CA2521662A1 - Methods and compositions for enhancing immune response - Google Patents
Methods and compositions for enhancing immune response Download PDFInfo
- Publication number
- CA2521662A1 CA2521662A1 CA002521662A CA2521662A CA2521662A1 CA 2521662 A1 CA2521662 A1 CA 2521662A1 CA 002521662 A CA002521662 A CA 002521662A CA 2521662 A CA2521662 A CA 2521662A CA 2521662 A1 CA2521662 A1 CA 2521662A1
- Authority
- CA
- Canada
- Prior art keywords
- irm
- amines
- tissue region
- localized tissue
- substituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 230000028993 immune response Effects 0.000 title claims abstract description 18
- 230000002708 enhancing effect Effects 0.000 title claims abstract description 6
- 239000000203 mixture Substances 0.000 title abstract description 23
- 210000001519 tissue Anatomy 0.000 claims abstract description 76
- 239000003405 delayed action preparation Substances 0.000 claims abstract description 63
- 238000000151 deposition Methods 0.000 claims abstract description 3
- -1 IRM compound Chemical class 0.000 claims description 126
- 206010028980 Neoplasm Diseases 0.000 claims description 54
- 229940124669 imidazoquinoline Drugs 0.000 claims description 33
- 102000002689 Toll-like receptor Human genes 0.000 claims description 28
- 108020000411 Toll-like receptor Proteins 0.000 claims description 28
- 239000002245 particle Substances 0.000 claims description 28
- 239000000556 agonist Substances 0.000 claims description 18
- 238000012384 transportation and delivery Methods 0.000 claims description 16
- 239000004202 carbamide Chemical group 0.000 claims description 15
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 15
- 229960005486 vaccine Drugs 0.000 claims description 14
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 12
- 201000011510 cancer Diseases 0.000 claims description 11
- 201000010099 disease Diseases 0.000 claims description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 11
- 239000000839 emulsion Substances 0.000 claims description 11
- 238000002513 implantation Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 150000003384 small molecules Chemical class 0.000 claims description 10
- 150000001408 amides Chemical group 0.000 claims description 9
- 150000005232 imidazopyridines Chemical group 0.000 claims description 9
- 150000002632 lipids Chemical class 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- 150000001412 amines Chemical class 0.000 claims description 7
- 239000002502 liposome Substances 0.000 claims description 7
- ICSNLGPSRYBMBD-UHFFFAOYSA-N 2-aminopyridine Chemical compound NC1=CC=CC=N1 ICSNLGPSRYBMBD-UHFFFAOYSA-N 0.000 claims description 6
- 125000005013 aryl ether group Chemical group 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims description 6
- 239000003607 modifier Substances 0.000 claims description 6
- ZNSRMRJLRGFEBS-UHFFFAOYSA-N oxathiaziridine 2,2-dioxide Chemical group O=S1(=O)NO1 ZNSRMRJLRGFEBS-UHFFFAOYSA-N 0.000 claims description 6
- 229940124530 sulfonamide Drugs 0.000 claims description 6
- 150000003456 sulfonamides Chemical group 0.000 claims description 6
- 150000003568 thioethers Chemical group 0.000 claims description 6
- 206010004146 Basal cell carcinoma Diseases 0.000 claims description 5
- 229920002988 biodegradable polymer Polymers 0.000 claims description 5
- 239000004621 biodegradable polymer Substances 0.000 claims description 5
- 208000014829 head and neck neoplasm Diseases 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 210000000056 organ Anatomy 0.000 claims description 5
- 206010005003 Bladder cancer Diseases 0.000 claims description 4
- 101000669402 Homo sapiens Toll-like receptor 7 Proteins 0.000 claims description 4
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 4
- 102100039390 Toll-like receptor 7 Human genes 0.000 claims description 4
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 4
- 125000000623 heterocyclic group Chemical group 0.000 claims description 4
- 230000003902 lesion Effects 0.000 claims description 4
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 201000001441 melanoma Diseases 0.000 claims description 4
- 239000000693 micelle Substances 0.000 claims description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 4
