum des Aktors mit dem Fluidspeicher verbunden ist, erfasst und aus den ermittelten Wertepaaren eine aktuelle Kennlinie gebildet wird. Das Stellelement des hydraulischen Aktors kann in diesem Falle im Normalbetrieb sehr präzise positioniert werden, ohne dass eine komplexe Regelung und die kostenintensive Installation eines Sensors, welcher den Hub des Stellelements des hydraulischen Aktors erfasst, erforderlich ist. Die präzise Positionierung des Stellelements ist daher grundsätzlich ohne zusätzliche Hardware und daher preiswert möglich.In a first advantageous development, it is proposed that the pressure drop in the fluid reservoir be detected for different periods of time during which the working space of the actuator is connected to the fluid reservoir, and a current characteristic curve is formed from the determined value pairs. The actuator of the hydraulic actuator can be positioned very precisely in this case in normal operation, without complex control and costly installation of a sensor which detects the stroke of the actuator of the hydraulic actuator is required. The precise positioning of the control element is therefore basically possible without additional hardware and therefore inexpensive.

Besonders bevorzugt wird auch jene Weiterbildung des erfindungsgemäßen Verfahrens, bei welcher das Stellelement aus einer bekannten Anfangslage in eine bekannte Endlage gebracht, der entsprechende Druckabfall im Fluidspeicher erfasst, und mit Hilfe des erfassten Druckabfalls und des Hubs zwischen Anfangslage und Endlage das ermittelte mindestens eine Wertepaar normiert wird. Durch dieses Verfahren können Messungenauigkeiten eliminiert und die Präzision der Kennlinie des hydraulischen Aktors nochmals verbessert werden. Durch den bei dieser Weiterbildung zusätzlich vorgesehenen Verfahrensschritt wird das eigentliche Verfahren, mit dem mindestens ein Wertepaar ermittelt wird, sozusagen kalibriert.Particularly preferred is also that development of the method according to the invention, in which the actuating element from a known initial position in a known end position brought, detects the corresponding pressure drop in the fluid reservoir, and with the help of the detected pressure drop and the stroke between the initial position and end position, the determined at least one pair of values is normalized. This method eliminates measurement inaccuracies and further improves the precision of the characteristic of the hydraulic actuator. By additionally provided in this development process step, the actual process by which at least one pair of values is determined, so to speak calibrated.

Das Stellelement kann in die Anfangs- beziehungsweise in die Endlage einfach dadurch gebracht werden, dass die Ventileinrichtung entsprechend lange in der einen oder in der anderen Position ist. Alternativ oder zusätzlich kann das Erreichen der Anfangs- und/oder der Endlage des Stellelements aber auch mittels eines Klopfsensors erfasst werden. Hierdurch wird die Präzision der oben genannten Normierung beziehungsweise Kalibrierung verbessert.The actuator can be brought into the initial or in the end position simply by the fact that the valve device is correspondingly long in one or the other position. Alternatively or additionally, the achievement of the initial and / or end position of the actuating element can also be detected by means of a knock sensor. This improves the precision of the standardization or calibration mentioned above.

Vorgeschlagen wird auch, dass das mindestens eine Wertepaar unter Berücksichtigung des Elastizitätsmoduls des Hydraulikfluids und/oder der Elastizität des Fluidspeichers gebildet wird. Auch dies führt zu einer nochmals höheren Genauigkeit der aktuellen Kennlinie des hydraulischen Aktors. Dabei kann zusätzlich auch noch berücksichtigt werden, dass der Elastizitätsmodul des Hydraulikfluids temperatur- und druckabhängig ist. Auch die Elastizität des Fluidspeichers, also von dessen Wänden, kann sich vor allem abhängig von der Temperatur verändern.It is also proposed that the at least one value pair be formed taking into account the modulus of elasticity of the hydraulic fluid and / or the elasticity of the fluid reservoir. This also leads to an even higher accuracy of the current characteristic of the hydraulic actuator. In addition, it may also be considered that the modulus of elasticity of the hydraulic fluid is temperature and pressure dependent. The elasticity of the fluid reservoir, ie of its walls, can also change depending on the temperature.

In weiterer Ausgestaltung des erfindungsgemäßen Verfahrens wird auch angegeben, dass die Temperatur und/oder die Viskosität des Hydraulikfluids während der Ermittlung des aktuellen Betriebsverhaltens des Aktors erfasst und das mindestens eine Wertepaar für eine bestimmte Viskosität und/oder eine bestimmte Temperatur des Hydraulikfluids gebildet wird. Auf diese Weise kann also ein ganzer Satz von Wertepaaren beziehungsweise Kennlinien gebildet werden, wobei jeweils ein Wertepaar beziehungsweise eine Kennlinie nur für ganz bestimmte Betriebs- beziehungsweise Umgebungsbedingungen gilt. Auch dies führt letztlich zu einer nochmals besseren Präzision bei der Positionierung des Stellelements des hydraulischen Aktors.In a further embodiment of the method according to the invention is also stated that the temperature and / or the viscosity of the hydraulic fluid detected during the determination of the current operating behavior of the actuator and the at least one pair of values for a specific viscosity and / or a specific temperature of the hydraulic fluid is formed. In this way, therefore, a whole set of pairs of values or characteristics can be formed, wherein in each case a pair of values or a characteristic applies only for very specific operating or environmental conditions. This also ultimately leads to even better precision in the positioning of the actuating element of the hydraulic actuator.

Günstig ist auch, wenn die Ansprechzeit der Ventileinrichtung aus dem Beginn des Druckabfalls im Fluidspeicher ermittelt wird. Für die Genauigkeit der Positionierung des Stellelements des hydraulischen Aktors, insbesondere für die zeitliche Genauigkeit, ist die Ansprechzeit, also die Zeit zwischen der Erzeugung des Ansteuersignals und dem Beginn des durch die Bewegung des Stellelements verursachten Druckabfalls, besonders wichtig. Diese Ansprechzeit kann bei dem erfindungsgemäßen Verfahren sozusagen "nebenbei" ermittelt werden und bei der Ansteuerung der Ventileinrichtung im normalen Betrieb des hydraulischen Aktors berücksichtigt werden.It is also advantageous if the response time of the valve device is determined from the beginning of the pressure drop in the fluid reservoir. For the accuracy of the positioning of the actuator of the hydraulic actuator, in particular for the temporal accuracy, the response time, ie the time between the generation of the drive signal and the beginning of the pressure drop caused by the movement of the actuating element, is particularly important. In the method according to the invention, this response time can be ascertained, so to speak, "incidentally" and taken into account in the control of the valve device during normal operation of the hydraulic actuator.

