EP1617872A2 - Methods and compositions for enhancing immune response - Google Patents

Methods and compositions for enhancing immune response

Info

Publication number
EP1617872A2
EP1617872A2 EP04775877A EP04775877A EP1617872A2 EP 1617872 A2 EP1617872 A2 EP 1617872A2 EP 04775877 A EP04775877 A EP 04775877A EP 04775877 A EP04775877 A EP 04775877A EP 1617872 A2 EP1617872 A2 EP 1617872A2
Authority
EP
European Patent Office
Prior art keywords
irm
amines
tissue region
substituted
localized tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04775877A
Other languages
German (de)
French (fr)
Other versions
EP1617872A4 (en
Inventor
Richard L. Miller
Mark A. Tomai
Ross M. Kedl
Isidro Angelo E. Zarraga
Ronnie Ortiz
James D. Stoesz
Paul D. Wightman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/640,904 external-priority patent/US7427629B2/en
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of EP1617872A2 publication Critical patent/EP1617872A2/en
Publication of EP1617872A4 publication Critical patent/EP1617872A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6907Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a microemulsion, nanoemulsion or micelle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/543Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • IMMUNE RESPONSE BACKGROUND There has been a major effort in recent years, with significant successes, to discover new drug compounds that act by stimulating certain key aspects of the immune system, as well as by suppressing certain other aspects (see, e.g., U.S. Patent Nos. 6,039,969 and 6,200,592). These compounds, sometimes referred to as immune response modifiers (IRMs), appear to act through basic immune system mechanisms known as tolllike receptors to induce selected cytokine biosynthesis and may be used to treat a wide variety of diseases and conditions.
  • IRMs immune response modifiers
  • certain IRMs may be useful for treating viral diseases (e.g., human papilloma virus, hepatitis, herpes), neoplasias (e.g., basal cell carcinoma, squamous cell carcinoma, actinic keratosis), and TH2-mediated diseases (e.g., asthma, allergic rhinitis, atopic dermatitis), and are also useful as vaccine adjuvants.
  • viral diseases e.g., human papilloma virus, hepatitis, herpes
  • neoplasias e.g., basal cell carcinoma, squamous cell carcinoma, actinic keratosis
  • TH2-mediated diseases e.g., asthma, allergic rhinitis, atopic dermatitis
  • IRMs Unlike many conventional anti- viral or anti-tumor compounds, the primary mechanism of action for IRMs is indirect, by stimulating the immune system to recognize and take appropriate action against a pathogen.
  • Many of the IRM compounds are small organic molecule imidazoquinoline amine derivatives (see, e.g., U.S. 4,689,338), but a number of other compound classes are now known as well (see, e.g., U.S. 5,446,153) and more are still being discovered.
  • Other IRMs have higher molecular weights, such as oligonucleotides, including CpGs (see, e.g., U.S. 6,194,388).
  • IRM immune response modifier
  • IRMs have the ability to modulate the immune system locally, but by inducing certain chemokines, such as, e.g., M-P-3 _, MIP-lc-, IP-10, they can recruit additional critical immune system cells, such as dendritic cells, to the localized tissue region.
  • chemokines such as, e.g., M-P-3 _, MIP-lc-, IP-10
  • additional critical immune system cells such as dendritic cells
  • the IRM can further activate the immune system cells that have been recruited to the localized site, thus creating a further synergistic effect.
  • the IRM depoting methods and compositions of the present invention can thus provide important additional time for activation and/or infiltration of responsive immune system cells (e.g., dendritic cells, monocytes/macrophages, and B cells) within a specific localized tissue region.
  • responsive immune system cells e.g., dendritic cells, monocytes/macrophages, and B cells
  • these methods and formulations may also help assure that the immune response is correctly targeted to an immunogen at the intended desired tissue location (e.g., where there are neoplastic cells, virus infected cells, or vaccine antigen present).
  • the ability to target by co-locating the IRM, antigen presenting cells (APCs), and antigen is surprisingly important because it may enhance recognition by the immune system of the targeted disease antigens, and may also reduce the potential for unwanted immune system stimulation away from the actual disease target.
  • IRM depot preparations that provide a pulsed IRM delivery i.e., where the active IRM is release intermittently in pulses over time
  • the invention includes a method of enhancing the immune response to an IRM compound, comprising depositing within a localized tissue region an IRM depot preparation that provides an extended residence time within the localized tissue region. This contrasts with either injection of a simple solution or topical delivery via cream, gel, or patch.
  • the invention also includes IRM depot preparations disclosed herein, and methods of treatment using the IRM depot preparations disclosed herein.
  • the IRM localized tissue region may be, e.g., a cancer, infected lesion or organ, or vaccination site.
  • the localized tissue region may be, e.g., a breast cancer tumor, stomach cancer tumor, lung cancer tumor, head or neck cancer tumor, colorectal cancer tumor, renal cell carcinoma tumor, pancreatic cancer tumor, basal cell carcinoma tumor, pancreatic cancer tumor, cervical cancer tumor, melanoma cancer tumor, prostate cancer tumor, ovarian cancer tumor, or bladder cancer tumor.
  • the localized tissue region may include a vaccine.
  • the IRM depot preparation may comprise, e.g., a lipid-modified IRM, an IRM compound attached to support material, solid particles of IRM compound, an emulsion, micelles, an IRM within a biodegradable polymer matrix, IRM compound incorporated into lipid membranes, lipid vesicles, or liposomes.
  • the IRM depot preparation may provide pulsed delivery of an IRM compound to the localized tissue region.
  • the IRM depot preparation may comprise an osmotically driven cylinder.
  • the IRM depot preparation may be delivered within the localized tissue region using, e.g., needle injection, surgical implantation, laparoscopic implantation, catheter implantation, a microneedle array, or high-velocity particle implantation.
  • the IRM may be an agonist of at least one TLR selected from the group consisting of TLR6, TLR7, TLR8, TLR9 and combinations thereof.
  • the IRM maybe a selective TLR agonist of TLR 7, TLR 8, or TLR 9, or an agonist of both TLR 7 and 8.
  • Many of the IRM compounds disclosed herein are TLR 7 and/or 8 agonists.
  • the IRM may alternatively be a TLR 4 agonist.
  • the IRM may be preferably be a small molecule immune response modifier, for example comprising a 2-aminopyridine fused to a five membered nitrogen-containing heterocyclic ring.
  • the present invention is directed to methods and formulations of immune response modifiers (IRMs) that can be deposited within a localized tissue region and provide locally active IRM compounds for an extended period of time.
  • IRMs immune response modifiers
  • One way this can be described is in terms of the IRM half-life within a localized tissue region.
  • concentration may be about half only two hours later. This would be considered an IRM residence half-life of about 2 hours, although the rate of IRM clearance may not always be constant.
  • an IRM depot preparation such as those described herein is injected into a localized tissue region, such as solid tumor, so as to achieve a desired IRM concentration
  • the concentration of active IRM in the tumor tissue may not be down to half until, e.g., 10-14 days later. This would be considered an IRM residence half-life of about 2 weeks.
  • the present invention thus provides active IRMs within a localized tissue region for a time longer than a comparable concentration of the IRM in a conventional solution, wherein at least about 50% of the IRM compound delivered via the IRM depot preparation remains localized at the treatment site for more than at least about 2 hours.
  • the IRM residence half-life may be at least 12 hours, 24 hours, 7 days, two weeks, a month, or even several months.
  • the benefits of the present invention in terms of enhanced immune response and/or better targeting of the immune system to intended antigens can be accomplished with many different IRM depot preparations, IRM compounds, optionally with other active agents, and can be delivered to various localized tissue regions for a wide range of treatments.
  • IRM depot preparation refers to compositions that provide active
  • IRM compound for an extended period to a localized tissue region (as opposed to an extended release IRM formulation for providing extended systemic delivery, although that may use a drug depot for systemic delivery).
  • the IRM may either be attached to some other material that helps hold the IRM in place within the desired localized tissue region, or the IRM may be released over time from a controlled release formulation in such a way that active IRM is present locally at a desired concentration for an extended period.
  • Examples of attaching an IRM to another material that can be used in an IRM depot preparation include the IRM-support complexes disclosed in, e.g., copending applications US 60/462140, 60/515256, and US 2003/25523.
  • controlled release formulations and methods that can be used in an IRM depot preparation, although typically used for extended release systemic drug delivery, are disclosed in, e.g., US 6,126,919 (biocompatible compounds), O'Hagan and Singh, Microparticles as vaccine adjuvants and delivery systems, Expert Rev. Vaccines
  • IRM depot preparations that can provide an increased IRM residence time within a localized tissue region include but are not limited to the following: 1.
  • the IRM compound may be attached (e.g., conjugated, coated, or ion- paired) onto to other support materials, such as plastic, metal, minerals (e.g., alum), or silicone, in the form of particles, beads, fibers, meshes, polymers, etc., as disclosed in, e.g., copending applications US 60/462140, 60/515256, and US 2003/25523.
  • These IRM support complexes can then be deposited within a desired tissue site and remain in place and active for an extended period of time.
  • IRM immunoreactive protein
  • IRM immunoreactive protein
  • an antigen if desired, may adsorb onto the surface of alum particles to enhance antigen presentation and endocytosis of particulates.
  • Another example would where the IRM is covalently linked to a polymer backbone through a link that is subject to hydrolysis or enzymatic activity at a slow, controlled rate.
  • the IRM compound may be conjugated directly to a lipid group, as disclosed in, e.g., copending application US 60/515604, which in itself can provide an IRM depot preparation.
  • lipid-modified or lipidated IRMs may also be used as the IRM compound in the other IRM depot preparations described herein, e.g., for formation of suspensions, incorporation into emulsions, lipid membranes, lipid vesicles, liposomes, and the like.
  • IRM depot preparation for example, if a lipidated IRM is in suspension, formulations of which are described below, is injected subcutaneously at lOmg/kg (200ug of drug in a normal B6 mouse), a substantial amount of the IRM depot preparation is still visible under the skin
  • the IRM compound may be used in the form of solid IRM particles, where the particles may have a limited solubility so that once implanted within the localized tissue region they dissolve slowly over an extended period. This contrasts with the situation where solid drug particle suspensions are delivered that then dissolve relatively quickly upon delivery (e.g., within an hour).
  • the IRM particles may be amorphous or crystalline and in the form of fine powders, liquid suspensions, such as colloidal suspensions, or may be included within gels or creams, and the like.
  • the solid IRM particles may be essentially pure IRM compound, or may include carriers or fillers.