- 201000002528 pancreatic cancer Diseases 0.000 claims description 4
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 4
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 4
- 206010006187 Breast cancer Diseases 0.000 claims description 3
- 208000026310 Breast neoplasm Diseases 0.000 claims description 3
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 3
- 206010009944 Colon cancer Diseases 0.000 claims description 3
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 3
- 206010033128 Ovarian cancer Diseases 0.000 claims description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 3
- 206010060862 Prostate cancer Diseases 0.000 claims description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 3
- 208000006265 Renal cell carcinoma Diseases 0.000 claims description 3
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 3
- 102000008235 Toll-Like Receptor 9 Human genes 0.000 claims description 3
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 claims description 3
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 3
- 239000004480 active ingredient Substances 0.000 claims description 3
- 201000010881 cervical cancer Diseases 0.000 claims description 3
- 206010017758 gastric cancer Diseases 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 201000011549 stomach cancer Diseases 0.000 claims description 3
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 claims description 3
- 101000669406 Homo sapiens Toll-like receptor 6 Proteins 0.000 claims description 2
- 101000800483 Homo sapiens Toll-like receptor 8 Proteins 0.000 claims description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 2
- 102100039387 Toll-like receptor 6 Human genes 0.000 claims description 2
- 102100033110 Toll-like receptor 8 Human genes 0.000 claims description 2
- 238000002594 fluoroscopy Methods 0.000 claims description 2
- 201000005202 lung cancer Diseases 0.000 claims description 2
- 208000020816 lung neoplasm Diseases 0.000 claims description 2
- 208000026037 malignant tumor of neck Diseases 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 description 65
- 239000000427 antigen Substances 0.000 description 18
- 108091007433 antigens Proteins 0.000 description 18
- 102000036639 antigens Human genes 0.000 description 18
- 210000000987 immune system Anatomy 0.000 description 17
- 210000004027 cell Anatomy 0.000 description 16
- 230000001225 therapeutic effect Effects 0.000 description 13
- 238000009472 formulation Methods 0.000 description 12
- 239000000725 suspension Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 238000011282 treatment Methods 0.000 description 9
- 230000003612 virological effect Effects 0.000 description 9
- 229940124614 TLR 8 agonist Drugs 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 8
- 229920000053 polysorbate 80 Polymers 0.000 description 8
- 230000004913 activation Effects 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 102000004127 Cytokines Human genes 0.000 description 6
- 108090000695 Cytokines Proteins 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 239000000017 hydrogel Substances 0.000 description 6
- 235000019198 oils Nutrition 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 229940044616 toll-like receptor 7 agonist Drugs 0.000 description 6
- 239000012646 vaccine adjuvant Substances 0.000 description 6
- 229940124931 vaccine adjuvant Drugs 0.000 description 6
- 108010065805 Interleukin-12 Proteins 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 210000004379 membrane Anatomy 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 101100152731 Arabidopsis thaliana TH2 gene Proteins 0.000 description 4
- 206010008631 Cholera Diseases 0.000 description 4
- 102000003886 Glycoproteins Human genes 0.000 description 4
- 108090000288 Glycoproteins Proteins 0.000 description 4
- 102000008236 Toll-Like Receptor 7 Human genes 0.000 description 4
- 108010060825 Toll-Like Receptor 7 Proteins 0.000 description 4
- 208000003152 Yellow Fever Diseases 0.000 description 4
- 210000000612 antigen-presenting cell Anatomy 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 210000004443 dendritic cell Anatomy 0.000 description 4
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 4