Besonders vorteilhaft ist es, wenn zum Ermitteln des aktuellen Betriebsverhaltens des hydraulischen Aktors der Fluidspeicher von einem Druckspeicher fluidisch getrennt und/oder eine Hochdruckpumpe zur Versorgung des Fluidspeichers ausgeschaltet wird. Zwar ist das erfindungsgemäße Verfahren grundsätzlich auch dann durchführbar, wenn ein Druckspeicher mit dem Fluidspeicher verbunden ist beziehungsweise eine Hochdruckpumpe in den Fluidspeicher fördert; in diesen Fällen ist jedoch eine recht komplexe Berücksichtigung der Formänderung des Druckspeichers (beispielsweise mittels einer Wegerfassung am Druckspeicher) beziehungsweise der Förderleistung der Hochdruckpumpe erforderlich. Auf diese kann verzichtet werden, wenn, wie vorgeschlagen, der Fluidspeicher von dem Druckspeicher beziehungsweise von der Hochdruckpumpe einfach getrennt wird. Darüber hinaus wird hierdurch die Genauigkeit des erfindungsgemäßen Verfahrens verbessert, da durch diese Maßnahme das Volumen des Fluidspeichers verkleinert wird, was bei einer entsprechenden Ansteuerung der Ventileinrichtung bei gleichem Hub des Stellelements des hydraulischen Aktors zu einem größeren Druckabfall führt, der mit höherer Genauigkeit gemessen werden kann.It is particularly advantageous if, for determining the current operating behavior of the hydraulic actuator, the fluid reservoir is fluidically separated from a pressure accumulator and / or a high-pressure pump for supplying the fluid accumulator is switched off. Although the inventive method is basically also feasible when a pressure accumulator is connected to the fluid reservoir or promotes a high-pressure pump in the fluid reservoir; In these cases, however, a rather complex consideration of the change in shape of the pressure accumulator (for example by means of a displacement detection at the pressure accumulator) or the delivery rate of High pressure pump required. This can be dispensed with if, as proposed, the fluid reservoir is simply separated from the pressure accumulator or from the high-pressure pump. In addition, this improves the accuracy of the method according to the invention, since the volume of the fluid reservoir is reduced by this measure, which results in a corresponding control of the valve device at the same stroke of the actuating element of the hydraulic actuator to a larger pressure drop, which can be measured with higher accuracy ,

Wenn der hydraulische Aktor zur Betätigung eines Gaswechselventils einer Brennkraftmaschine zum Einsatz kommt, ist es vorteilhaft, wenn das aktuelle Betriebsverhalten nach dem Abschalten der Brennkraftmaschine oder während eines Schubbetriebs der Brennkraftmaschine ermittelt wird. In diesem Fall kann das erfindungsgemäße Verfahren durchgeführt werden, ohne dass der Normalbetrieb der Brennkraftmaschine beeinträchtigt wird.When the hydraulic actuator is used to actuate a gas exchange valve of an internal combustion engine, it is advantageous if the current operating behavior is determined after switching off the internal combustion engine or during a coasting operation of the internal combustion engine. In this case, the inventive method can be carried out without the normal operation of the internal combustion engine is impaired.

Grundsätzlich muss aber immer berücksichtigt werden, dass die Ansteuerung des hydraulischen Aktors zur Ermittlung der aktuellen Kennlinie so erfolgt, dass das entsprechende Gaswechselventil weder mit einem Kolben der Brennkraftmaschine noch mit einem anderen Gaswechselventil kollidiert. Beispielsweise während des Schubbetriebs ist daher auch eine Ansteuerung des hydraulischen Aktors nur in einem Teilhubbereich denkbar. Bei einer mehrzylindrigen Brennkraftmaschine kann es daher möglich sein, dass mehrere Abschaltphasen erforderlich sind, um das aktuelle Betriebsverhalten der Aktoren aller Gaswechselventile zu ermitteln.In principle, however, it always has to be taken into account that the actuation of the hydraulic actuator for determining the current characteristic curve occurs in such a way that the corresponding gas exchange valve does not collide with either a piston of the internal combustion engine or with another gas exchange valve. For example, during the overrun operation, therefore, a control of the hydraulic actuator is conceivable only in a Teilhubbereich. In a multi-cylinder internal combustion engine, it may therefore be possible that several shutdown phases are required in order to determine the current operating behavior of the actuators of all gas exchange valves.

Ferner kann vorgesehen werden, dass bei ruhendem hydraulischem Aktor der Druck im Fluidspeicher erfasst und bei einem unzulässigen Druckabfall eine Meldung ausgegeben wird. Dies ermöglicht die Überprüfung der Dichtigkeit bzw. der Leckage des hydraulischen Systems bzw. des Fluidspeichers, welcher den Aktor versorgt. Der Benutzer kann somit die Verfügbarkeit der ordnungsgemäßen Betriebsweise des hydraulischen Aktors und somit letztlich des Gaswechselventils erkennen, und gegebenenfalls kann automatisch der Betrieb der Brennkraftmaschine beendet oder auf einen Sicherheitsbereich beschränkt werden, um Schäden an der Brennkraftmaschine aufgrund eines nicht korrekt arbeitenden Gaswechselventils zu vermeiden. Es versteht sich, dass die Überwachung des Druckabfalls erleichtert wird, wenn eine Hochdruckpumpe, die den Fluidspeicher mit Hydraulikfluid versorgt, ausgeschaltet oder vollständig vom Fluidspeicher getrennt ist. Analoges gilt auch für einen Druckspeicher.Furthermore, it can be provided that, when the hydraulic actuator is at rest, the pressure in the fluid reservoir is detected and a message is output when there is an unacceptable pressure drop. This makes it possible to check the tightness or leakage of the hydraulic system or of the fluid reservoir which supplies the actuator. The user can thus recognize the availability of the proper operation of the hydraulic actuator and thus ultimately the gas exchange valve, and optionally automatically stops the operation of the internal combustion engine or limited to a safety area to prevent damage to the internal combustion engine due to an incorrectly working gas exchange valve. It is understood that monitoring of the pressure drop is facilitated when a high pressure pump, which supplies the fluid reservoir with hydraulic fluid, is turned off or completely disconnected from the fluid reservoir. The same applies to a pressure accumulator.

Die Erfindung betrifft auch ein Computerprogramm, welches zur Durchführung des obigen Verfahrens programmiert und auf einem Speichermedium gespeichert ist.The invention also relates to a computer program which is programmed to carry out the above method and stored on a storage medium.

Gegenstand der vorliegenden Erfindung ist auch ein Steuer-und/oder Regelgerät für eine Brennkraftmaschine, welches zur Anwendung in einem Verfahren der obigen Art programmiert ist.The subject matter of the present invention is also a control and / or regulating device for an internal combustion engine, which is programmed for use in a method of the above type.

Gegenstand der vorliegenden Erfindung ist auch eine Brennkraftmaschine, insbesondere für ein Kraftfahrzeug, mit einem Steuer- und/oder Regelgerät, welches zur Anwendung in einem Verfahren der obigen Art programmiert ist.The subject matter of the present invention is also an internal combustion engine, in particular for a motor vehicle, having a control and / or regulating device which is programmed for use in a method of the above type.

Zeichnungdrawing

Nachfolgend werden besonders bevorzugte Ausführungsbeispiele der vorliegenden Erfindung unter Bezugnahme auf die beiliegende Zeichnung näher erläutert.Hereinafter, particularly preferred embodiments of the present invention will be explained in more detail with reference to the accompanying drawings.