  • the average size of the particles maybe less than 1 micron, or from about 1-100 microns, or larger than 100 microns, depending on the particular IRM used and the desired release characteristics. An average particle size of between 1-20 microns will often be suitable.
  • a colloidal IRM suspension may be formed using an IRM dissolved in a water-miscible organic injectable solvent (e.g. N-methyl pyrrolidone or NMP) (compartment 1). Then, an antigen, if desired, may be dissolved in an aqueous solution with surfactants (e.g. Tween 80) (compartment 2).
  • a water-miscible organic injectable solvent e.g. N-methyl pyrrolidone or NMP
  • an antigen if desired, may be dissolved in an aqueous solution with surfactants (e.g. Tween 80) (compartment 2).
  • colloidal particles of IRM Prior to administration to a localized tissue region, such as subcutaneous injection, colloidal particles of IRM are formed by mixing compartment 1 into compartment 2, causing precipitation of IRM into fine particles. Of course, where appropriate an IRM colloidal suspension can be made prior to packaging, with instructions for shaking/vortexing prior to administration. 4.
  • the IRM compound may be encapsulated, incorporated, or dissolved into biodegradable polymeric matrices such as poly lactic acid (polylactides), poly glycolic acid (polyglycolides), poly(d,l-lactide-co-glycolide) (PLGA), polyorthoesters, polyanhydrides, polyphosphazenes, and polyurethanes.
  • Such biodegradable matrices are often used to provide extended release systemic drug delivery, but can also be adapted for use to provide extended IRM delivery within a localized tissue region, for example directly within a tumor mass, infection site, or vaccination site.
  • an IRM compound and a vaccine antigen may be dissolved in a polymer solvent like N-methyl pyrrolidone or NMP (compartment 1).
  • a selected polymer may then be dissolved in the solvent (compartment 2).
  • Compartment 1 and 2 are mixed upon administration, e.g., using a double cartridge syringe with a static mixer. When injected, the solvent (e.g.
  • the IRM compound may be incorporated into single emulsions such as oil- in-water (o/w) or water-in-oil (w/o), or multiple emulsions such as water-in-oil-in water (w/o/w) and oil-in-water-in-oil (o/w/o).
  • Antigen can also be incorporated into the emulsion in addition to the IRM (e.g. to generate a more specific immune response).
  • the IRM and antigen can partition between the oil and water phases, or lie on the discrete phase (e.g. oil droplet) surface.
  • the emulsion format may act synergistically with the IRM for improved immune response (e.g. antigen on oil droplet surface may enhance its presentation to cells of the immune system, while IRM can enhance uptake of the antigen on the oil droplet by cells of the immune system.
  • an o/w emulsion may use an IRM in a MF59-based emulsion containing squalene (oil-phase) and surfactant (e.g., Tween 80, Span 85), and water.
  • the IRM may be pre-dissolved in the water phase or the oil phase.
  • a vegetable oil sesame oil, soybean oil, mineral oil, e.g.
  • a w/o emulsion may use an IRM dissolved in water, surfactant (e.g., mannide monooleate) and mineral oil.
  • a w/o emulsion can also be made using water with IRM dissolved, and injectable vegetable oils with appropriate emulsifiers and surfactants (Tween 80, Cremophore EL, etc.).
  • Antigen may also be pre-dissolved in water or the oil phase and incorporated in the emulsion. 6.
  • the IRM compound may be incorporated into lipid membranes, lipid vesicles, and liposomes.
  • the IRM may be loaded into the membrane, on the membrane surface, or in the liposome core.
  • IRM liposomes may use DOTAP transfection agent and cholesterol to entrap IRM, and antigen if desired, in a liposome.
  • the IRM compound may be delivered to the localized tissue region using an osmotically driven cylinder implanted within the tissue.
  • the IRM compound may be incorporated into a bioadhesive polymer such as a hydrogel, including, for example, those described by H. S. Sawhney, C. P. Pathak and J. A.
  • polymeric hydrogel materials can be constructed from poly(vinyl alcohol) precursors as disclosed in U.S. Pat. Nos.
  • poly(methyl methacrylate) is commercially available and is often used in ophthalmic devices such as intraocular lenses, contact lenses, and the like.
  • a suitable hydrogel can be natural, synthetic, or a combination thereof.
  • the hydrogel can be thermally responsive to a designed temperature such as, for example, a hydrogel as described in U.S. Patent Application Serial Number 10/626261, filed July 24, 2003.
  • the thermally responsive hydrogels can be harden when they are warmed up to body temperature, can be further harden upon UV irradiation.
  • Bioadhesive organic polymers are preferred for certain applications of IRMs.
  • a bioadhesive polymer may be desired.
  • the adhesive qualities of the formulation would allow the IRM to be in contact with the biological tissue allowing for greater contact time for cytokine induction.
  • the particles may be in any number of forms, e.g., irregular particulates, spheres, plates, flakes, rods or other shapes, and they may be porous or non-porous. Particles can be lyophilized, then for example provided with a diluent to create a microsuspension prior to administration.
  • antigen may be encapsulated within a particle matrix, for example a biodegradable polymer, and IRM compound either incorporated into or adsorbed on surface of the particle, either by physical or chemical adsorption.
  • the IRM depot preparations may provide IRM compound to the desired localized tissue region with various IRM residence half-life times, generally of at least 2 hours.
  • the IRM residence half-life may be at least 12 hours, 24 hours, 7 days, two weeks, a month, or even several months.
  • the IRM depot preparation can be designed to achieve constant or pulsed delivery to the localized tissue region. Pulsed delivery may be desirable in order to provide intermittent dosing of an IRM to the local tissue region over time.
  • the depot preparation may contain a homogeneous mixture of various biodegradable polymers, or the polymers may be utilized in a segmented fashion to achieve complex degradation profiles.
  • the depot preparation may also be coated with various polymers to achieve zero-order, first-order, and pulsatile IRM release. If in the form of particles, some particles may use a polymer matrix that releases the IRM (and other optional ingredients, such as vaccine antigen) over 24 hours, other particles that release about two weeks later, and so on. It may be particularly desirable for vaccine purposes to provide continuous release of an antigen and use an IRM depot preparation that provides pulsatile release of the IRM compound.
  • the IRM release timing may either be regular, e.g., initially and once weekly for several weeks, or it may be irregular, e.g., initially and then 3 days, 2 weeks, and 2 months apart.
  • the IRM depot preparations may be delivered into a desired localized tissue region via any suitable route, e.g., including but not limited to a subcutaneous, intradermal, intramuscular, intrathecal, intra-organ, intratumoral, intralesional, intravesicle, and intraperitoneal route of delivery.
  • a "localized tissue region” will generally be a relatively small portion of the body, e.g., less than 10% by volume, and often less than 1% by volume.
  • the localized tissue region will typically be on the order of no more than about 500 cm 3 , often less than about 100 cm 3 , and in many instances 10 cm 3 or less.
  • the localized tissue region will be 1 cm 3 or less (e.g., for small tumor nodules, viral lesions, or vaccination sites).
  • the localized tissue region may be a particularly large region, up to several liters, for example to treat metastasized cancer within the entire peritoneal cavity (e.g., using an IRM depot preparation to retain the IRM for an extended time within the peritoneal cavity).
  • the IRM depot preparations may be delivered using, e.g., needle injection, surgical, laparoscopic, or catheter implantation, microneedle array, high- velocity particle implantation, or any other known method for introducing a preparation into a localized tissue region. Delivery to the localized tissue region may be in conjunction with image guiding techniques using, for example, ultrasound, MRI, real-time X-ray (fluoroscopy), etc.
  • the IRM depot preparations and methods of the present invention can include additional agents.
  • the additional agent(s) can be administered separately from the IRM depot preparation.
  • additional agents may be additional drugs, including, for example, a vaccine or a tumor necrosis factor receptor (TNFR) agonist.
  • TNFR tumor necrosis factor receptor
  • Vaccines include any material that raises either humoral and/or cell mediated immune response, such as live or attenuated viral and bacterial immunogens and inactivated viral, tumor-derived, protozoal, organism- derived, fungal, and bacterial immunogens, toxoids, toxins, polysaccharides, proteins, glycoproteins, peptides, cellular vaccines, such as using dendritic cells, DNA vaccines, recombinant proteins, glycoproteins, and peptides, and the like, for use in connection with, e.g., cancer vaccines, BCG, cholera, plague, typhoid, hepatitis A, B, and C, influenza A and B, parainfluenza, polio, rabies, measles, mumps, rubella, yellow fever, tetanus, diphtheria, hemophilus influenza b, tuberculosis, meningococcal and pneumococcal vaccines, adeno
  • additional agents can include, but are not limited to, drugs, such as antiviral agents or cytokines.
  • the vaccine may be separate or may be physically or chemically linked to the IRM, such as by chemical conjugation or other means, so that they are delivered as a unit.
  • TNFR agonists that may be delivered in conjunction with the IRM depot preparation include, but are not limited to, CD40 receptor agonists, such as disclosed in copending application US 60/437398.
  • Other active ingredients for use in combination with an IRM depot preparation of the present invention include those disclosed in, e.g., US 2003/0139364.
  • Immune response modifiers useful in the present invention include compounds that act on the immune system by inducing and/or suppressing cytokine biosynthesis.
  • IRM compounds possess potent immunostimulating activity including, but not limited to, antiviral and antitumor activity, and can also down-regulate other aspects of the immune response, for example shifting the immune response away from a TH-2 immune response, which is useful for treating a wide range of TH-2 mediated diseases.
  • IRM compounds can also be used to modulate humoral immunity by stimulating antibody production by B cells. Further, various IRM compounds have been shown to be useful as vaccine adjuvants (see, e.g., U.S. Patent Nos. 6,083,505, U.S.
  • IRM compounds effect their immunostimulatory activity by inducing the production and secretion of cytokines such as, e.g., Type I interferons, TNF- a, IL-1, IL-6, IL-8, IL-10, IL-12, IP-10, MIP-1, MIP-3, and/or MCP-1, and can also inhibit production and secretion of certain TH-2 cytokines, such as IL-4 and IL-5.
  • cytokines such as, e.g., Type I interferons, TNF- a, IL-1, IL-6, IL-8, IL-10, IL-12, IP-10, MIP-1, MIP-3, and/or MCP-1
  • cytokines such as, e.g., Type I interferons, TNF- a, IL-1, IL-6, IL-8, IL-10, IL-12, IP-10, MIP-1, MIP-3, and/or MCP-1
  • Some IRM compounds are said to suppress
  • the preferred IRM compounds are so-called small molecule IRMs, which are relatively small organic compounds (e.g., molecular weight under about 1000 daltons, preferably under about 500 daltons, as opposed to large biologic protein, peptides, and the like).
  • some IRMs are known to be agonists of at least one Toll-like receptor (TLR).
  • TLR Toll-like receptor
  • IRM compounds that are agonists for TLRs selected from 6, 7, 8, and/or 9 may be particularly useful for certain applications.
  • the preferred IRM compound is not a TLR7 agonist and is a TLR8 or TLR9 agonist.