- 210000002540 macrophage Anatomy 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000002255 vaccination Methods 0.000 description 4
- 206010012438 Dermatitis atopic Diseases 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 208000005176 Hepatitis C Diseases 0.000 description 3
- 108010002352 Interleukin-1 Proteins 0.000 description 3
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 3
- 102100040247 Tumor necrosis factor Human genes 0.000 description 3
- 201000008937 atopic dermatitis Diseases 0.000 description 3
- 239000000227 bioadhesive Substances 0.000 description 3
- 229940022399 cancer vaccine Drugs 0.000 description 3
- 238000009566 cancer vaccine Methods 0.000 description 3
- 230000007969 cellular immunity Effects 0.000 description 3
- 238000013265 extended release Methods 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 208000002672 hepatitis B Diseases 0.000 description 3
- 229960002751 imiquimod Drugs 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 206010022000 influenza Diseases 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 201000010153 skin papilloma Diseases 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 201000008827 tuberculosis Diseases 0.000 description 3
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 101710098275 C-X-C motif chemokine 10 Proteins 0.000 description 2
- 201000006082 Chickenpox Diseases 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- 108010041986 DNA Vaccines Proteins 0.000 description 2
- 208000001490 Dengue Diseases 0.000 description 2
- 206010012310 Dengue fever Diseases 0.000 description 2
- 206010014596 Encephalitis Japanese B Diseases 0.000 description 2
- 208000004729 Feline Leukemia Diseases 0.000 description 2
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 2
- 241000701074 Human alphaherpesvirus 2 Species 0.000 description 2
- 208000002979 Influenza in Birds Diseases 0.000 description 2
- 102000002227 Interferon Type I Human genes 0.000 description 2
- 108010014726 Interferon Type I Proteins 0.000 description 2
- 201000005807 Japanese encephalitis Diseases 0.000 description 2
- 241000710842 Japanese encephalitis virus Species 0.000 description 2
- 201000005505 Measles Diseases 0.000 description 2
- 208000005647 Mumps Diseases 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 108010058846 Ovalbumin Proteins 0.000 description 2
- 241001631646 Papillomaviridae Species 0.000 description 2
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 2
- 206010035148 Plague Diseases 0.000 description 2
- 208000000474 Poliomyelitis Diseases 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- 206010037742 Rabies Diseases 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 241000725643 Respiratory syncytial virus Species 0.000 description 2
- 206010039085 Rhinitis allergic Diseases 0.000 description 2
- 241000702670 Rotavirus Species 0.000 description 2
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 description 2
- 241000580858 Simian-Human immunodeficiency virus Species 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 229940124615 TLR 7 agonist Drugs 0.000 description 2
- 206010043376 Tetanus Diseases 0.000 description 2
- 208000037386 Typhoid Diseases 0.000 description 2
- 206010046980 Varicella Diseases 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 208000009621 actinic keratosis Diseases 0.000 description 2
- 201000010105 allergic rhinitis Diseases 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- 229940037003 alum Drugs 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 230000000840 anti-viral effect Effects 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000007975 buffered saline Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229940030156 cell vaccine Drugs 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 239000011365 complex material Substances 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 208000025729 dengue disease Diseases 0.000 description 2
- 206010013023 diphtheria Diseases 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 208000005252 hepatitis A Diseases 0.000 description 2
- 230000028996 humoral immune response Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000003308 immunostimulating effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 208000037797 influenza A Diseases 0.000 description 2