In der Zeichnung zeigen:

Figur 1
eine schematische Darstellung einer Brennkraftmaschine eines Kraftfahrzeugs mit Gaswechselventilen, welche jeweils von einem hydraulischen Aktor betätigt werden, der an ein Hydrauliksystem angeschlossen ist;
Figur 2
eine genauere Darstellung des Hydrauliksystems von Figur 1;
Figur 3
ein Flussdiagramm, welches ein Verfahren zum Betreiben des hydraulischen Aktors von Figur 1 zeigt;
Figur 4
eine Darstellung ähnlich Figur 2 eines alternativen Ausführungsbeispiels eines hydraulischen Systems; und
Figur 5
ein Flussdiagramm ähnlich Figur 3 eines Verfahrens zum Betreiben des hydraulischen Aktors von Figur 1 mit dem hydraulischen System von Figur 4.
In the drawing show:
FIG. 1
a schematic representation of an internal combustion engine of a motor vehicle with gas exchange valves, which are each actuated by a hydraulic actuator which is connected to a hydraulic system;
FIG. 2
a more detailed representation of the hydraulic system of FIG. 1 ;
FIG. 3
a flowchart illustrating a method for operating the hydraulic actuator of FIG. 1 shows;
FIG. 4
a representation similar FIG. 2 an alternative embodiment of a hydraulic system; and
FIG. 5
a flow chart similar FIG. 3 a method for operating the hydraulic actuator of FIG. 1 with the hydraulic system of FIG. 4 ,

Beschreibung der AusführungsbeispieleDescription of the embodiments

In Figur 1 trägt eine Brennkraftmaschine insgesamt das Bezugszeichen 10. Sie dient zum Antrieb eines Kraftfahrzeugs 12, welches in Figur 1 nur symbolisch durch eine gestrichelte Linie dargestellt ist. Bei der Brennkraftmaschine 10 handelt es sich um eine mehrzylindrige Hubkolben-Brennkraftmaschine. Aus Gründen der Übersichtlichkeit sind in Figur 1 jedoch nur die wesentlichen Elemente eines einzigen Zylinders dargestellt.In FIG. 1 an internal combustion engine carries the overall reference numeral 10. It is used to drive a Motor vehicle 12, which in FIG. 1 only symbolically represented by a dashed line. The internal combustion engine 10 is a multi-cylinder reciprocating internal combustion engine. For clarity, in FIG. 1 however, only the essential elements of a single cylinder are shown.

Der in Figur 1 gezeigte Zylinder umfasst einen Brennraum 14, der unter anderem von einem Kolben 16 begrenzt wird. Luft wird dem Brennraum 14 über ein Zuströmrohr 18 und ein erstes Gaswechselventil 20 zugeführt. Bei dem ersten Gaswechselventil 20 handelt es sich also um das Einlassventil des Brennraums 14. Die Verbrennungsabgase werden aus dem Brennraum 14 über ein zweites Gaswechselventil 22 in ein Abgasrohr 24 geleitet. Bei dem zweiten Gaswechselventil handelt es sich also um ein Auslassventil des Brennraums 14.The in FIG. 1 The cylinder shown comprises a combustion chamber 14 which is delimited inter alia by a piston 16. Air is supplied to the combustion chamber 14 via an inflow pipe 18 and a first gas exchange valve 20. The first gas exchange valve 20 is thus the intake valve of the combustion chamber 14. The combustion exhaust gases are conducted from the combustion chamber 14 via a second gas exchange valve 22 into an exhaust gas pipe 24. The second gas exchange valve is thus an exhaust valve of the combustion chamber 14.

Das Einlassventil 20 und das Auslassventil 22 werden bei der in Figur 1 dargestellten Brennkraftmaschine 10 nicht von einer Nockenwelle, sondern jeweils von einem hydraulischen Aktor 26 beziehungsweise 28 betätigt. Der hydraulische Aktor 26 wird von einem hydraulischen System 30, der Aktor 28 von einem hydraulischen System 31 angesteuert, deren genaue Ausgestaltung weiter unten im Detail erläutert ist. Die hydraulischen Systeme 30 und 31 werden wiederum von einem Steuergerät 32 gesteuert.The intake valve 20 and the exhaust valve 22 are at the in FIG. 1 shown internal combustion engine 10 is not actuated by a camshaft, but in each case by a hydraulic actuator 26 and 28 respectively. The hydraulic actuator 26 is controlled by a hydraulic system 30, the actuator 28 by a hydraulic system 31, the exact configuration is explained in detail below. The hydraulic systems 30 and 31 are in turn controlled by a controller 32.

Kraftstoff gelangt in den Brennraum 14 der Brennkraftmaschine 10 über einen Injektor 34, welcher den Kraftstoff direkt in den Brennraum 14 einspritzt. Der Injektor 34 ist mit einem Kraftstoffsystem 36 verbunden. Entzündet wird das sich im Brennraum 14 befindende Kraftstoff-Luftgemisch von einer Zündkerze 38, welche von einem Zündsystem 40 angesteuert wird. Bei einer DieselBrennkraftmaschine können die Elemente 38 und 40 entfallen.Fuel enters the combustion chamber 14 of the internal combustion engine 10 via an injector 34, which injects the fuel directly into the combustion chamber 14. The injector 34 is connected to a fuel system 36. The fuel-air mixture located in the combustion chamber 14 is ignited by a spark plug 38, which an ignition system 40 is driven. In a diesel engine, elements 38 and 40 may be omitted.

Die hydraulischen Systeme 30 und 31 sind identisch aufgebaut. Sie werden nun anhand des hydraulischen Systems 30 gemäß Figur 2 erläutert:The hydraulic systems 30 and 31 are constructed identically. They will now be described with reference to hydraulic system 30 FIG. 2 explains:

In einem Vorratsbehälter 42 wird Hydraulikfluid (nicht dargestellt) bevorratet. Eine regelbare Hochdruckpumpe 44, welche von einem Elektromotor 46 angetrieben wird, fördert das Hydraulikfluid aus dem Vorratsbehälter 42 über ein Rückschlagventil 48 in eine Hochdruckleitung 50. An die Hochdruckleitung 50 ist ein Druckspeicher 52 angeschlossen. Bei diesem kann es sich beispielsweise um einen Druckspeicher mit einem federbelasteten Kolben handeln. Ein Drucksensor 54 erfasst den Druck in der Hochdruckleitung 50 und übermittelt entsprechende Signale an das Steuergerät 32.In a reservoir 42 hydraulic fluid (not shown) is stored. A controllable high-pressure pump 44, which is driven by an electric motor 46, conveys the hydraulic fluid from the reservoir 42 via a check valve 48 into a high pressure line 50. To the high pressure line 50, a pressure accumulator 52 is connected. This may be, for example, a pressure accumulator with a spring-loaded piston. A pressure sensor 54 detects the pressure in the high-pressure line 50 and transmits corresponding signals to the control unit 32.