  • the IRM is a TLR7 agonist and is not a TLR 8 agonist.
  • Some small molecule IRM compounds are agonists of TLRs such as 6, 7, and/or 8, while oligonucleotide IRM compounds are agonists of TLR9, and perhaps others.
  • the IRM that is included in the IRM delivery apparatus may be a compound identified as an agonist of one or more TLRs.
  • IRM compounds that activate a strong cytotoxic lymphocyte (CTL) response may be particularly desirable as vaccine adjuvants, especially for therapeutic viral and/or cancer vaccines because a therapeutic effect in these settings is dependent on the activation of cellular immunity.
  • CTL cytotoxic lymphocyte
  • IRM compounds that are TLR 8 agonists may be particularly desirable for use with therapeutic cancer vaccines because antigen presenting cells that express TLR8 have been shown to produce IL-12 upon stimulation through TLR8.
  • IL-12 is believed to play a significant role in activation of CTLs, which are important for mediating therapeutic efficacy as described above.
  • IRM compounds that are TLR 7 agonists and/or TLR 9 agonists may be particularly desirable for use with prophylactic vaccines because the type I interferon induced by stimulation through these TLRs is believed to contribute to the formation of neutralizing Thl-like humoral and cellular responses.
  • IRM compounds that are both TLR 7 and TLR 8 agonists may be particularly desirable for use with therapeutic viral vaccines and/or cancer vaccines because TLR7 stimulation is believed to induce the production of type I IFN and activation of innate cells such as macrophages and NK cells, and TLR8 stimulation is believed to activate antigen presenting cells to initiate cellular adaptive immunity as described above. These cell types are able to mediate viral clearance and/or therapeutic growth inhibitory effects against neoplasms.
  • IRM compounds that are non-TLR 7 agonists, and do not induce substantial amounts of interferon alpha, maybe desirable for use with certain vaccines such as bacterial vaccines because TLR7 induces type I IFN production, which down-regulates the production of IL-12 from macrophages and DCs.
  • IL-12 contributes to the subsequent activation of macrophages, NK cells and CTLs, all of which contribute to anti-bacterial immunity. Therefore the induction of anti-bacterial immunity against some kinds of bacteria may be enhanced in the absence of IFNa.
  • one way to determine if an IRM compound is considered to be an agonist for a particular TLR is if it activates an NFkB/luciferase reporter construct through that TLR from the target species more than about 1.5 fold, and usually at least about 2 fold, in TLR transfected host cells such as, e.g., HEK293 or
  • IRM compounds include a 2-aminopyridine fused to a five-membered nitrogen-containing heterocyclic ring.
  • IRM compounds include, but are not limited to, derivatives of imidazoqumoline amines including but not limited to amide substituted imidazoquinohne amines, sulfonamide substituted imidazoquinohne amines, urea substituted imidazoqumoline amines, aryl ether substituted imidazoquinohne amines, heterocyclic ether substituted imidazoquinohne amines, amido ether substituted imidazoqumoline amines, sulfonamido ether substituted imidazoqumoline amines, urea substituted imidazoquinohne ethers, and thioether substituted imidazoqumoline amines; tetrahydroimidazoquinoline amines including but not limited to amide substituted tefrahydroimidazoquinoline amines, sulfonamide substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydro
  • Additional examples of small molecule IRMs said to induce interferon include purine derivatives (such as those described in U.S. Patent Nos. 6,376,501, and 6,028,076), imidazoqumoline amide derivatives (such as those described in U.S. Patent No.
  • Benzimidazole derivatives such as those described in U.S. Patent 6,387,938)
  • lH-imidazopyridine derivatives (such as those described in U.S. Patent 6,518,265) are said to inhibit TNF and IL-1 cytokines.
  • Other small molecule IRMs said to be TLR 7 agonists are shown in U.S. 2003/0199461 Al.
  • Examples of small molecule IRMs that include a 4-aminopyrimidine fused to a five-membered nitrogen-containing heterocyclic ring include adenine derivatives (such as those described in U. S. Patent Nos. 6,376,501; 6,028,076 and 6,329,381; and in WO 02/08595).
  • the preferred IRM compound is other than imiquimod or S-28463 (i.e., resiquimod: 4-Amino- ⁇ , c--dimethyl-lH-imidazo[4,5- c] quinoline- 1 -ethanol) .
  • IRM compounds include 2-propyl[l,3]thi- ⁇ zolo[4,5- c]quinolin-4-amine, which is considered predominantly a TLR 8 agonist (and not a substantial TLR 7 agonist), 4-amino- ⁇ , -dimethyl-lH-imidazo[4,5-c]quinoline-l-ethanol, which is considered predominantly a TLR 7 agonist (and not a substantial TLR 8 agonist),
  • 4-- ⁇ mino-2-(e oxymethyl)-c-, ⁇ -dimethyl-6,7,8,9-tefr--hydro-lH-imidazo[4,5- c] quinoline- 1 -ethanol which is a TLR 7 and TLR 8 agonist.
  • 4-amino- ⁇ , ⁇ -dimethyl-lH- imidazo[4,5-c]quinoline-l -ethanol has beneficial characteristics, including that it has a much lower CNS effect when delivered systemically compared to imiquimod.
  • IRM compounds include, e.g., N-[4-(4-amino-2-butyl-lH- imidazo[4,5-c][l,5]naphthyridin-l-yl)butyl]-N'-cyclohexylt ⁇ rea, 2-methyl-l-(2- methylpropyl)- lH-imidazo[4,5-c] [ 1 ,5]naphthyridin-4-amine, 1 -(2-methylpropyl)- 1H- imidazo[4,5-c] [ 1 ,5]naphthyridin-4-amine, N- ⁇ 2-[4-amino-2-(ethoxymethyl)- 1H- imidazo[4,5-c]quinolin-l -yl]-l , 1 -dimethylethyl ⁇ methanesulfonamide, N-[4-(4-amino-2- ethyl- lH-imidazo
  • Resiquimod 4-amino-2- emoxymethyl- ⁇ , ⁇ -dimethyl-lH-imidazo[4,5-c]quinoline-l-ethanol, may also be used in certain situations where a combination TLR 7 and TLR 8 agonist is desired.
  • Other IRM compounds include large biological molecules such as oligonucleotide sequences. Some IRM oligonucleotide sequences contain cytosine-guanine dinucleotides (CpG) and are described, for example, in U.S. Patent Nos. 6,194,388; 6,207,646; 6,239,116; 6,339,068; and 6,406,705.
  • CpG cytosine-guanine dinucleotides
  • CpG-containing oligonucleotides can include synthetic immunomodulatory structural motifs such as those described, for example, in U.S. Pat. Nos. 6,426,334 and 6,476,000. C ⁇ G7909 is a specific example.
  • Other IRM nucleotide sequences lack CpG and are described, for example, in International Patent Publication No. WO 00/75304.
  • the large biological molecule IRMs may be less susceptible to rapid clearance from a localized tissue region and, consequently, the IRM depot preparations described herein may be especially useful in connection with small molecule IRMs described above.
  • IRM depot preparations delivered to a localized tissue region can be used in a wide variety of applications, such as in the treatment of a wide variety of conditions.
  • IRMs such as imiquimod - a small molecule, imidazoquinohne IRM, marketed as ALDARA (3M Pharmaceuticals, St. Paul, MN) - have been shown to be useful for the therapeutic treatment of warts, as well as certain cancerous or pre-cancerous lesions (See, e.g., Geisse et ah, J. Am. Acad. DermatoL, 47(3): 390-398 (2002); Shumack et al., Arch. Dermatol, 138: 1163-1171 (2002); U.S. Patent No.
  • IRMs identified herein include, but are not limited to: viral diseases, such as genital warts, common warts, plantar warts, hepatitis B, hepatitis C, herpes simplex virus type I and type II, molluscum contagiosum, variola, HIV, CMV, NZV, rhino virus, adeno virus, coronavirus, influenza, para-influenza; bacterial diseases, such as tuberculosis, and mycobacterium avium, leprosy; other infectious diseases, such as fungal diseases, chlamydia, Candida, aspergillus, cryptococcal meningitis, pneumocystis catnii, cryptosporidiosis, histoplasmosis, toxoplasmosis, trypanosome infection, leishmaniasis; neo
  • IRM is extended within the cancerous tissue, it is believed that the body's immune response to the cancer can be enhanced and directly targeted to relevant tumor antigens. This not only may help reduce or eliminate cancer at the site of IRM depot preparation delivery, but, by sensitizing the immune system to the cancer, may help the immune system attack the cancer in other locations throughout the body.
  • This approach to treatment may be used alone or in conjunction with other treatments for the cancer, such as therapeutic cancer vaccination (which may further include use of an IRM depot preparation), antibody based therapies such as Rituxan and Herceptin, and other chemotherapies.
  • the methods, materials, and articles of the present invention may be applicable for any suitable subject. Suitable subjects include, but are not limited to, animals such as, but not limited to, humans, non-human primates, rodents, dogs, cats, horses, pigs, sheep, goats, cows, or birds. IRMs may also be particularly helpful in individuals having compromised immune functioning, such as those with HIV AIDS, transplant patients, and cancer patients.
  • An amount of an IRM depot preparation effective for a given therapeutic or prophylactic application is an amount sufficient to achieve the intended therapeutic or prophylactic application.
  • the precise amount of IRM depot preparation used will vary according to factors known in the art including but not limited to the physical and chemical nature of the IRM compound, the nature of the composition, the intended dosing regimen, the state of the subject's immune system (e.g., suppressed, compromised, stimulated), the method of administering the IRM compound, and the species to which the formulation is being administered. Accordingly it is not practical to set forth generally the amount that constitutes an amount of IRM and IRM depot preparation effective for all possible applications. Those of ordinary skill in the art, however, can readily determine an appropriate amount with due consideration of such factors.
  • IRM 3 (lipidated IRM)
  • IRM 3 is a lipidated IRM.
  • IRM 3 was formulated to deliver 200ug using a depot preparation formulated as a micropartical precipitate (ppt), colloidal suspension, or as a micellar suspension.
  • the precipitate composition was a microparticle (> lmicron, around 10-500 microns) composition formed by simply injecting IRM 3 dissolved in an organic solvent into an aqueous solution without surfactants.
  • the resulting particle size range was broad, unlike the colloidal suspension (which provided a more monomodal submicron size).
  • IRM 3 was first dissolved in an organic and water miscible solvent (e.g.
  • N-methyl pyrrolidone, DMSO, Cremophore EL then added to an aqueous solution containing an appropriate amount of Tween 80.
  • Tween 80 This causes the lipophilic IRM 3 to precipitate into colloidal particles, coated or surrounded by Tween 80 molecules, which act to prevent or minimize flocculation or agglomeration of the IRM particles.
  • concentration of Tween 80 the finer the IRM colloidal particle size will be.
  • Tween 80 greater than 2%, the IRM colloidal suspension turned into a translucent, almost clear solution, suggestive of a micellar encapsulation of the IRM by Tween 80.
  • IRM 4 is known as CpG 1826 and was formulated to deliver 200ug as an aqueous solution in phosphate buffered saline.
  • mice were injected subcutaneously lOOul of formulation containing 200ug of IRM and 500ug of ovalbumin, then boosted 2 weeks later with same formulation.
  • Five days after the boost the spleens were removed and the cells stained with CD8, CD44, B220 and Kb-SIINFEKL tetramer.
  • the results are shown in Figure 1. The data shown was gated on all live, CD8+,
  • the numbers in the upper right quadrants indicate the percent tetramer staining cells (antigen specific cells) out of total CD8+ T cells.
  • the lipidated IRM molecule provides a clearly enhanced immune response than the non lipidated molecules. It is believed that this is due to both the lipid-modified nature of the compound, and tiie precipitate, colloidal suspension, and micellar suspension compositions, causing the IRM to remain resident within the localized tissue region for an extended period.