- 208000037798 influenza B Diseases 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000021633 leukocyte mediated immunity Effects 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 229960005037 meningococcal vaccines Drugs 0.000 description 2
- HNQIVZYLYMDVSB-NJFSPNSNSA-N methanesulfonamide Chemical compound [14CH3]S(N)(=O)=O HNQIVZYLYMDVSB-NJFSPNSNSA-N 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 208000010805 mumps infectious disease Diseases 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 210000003200 peritoneal cavity Anatomy 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 229960001973 pneumococcal vaccines Drugs 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000000541 pulsatile effect Effects 0.000 description 2
- 229950010550 resiquimod Drugs 0.000 description 2
- BXNMTOQRYBFHNZ-UHFFFAOYSA-N resiquimod Chemical compound C1=CC=CC2=C(N(C(COCC)=N3)CC(C)(C)O)C3=C(N)N=C21 BXNMTOQRYBFHNZ-UHFFFAOYSA-N 0.000 description 2
- 201000005404 rubella Diseases 0.000 description 2
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 206010041823 squamous cell carcinoma Diseases 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 238000012385 systemic delivery Methods 0.000 description 2
- 229940044655 toll-like receptor 9 agonist Drugs 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 229960002109 tuberculosis vaccine Drugs 0.000 description 2
- 201000008297 typhoid fever Diseases 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 229960004854 viral vaccine Drugs 0.000 description 2
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- UCPMSMNKGXUFCC-UHFFFAOYSA-N 1-(2-methylpropyl)imidazo[4,5-c][1,5]naphthyridin-4-amine Chemical compound C1=CC=NC2=C3N(CC(C)C)C=NC3=C(N)N=C21 UCPMSMNKGXUFCC-UHFFFAOYSA-N 0.000 description 1
- GRGBJCMHYKWROJ-UHFFFAOYSA-N 1-[4-(4-amino-2-butylimidazo[4,5-c][1,5]naphthyridin-1-yl)butyl]-3-cyclohexylurea Chemical compound CCCCC1=NC2=C(N)N=C3C=CC=NC3=C2N1CCCCNC(=O)NC1CCCCC1 GRGBJCMHYKWROJ-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- GCGNWZMOENODOJ-UHFFFAOYSA-N 2,3,3a,4-tetrahydro-1h-imidazo[4,5-h]quinoline Chemical class C1C=C2C=CC=NC2=C2C1NCN2 GCGNWZMOENODOJ-UHFFFAOYSA-N 0.000 description 1
- KSXTUUUQYQYKCR-LQDDAWAPSA-M 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC KSXTUUUQYQYKCR-LQDDAWAPSA-M 0.000 description 1
- LVFUUPVMDNERQQ-UHFFFAOYSA-N 2-(2,4-dimethyl-6,7,8,9-tetrahydroimidazo[4,5-c]quinolin-1-yl)ethanol Chemical compound CC1=NC=2CCCCC2C2=C1N=C(N2CCO)C LVFUUPVMDNERQQ-UHFFFAOYSA-N 0.000 description 1
- ZXBCLVSLRUWISJ-UHFFFAOYSA-N 2-methyl-1-(2-methylpropyl)imidazo[4,5-c][1,5]naphthyridin-4-amine Chemical compound C1=CC=NC2=C3N(CC(C)C)C(C)=NC3=C(N)N=C21 ZXBCLVSLRUWISJ-UHFFFAOYSA-N 0.000 description 1
- NFYMGJSUKCDVJR-UHFFFAOYSA-N 2-propyl-[1,3]thiazolo[4,5-c]quinolin-4-amine Chemical compound C1=CC=CC2=C(SC(CCC)=N3)C3=C(N)N=C21 NFYMGJSUKCDVJR-UHFFFAOYSA-N 0.000 description 1
- GAMYYCRTACQSBR-UHFFFAOYSA-N 4-azabenzimidazole Chemical compound C1=CC=C2NC=NC2=N1 GAMYYCRTACQSBR-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical class NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 206010059313 Anogenital warts Diseases 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 208000012657 Atopic disease Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 1
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 1
- 102100036848 C-C motif chemokine 20 Human genes 0.000 description 1
- 102100036850 C-C motif chemokine 23 Human genes 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 206010008263 Cervical dysplasia Diseases 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 208000000907 Condylomata Acuminata Diseases 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 208000006081 Cryptococcal meningitis Diseases 0.000 description 1
- 208000008953 Cryptosporidiosis Diseases 0.000 description 1
- 206010011502 Cryptosporidiosis infection Diseases 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 206010014950 Eosinophilia Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 208000032027 Essential Thrombocythemia Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N EtOH Substances CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 201000002563 Histoplasmosis Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000713099 Homo sapiens C-C motif chemokine 20 Proteins 0.000 description 1