Bei dem hydraulischen Aktor 26 handelt es sich um einen Zwei-Wege-Hydraulikzylinder. In einem Gehäuse 56 ist ein Kolben 58 beweglich angeordnet. Ein zwischen der Oberseite des Kolbens 58 ("oben" und "unten" bezieht sich hier und nachfolgend nur auf die Darstellung in den Figuren) und dem Gehäuse 56 vorhandener Fluidraum bildet einen ersten Arbeitsraum 60. Ein zwischen der Unterseite des Kolbens 58, einer mit diesem verbundenen Kolbenstange 62 und dem Gehäuse 56 vorhandener Fluidraum bildet einen zweiten Arbeitsraum 64. Zwischen der Unterseite des Kolbens 58 und dem Gehäuse 56 ist eine Druckfeder 66 verspannt. Die Kolbenstange 62 ist mit dem Einlassventil 20 verbunden.The hydraulic actuator 26 is a two-way hydraulic cylinder. In a housing 56, a piston 58 is movably arranged. A between the top of the piston 58 ("top" and "below" here and below only the representation in the figures) and the housing 56 existing fluid space forms a first working space 60. A between the bottom of the piston 58, one with This connected piston rod 62 and the housing 56 existing fluid space forms a second working space 64. Between the bottom of the piston 58 and the housing 56, a compression spring 66 is braced. The piston rod 62 is connected to the intake valve 20.

Zwischen dem hydraulischen Aktor 26 und dem Drucksensor 54 ist in der Hochdruckleitung 50 eine Speicherkammer 68 vorhanden, welche eine Sammelleitung im Sinne eines "Hochdruckrail" bildet. Der zweite Arbeitsraum 64 ist über eine Zweigleitung 70 ständig mit der Hochdruckleitung 50 beziehungsweise der Speicherkammer 68 verbunden. Zwischen der Speicherkammer 68 und dem ersten Arbeitsraum 60 ist ein 2/2-Wegeventil 72 angeordnet, welches in seiner federbelasteten Ruhestellung 74 geschlossen und in seiner betätigten Stellung 76 geöffnet ist (das 2/2-Wegeventil 72 wird von einem Elektromagnet 78 betätigt). Die Hochdruckleitung 50, der Druckspeicher 52, die Speicherkammer 68, die Zweigleitung 70 und der zweite Arbeitsraum 64 bilden insgesamt einen Fluidspeicher 80, der in Richtung zur Hochdruckpumpe 44 hin durch das Rückschlagventil 48 abgeschlossen ist und zum ersten Arbeitsraum 60 hin durch das Ventil 72 abgeschlossen werden kann.Between the hydraulic actuator 26 and the pressure sensor 54, a storage chamber 68 is present in the high pressure line 50, which is a manifold in the sense of "High pressure rail" forms. The second working space 64 is constantly connected via a branch line 70 to the high-pressure line 50 or the storage chamber 68. Between the storage chamber 68 and the first working chamber 60, a 2/2-way valve 72 is arranged, which is closed in its spring-loaded rest position 74 and opened in its actuated position 76 (the 2/2-way valve 72 is actuated by an electromagnet 78). The high-pressure line 50, the pressure accumulator 52, the storage chamber 68, the branch line 70 and the second working space 64 form a total of a fluid reservoir 80, which is completed in the direction of the high-pressure pump 44 through the check valve 48 and closed to the first working space 60 out through the valve 72 can be.

Der erste Arbeitsraum 60 ist über eine Rücklaufleitung 82 mit dem Vorratsbehälter 42 verbunden. In der Rücklaufleitung 82 sind ein 2/2-Wegeventil 84 und ein Rückschlagventil 86 angeordnet. Das 2/2-Wegeventil 84 ist in seiner federbelasteten Ruhestellung 88 geöffnet und in der betätigten Stellung 90 geschlossen. In die Schließstellung 90 wird es von einem Elektromagnet 92 gebracht.The first working chamber 60 is connected via a return line 82 to the reservoir 42. In the return line 82, a 2/2-way valve 84 and a check valve 86 are arranged. The 2/2-way valve 84 is opened in its spring-loaded rest position 88 and closed in the actuated position 90. In the closed position 90, it is brought by an electromagnet 92.

Im Normalbetrieb der Brennkraftmaschine wird eine Hin- und Herbewegung des Einlassventils 20 durch eine alternierende Betätigung der beiden Magnetventile 72 und 84 bewirkt. Bei geschlossenem Magnetventil 84 wird durch die Öffnungsdauer des Magnetventils 72 bestimmt, wie viel Hydraulikfluid in den Arbeitsraum 60 des hydraulischen Aktors 26 gelangt. Die Menge des im ersten Arbeitsraum 60 vorhandenen Hydraulikfluids wiederum bestimmt die Position beziehungsweise den Hub des Kolbens 58 und letztlich also auch den Hub des Einlassventils 20. Ein Schließen des Einlassventils 20 wird bei geschlossenem Magnetventil 72 durch ein Öffnen des Magnetventils 84 bewirkt.During normal operation of the internal combustion engine, a reciprocating movement of the intake valve 20 is effected by an alternating actuation of the two solenoid valves 72 and 84. When the solenoid valve 84 is closed, it is determined by the opening duration of the solenoid valve 72 how much hydraulic fluid enters the working space 60 of the hydraulic actuator 26. The amount of hydraulic fluid present in the first working space 60, in turn, determines the position or the stroke of the piston 58 and ultimately also the stroke of the inlet valve 20 Inlet valve 20 is effected when the solenoid valve 72 is closed by opening the solenoid valve 84.

Um das aktuelle Betriebsverhalten des hydraulischen Aktors 26 zu ermitteln, wird gemäß einem Verfahren vorgegangen, welches als Computerprogramm auf einem Speicher 94 des Steuergeräts 32 abgespeichert ist. Das Verfahren wird nun unter Bezugnahme auf Figur 3 erläutert:In order to determine the current operating behavior of the hydraulic actuator 26, the procedure according to a method which is stored as a computer program on a memory 94 of the control unit 32. The method will now be described with reference to FIG. 3 explains:

Nach einem Startblock 96 wird in einem Block 98 die Hochdruckpumpe 44 ausgeschaltet. Im gleichen Block 98 werden die Magnete 78 und 92 der beiden Magnetventile 72 und 84 stromlos geschaltet. Das Magnetventil 72 ist also geschlossen, wohingegen das Magnetventil 84 geöffnet ist. Der Kolben 58 wird hierdurch in seine in Figur 2 obere Endlage gedrückt. Dann wird im Block 100 das Magnetventil 84 in seine geschlossene Stellung 90 gebracht. In einem Block 102 wird das Magnetventil 72 während eines definierten Zeitraums dt geöffnet und dann wieder geschlossen. Vom Drucksensor 54 wird dabei der Druckabfall dp im Fluidspeicher 80 erfasst (Block 104). Dieser wird mit dem entsprechenden Zeitraum dt als Wertepaar dp, dt abgespeichert.After a start block 96, the high-pressure pump 44 is turned off in a block 98. In the same block 98, the magnets 78 and 92 of the two solenoid valves 72 and 84 are de-energized. The solenoid valve 72 is thus closed, whereas the solenoid valve 84 is open. The piston 58 is thereby in his in FIG. 2 pressed upper end position. Then, in the block 100, the solenoid valve 84 is brought into its closed position 90. In a block 102, the solenoid valve 72 is opened during a defined period of time dt and then closed again. The pressure drop dp in the fluid reservoir 80 is thereby detected by the pressure sensor 54 (block 104). This is stored with the corresponding period dt as a value pair dp, dt.