Abstract

Methods and compositions for enhancing the immune response to an IRM compound by depositing within a localized tissue region an IRM depot preparation that provides an extended residence time of active IRM within the localized tissue region.

Description

METHODS AND COMPOSITIONS FOR ENHANCING IMMUNE RESPONSE BACKGROUND There has been a major effort in recent years, with significant successes, to discover new drug compounds that act by stimulating certain key aspects of the immune system, as well as by suppressing certain other aspects (see, e.g., U.S. Patent Nos. 6,039,969 and 6,200,592). These compounds, sometimes referred to as immune response modifiers (IRMs), appear to act through basic immune system mechanisms known as tolllike receptors to induce selected cytokine biosynthesis and may be used to treat a wide variety of diseases and conditions. For example, certain IRMs may be useful for treating viral diseases (e.g., human papilloma virus, hepatitis, herpes), neoplasias (e.g., basal cell carcinoma, squamous cell carcinoma, actinic keratosis), and TH2-mediated diseases (e.g., asthma, allergic rhinitis, atopic dermatitis), and are also useful as vaccine adjuvants.
Unlike many conventional anti- viral or anti-tumor compounds, the primary mechanism of action for IRMs is indirect, by stimulating the immune system to recognize and take appropriate action against a pathogen. Many of the IRM compounds are small organic molecule imidazoquinoline amine derivatives (see, e.g., U.S. 4,689,338), but a number of other compound classes are now known as well (see, e.g., U.S. 5,446,153) and more are still being discovered. Other IRMs have higher molecular weights, such as oligonucleotides, including CpGs (see, e.g., U.S. 6,194,388). In view of the great therapeutic potential for IRMs, and despite the important work that has already been done, there is a substantial ongoing need for new means of controlling the delivery and activity of IRMs in order to expand their uses and therapeutic benefits.
SUMMARY It has been found that many immune response modifier (IRM) compounds (described infra) often have a relatively short half-life in terms of residence time at a given delivery location, typically less than about 1-2 hours for small molecule IRMs. They appear to be cleared, metabolized, or simply diffuse away from within a local delivery site rather easily in many cases. This short residence duration may reduce the IRM's ability to activate some immune system cells at the desired site. Hence, it is now believed that the effectiveness of IRM compounds may be enhanced by maintaining a depot of active IRM compound within a localized region of tissue for an extended period. Importantly, not only do IRMs have the ability to modulate the immune system locally, but by inducing certain chemokines, such as, e.g., M-P-3 _, MIP-lc-, IP-10, they can recruit additional critical immune system cells, such as dendritic cells, to the localized tissue region. For example, Furumoto et al., J Clin Invest. March 2004, no. 113(5):774-83, discusses the use of CCL20/MIP-3 alpha and CpGs to recruit dendritic cells, although apparently not in a depot. But by maintaining the IRM present for an extended period within the localized tissue region, the IRM can further activate the immune system cells that have been recruited to the localized site, thus creating a further synergistic effect. The IRM depoting methods and compositions of the present invention can thus provide important additional time for activation and/or infiltration of responsive immune system cells (e.g., dendritic cells, monocytes/macrophages, and B cells) within a specific localized tissue region. Moreover, these methods and formulations may also help assure that the immune response is correctly targeted to an immunogen at the intended desired tissue location (e.g., where there are neoplastic cells, virus infected cells, or vaccine antigen present). This later point — the ability to target by co-locating the IRM, antigen presenting cells (APCs), and antigen — is surprisingly important because it may enhance recognition by the immune system of the targeted disease antigens, and may also reduce the potential for unwanted immune system stimulation away from the actual disease target. It is also believed that IRM depot preparations that provide a pulsed IRM delivery (i.e., where the active IRM is release intermittently in pulses over time) may be particularly desirable for certain applications. Accordingly, the invention includes a method of enhancing the immune response to an IRM compound, comprising depositing within a localized tissue region an IRM depot preparation that provides an extended residence time within the localized tissue region. This contrasts with either injection of a simple solution or topical delivery via cream, gel, or patch. The invention also includes IRM depot preparations disclosed herein, and methods of treatment using the IRM depot preparations disclosed herein. The IRM localized tissue region may be, e.g., a cancer, infected lesion or organ, or vaccination site. The localized tissue region may be, e.g., a breast cancer tumor, stomach cancer tumor, lung cancer tumor, head or neck cancer tumor, colorectal cancer tumor, renal cell carcinoma tumor, pancreatic cancer tumor, basal cell carcinoma tumor, pancreatic cancer tumor, cervical cancer tumor, melanoma cancer tumor, prostate cancer tumor, ovarian cancer tumor, or bladder cancer tumor. The localized tissue region may include a vaccine. The IRM depot preparation may comprise, e.g., a lipid-modified IRM, an IRM compound attached to support material, solid particles of IRM compound, an emulsion, micelles, an IRM within a biodegradable polymer matrix, IRM compound incorporated into lipid membranes, lipid vesicles, or liposomes. The IRM depot preparation may provide pulsed delivery of an IRM compound to the localized tissue region. The IRM depot preparation may comprise an osmotically driven cylinder. The IRM depot preparation may be delivered within the localized tissue region using, e.g., needle injection, surgical implantation, laparoscopic implantation, catheter implantation, a microneedle array, or high-velocity particle implantation. The IRM may be an agonist of at least one TLR selected from the group consisting of TLR6, TLR7, TLR8, TLR9 and combinations thereof. The IRM maybe a selective TLR agonist of TLR 7, TLR 8, or TLR 9, or an agonist of both TLR 7 and 8. Many of the IRM compounds disclosed herein are TLR 7 and/or 8 agonists. The IRM may alternatively be a TLR 4 agonist. The IRM may be preferably be a small molecule immune response modifier, for example comprising a 2-aminopyridine fused to a five membered nitrogen-containing heterocyclic ring. The term "comprises" and variations thereof do not have a limiting meaning where these terms appear in the description and claims, As used herein, "a," "an," "the," "at least one," and "one or more" are used interchangeably. As used herein, "treating" a condition or a subject includes therapeutic, prophylactic, and diagnostic treatments. Also herein, the recitations of numerical ranges by endpoints include all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, etc.). The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The description that follows more particularly exemplifies illustrative embodiments. In several places throughout the application, guidance is provided through lists of examples, which examples can be used individually and in various combinations. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list. Various other features and advantages of the present invention should become readily apparent with reference to the following detailed description, examples, claims and appended drawings. In several places throughout the specification, guidance is provided through lists of examples. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS OF THE INVENTION The present invention is directed to methods and formulations of immune response modifiers (IRMs) that can be deposited within a localized tissue region and provide locally active IRM compounds for an extended period of time. One way this can be described is in terms of the IRM half-life within a localized tissue region. To illustrate, if a conventional solution formulation of a given IRM compound is injected into a solid tumor so as to achieve a resulting tissue concentration of active IRM within the tumor, the concentration may be about half only two hours later. This would be considered an IRM residence half-life of about 2 hours, although the rate of IRM clearance may not always be constant. By contrast, if an IRM depot preparation such as those described herein is injected into a localized tissue region, such as solid tumor, so as to achieve a desired IRM concentration, the concentration of active IRM in the tumor tissue (localized tissue region) may not be down to half until, e.g., 10-14 days later. This would be considered an IRM residence half-life of about 2 weeks. The present invention thus provides active IRMs within a localized tissue region for a time longer than a comparable concentration of the IRM in a conventional solution, wherein at least about 50% of the IRM compound delivered via the IRM depot preparation remains localized at the treatment site for more than at least about 2 hours. For example, the IRM residence half-life may be at least 12 hours, 24 hours, 7 days, two weeks, a month, or even several months. As described below, the benefits of the present invention in terms of enhanced immune response and/or better targeting of the immune system to intended antigens can be accomplished with many different IRM depot preparations, IRM compounds, optionally with other active agents, and can be delivered to various localized tissue regions for a wide range of treatments.
IRM Depot Preparations As used herein, IRM depot preparation refers to compositions that provide active
IRM compound for an extended period to a localized tissue region (as opposed to an extended release IRM formulation for providing extended systemic delivery, although that may use a drug depot for systemic delivery). There are at least two general ways of maintaining a localized IRM depot effect. The IRM may either be attached to some other material that helps hold the IRM in place within the desired localized tissue region, or the IRM may be released over time from a controlled release formulation in such a way that active IRM is present locally at a desired concentration for an extended period. Examples of attaching an IRM to another material that can be used in an IRM depot preparation include the IRM-support complexes disclosed in, e.g., copending applications US 60/462140, 60/515256, and US 2003/25523. Examples of controlled release formulations and methods that can be used in an IRM depot preparation, although typically used for extended release systemic drug delivery, are disclosed in, e.g., US 6,126,919 (biocompatible compounds), O'Hagan and Singh, Microparticles as vaccine adjuvants and delivery systems, Expert Rev. Vaccines
2(2), p. 269-83 (2003), and Vogel et al., A Compendium of Vaccine Adjuvants and Excipients, 2nd Edition, Bethesda, MD: National Institute of Allergy & Infectious Diseases, 1998 (available at www.niaid.nih.gov/hiwaccines/pdf/compendium.pdf). Also, it is usually desired to prevent, or at least reduce the occurrence of, the systemic distribution of the IRM after it leaves the localized tissue region. One way to facilitate this is to select an IRM that is metabolized or cleared rapidly once the IRM leaves the localized tissue region. Some general examples of IRM depot preparations that can provide an increased IRM residence time within a localized tissue region include but are not limited to the following: 1. The IRM compound may be attached (e.g., conjugated, coated, or ion- paired) onto to other support materials, such as plastic, metal, minerals (e.g., alum), or silicone, in the form of particles, beads, fibers, meshes, polymers, etc., as disclosed in, e.g., copending applications US 60/462140, 60/515256, and US 2003/25523. These IRM support complexes can then be deposited within a desired tissue site and remain in place and active for an extended period of time. This a highly versatile approach in part because the IRM compounds can be attached to many different support complex materials, and because the IRM can remain active even while they remain attached to the support complex material. For example, IRM, and an antigen if desired, may adsorb onto the surface of alum particles to enhance antigen presentation and endocytosis of particulates. Another example would where the IRM is covalently linked to a polymer backbone through a link that is subject to hydrolysis or enzymatic activity at a slow, controlled rate. 2. The IRM compound may be conjugated directly to a lipid group, as disclosed in, e.g., copending application US 60/515604, which in itself can provide an IRM depot preparation. These lipid-modified or lipidated IRMs may also be used as the IRM compound in the other IRM depot preparations described herein, e.g., for formation of suspensions, incorporation into emulsions, lipid membranes, lipid vesicles, liposomes, and the like. For example, if a lipidated IRM is in suspension, formulations of which are described below, is injected subcutaneously at lOmg/kg (200ug of drug in a normal B6 mouse), a substantial amount of the IRM depot preparation is still visible under the skin
10-14 days later. 3. The IRM compound may be used in the form of solid IRM particles, where the particles may have a limited solubility so that once implanted within the localized tissue region they dissolve slowly over an extended period. This contrasts with the situation where solid drug particle suspensions are delivered that then dissolve relatively quickly upon delivery (e.g., within an hour). The IRM particles may be amorphous or crystalline and in the form of fine powders, liquid suspensions, such as colloidal suspensions, or may be included within gels or creams, and the like. The solid IRM particles may be essentially pure IRM compound, or may include carriers or fillers. The average size of the particles maybe less than 1 micron, or from about 1-100 microns, or larger than 100 microns, depending on the particular IRM used and the desired release characteristics. An average particle size of between 1-20 microns will often be suitable.