- 101000713081 Homo sapiens C-C motif chemokine 23 Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 208000004554 Leishmaniasis Diseases 0.000 description 1
- 206010024229 Leprosy Diseases 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 206010027209 Meningitis cryptococcal Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 101710151805 Mitochondrial intermediate peptidase 1 Proteins 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000186367 Mycobacterium avium Species 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- GUVMFDICMFQHSZ-UHFFFAOYSA-N N-(1-aminoethenyl)-1-[4-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(4-amino-5-methyl-2-oxopyrimidin-1-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[hydroxy-[[3-[hydroxy-[[3-hydroxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy]phosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy]phosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(2-amino-6-oxo-1H-purin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(2-amino-6-oxo-1H-purin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxyoxolan-2-yl]methoxy-hydroxyphosphinothioyl]oxy-5-[[[2-[[[2-[[[5-(2-amino-6-oxo-1H-purin-9-yl)-2-[[[5-(4-amino-2-oxopyrimidin-1-yl)-2-[[hydroxy-[2-(hydroxymethyl)-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxyphosphinothioyl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphinothioyl]oxymethyl]oxolan-2-yl]-5-methylimidazole-4-carboxamide Chemical compound CC1=C(C(=O)NC(N)=C)N=CN1C1OC(COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)OC2C(OC(C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)CO)C(OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)O)C1 GUVMFDICMFQHSZ-UHFFFAOYSA-N 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 241000233870 Pneumocystis Species 0.000 description 1
- 229920001305 Poly(isodecyl(meth)acrylate) Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 208000001203 Smallpox Diseases 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- 102000008208 Toll-Like Receptor 8 Human genes 0.000 description 1
- 108010060752 Toll-Like Receptor 8 Proteins 0.000 description 1
- 201000005485 Toxoplasmosis Diseases 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 1
- 241000870995 Variola Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 208000000260 Warts Diseases 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- LUXUAZKGQZPOBZ-SAXJAHGMSA-N [(3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (Z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC1O[C@H](CO)[C@@H](O)[C@H](O)[C@@H]1O LUXUAZKGQZPOBZ-SAXJAHGMSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000004721 adaptive immunity Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229940060265 aldara Drugs 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 208000004631 alopecia areata Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 208000025009 anogenital human papillomavirus infection Diseases 0.000 description 1
- 201000004201 anogenital venereal wart Diseases 0.000 description 1
- 238000011230 antibody-based therapy Methods 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229960001212 bacterial vaccine Drugs 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 125000003785 benzimidazolyl group Chemical class N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- SQQXRXKYTKFFSM-UHFFFAOYSA-N chembl1992147 Chemical compound OC1=C(OC)C(OC)=CC=C1C1=C(C)C(C(O)=O)=NC(C=2N=C3C4=NC(C)(C)N=C4C(OC)=C(O)C3=CC=2)=C1N SQQXRXKYTKFFSM-UHFFFAOYSA-N 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 1
- RHJVIGLEIFVHIJ-UHFFFAOYSA-N cyclohexanecarboxamide Chemical compound NC(=O)C1[CH]CCCC1 RHJVIGLEIFVHIJ-UHFFFAOYSA-N 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- SYUXAJSOZXEFPP-UHFFFAOYSA-N glutin Natural products COc1c(O)cc2OC(=CC(=O)c2c1O)c3ccccc3OC4OC(CO)C(O)C(O)C4O SYUXAJSOZXEFPP-UHFFFAOYSA-N 0.000 description 1
- 230000009422 growth inhibiting effect Effects 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 208000020082 intraepithelial neoplasia Diseases 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 208000011379 keloid formation Diseases 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 125000003473 lipid group Chemical group 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 208000008588 molluscum contagiosum Diseases 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 201000005962 mycosis fungoides Diseases 0.000 description 1