In einem Block 106 wird abgefragt, ob sich der Kolben 58 bis in seine in Figur 2 untere Endlage bewegt hat. Dies wird von einem in den Figuren 1 und 2 nicht dargestellten Klopfsensor erfasst. Ist die Antwort im Block 106 "nein", wird im Block 108 das Magnetventil 84 geöffnet und dann wieder geschlossen. Hierdurch wird der erste Arbeitsraum 60 entlastet und der Kolben 58 gelangt wieder in seine in Figur 2 obere Ausgangsstellung. In einem Zeitblock 110 wird der Zeitraum dt um einen festen Differenzwert dt1 erhöht. Es erfolgt dann ein Rücksprung zum Block 102.In a block 106 it is queried whether the piston 58 into its in FIG. 2 has moved lower end position. This is done by one in the FIGS. 1 and 2 Knock sensor not shown detected. If the answer in block 106 is "no", the solenoid valve 84 is opened in block 108 and then closed again. As a result, the first working chamber 60 is relieved and the piston 58 returns to its in FIG. 2 upper initial position. In a time block 110, the period dt is increased by a fixed difference value dt1. It then returns to block 102.

Mit dem in Figur 3 dargestellten Verfahren wird das Magnetventil 72 also sukzessive während eines immer längeren Zeitraums geöffnet, so dass eine entsprechend größere Menge von Hydraulikfluid aus dem Fluidspeicher 80 in den ersten Arbeitsraum 60 strömt und ein entsprechend anderer Druckabfall vom Drucksensor 54 erfasst wird. Dabei versteht es sich, dass ein Druckabfall am Drucksensor 54 nur dann festgestellt wird, wenn der Druckspeicher 52 beispielsweise blockiert wird. Ist dies nicht möglich, müsste alternativ auch die Zustandsänderung des Druckspeichers 52 erfasst werden.With the in FIG. 3 Thus, the solenoid valve 72 is thus successively opened during an ever longer period of time, so that a correspondingly larger amount of hydraulic fluid from the fluid reservoir 80 flows into the first working chamber 60 and a correspondingly different pressure drop is detected by the pressure sensor 54. It is understood that a pressure drop at the pressure sensor 54 is detected only when the pressure accumulator 52 is blocked, for example. If this is not possible, the state change of the pressure accumulator 52 would have to be recorded alternatively.

Die Verfahrensschleife wird so lange durchlaufen, bis der Kolben 58 an seinem in Figur 2 unteren Anschlag angelangt ist. In diesem Fall erfolgt vom Block 106 ein Sprung zum Block 112, in dem der Quotient aus Druckabfall dpa und dem entsprechenden Maximalhub dha zwischen oberem Anschlag und unterem Anschlag des Kolbens 58 gebildet wird.The process loop is run through until the piston 58 at its in FIG. 2 reached the lower stop. In this case, a jump from block 106 to block 112, in which the quotient of pressure drop dpa and the corresponding maximum stroke dha between the upper stop and lower stop of the piston 58 is formed.

Im Block 114 werden aus den abgespeicherten Druckdifferenzen dp die entsprechenden Hübe des Kolbens 58 berechnet. Dies geschieht gemäß der Formel dh = V 0 * dp E OIL dA

Figure imgb0001
In block 114, the corresponding strokes of the piston 58 are calculated from the stored pressure differences dp. This is done according to the formula ie = V 0 * dp e OIL there
Figure imgb0001

In der obigen Formel ist dh der Hub des Kolbens 58, V0 das ursprüngliche Volumen im Fluidspeicher 80 vor Öffnen des Magnetventils 72, dp der vom Drucksensor 54 erfasste Druckabfall, EOIL der Elastizitätsmodul des Hydraulikfluids, und dA die Differenz zwischen der oberen und der unteren Begrenzungsfläche des Kolbens 58. Auf diese Weise werden Wertepaare dp,dh gebildet, aus denen weiter im Block 114 eine Kennlinie dh = f(dt) gebildet wird. Diese Kennlinie verknüpft den Hub dh des Kolbens 58 mit der entsprechenden Öffnungsdauer dt des Magnetventils 72. Diese Kennlinie wird dann im Normalbetrieb zur Ansteuerung des Magnetventils 72 verwendet, um einen bestimmten gewünschten Hub zu erreichen. Die Wertepaare dp,dh werden dabei anhand des im Block 112 gebildeten Quotienten dpa/dha normiert beziehungsweise kalibriert.In the above formula, that is, the stroke of the piston 58, V0 is the original volume in the fluid reservoir 80 before opening the solenoid valve 72, dp the pressure drop detected by the pressure sensor 54, E OIL the elastic modulus of the hydraulic fluid, and dA the difference between the upper and lower Limiting surface of the piston 58. In this way, pairs of values dp, ie formed, from which further in block 114, a characteristic dh = f (dt) is formed. This characteristic connects the stroke dh of the piston 58 with the corresponding opening duration dt of the solenoid valve 72. This characteristic is then used in normal operation to drive the solenoid valve 72 to achieve a particular desired stroke. The value pairs dp, ie are normalized or calibrated on the basis of the quotient dpa / dha formed in block 112.

Nun wird unter Bezugnahme auf die Figuren 4 und 5 ein zweites Ausführungsbeispiel eines Hydrauliksystems 30 erläutert. Dabei tragen solche Elemente und Bereiche, welche äquivalente Funktionen zu Elementen und Bereichen des im Zusammenhang mit den Figuren 2 und 3 beschriebenen Ausführungsbeispieles aufweisen, die gleichen Bezugszeichen. Sie sind nicht nochmals im Detail erläutert.Now, referring to the FIGS. 4 and 5 A second embodiment of a hydraulic system 30 is explained. In this case, carry such elements and areas, which equivalent functions to elements and areas of related to the Figures 2 and 3 described embodiment, the same reference numerals. They are not explained again in detail.

Zunächst unterscheidet sich das in Figur 4 gezeigte Hydrauliksystem 30 von jenem der Figur 2 durch ein zusätzliches Magnetventil 118, welches zwischen einerseits dem Rückschlagventil 48 und dem Druckspeicher 52 und andererseits dem Drucksensor 54 angeordnet ist. Mit dem zusätzlichen Magnetventil 118 kann also der Fluidspeicher 80 vom Druckspeicher 52 getrennt werden, was die Erfassung des Druckabfalls dp erleichtert. Ferner sind bei dem in Figur 4 dargestellten hydraulischen System 30 ein Temperatursensor 120 und ein Viskositätssensor 122 vorgesehen, welche die Temperatur beziehungsweise die Viskosität des im Fluidspeicher 80 vorhandenem Hydraulikfluids erfassen und entsprechende Signale an das Steuergerät 32 leiten.At first this is different in FIG. 4 shown hydraulic system 30 of that of the FIG. 2 by an additional solenoid valve 118, which is arranged between on the one hand the check valve 48 and the pressure accumulator 52 and on the other hand the pressure sensor 54. With the additional solenoid valve 118 so the fluid reservoir 80 can be separated from the pressure accumulator 52, which facilitates the detection of the pressure drop dp. Furthermore, in the in FIG. 4 1, a temperature sensor 120 and a viscosity sensor 122 are provided, which detect the temperature or the viscosity of the hydraulic fluid present in the fluid reservoir 80 and pass corresponding signals to the control unit 32.