When introduced within a localized tissue region the solid IRM particles can slowly release active IRM compound the local area, providing extended residence times. The rate of release will depend on solubility of the particular IRM used, which may be influenced by such things as selection of polymorph forms, salts, and stereoisomers, in addition to the physicochemical properties of any carriers or fillers, if used. For example, a colloidal IRM suspension may be formed using an IRM dissolved in a water-miscible organic injectable solvent (e.g. N-methyl pyrrolidone or NMP) (compartment 1). Then, an antigen, if desired, may be dissolved in an aqueous solution with surfactants (e.g. Tween 80) (compartment 2). Prior to administration to a localized tissue region, such as subcutaneous injection, colloidal particles of IRM are formed by mixing compartment 1 into compartment 2, causing precipitation of IRM into fine particles. Of course, where appropriate an IRM colloidal suspension can be made prior to packaging, with instructions for shaking/vortexing prior to administration. 4. The IRM compound may be encapsulated, incorporated, or dissolved into biodegradable polymeric matrices such as poly lactic acid (polylactides), poly glycolic acid (polyglycolides), poly(d,l-lactide-co-glycolide) (PLGA), polyorthoesters, polyanhydrides, polyphosphazenes, and polyurethanes. Such biodegradable matrices are often used to provide extended release systemic drug delivery, but can also be adapted for use to provide extended IRM delivery within a localized tissue region, for example directly within a tumor mass, infection site, or vaccination site. For example, an IRM compound and a vaccine antigen may be dissolved in a polymer solvent like N-methyl pyrrolidone or NMP (compartment 1). A selected polymer may then be dissolved in the solvent (compartment 2). Compartment 1 and 2 are mixed upon administration, e.g., using a double cartridge syringe with a static mixer. When injected, the solvent (e.g. NMP) which is miscible with water, diffuses away, leaving a semi-solid implant containing both IRM and Antigen. 5. The IRM compound may be incorporated into single emulsions such as oil- in-water (o/w) or water-in-oil (w/o), or multiple emulsions such as water-in-oil-in water (w/o/w) and oil-in-water-in-oil (o/w/o). Antigen can also be incorporated into the emulsion in addition to the IRM (e.g. to generate a more specific immune response). The IRM and antigen can partition between the oil and water phases, or lie on the discrete phase (e.g. oil droplet) surface. The emulsion format may act synergistically with the IRM for improved immune response (e.g. antigen on oil droplet surface may enhance its presentation to cells of the immune system, while IRM can enhance uptake of the antigen on the oil droplet by cells of the immune system. For example, an o/w emulsion may use an IRM in a MF59-based emulsion containing squalene (oil-phase) and surfactant (e.g., Tween 80, Span 85), and water. The IRM may be pre-dissolved in the water phase or the oil phase. Another example is to use a vegetable oil (sesame oil, soybean oil, mineral oil, e.g. emulsion based on Freund's Incomplete Adjuvant, etc.) with IRM and surfactant (e.g., lecithin) in water. A w/o emulsion may use an IRM dissolved in water, surfactant (e.g., mannide monooleate) and mineral oil. A w/o emulsion can also be made using water with IRM dissolved, and injectable vegetable oils with appropriate emulsifiers and surfactants (Tween 80, Cremophore EL, etc.). Antigen may also be pre-dissolved in water or the oil phase and incorporated in the emulsion. 6. The IRM compound may be incorporated into lipid membranes, lipid vesicles, and liposomes. Within lipsome preparations, the IRM may be loaded into the membrane, on the membrane surface, or in the liposome core. For example, IRM liposomes may use DOTAP transfection agent and cholesterol to entrap IRM, and antigen if desired, in a liposome. 7. The IRM compound may be delivered to the localized tissue region using an osmotically driven cylinder implanted within the tissue. 8. The IRM compound may be incorporated into a bioadhesive polymer such as a hydrogel, including, for example, those described by H. S. Sawhney, C. P. Pathak and J. A. Hubell in Macromolecules, (1993) 26:581-587, as well as polyhyaluronic acids, casein, polysaccharides, keratin, collagen, gelatin, glutin, polyethylene glycol, crosslinked albumin, fibrin, polyanhydrides, polyacrylic acids, alginate, chitosan, poly(methyl methacrylates), poly(ethyl methacrylates), poly(butyl methacrylate), poly(isobutyl methacrylate), poly(hexyl methacrylate), ρoly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), poly(octadecyl acrylate), and cellulose gums. Alternatively, polymeric hydrogel materials can be constructed from poly(vinyl alcohol) precursors as disclosed in U.S. Pat. Nos. 4,528,325 and 4,618,649 or from poly(methyl methacrylate).
Poly(methyl methacrylate) is commercially available and is often used in ophthalmic devices such as intraocular lenses, contact lenses, and the like. A suitable hydrogel can be natural, synthetic, or a combination thereof. In some embodiments, the hydrogel can be thermally responsive to a designed temperature such as, for example, a hydrogel as described in U.S. Patent Application Serial Number 10/626261, filed July 24, 2003. For example, the thermally responsive hydrogels can be harden when they are warmed up to body temperature, can be further harden upon UV irradiation.
Bioadhesive organic polymers are preferred for certain applications of IRMs. For example, if the IRM is to be used for treating bladder cancer, a bioadhesive polymer may be desired. Advantageously, the adhesive qualities of the formulation would allow the IRM to be in contact with the biological tissue allowing for greater contact time for cytokine induction. It should also be noted that where solid particles are involved, the particles may be in any number of forms, e.g., irregular particulates, spheres, plates, flakes, rods or other shapes, and they may be porous or non-porous. Particles can be lyophilized, then for example provided with a diluent to create a microsuspension prior to administration. For vaccines, antigen may be encapsulated within a particle matrix, for example a biodegradable polymer, and IRM compound either incorporated into or adsorbed on surface of the particle, either by physical or chemical adsorption. The IRM depot preparations may provide IRM compound to the desired localized tissue region with various IRM residence half-life times, generally of at least 2 hours. For example, the IRM residence half-life may be at least 12 hours, 24 hours, 7 days, two weeks, a month, or even several months. Further, the IRM depot preparation can be designed to achieve constant or pulsed delivery to the localized tissue region. Pulsed delivery may be desirable in order to provide intermittent dosing of an IRM to the local tissue region over time. For example, a combination of biodegradable polymers can be used that have differing degradation, and thus IRM release, rates. The depot preparation may contain a homogeneous mixture of various biodegradable polymers, or the polymers may be utilized in a segmented fashion to achieve complex degradation profiles. The depot preparation may also be coated with various polymers to achieve zero-order, first-order, and pulsatile IRM release. If in the form of particles, some particles may use a polymer matrix that releases the IRM (and other optional ingredients, such as vaccine antigen) over 24 hours, other particles that release about two weeks later, and so on. It may be particularly desirable for vaccine purposes to provide continuous release of an antigen and use an IRM depot preparation that provides pulsatile release of the IRM compound. Also, the IRM release timing may either be regular, e.g., initially and once weekly for several weeks, or it may be irregular, e.g., initially and then 3 days, 2 weeks, and 2 months apart. The IRM depot preparations may be delivered into a desired localized tissue region via any suitable route, e.g., including but not limited to a subcutaneous, intradermal, intramuscular, intrathecal, intra-organ, intratumoral, intralesional, intravesicle, and intraperitoneal route of delivery. A "localized tissue region" will generally be a relatively small portion of the body, e.g., less than 10% by volume, and often less than 1% by volume. For example, depending on the size of, e.g., a solid tumor or cancerous organ, the localized tissue region will typically be on the order of no more than about 500 cm3, often less than about 100 cm3, and in many instances 10 cm3 or less. For some applications the localized tissue region will be 1 cm3 or less (e.g., for small tumor nodules, viral lesions, or vaccination sites). However, in certain instances the localized tissue region may be a particularly large region, up to several liters, for example to treat metastasized cancer within the entire peritoneal cavity (e.g., using an IRM depot preparation to retain the IRM for an extended time within the peritoneal cavity). The IRM depot preparations may be delivered using, e.g., needle injection, surgical, laparoscopic, or catheter implantation, microneedle array, high- velocity particle implantation, or any other known method for introducing a preparation into a localized tissue region. Delivery to the localized tissue region may be in conjunction with image guiding techniques using, for example, ultrasound, MRI, real-time X-ray (fluoroscopy), etc.
Additional Agents In addition to one or more IRM compounds, the IRM depot preparations and methods of the present invention can include additional agents. Alternatively, the additional agent(s) can be administered separately from the IRM depot preparation. Such additional agents may be additional drugs, including, for example, a vaccine or a tumor necrosis factor receptor (TNFR) agonist. Vaccines include any material that raises either humoral and/or cell mediated immune response, such as live or attenuated viral and bacterial immunogens and inactivated viral, tumor-derived, protozoal, organism- derived, fungal, and bacterial immunogens, toxoids, toxins, polysaccharides, proteins, glycoproteins, peptides, cellular vaccines, such as using dendritic cells, DNA vaccines, recombinant proteins, glycoproteins, and peptides, and the like, for use in connection with, e.g., cancer vaccines, BCG, cholera, plague, typhoid, hepatitis A, B, and C, influenza A and B, parainfluenza, polio, rabies, measles, mumps, rubella, yellow fever, tetanus, diphtheria, hemophilus influenza b, tuberculosis, meningococcal and pneumococcal vaccines, adenovirus, HIV, chicken pox, cytomegalovirus, dengue, feline leukemia, fowl plague, HSV-1 and HSV-2, hog cholera, Japanese encephalitis, respiratory syncytial virus, rotavirus, papilloma virus, severe acute respiratory syndrome (SARS), anthrax, and yellow fever. See also, e.g., vaccines disclosed in WO 02/24225. Such additional agents can include, but are not limited to, drugs, such as antiviral agents or cytokines. The vaccine may be separate or may be physically or chemically linked to the IRM, such as by chemical conjugation or other means, so that they are delivered as a unit. TNFR agonists that may be delivered in conjunction with the IRM depot preparation include, but are not limited to, CD40 receptor agonists, such as disclosed in copending application US 60/437398. Other active ingredients for use in combination with an IRM depot preparation of the present invention include those disclosed in, e.g., US 2003/0139364.
Immune Response Modifier Compounds: Immune response modifiers ("IRM") useful in the present invention include compounds that act on the immune system by inducing and/or suppressing cytokine biosynthesis. IRM compounds possess potent immunostimulating activity including, but not limited to, antiviral and antitumor activity, and can also down-regulate other aspects of the immune response, for example shifting the immune response away from a TH-2 immune response, which is useful for treating a wide range of TH-2 mediated diseases. IRM compounds can also be used to modulate humoral immunity by stimulating antibody production by B cells. Further, various IRM compounds have been shown to be useful as vaccine adjuvants (see, e.g., U.S. Patent Nos. 6,083,505, U.S. 6,406,705, and WO 02/24225). In particular, certain IRM compounds effect their immunostimulatory activity by inducing the production and secretion of cytokines such as, e.g., Type I interferons, TNF- a, IL-1, IL-6, IL-8, IL-10, IL-12, IP-10, MIP-1, MIP-3, and/or MCP-1, and can also inhibit production and secretion of certain TH-2 cytokines, such as IL-4 and IL-5. Some IRM compounds are said to suppress IL-1 and TNF (U.S. Patent No. 6,518,265). For some embodiments, the preferred IRM compounds are so-called small molecule IRMs, which are relatively small organic compounds (e.g., molecular weight under about 1000 daltons, preferably under about 500 daltons, as opposed to large biologic protein, peptides, and the like). Although not bound by any single theory of activity, some IRMs are known to be agonists of at least one Toll-like receptor (TLR). IRM compounds that are agonists for TLRs selected from 6, 7, 8, and/or 9 may be particularly useful for certain applications. In some applications, for example, the preferred IRM compound is not a TLR7 agonist and is a TLR8 or TLR9 agonist. In other applications, for example, the IRM is a TLR7 agonist and is not a TLR 8 agonist. Some small molecule IRM compounds are agonists of TLRs such as 6, 7, and/or 8, while oligonucleotide IRM compounds are agonists of TLR9, and perhaps others. Thus, in some embodiments, the IRM that is included in the IRM delivery apparatus may be a compound identified as an agonist of one or more TLRs. For example, without being bound to any particular theory or mechanism of action, IRM compounds that activate a strong cytotoxic lymphocyte (CTL) response may be particularly desirable as vaccine adjuvants, especially for therapeutic viral and/or cancer vaccines because a therapeutic effect in these settings is dependent on the activation of cellular immunity. For example, studies have shown that activation of T cell immunity in a given patient has a significant positive effect on the prognosis of the patient. Therefore the ability to enhance T cell immunity is believed to be critical to producing a therapeutic effect in these disease settings. IRM compounds that are TLR 8 agonists may be particularly desirable for use with therapeutic cancer vaccines because antigen presenting cells that express TLR8 have been shown to produce IL-12 upon stimulation through TLR8. IL-12 is believed to play a significant role in activation of CTLs, which are important for mediating therapeutic efficacy as described above. IRM compounds that are TLR 7 agonists and/or TLR 9 agonists may be particularly desirable for use with prophylactic vaccines because the type I interferon induced by stimulation through these TLRs is believed to contribute to the formation of neutralizing Thl-like humoral and cellular responses. IRM compounds that are both TLR 7 and TLR 8 agonists may be particularly desirable for use with therapeutic viral vaccines and/or cancer vaccines because TLR7 stimulation is believed to induce the production of type I IFN and activation of innate cells such as macrophages and NK cells, and TLR8 stimulation is believed to activate antigen presenting cells to initiate cellular adaptive immunity as described above. These cell types are able to mediate viral clearance and/or therapeutic growth inhibitory effects against neoplasms. IRM compounds that are non-TLR 7 agonists, and do not induce substantial amounts of interferon alpha, maybe desirable for use with certain vaccines such as bacterial vaccines because TLR7 induces type I IFN production, which down-regulates the production of IL-12 from macrophages and DCs. IL-12 contributes to the subsequent activation of macrophages, NK cells and CTLs, all of which contribute to anti-bacterial immunity. Therefore the induction of anti-bacterial immunity against some kinds of bacteria may be enhanced in the absence of IFNa. For purposes of the present application, one way to determine if an IRM compound is considered to be an agonist for a particular TLR is if it activates an NFkB/luciferase reporter construct through that TLR from the target species more than about 1.5 fold, and usually at least about 2 fold, in TLR transfected host cells such as, e.g., HEK293 or