- YZOQZEXYFLXNKA-UHFFFAOYSA-N n-[4-(4-amino-2-ethylimidazo[4,5-c]quinolin-1-yl)butyl]methanesulfonamide Chemical compound C1=CC=CC2=C(N(C(CC)=N3)CCCCNS(C)(=O)=O)C3=C(N)N=C21 YZOQZEXYFLXNKA-UHFFFAOYSA-N 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 229940083251 peripheral vasodilators purine derivative Drugs 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 201000000317 pneumocystosis Diseases 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 229920000212 poly(isobutyl acrylate) Polymers 0.000 description 1
- 229920000196 poly(lauryl methacrylate) Polymers 0.000 description 1
- 229920000184 poly(octadecyl acrylate) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229950008885 polyglycolic acid Drugs 0.000 description 1
- 229920000129 polyhexylmethacrylate Polymers 0.000 description 1
- 229920000197 polyisopropyl acrylate Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000182 polyphenyl methacrylate Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 229940021993 prophylactic vaccine Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- OYRRZWATULMEPF-UHFFFAOYSA-N pyrimidin-4-amine Chemical compound NC1=CC=NC=N1 OYRRZWATULMEPF-UHFFFAOYSA-N 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229940022511 therapeutic cancer vaccine Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000029069 type 2 immune response Effects 0.000 description 1
- 230000014567 type I interferon production Effects 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6905—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
- A61K47/6907—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a microemulsion, nanoemulsion or micelle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/543—Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Dispersion Chemistry (AREA)
- Nanotechnology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Virology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Steroid Compounds (AREA)
Abstract
Methods and compositions for enhancing the immune response to an IRM compoun d by depositing within a localized tissue region an IRM depot preparation that provides an extended residence time of active IRM within the localized tissu e region.
Description
2 PCT/US2004/011085 METHODS AND COMPOSITIONS FOR ENHANCING
IIVJ~IUNE RESPONSE
BACKGROUND
There has been a major effort in recent years, with significant successes, to discover new drug compounds that act by stimulating certain key aspects of the immune system, as well as by suppressing certain other aspects (see, e.g., U.S.
Patent Nos.
6,039,969 and 6,200,592). These compounds, sometimes referred to as immune response modifiers (TRMs), appear to act through basic immune system mechanisms known as toll-like receptors to induce selected cytokine biosynthesis and may be used to treat a wide variety of diseases and conditions. For example, certain IRMs may be useful for treating viral diseases (e.g., human papilloma virus, hepatitis, herpes), neoplasias (e.g., basal cell carcinoma, squamous cell carcinoma, actinic keratosis), and TH2-mediated diseases (e.g., asthma, allergic rhinitis, atopic dermatitis), and are also useful as vaccine adjuvants.
Unlike many conventional anti-viral or anti-tumor compounds, the primary mechanism of action for IRMs is indirect, by stimulating the immune system to recognize and take appropriate action against a pathogen.
Many of the IRM compounds are small organic molecule imidazoquinoline amine derivatives (see, e.g., U.S. 4,689,338), but a number of other compound classes are now known as well (see, e.g., U.S. 5,446,153) and more are still being discovered.
Other IRMs have higher molecular weights, such as oligonucleotides, including CpGs (see, e.g., U.S.
6,194,388). In view of the great therapeutic potential for IRMs, and despite the important work that has already been done, there is a substantial ongoing need for new means of controlling the delivery and activity of IRMs in order to expand their uses and therapeutic benefits.