Das aktuelle Betriebsverhalten des hydraulischen Aktors 26 von Figur 4 wird mittels eines Verfahrens bestimmt, welches nun unter Bezugnahme auf Figur 5 erläutert wird:The current operating behavior of the hydraulic actuator 26 of FIG. 4 is determined by a method which will now be described with reference to FIG. 5 explains:

Im Gegensatz zu dem Verfahren von Figur 3 wird bei dem in Figur 5 dargestellten Verfahren im Block 100 auch das Ventil 118 stromlos geschaltet. Hierdurch wird, wie bereits oben ausgeführt wurde, der Druckspeicher 52 vom Fluidspeicher 80 getrennt, und auch die Hochdruckpumpe 44 wird vom Fluidspeicher 80 getrennt. Diese kann also gegebenenfalls weiterlaufen, während das in Figur 5 dargestellte Verfahren durchgeführt wird.Unlike the procedure of FIG. 3 will be at the in FIG. 5 shown method in block 100 and the valve 118 is de-energized. As a result, as already explained above, the pressure accumulator 52 is separated from the fluid accumulator 80, and the high-pressure pump 44 is also disconnected from the fluid accumulator 80. This may therefore continue to run, while the in FIG. 5 shown method is performed.

Im Block 102 wird während mehrerer Verfahrensschleifen das Ventil 72 während eines gleichen Zeitraums dt1 geöffnet. Es wird also stufenweise immer weiter aufgemacht. Im Block 110 wird ein Zähler n jeweils um 1 inkrementiert, und im Block 124 wird abgefragt, ob der Zähler n größer als ein Grenzwert G ist. Die Anzahl der Messvorgänge wird also durch den Grenzwert G auf einen festen Wert beschränkt. Im Block 106 wird das Ventil 72 während eines Zeitraums dt2 geöffnet, welcher so lang ist, dass der Kolben 58 auf jeden Fall in seine in Figur 4 untere Endposition gelangt. Eine Erfassung dieses Vorgangs mittels eines Klopfsensors ist hier also nicht erforderlich. Im Block 114 wird die Kennlinie dh = f(dt) bestimmt und für die vom Temperatursensor 120 erfasste Temperatur templ und die vom Viskositätssensor 122 erfasste Viskosität visc1 des Hydraulikfluids abgelegt. Wenn das Verfahren von Figur 5 bei unterschiedlichen Umgebungsbedingungen durchlaufen wird, wird so ein Satz von Kennlinien geschaffen, welche jeweils speziell für bestimmte Umgebungsbedingungen geeignet sind.In block 102, during several process loops, the valve 72 is opened during a same time interval dt1. So it is gradually opened up. In block 110, a counter n is incremented by one, and in block 124, a query is made as to whether counter n is greater than a threshold G. The number of measuring operations is thus limited by the limit value G to a fixed value. In block 106, the valve 72 is opened during a period dt2 which is so long that the piston 58 in any case in its in FIG. 4 reaches the lower end position. A detection of this process by means of a knock sensor is therefore not required here. In block 114, the characteristic curve dh = f (dt) is determined and stored for the temperature temples detected by the temperature sensor 120 and the viscosity visc1 of the hydraulic fluid detected by the viscosity sensor 122. If the procedure of FIG. 5 is traversed under different environmental conditions, so a set of characteristics is created, which are each suitable for specific environmental conditions.

Die in den Figuren 3 und 5 angegebenen Verfahren werden vorzugsweise unmittelbar nach dem Ausschalten der Brennkraftmaschine 10 vom Steuergerät 32 initiiert. Dabei ist dem Steuergerät 32 die Stellung der Kolben 16 der einzelnen Zylinder der Brennkraftmaschine 10 bekannt, und es wird das in den Figuren 3 beziehungsweise 5 dargestellte Verfahren nur für jene Zylinder durchgeführt, bei denen sichergestellt ist, dass es zu keiner Kollision zwischen dem Einlassventil 22 und dem entsprechenden Kolben 16 oder mit anderen Ventilen kommen kann. Wenn das Verfahren mit einer gewissen Regelmäßigkeit nach dem Abschalten der Brennkraftmaschine durchgeführt wird, ist dennoch sichergestellt, dass das aktuelle Betriebsverhalten der hydraulischen Aktoren 26 der Einlassventile 20 aller Zylinder bekannt ist. Möglich ist allerdings auch die Durchführung des Verfahrens während eines Schubbetriebs der Kraftfahrzeugs, solange gewährleistet ist, dass es zu keinen Kollisionen zwischen dem Kolben und dem entsprechenden Gaswechselventil kommt.The in the Figures 3 and 5 specified methods are preferably initiated immediately after switching off the internal combustion engine 10 from the controller 32. In this case, the control unit 32, the position of the piston 16 of the individual cylinder of the internal combustion engine 10 is known, and it will be in the Figures 3 5 or 5 is performed only for those cylinders which ensure that there is no collision between the inlet valve 22 and the corresponding piston 16 or with other valves. If the method is carried out with a certain degree of regularity after switching off the internal combustion engine, it is nevertheless ensured that the current operating behavior of the hydraulic actuators 26 of the intake valves 20 of all cylinders is known. However, it is also possible to carry out the method during an overrun operation of the motor vehicle, as long as it is ensured that there are no collisions between the piston and the corresponding gas exchange valve.

Im Übrigen wird in analoger Weise auch das aktuelle Betriebsverhalten der hydraulischen Aktoren 28 der Auslassventile 22 ermittelt. Dabei muss gegebenenfalls auch berücksichtigt werden, dass es zu Kollisionen zwischen dem Einlassventil 20 und dem Auslassventil 22 eines Zylinders kommen kann. Bei einer wiederholten Durchführung der in den Figuren 3 und 5 aufgezeichneten Verfahren können auch Mittelwerte beispielsweise über die drei letzten Verfahrensabläufe gebildet werden, um so die Genauigkeit des Verfahrensergebnisses zu verbessern. Ferner kann die Ansprechzeit des Magnetventils 72 aus dem Beginn des Druckabfalls dp im Fluidspeicher 80 ermittelt werden.Incidentally, the current operating behavior of the hydraulic actuators 28 of the exhaust valves 22 is determined in an analogous manner. If necessary, it must also be considered that collisions between the inlet valve 20 and the outlet valve 22 of a cylinder can occur. In a repeated implementation of the in the Figures 3 and 5 In the case of recorded methods, mean values can also be formed, for example, over the last three procedural sequences in order to improve the accuracy of the method result. Furthermore, the response time of the solenoid valve 72 may be determined from the beginning of the pressure drop dp in the fluid reservoir 80.

In hier nicht dargestellten Ausführungsbeispielen wird das oben beschriebene Verfahren bei Brennkraftmaschinen mit Saugrohreinspritzung und bei Diesel-Brennkraftmaschinen eingesetzt.In embodiments not shown here, the method described above is used in internal combustion engines with intake manifold injection and in diesel internal combustion engines.