Namalwa cells relative to control transfectants. For information regarding TLR activation, see, e.g., applications WO 03/043573, US 60/447179, US 60/432650, US 60/432651, and US 60/450484, WO 03/043588 and the other IRM patents and applications disclosed herein. Preferred IRM compounds include a 2-aminopyridine fused to a five-membered nitrogen-containing heterocyclic ring. Examples of classes of small molecule IRM compounds include, but are not limited to, derivatives of imidazoqumoline amines including but not limited to amide substituted imidazoquinohne amines, sulfonamide substituted imidazoquinohne amines, urea substituted imidazoqumoline amines, aryl ether substituted imidazoquinohne amines, heterocyclic ether substituted imidazoquinohne amines, amido ether substituted imidazoqumoline amines, sulfonamido ether substituted imidazoqumoline amines, urea substituted imidazoquinohne ethers, and thioether substituted imidazoqumoline amines; tetrahydroimidazoquinoline amines including but not limited to amide substituted tefrahydroimidazoquinoline amines, sulfonamide substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline amines, aryl ether substituted tetrahydroimidazoquinoline amines, heterocyclic ether substituted tetrahydroimidazoquinoline amines, amido ether substituted tefrahydroimidazoquinoline amines, sulfonamido ether substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline ethers, and thioether substituted tetrahydroimidazoquinoline amines; imidazopyridine amines including but not limited to amide substituted imidazopyridines, sulfonamido substituted imidazopyridines, and urea substituted imidazopyridines; 1,2-bridged imidazoquinohne amines; 6,7-fused cycloalkylimidazopyridine amines; imidazonaphthyridine amines; tetrahydroimidazonaphthyridine amines; oxazoloquinoline amines; thiazoloquinoline amines; oxazolopyridine amines; thiazolopyridine amines; oxazolonaphthyridine amines; and thiazolonaphthyridine amines, such as those disclosed in, for example, U.S. Patent Nos. 4,689,338; 4,929,624; 4,988,815; 5,037,986; 5,175,296; 5,238,944; 5,266,575; 5,268,376; 5,346,905; 5,352,784; 5,367,076; 5,389,640; 5,395,937; 5,446,153; 5,482,936; 5,693,811; 5,741,908; 5,756,747; 5,939,090; 6,039,969; 6,083,505; 6,110,929; 6,194,425; 6,245,776; 6,331,539; 6,376,669; 6,451,810; 6,525,064; 6,545,016; 6,545,017; 6,558,951; and 6,573,273; European Patent 0 394 026; U.S. Patent Publication No. 2002/0055517; and International Patent Publication Nos. WO 01/74343; WO 02/46188; WO 02/46189; WO 02/46190; WO 02/46191; WO 02/46192; WO 02/46193; WO 02/46749; WO 02/102377; WO 03/020889; WO 03/043572 and WO 03/045391. Additional examples of small molecule IRMs said to induce interferon (among other things), include purine derivatives (such as those described in U.S. Patent Nos. 6,376,501, and 6,028,076), imidazoqumoline amide derivatives (such as those described in U.S. Patent No. 6,069,149), and benzimidazole derivatives (such as those described in U.S. Patent 6,387,938). lH-imidazopyridine derivatives (such as those described in U.S. Patent 6,518,265) are said to inhibit TNF and IL-1 cytokines. Other small molecule IRMs said to be TLR 7 agonists are shown in U.S. 2003/0199461 Al. Examples of small molecule IRMs that include a 4-aminopyrimidine fused to a five-membered nitrogen-containing heterocyclic ring include adenine derivatives (such as those described in U. S. Patent Nos. 6,376,501; 6,028,076 and 6,329,381; and in WO 02/08595). In some applications, for example, the preferred IRM compound is other than imiquimod or S-28463 (i.e., resiquimod: 4-Amino-α, c--dimethyl-lH-imidazo[4,5- c] quinoline- 1 -ethanol) . Examples of particular IRM compounds include 2-propyl[l,3]thi-ιzolo[4,5- c]quinolin-4-amine, which is considered predominantly a TLR 8 agonist (and not a substantial TLR 7 agonist), 4-amino-α, -dimethyl-lH-imidazo[4,5-c]quinoline-l-ethanol, which is considered predominantly a TLR 7 agonist (and not a substantial TLR 8 agonist),
- d 4--ιmino-2-(e oxymethyl)-c-,α-dimethyl-6,7,8,9-tefr--hydro-lH-imidazo[4,5- c] quinoline- 1 -ethanol, which is a TLR 7 and TLR 8 agonist. In addition to its TLR 7 activity (and TLR 6 activity, but low TLR 8 activity), 4-amino-α,α-dimethyl-lH- imidazo[4,5-c]quinoline-l -ethanol has beneficial characteristics, including that it has a much lower CNS effect when delivered systemically compared to imiquimod. Other examples of specific IRM compounds include, e.g., N-[4-(4-amino-2-butyl-lH- imidazo[4,5-c][l,5]naphthyridin-l-yl)butyl]-N'-cyclohexyltιrea, 2-methyl-l-(2- methylpropyl)- lH-imidazo[4,5-c] [ 1 ,5]naphthyridin-4-amine, 1 -(2-methylpropyl)- 1H- imidazo[4,5-c] [ 1 ,5]naphthyridin-4-amine, N- {2-[4-amino-2-(ethoxymethyl)- 1H- imidazo[4,5-c]quinolin-l -yl]-l , 1 -dimethylethyl}methanesulfonamide, N-[4-(4-amino-2- ethyl- lH-imidazo [4,5 -cjquinolin- 1 -yl)butyl]methanesulfonamide, 2-methyl- 1 - [5- (methylsulfonyl)pentyl]-lH-imidazo[4,5-c]quinolin-4-amine, N-[4-(4-amino-2-propyl-lH- imidazo[4,5-c]quinolin-l-yl)butyl]methanesulfonamide, 2-butyl-l-[3- (methylsulfonyl)propyl]-lH-imidazo[4,5-c]quinoline-4-amine, 2-butyl-l-{2-[(l- methylethyl)sulfonyl]ethyl}- lH-imidazo[4,5-c]quinolin-4-amine, N-{2-[4-amino-2-
(ethoxymethyl)- lH-imidazo [4,5-c] quinolin- 1 -yl] -1,1 -dimethylethyl} -N' -cyclohexylurea, N-{2-[4-amino-2-(ethoxymethyl)-lH-imidazo[4,5-c]quinolin-l-yl]-l,l- dimethylethyl} cyclohexanecarboxamide, N- {2-[4-amino-2-(ethoxymethyl)- 1H- imidazo[4,5-c]quinolin-l-yl]ethyl}-N'-isopropylurea. Resiquimod, 4-amino-2- emoxymethyl-α,α-dimethyl-lH-imidazo[4,5-c]quinoline-l-ethanol, may also be used in certain situations where a combination TLR 7 and TLR 8 agonist is desired. Other IRM compounds include large biological molecules such as oligonucleotide sequences. Some IRM oligonucleotide sequences contain cytosine-guanine dinucleotides (CpG) and are described, for example, in U.S. Patent Nos. 6,194,388; 6,207,646; 6,239,116; 6,339,068; and 6,406,705. Some CpG-containing oligonucleotides can include synthetic immunomodulatory structural motifs such as those described, for example, in U.S. Pat. Nos. 6,426,334 and 6,476,000. CρG7909 is a specific example. Other IRM nucleotide sequences lack CpG and are described, for example, in International Patent Publication No. WO 00/75304. However, the large biological molecule IRMs may be less susceptible to rapid clearance from a localized tissue region and, consequently, the IRM depot preparations described herein may be especially useful in connection with small molecule IRMs described above.
Exemplary Applications: IRM depot preparations delivered to a localized tissue region can be used in a wide variety of applications, such as in the treatment of a wide variety of conditions. For example, IRMs such as imiquimod - a small molecule, imidazoquinohne IRM, marketed as ALDARA (3M Pharmaceuticals, St. Paul, MN) - have been shown to be useful for the therapeutic treatment of warts, as well as certain cancerous or pre-cancerous lesions (See, e.g., Geisse et ah, J. Am. Acad. DermatoL, 47(3): 390-398 (2002); Shumack et al., Arch. Dermatol, 138: 1163-1171 (2002); U.S. Patent No. 5,238,944 and International Publication No. WO 03/045391. Other diseases for which IRMs identified herein, including as an IRM depot preparation, may be used as treatments include, but are not limited to: viral diseases, such as genital warts, common warts, plantar warts, hepatitis B, hepatitis C, herpes simplex virus type I and type II, molluscum contagiosum, variola, HIV, CMV, NZV, rhino virus, adeno virus, coronavirus, influenza, para-influenza; bacterial diseases, such as tuberculosis, and mycobacterium avium, leprosy; other infectious diseases, such as fungal diseases, chlamydia, Candida, aspergillus, cryptococcal meningitis, pneumocystis catnii, cryptosporidiosis, histoplasmosis, toxoplasmosis, trypanosome infection, leishmaniasis; neoplastic diseases, such as intraepithelial neoplasias, cervical dysplasia, actinic keratosis, basal cell carcinoma, squamous cell carcinoma, hairy cell leukemia, Karposi's sarcoma, melanoma, renal cell carcinoma, myelogeous leukemia, multiple myeloma, non- Hodgkin's lymphoma, cutaneous T-cell lymphoma, and other cancers; TH-2 mediated, atopic, and autoimmune diseases, such as atopic dermatitis or eczema, eosinophilia, asthma, allergy, allergic rhinitis, systemic lupus erythematosis, essential thrombocythaemia, multiple sclerosis, Ommen's syndrome, discoid lupus, alopecia areata, inhibition of keloid formation and other types of scarring, and enhancing would healing, including chronic wounds; and as a vaccine adjuvant for use in conjunction with any material that raises either humoral and/or cell mediated immune response, such live viral and bacterial immunogens and inactivated viral, tumor-derived, protozoal, organism-derived, fungal, and bacterial immunogens, toxoids, toxins, polysaccharides, proteins, glycoproteins, peptides, cellular vaccines, DNA vaccines, recombinant proteins, glycoproteins, and peptides, and the like, for use in connection with, e.g., cancers, BCG, cholera, plague, typhoid, hepatitis A, B, and C, influenza A and B, parainfluenza, polio, rabies, measles, mumps, rubella, yellow fever, tetanus, diphtheria, hemophilus influenza b, tuberculosis, meningococcal and pneumococcal vaccines, adenovirus, HIV, chicken pox, cytomegalovirus, dengue, feline leukemia, fowl plague, HSV-1 andHSV-2, hog cholera, Japanese encephalitis, respiratory syncytial virus, rotavirus, papilloma virus, and yellow fever. The IRM depot preparations of the invention may be particularly beneficial for use within solid tumors and cancerous organs or tissue regions. If the residence time of the
IRM is extended within the cancerous tissue, it is believed that the body's immune response to the cancer can be enhanced and directly targeted to relevant tumor antigens. This not only may help reduce or eliminate cancer at the site of IRM depot preparation delivery, but, by sensitizing the immune system to the cancer, may help the immune system attack the cancer in other locations throughout the body. This approach to treatment may be used alone or in conjunction with other treatments for the cancer, such as therapeutic cancer vaccination (which may further include use of an IRM depot preparation), antibody based therapies such as Rituxan and Herceptin, and other chemotherapies. Examples of cancers that may be particularly suitable for direct injection of an IRM depot preparation into a localized tissue region include, but are not limited to, breast cancer, lung cancer, stomach cancer, head and neck cancer, colorectal cancer, renal cell carcinoma, pancreatic cancer, basal cell carcinoma, cervical cancer, melanoma, prostate cancer, ovarian cancer, and bladder cancer. The methods, materials, and articles of the present invention may be applicable for any suitable subject. Suitable subjects include, but are not limited to, animals such as, but not limited to, humans, non-human primates, rodents, dogs, cats, horses, pigs, sheep, goats, cows, or birds. IRMs may also be particularly helpful in individuals having compromised immune functioning, such as those with HIV AIDS, transplant patients, and cancer patients. An amount of an IRM depot preparation effective for a given therapeutic or prophylactic application is an amount sufficient to achieve the intended therapeutic or prophylactic application. The precise amount of IRM depot preparation used will vary according to factors known in the art including but not limited to the physical and chemical nature of the IRM compound, the nature of the composition, the intended dosing regimen, the state of the subject's immune system (e.g., suppressed, compromised, stimulated), the method of administering the IRM compound, and the species to which the formulation is being administered. Accordingly it is not practical to set forth generally the amount that constitutes an amount of IRM and IRM depot preparation effective for all possible applications. Those of ordinary skill in the art, however, can readily determine an appropriate amount with due consideration of such factors. EXAMPLE The following example has been selected merely to further illustrate features, advantages, and other details of the invention. It is to be expressly understood, however, that while the example serve this purpose, the particular materials and amounts used as well as other conditions and details are not to be construed in a matter that would unduly limit the scope of this invention. Mice were immunized via subcutaneous injection with 500ug ovalbumin protein alone (formulated as an aqueous solution in phosphate buffered saline) or mixed with 200ug of one of the following IRMs:
IRM l
Prepared as a non-depot preparation, formulated to deliver 200ug as an aqueous solution in an acetate buffered saline mixture containing cyclodextrin.
IRM 2
Prepared as a non-depot preparation, formulated to deliver 200ug as an aqueous solution in a acetate buffered saline mixture containing cyclodextrin.
IRM 3 (lipidated IRM)
IRM 3 is a lipidated IRM. IRM 3 was formulated to deliver 200ug using a depot preparation formulated as a micropartical precipitate (ppt), colloidal suspension, or as a micellar suspension. The precipitate composition was a microparticle (> lmicron, around 10-500 microns) composition formed by simply injecting IRM 3 dissolved in an organic solvent into an aqueous solution without surfactants. The resulting particle size range was broad, unlike the colloidal suspension (which provided a more monomodal submicron size). To form the colloidal formulation, IRM 3 was first dissolved in an organic and water miscible solvent (e.g. N-methyl pyrrolidone, DMSO, Cremophore EL), then added to an aqueous solution containing an appropriate amount of Tween 80. This causes the lipophilic IRM 3 to precipitate into colloidal particles, coated or surrounded by Tween 80 molecules, which act to prevent or minimize flocculation or agglomeration of the IRM particles. The higher the concentration of Tween 80, the finer the IRM colloidal particle size will be. At a concentration of Tween 80 greater than 2%, the IRM colloidal suspension turned into a translucent, almost clear solution, suggestive of a micellar encapsulation of the IRM by Tween 80. In this approach, the IRM may also partition between the inside of the micelle or be embedded in the micelle shell itself, contributing to its stability. IRM 4 is known as CpG 1826 and was formulated to deliver 200ug as an aqueous solution in phosphate buffered saline.
In each of the above cases, mice were injected subcutaneously lOOul of formulation containing 200ug of IRM and 500ug of ovalbumin, then boosted 2 weeks later with same formulation. Five days after the boost, the spleens were removed and the cells stained with CD8, CD44, B220 and Kb-SIINFEKL tetramer. The results are shown in Figure 1. The data shown was gated on all live, CD8+,
B220- events. The numbers in the upper right quadrants indicate the percent tetramer staining cells (antigen specific cells) out of total CD8+ T cells. The lipidated IRM molecule provides a clearly enhanced immune response than the non lipidated molecules. It is believed that this is due to both the lipid-modified nature of the compound, and tiie precipitate, colloidal suspension, and micellar suspension compositions, causing the IRM to remain resident within the localized tissue region for an extended period. The complete disclosures of the patents, patent documents and publications cited herein are incorporated by reference in their entirety as if each were individually incorporated. In case of conflict, the present specification, including definitions, shall control. Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention. Illustrative embodiments and examples are provided as examples only and are not intended to limit the scope of the present invention. The scope of the invention is limited only by the claims set forth as follows.