SUMMARY
It has been found that many immune response modifier (IRM) compounds (described ir~~a) often have a relatively short half life in terms of residence time at a given delivery location, typically less than about 1-2 hours for small molecule IRMs. They appear to be cleared, metabolized, or simply diffuse away from within a local delivery site _1_ rather easily in many cases. This short residence duration may reduce the IRM's ability to activate some immune system cells at the desired site. Hence, it is now believed that the effectiveness of IRM compounds may be enhanced by maintaining a depot of active IRM
compound within a localized region of tissue for an extended period.
Importantly, not only do IRMs have the ability to modulate the immune system locally, but by inducing certain chemokines, such as, e.g., MIP-3c~ M1P-lc~ IP-10, they can recruit additional critical immune system cells, such as dendritic cells, to the localized tissue region. For example, Furumoto et al., J Clin Invest, March 2004, no. 113(5 774-~3, discusses the use of CCL20/M1P-3alpha and CpGs to recruit dendritic cells, although apparently not in a depot. But by maintaining the 1RM present for an extended period within the localized tissue region, the IRM can further activate the immune system cells that have been recruited to the localized site, thus creating a further synergistic effect.
The IRM depoting methods and compositions of the present invention can thus provide important additional time for activation and/or infiltration of responsive immune system cells (e.g., dendritic cells, monocytes/macrophages, and B cells) within a specific localized tissue region. Moreover, these methods and formulations may also help assure that the immune response is correctly targeted to an immunogen at the intended desired tissue location (e.g., where there are neoplastic cells, virus infected cells, or vaccine antigen present). This later point-the ability to target by co-locating the IRM, antigen presenting cells (APCs), and antigen-is surprisingly important because it may enhance recognition by the immune system of the targeted disease antigens, and may also reduce the potential for unwanted immune system stimulation away from the actual disease target.
It is also believed that IRM depot preparations that provide a pulsed IRM
delivery (i.e., where the active IRM is release intermittently in pulses over time) may be 2S particularly desirable for certain applications.
Accordingly, the invention includes a method of enhancing the immune response to an IRM compound, comprising depositing within a localized tissue region an depot preparation that provides an extended residence time within the localized tissue region. This contrasts with either injection of a simple solution or topical delivery via cream, gel, or patch. The invention also includes IRM depot preparations disclosed herein, and methods of treatment using the IRM depot preparations disclosed herein.
The IRM localized tissue region may be, e.g., a cancer, infected lesion or organ, or vaccination site. The localized tissue region may be, e.g., a breast cancer tumor, stomach cancer tumor, lung cancer tumor, head or neck cancer tumor, colorectal cancer tumor, renal cell carcinoma tumor, pancreatic cancer tumor, basal cell carcinoma tumor, pancreatic cancer tumor, cervical cancer tumor, melanoma cancer tumor, prostate cancer tumor, ovarian cancer tumor, or bladder cancer tumor. The localized tissue region may include a vaccine.
The IRM depot preparation may comprise, e.g., a lipid-modified IRM, an IRM
compound attached to support material, solid particles of 1RM compound, an emulsion, micelles, an IRM within a biodegradable polymer matrix, IRM compound incorporated into lipid membranes, lipid vesicles, or liposomes.
The IRM depot preparation may provide pulsed delivery of an IRM compound to the localized tissue region. The IRM depot preparation may comprise an osmotically driven cylinder. The TRM depot preparation may be delivered within the localized tissue region using, e.g., needle injection, surgical implantation, laparoscopic implantation, catheter implantation, a microneedle array, or high-velocity particle implantation.
The IRM may be an agonist of at least one TLR selected from the group consisting of TLR6, TLR7, TLRB, TLR9 and combinations thereof. The IRM may be a selective TLR agonist of TLR 7, TLR 8, or TLR 9, or an agonist of both TLR 7 and 8. Many of the IRM compounds disclosed herein are TLR 7 andlor 8 agonists. The IRM may alternatively be a TLR 4 agonist. The 1RM may be preferably be a small molecule immune response modifier, fox example comprising a 2-aminopyridine fused to a five membered nitrogen-containing heterocyclic ring.