Ebenfalls in einem nicht dargestellten Ausführungsbeispiel, in einer Betriebsphase, in der das Auslassventil 20 ruht, wird das Ventil 118 geschlossen und die Entwicklung des Drucks im Fluidspeicher 80 überwacht. Bei einem zu starken Druckabfall in einem bestimmten Zeitraum wird eine Meldung ausgegeben. Diese kann in einem Eintrag in einen Fehlerspeicher bestehen, oder es kann eine Warnanzeige für den Benutzer der Brennkraftmaschine 10 aufleuchten. Denkbar ist auch, in einem solchen Fall die Brennkraftmaschine 10 ganz still zu legen oder nur noch einen eingeschränkten Sicherheitsbetrieb zuzulassen, um einen weiteren Schaden an der Brennkraftmaschine 10 zu vermeiden.Also in an embodiment, not shown, in an operating phase in which the exhaust valve 20 rests, the valve 118 is closed and the evolution of the pressure in the fluid reservoir 80 is monitored. If the pressure drops too much over a certain period of time, a message is displayed. This may consist in an entry in a fault memory, or it may light a warning display for the user of the internal combustion engine 10. It is also conceivable, in such a case, to lay the internal combustion engine 10 completely still or to allow only a limited safety operation in order to avoid further damage to the internal combustion engine 10.

Claims (13)

  1. Method for operating a hydraulic actuator (26), in particular for a gas exchange valve (20) of an internal combustion engine (10), in which a movement of an actuating element (58) of the actuator (26) is brought about in that a working space (60) of the actuator (26) can be connected by means of a valve device (72) to a fluid accumulator (80), in which hydraulic fluid under pressure is stored, and can be separated from the said fluid accumulator, and in which the stroke (dh) of the actuating element (58) of the actuator (26) is dependent on a fluid volume present in the working space (60), and in which, to determine a current operating behaviour of the actuator (26), the working space (60) is briefly connected for a defined period of time (dt) to the fluid accumulator (80), the corresponding pressure drop (dp) in the fluid accumulator (80) is detected, the corresponding stroke (dh) is determined from the pressure drop (dp), using known geometric quantities (dA, V0) of the actuator (26), and at least one pair of values is formed which consists of the period of time (dt), during which the valve device (72) is opened and the fluid accumulator (80) is connected to the working space (60) of the actuator (26), and of the determined stroke (dh), characterized in that the stroke is determined from the pressure drop (dp), using known geometric quantities (dA, Vo) of the actuator.
  2. Method according to Claim 1, characterized in that the pressure drop (dp) in the fluid accumulator (80) is detected for various periods of time (dt1, dt2), during which the working space (60) of the actuator (26) is connected to the fluid accumulator (80), and a current characteristic curve is formed from the determined pairs of values (dp, dt1, dt2).
  3. Method according to one of the preceding claims, characterized in that the actuating element (58) is brought from a known initial position into a known end position, the corresponding pressure drop (dpa) in the fluid accumulator (80) is detected, and at least one determined pair of values is standardised with the aid of the detected pressure drop (dpa) and of the stroke (dha) between the initial position and end position.
  4. Method according to Claim 3, characterized in that the attainment of the initial position and/or end position of the actuating element (58) is detected by means of a knock sensor.
  5. Method according to one of the preceding claims, characterized in that the at least one pair of values is formed, taking into account the modulus of elasticity (EOIL) of the hydraulic fluid and/or the elasticity of the fluid accumulator (80).
  6. Method according to one of the preceding claims, characterized in that the temperature (temp1) and/or the viscosity (visc1) of the hydraulic fluid are/is detected during the determination of the current operating behaviour of the actuator (26), and the at least one pair of values is formed for a specific viscosity (visc1) and/or a specific temperature (temp1) of the hydraulic fluid.
  7. Method according to one of the preceding claims, characterized in that the response time of the valve device (72) from the commencement of the pressure drop (dp) in the fluid accumulator (80) is determined.
  8. Method according to one of the preceding claims, characterized in that, to determine the current operating behaviour of the hydraulic actuator (26), the fluid accumulator (80) is separated fluidically from a pressure accumulator (62) and/or a high-pressure pump (44) for supplying the fluid accumulator (80) is switched off.
  9. Method according to one of the preceding claims, characterized in that the current operating behaviour of the actuator (26) of a gas exchange valve (20) of an internal combustion engine (10) is determined after the switch-off of the internal combustion engine (10) and/or during an overrun of the internal combustion engine (10).
  10. Method according to one of the preceding claims, characterized in that, with the hydraulic actuator (26) stationary, the pressure in the fluid accumulator (80) is detected, and, in the event of an inadmissible pressure drop, a message is output.
  11. Computer program, characterized in that it is programmed for carrying out the method according to one of the preceding claims.
  12. Control and/or regulation apparatus (32) for an internal combustion engine (10), characterized in that it is programmed for use in a method according to one of Claims 1 to 10.
  13. Internal combustion engine (10), in particular for a motor vehicle (12), with a control and/or regulation apparatus (32) which is programmed for use in a method according to one of Claims 1 to 10.
EP03770900A 2003-03-10 2003-10-06 Method for operating a hydraulic actuator, especially a gas exchange valve of an internal combustion engine Expired - Lifetime EP1618291B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10310300A DE10310300A1 (en) 2003-03-10 2003-03-10 Combustion engine valve actuator control method, in which the work space of the actuator is temporarily connected to a hydraulic fluid accumulator to measure a resultant pressure drop and thus the position of the actuator element
PCT/DE2003/003305 WO2004081350A1 (en) 2003-03-10 2003-10-06 Method for operating a hydraulic actuator, especially a gas exchange valve of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1618291A1 EP1618291A1 (en) 2006-01-25
EP1618291B1 true EP1618291B1 (en) 2010-05-19

Family

ID=32891982

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03770900A Expired - Lifetime EP1618291B1 (en) 2003-03-10 2003-10-06 Method for operating a hydraulic actuator, especially a gas exchange valve of an internal combustion engine

Country Status (5)

Country Link
US (1) US7380528B2 (en)
EP (1) EP1618291B1 (en)
JP (1) JP4500168B2 (en)
DE (2) DE10310300A1 (en)
WO (1) WO2004081350A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105805086A (en) * 2016-05-06 2016-07-27 北京航空航天大学 Fault diagnosis method of hydraulic actuator based on multiple models
CN107882778A (en) * 2017-11-16 2018-04-06 中国航空工业集团公司北京航空精密机械研究所 A kind of ultra-precision machine tool oil supply system with emergent supply capability