Claims

CLAIMSWhat is claimed is:
1. A method of enhancing the immune response to an IRM compound, comprising: depositing within a localized tissue region an IRM depot preparation that provides an extended residence time within the localized tissue region.
2. The method of claim 1 , wherein the localized tissue region is a breast cancer tumor.
3. The method of claim 1, wherein the localized tissue region is a stomach cancer tumor.
4. The method of claim 1, wherein the localized tissue region is a lung cancer tumor.
5. The method of claim 1 , wherein the localized tissue region is a head or neck cancer tumor. 6. The method of claim 1 , wherein the localized tissue region is a colorectal cancer tumor.
7. The method of claim 1 , wherein the localized tissue region is a renal cell carcinoma tumor.
8. The method of claim 1, wherein the localized tissue region is a pancreatic cancer tumor
9. The method of claim 1 , wherein the localized tissue region is a basal cell carcinoma tumor
10. The method of claim 1 , wherein the localized tissue region is a cervical cancer tumor 11. The method of claim 1 , wherein the localized tissue region is melanoma cancer tumor.
12. The method of claim 1 , wherein the localized tissue region is prostate cancer tumor.
13. The method of claim 1, wherein the localized tissue region is ovarian cancer tumor. 14. The method of claim 1, wherein the localized tissue region is bladder cancer tumor.
15. The method of claim 1 , wherein the localized tissue region is viral-infected lesion or organ.
16. The method of claim 1 , wherein the localized tissue region is includes a vaccine.
17. The method of claim 1 , wherein the localized tissue region is a particular organ subject to a disease that is treatable using the IRM compound.
18. The method of claim 1, wherein the IRM depot preparation comprises a lipid- modified IRM.
19. The method of claim 1, wherein the IRM depot preparation comprises an IRM compound attached to support material.
20. The method of claim 1, wherein the IRM depot preparation comprises solid particles of IRM compound. 21. The method of claim 1 , wherein the IRM depot preparation comprises an emulsion.
22. The method of claim 1 , wherein the IRM depot preparation comprises micelles.
23. The method of claim 1, wherein the IRM depot preparation comprises IRM within a biodegradable polymer matrix.
24. The method of claim 1, wherein the IRM depot preparation comprises JJRM compound incorporated into lipid membranes, lipid vesicles, or liposomes.
25. The method of claim 1 , wherein the IRM depot preparation provides pulsed delivery of an IRM compound.
26. The method of claim 1, wherein the IRM depot preparation comprises an osmotically driven cylinder. 27. The method of claim 1 , wherein the IRM depot preparation is delivered within the localized tissue region using needle injection.
28. The method of claim 1, wherein the IRM depot preparation is delivered within the localized tissue region using surgical implantation.
29. The method of claim 1, wherem the IRM depot preparation is delivered within the localized tissue region using laparoscopic implantation.
30. The method of claim 1, wherein the IRM depot preparation is delivered within the localized tissue region using catheter implantation.
31. The method of claim 1 , wherein the IRM depot preparation is delivered within the localized tissue region using a microneedle array. 32. The method of claim 1, wherein the IRM depot preparation is delivered within the localized tissue region using high-velocity particle implantation.
33. The method of claim 1 , wherein the IRM depot preparation is delivered within the localized tissue region using an image guiding technique selected from ultrasound, MRI, or real-time X-ray fluoroscopy.
34. The method of claim 1 wherein the IRM is an agonist of at least one TLR selected from the group consisting of TLR6, TLR7, TLR8, TLR9 and combinations thereof.
35. The method of claim 1 wherein the IRM is a selective TLR agonist of TLR 7.
36. The method of claim 1 wherein the IRM is a selective TLR agonist of TLR 8.
37. The method of claim 1 wherein the IRM is a selective TLR agonist of TLR 9.
38. The method of claim 1 wherein the IRM is a TLR agonist of both TLR 7 and 8. 39. The method of claim 1 wherein the IRM is a small molecule immune response modifier. 40. The method of claim 1 wherein the IRM is selected from the group consisting of imidazoquinohne amines including, but not limited to, amide substituted imidazoquinohne amines, sulfonamide substituted imidazoqumoline amines, urea substituted imidazoquinohne amines, aryl ether substituted imidazoquinohne amines, heterocyclic ether substituted imidazoquinohne amines, amido ether substituted imidazoquinoline amines, sulfonamido ether substituted imidazoquinohne amines, urea substituted imidazoquinoline ethers, and thioether substituted imidazoquinoline amines; tetrahydroimidazoquinoline amines including, but not limited to, amide substituted tetrahydroimidazoquinoline amines, sulfonamide substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline amines, aryl ether substituted tetrahydroimidazoquinoline amines, heterocyclic ether substituted tetrahydroimidazoquinoline amines, amido ether substituted tetrahydroimidazoquinoline amines, sulfonamido ether substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline ethers, and thioether substituted tetrahydroimidazoquinoline amines; imidazopyridine amines including, but not limited to, amide substituted imidazopyridines, sulfonamido substituted imidazopyridines, and urea substituted imidazopyridines; 1,2-bridged imidazoquinoline amines; 6,7-fused cycloalkylimidazopyridine amines; imidazonaphthyridine amines; tetrahydroimidazonaphthyridine amines; oxazoloquinoline amines; thiazoloquinoline amines; oxazolopyridine amines; thiazolopyridine amines; oxazolonaphthyridine amines; thiazolonaphthyridine amines; pharmaceutically acceptable salts thereof; and combinations thereof.
41. The method of claim 1 wherein the IRM is selected from the group consisting of amide substituted imidazoquinoline amines, sulfonamide substituted imidazoquinoline amines, urea substituted imidazoquinoline amines, aryl ether substituted imidazoqiiinoline amines, heterocyclic ether substituted imidazoquinoline amines, amido ether substituted imidazoquinoline amines, sulfonamido ether substituted imidazoquinoline amines, urea substituted imidazoquinoline ethers, and thioether substituted imidazoquinoline amines; tetrahydroimidazoquinoline amines including, but not limited to, amide substituted tetrahydroimidazoquinoline amines, sulfonamide substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline amines, aryl ether substituted tetrahydroimidazoquinoline amines, heterocyclic ether substituted tetrahydroimidazoquinoline amines, amido ether substituted tefrahydroimidazoquinoline amines, sulfonamido ether substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline ethers, and thioether substituted tetrahydroimidazoquinoline amines; imidazopyridine amines including, but not limited to, amide substituted imidazopyridines, sulfonamido substituted imidazopyridines, and urea substituted imidazopyridines; 1,2-bridged imidazoquinoline amines; 6,7-fused cycloalkylimidazopyridine amines; imidazonaphthyridine amines; tefrahydroimidazonaphthyridine amines; oxazoloquinoline amines; thiazoloquinoline amines; oxazolopyridine amines; thiazolopyridine amines; oxazolonaphthyridine amines; thiazolonaphthyridine amines; pharmaceutically acceptable salts thereof; and combinations thereof.
42. The method of claim 1 , wherein the IRM comprises a 2-aminopyridine fused to a five membered nitrogen-containing heterocyclic ring.
43. The method of claim 1, wherein the IRM depot preparation comprises a CpG IRM. 44. The method of claim 1 wherein the IRM depot preparation further comprises one or more additional active ingredients. 45. The method of claim 28, wherein the active ingredient comprises a vaccine.
6. An IRM depot preparation according to any of the preceding claims.
EP04775877A 2003-04-10 2004-04-09 Methods and compositions for enhancing immune response Withdrawn EP1617872A4 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US46214003P 2003-04-10 2003-04-10
US10/640,904 US7427629B2 (en) 2002-08-15 2003-08-14 Immunostimulatory compositions and methods of stimulating an immune response
US51525603P 2003-10-29 2003-10-29
US53370303P 2003-12-31 2003-12-31
US54554204P 2004-02-18 2004-02-18
US54542404P 2004-02-18 2004-02-18
PCT/US2004/011085 WO2005001022A2 (en) 2003-04-10 2004-04-09 Methods and compositions for enhancing immune response