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004030306A1 (en) * 2004-06-23 2006-01-12 Robert Bosch Gmbh Method for detecting at least one valve lift position in an internal combustion engine with variable valve timing
DE102005048745A1 (en) * 2005-10-10 2007-04-12 Ludwig Ehrhardt Gmbh Pressure medium cylinder and method for detecting the operating time and / or operating cycles of a pressure medium cylinder
US7555998B2 (en) * 2005-12-01 2009-07-07 Jacobs Vehicle Systems, Inc. System and method for hydraulic valve actuation
DE102007025619B4 (en) * 2007-06-01 2012-11-15 Robert Bosch Gmbh Method and device for controlling a hydraulic actuator
JP5589758B2 (en) * 2010-10-26 2014-09-17 いすゞ自動車株式会社 Fail-safe control system for hydraulically driven variable valve mechanism
FI124245B (en) * 2012-02-16 2014-05-15 Wärtsilä Finland Oy Hydraulic valve arrangement for using a controlled gas valve in a piston combustion engine in a controlled manner
US20140379241A1 (en) * 2013-06-20 2014-12-25 GM Global Technology Operations LLC Hydraulic accumulator temperature estimation for controlling automatic engine stop/start
CA2833663A1 (en) * 2013-11-21 2015-05-21 Westport Power Inc. Detecting end of stroke in a hydraulic motor
DE102014012688B4 (en) * 2014-09-01 2022-04-21 Acs Air Compressor Systeme Gmbh multi-way valve
DE102016214370B3 (en) * 2016-08-03 2017-12-14 Audi Ag Hydraulic system for an automatic transmission of a motor vehicle
US10612427B2 (en) 2017-08-28 2020-04-07 Schaeffler Technologies AG & Co. KG Solenoid valve control for noise reduction in a variable valve lift system
DK179875B1 (en) * 2018-03-22 2019-08-14 MAN Energy Solutions Exhaust valve actuation system and large two-stroke internal combustion engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134017A (en) * 1987-11-19 1989-05-26 Honda Motor Co Ltd Valve system for internal-combustion engine
SU1700287A1 (en) 1988-10-29 1991-12-23 Самарский авиационный институт им.акад.С.П.Королева Method and device for diagnosing hydraulic systems of machines
DE4218320A1 (en) 1992-06-03 1993-12-09 Siemens Ag Method and device for testing a valve driven by a medium
US5619965A (en) * 1995-03-24 1997-04-15 Diesel Engine Retarders, Inc. Camless engines with compression release braking
JP3454116B2 (en) * 1997-11-10 2003-10-06 トヨタ自動車株式会社 Vehicle drive system
DE19826047A1 (en) * 1998-06-12 1999-12-16 Bosch Gmbh Robert Device for controlling a gas exchange valve for internal combustion engines
DE19963753A1 (en) 1999-12-30 2001-07-12 Bosch Gmbh Robert Valve control for an internal combustion engine
US6739293B2 (en) * 2000-12-04 2004-05-25 Sturman Industries, Inc. Hydraulic valve actuation systems and methods
DE60118984T2 (en) * 2000-12-04 2007-01-11 Sturman Industries, Inc., Woodland Park APPARATUS AND METHOD FOR THE HYDRAULIC OPERATION OF ONE VALVE
DE10101584A1 (en) * 2001-01-16 2002-07-25 Bosch Gmbh Robert Pressure accumulator for pressurizing a hydraulic device, with which a gas exchange valve of an internal combustion engine is preferably actuated
DE10107698C1 (en) * 2001-02-19 2002-08-22 Bosch Gmbh Robert Gas exchange valve device for an internal combustion engine
DE10138777A1 (en) 2001-08-07 2003-02-20 Kunze Silvia Leak detection method for use with the pressure lines of a hydraulic or pneumatic machine, whereby pressure is measured over time and compared with stored reference pressure values to determine if a threshold is exceeded

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105805086A (en) * 2016-05-06 2016-07-27 北京航空航天大学 Fault diagnosis method of hydraulic actuator based on multiple models
CN107882778A (en) * 2017-11-16 2018-04-06 中国航空工业集团公司北京航空精密机械研究所 A kind of ultra-precision machine tool oil supply system with emergent supply capability

Also Published As

Publication number Publication date
EP1618291A1 (en) 2006-01-25
DE50312728D1 (en) 2010-07-01
JP4500168B2 (en) 2010-07-14
JP2006514206A (en) 2006-04-27
US20060241846A1 (en) 2006-10-26
US7380528B2 (en) 2008-06-03
DE10310300A1 (en) 2004-09-23
WO2004081350A1 (en) 2004-09-23

Similar Documents

Publication Publication Date Title
EP1618291B1 (en) Method for operating a hydraulic actuator, especially a gas exchange valve of an internal combustion engine
DE102014100489B4 (en) Fuel injector
DE112014000724B4 (en) System and method for detecting pressure data from a fuel reservoir of an internal combustion engine
DE102015111949A1 (en) Current pulse control method for fuel suction pumps
DE102006000021A1 (en) Common-rail fuel injection device for e.g. direct fuel injection diesel machine, has control device estimating pressure value using changed electricity value and physical balance characteristics between forces acting on control valve
DE112011101723T5 (en) A piezoelectric fuel injection nozzle system, method for estimating timing characteristics of a fuel injection event
EP2758650B1 (en) Method for assessing an injection behaviour of at least one injection valve in an internal combustion engine and operating method for an internal combustion engine
DE102004006896A1 (en) Method for control and regulation of an IC engine with common-rail system uses calculation of injection end and injection begin deviations to evaluate fuel injectors
DE102005055658A1 (en) fuel system
DE102010013602A1 (en) A method for detecting a malfunction of an electronically controlled fuel injection system of an internal combustion engine
DE102012218176A1 (en) Method for operating a fuel injection system
DE10222693B4 (en) Method and system for controlling fuel injection
EP1735673A1 (en) Method for monitoring a fuel supply device pertaining to an internal combustion engine
DE102009028650B4 (en) Method for operating a fuel injection valve of an internal combustion engine
DE102004020937B4 (en) Method for determining a closing time of a closing element and circuit arrangement
DE102007050813A1 (en) Method for monitoring delivery quantity with valve control for internal combustion engine, particularly valve control for spark-ignition internal combustion engine, involves controlling valve of internal combustion engine
DE102021115842A1 (en) METHODS AND SYSTEMS FOR DIAGNOSING A VALVE
DE10318433B4 (en) Fuel injection system with pressure increase function
DE102007058227A1 (en) Method for operating an internal combustion engine and control or regulating device for an internal combustion engine
DE102011056159B4 (en) Fuel injection control for an internal combustion engine
DE102008041746A1 (en) A system for learning a deviation of an actual injection amount from a target injection amount
DE102016219959A1 (en) Method for checking a calibration of a pressure sensor of a motor vehicle injection system and control device, high-pressure injection system and motor vehicle
DE102006011725A1 (en) Method and device for calibrating a piezo actuator
DE10247942A1 (en) Internal combustion engine operation diagnosing method, involves determining idle air flow change as engine is operated in selected compression ratio operation states, and evaluating operation based on air flow change
DE10305525B4 (en) Method and device for adapting the pressure wave correction in a high-pressure injection system of a motor vehicle while driving

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT SE

17Q First examination report despatched

Effective date: 20070403

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE

REF Corresponds to:

Ref document number: 50312728

Country of ref document: DE

Date of ref document: 20100701

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50312728

Country of ref document: DE

Effective date: 20110221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131018

Year of fee payment: 11

Ref country code: SE

Payment date: 20131022

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131029

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131217

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50312728

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141007

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141006