Publications (2)

Publication Number Publication Date
EP1617872A2 true EP1617872A2 (en) 2006-01-25
EP1617872A4 EP1617872A4 (en) 2011-09-07

Family

ID=34923557

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04775877A Withdrawn EP1617872A4 (en) 2003-04-10 2004-04-09 Methods and compositions for enhancing immune response

Country Status (5)

Country Link
EP (1) EP1617872A4 (en)
JP (1) JP2007514644A (en)
AU (1) AU2004252409A1 (en)
CA (1) CA2521662A1 (en)
WO (1) WO2005001022A2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006007433A1 (en) * 2006-02-17 2007-08-23 Curevac Gmbh Immunostimulant adjuvant useful in vaccines against cancer or infectious diseases comprises a lipid-modified nucleic acid
AU2007280690C1 (en) 2006-07-31 2012-08-23 Curevac Gmbh Nucleic acid of formula (I): GIXmGn, or (II): CIXmCn, in particular as an immune-stimulating agent/adjuvant
WO2009030254A1 (en) 2007-09-04 2009-03-12 Curevac Gmbh Complexes of rna and cationic peptides for transfection and for immunostimulation
RU2545701C2 (en) 2008-01-31 2015-04-10 Куревак Гмбх NUCLEIC ACIDS OF FORMULA (I) (NuGlXmGnNv)a AND DERIVATIVES THEREOF AS IMMUNOSTIMULATING AGENTS/ADJUVANTS
WO2010037408A1 (en) 2008-09-30 2010-04-08 Curevac Gmbh Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof
NO2341933T3 (en) 2008-10-24 2018-04-21
US20110053829A1 (en) 2009-09-03 2011-03-03 Curevac Gmbh Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids
DK2449113T3 (en) 2010-07-30 2016-01-11 Curevac Ag Complex formation of nucleic acids with the disulfide cross-linked cationic components for transfection and immunostimulation
WO2013113326A1 (en) 2012-01-31 2013-08-08 Curevac Gmbh Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen
MX369469B (en) 2013-08-21 2019-11-08 Curevac Ag Respiratory syncytial virus (rsv) vaccine.
AU2014347059B2 (en) * 2013-11-05 2017-09-07 Solventum Intellectual Properties Company Sesame oil based injection formulations
CA2936286A1 (en) 2014-04-01 2015-10-08 Curevac Ag Polymeric carrier cargo complex for use as an immunostimulating agent or as an adjuvant
ES2805724T3 (en) 2015-09-29 2021-02-15 Sumitomo Dainippon Pharma Co Ltd Conjugated adenine compounds and their use as vaccine adjuvants
AU2016334826B2 (en) 2015-10-07 2020-08-27 Sumitomo Pharma Co., Ltd. Pyrimidine compound
MA44334A (en) 2015-10-29 2018-09-05 Novartis Ag ANTIBODY CONJUGATES INCLUDING A TOLL-TYPE RECEPTOR AGONIST
KR102590454B1 (en) 2016-07-07 2023-10-17 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 Antibody-Adjuvant Conjugate
SG11202100706UA (en) 2018-07-23 2021-03-30 Japan As Represented By Director General Of Nat Institute Of Infectious Diseases Composition containing influenza vaccine
CN113993549A (en) 2019-03-15 2022-01-28 博尔特生物治疗药物有限公司 Immunoconjugates targeting HER2

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0386757A2 (en) * 1989-03-09 1990-09-12 The Johns Hopkins University School Of Medicine Biodegradable poly(phosphoesters)
US5342940A (en) * 1989-05-27 1994-08-30 Sumitomo Pharmaceuticals Company, Limited Polyethylene glycol derivatives, process for preparing the same
WO1997013499A1 (en) * 1995-10-11 1997-04-17 The University Of British Columbia Liposomal formulations of mitoxantrone
WO2000040228A2 (en) * 1999-01-08 2000-07-13 3M Innovative Properties Company Formulations comprising imiquimod or other immune response modifiers for treating mucosal conditions
US6273913B1 (en) * 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
WO2002046749A2 (en) * 2000-12-08 2002-06-13 3M Innovative Properties Company Screening method for identifying compounds that selectively induce interferon alpha
CN1377648A (en) * 2002-04-23 2002-11-06 四川大学 Imiquimod or its derivative liposome for local skin and its preparing method and use
WO2004060967A1 (en) * 2002-12-31 2004-07-22 Nektar Therapeutics Al, Corporation Methods for the formation of hydrogels using thiosulfonate compositions and uses thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7998091A (en) * 1990-05-17 1991-12-10 Harbor Medical Devices, Inc. Medical device polymer
US6486214B1 (en) * 1997-09-10 2002-11-26 Rutgers, The State University Of New Jersey Polyanhydride linkers for production of drug polymers and drug polymer compositions produced thereby
US6518280B2 (en) * 1998-12-11 2003-02-11 3M Innovative Properties Company Imidazonaphthyridines
US6486168B1 (en) * 1999-01-08 2002-11-26 3M Innovative Properties Company Formulations and methods for treatment of mucosal associated conditions with an immune response modifier
AU2003299863B2 (en) * 2002-08-15 2009-09-24 3M Innovative Properties Company Immunostimulatory compositions and methods of stimulating an immune response

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0386757A2 (en) * 1989-03-09 1990-09-12 The Johns Hopkins University School Of Medicine Biodegradable poly(phosphoesters)
US5342940A (en) * 1989-05-27 1994-08-30 Sumitomo Pharmaceuticals Company, Limited Polyethylene glycol derivatives, process for preparing the same
WO1997013499A1 (en) * 1995-10-11 1997-04-17 The University Of British Columbia Liposomal formulations of mitoxantrone
US6273913B1 (en) * 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
WO2000040228A2 (en) * 1999-01-08 2000-07-13 3M Innovative Properties Company Formulations comprising imiquimod or other immune response modifiers for treating mucosal conditions
WO2002046749A2 (en) * 2000-12-08 2002-06-13 3M Innovative Properties Company Screening method for identifying compounds that selectively induce interferon alpha
CN1377648A (en) * 2002-04-23 2002-11-06 四川大学 Imiquimod or its derivative liposome for local skin and its preparing method and use
WO2004060967A1 (en) * 2002-12-31 2004-07-22 Nektar Therapeutics Al, Corporation Methods for the formation of hydrogels using thiosulfonate compositions and uses thereof

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"The Merck Index, An encyclopedia of chemicals, drugs, and biologicals 13th Edition", 1 January 2001 (2001-01-01), MERCK & CO., INC, XP007914381, * THER-25 * *
ALEXIOU C ET AL: "LOCOREGIONAL CANCER TREATMENT WITH MAGNETIC DRUG TARGETING", CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER REREARCH, US, vol. 60, no. 23, 1 December 2000 (2000-12-01), pages 6641-6648, XP001063184, ISSN: 0008-5472 *
HULAND EDITH ET AL: "In vivo system to detect long-term continuous release of bioactive interleukin-2 by immunopharmacological depot preparations in nude mice with human tumors", JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, vol. 121, no. 5, 1995, pages 285-290, XP008140263, ISSN: 0171-5216 *
LAMBERT D M: "Rationale and applications of lipids as prodrug carriers", EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, ELSEVIER, AMSTERDAM, NL, vol. 11, no. S2, 1 January 2000 (2000-01-01), pages S15-S27, XP002245016, ISSN: 0928-0987, DOI: DOI:10.1016/S0928-0987(00)00161-5 *
MUI B ET AL: "Immune stimulation by a CpG-containing oligodeoxynucleotide is enhanced when encapsulated and delivered in lipid particles", JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, WILLIAMS AND WILKINS CO, vol. 298, no. 3, 1 September 2001 (2001-09-01), pages 1185-1192, XP002228992, ISSN: 0022-3565 *
PACIOTTI G F ET AL: "Comparison of the toxicity and pharmacokinetics of neat and colloidal good bound TNF", PROCEEDINGS OF THE ANNUAL MEETING OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, US, vol. 40, 1 March 1999 (1999-03-01), page 585, XP001537146, ISSN: 0197-016X *
See also references of WO2005001022A2 *
WANG HUAN ET AL: "Comparison of Transdermal Diffusion in vitro of Imiquimod in Liposomes and Cream", ZHONGGUO YIYAO GONGYE ZAZHI - CHINESE JOURNAL OF PHARMACEUTICALS, SHANGHAI YIYAO GONGYE YANJIUYUAN, SHANGHAI, CN, vol. 34, no. 2, 1 February 2003 (2003-02-01), pages 73-75, XP008156372, ISSN: 1001-8255 *
WANG HUAN ET AL: "Preparation Technology of Imiquimod Chitosan Nanoparticle Optimized by Orthogonal Test", ZHONGGUO YAOSHI - CHINA PHARMACIST, YAOWU LIUXINGBINGXUE ZAZHISHE, HUBEI, CN, vol. 5, no. 7, 1 July 2002 (2002-07-01), pages 432-433, XP008156371, ISSN: 1008-049X *

Also Published As

Publication number Publication date
EP1617872A4 (en) 2011-09-07
WO2005001022A3 (en) 2005-09-15
AU2004252409A1 (en) 2005-01-06
JP2007514644A (en) 2007-06-07
CA2521662A1 (en) 2005-01-06
WO2005001022A2 (en) 2005-01-06

Similar Documents

Publication Publication Date Title
US9801947B2 (en) Methods and compositions for enhancing immune response
US11524071B2 (en) Lipidated immune response modifier compound compositions, formulations, and methods
WO2005001022A2 (en) Methods and compositions for enhancing immune response
AU2004268616B2 (en) Delivery of immune response modifier compounds
Nandedkar Nanovaccines: recent developments in vaccination
Li et al. Transcutaneous vaccines: novel advances in technology and delivery for overcoming the barriers
US20080124350A1 (en) Nanoparticle-based vaccine delivery system containing adjuvant
JP2007504145A (en) Immunostimulatory combinations and treatments
EA030863B1 (en) Synthetic nanocarrier compositions for enhancing an immune response to an antigen and uses thereof
CN108324938B (en) Granular adjuvant and preparation method and application thereof
Dewangan et al. A review on application of nanoadjuvant as delivery system
Patel et al. Cationic nanoparticles for delivery of CpG oligodeoxynucleotide and ovalbumin: In vitro and in vivo assessment
AU2018202168B2 (en) Lipidated immune response modifier compound compositions, formulations, and methods
KR20240014837A (en) Mucoadhesive-PLGA nanoparticles
McHugh The delivery of DNA vaccines using particulate and non-particulate adjuvants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051110

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20110810

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 47/48 20060101ALI20110804BHEP

Ipc: A61F 2/76 20060101ALI20110804BHEP

Ipc: A61K 47/00 20060101ALI20110804BHEP

Ipc: A61F 2/06 20060101ALI20110804BHEP

Ipc: A61P 37/00 20060101ALI20110804BHEP

Ipc: A61F 2/24 20060101ALI20110804BHEP

Ipc: A61K 45/00 20060101AFI20110804BHEP

17Q First examination report despatched

Effective date: 20121108

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190123