The term "comprises" and variations thereof do not have a limiting meaning where these terms appear in the description and claims, As used herein "a " "an " "the " "at least one " and "one or more" are used a > > > >
interchangeably.
As used herein, "treating" a condition or a subject includes therapeutic, prophylactic, and diagnostic treatments.
Also herein, the recitations of numerical ranges by endpoints include all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, etc.).
IIVJ~IUNE RESPONSE
BACKGROUND
There has been a major effort in recent years, with significant successes, to discover new drug compounds that act by stimulating certain key aspects of the immune system, as well as by suppressing certain other aspects (see, e.g., U.S.
Patent Nos.
6,039,969 and 6,200,592). These compounds, sometimes referred to as immune response modifiers (TRMs), appear to act through basic immune system mechanisms known as toll-like receptors to induce selected cytokine biosynthesis and may be used to treat a wide variety of diseases and conditions. For example, certain IRMs may be useful for treating viral diseases (e.g., human papilloma virus, hepatitis, herpes), neoplasias (e.g., basal cell carcinoma, squamous cell carcinoma, actinic keratosis), and TH2-mediated diseases (e.g., asthma, allergic rhinitis, atopic dermatitis), and are also useful as vaccine adjuvants.
Unlike many conventional anti-viral or anti-tumor compounds, the primary mechanism of action for IRMs is indirect, by stimulating the immune system to recognize and take appropriate action against a pathogen.
Many of the IRM compounds are small organic molecule imidazoquinoline amine derivatives (see, e.g., U.S. 4,689,338), but a number of other compound classes are now known as well (see, e.g., U.S. 5,446,153) and more are still being discovered.
Other IRMs have higher molecular weights, such as oligonucleotides, including CpGs (see, e.g., U.S.
6,194,388). In view of the great therapeutic potential for IRMs, and despite the important work that has already been done, there is a substantial ongoing need for new means of controlling the delivery and activity of IRMs in order to expand their uses and therapeutic benefits.
SUMMARY
It has been found that many immune response modifier (IRM) compounds (described ir~~a) often have a relatively short half life in terms of residence time at a given delivery location, typically less than about 1-2 hours for small molecule IRMs. They appear to be cleared, metabolized, or simply diffuse away from within a local delivery site _1_ rather easily in many cases. This short residence duration may reduce the IRM's ability to activate some immune system cells at the desired site. Hence, it is now believed that the effectiveness of IRM compounds may be enhanced by maintaining a depot of active IRM
compound within a localized region of tissue for an extended period.
Importantly, not only do IRMs have the ability to modulate the immune system locally, but by inducing certain chemokines, such as, e.g., MIP-3c~ M1P-lc~ IP-10, they can recruit additional critical immune system cells, such as dendritic cells, to the localized tissue region. For example, Furumoto et al., J Clin Invest, March 2004, no. 113(5 774-~3, discusses the use of CCL20/M1P-3alpha and CpGs to recruit dendritic cells, although apparently not in a depot. But by maintaining the 1RM present for an extended period within the localized tissue region, the IRM can further activate the immune system cells that have been recruited to the localized site, thus creating a further synergistic effect.
The IRM depoting methods and compositions of the present invention can thus provide important additional time for activation and/or infiltration of responsive immune system cells (e.g., dendritic cells, monocytes/macrophages, and B cells) within a specific localized tissue region. Moreover, these methods and formulations may also help assure that the immune response is correctly targeted to an immunogen at the intended desired tissue location (e.g., where there are neoplastic cells, virus infected cells, or vaccine antigen present). This later point-the ability to target by co-locating the IRM, antigen presenting cells (APCs), and antigen-is surprisingly important because it may enhance recognition by the immune system of the targeted disease antigens, and may also reduce the potential for unwanted immune system stimulation away from the actual disease target.
It is also believed that IRM depot preparations that provide a pulsed IRM
delivery (i.e., where the active IRM is release intermittently in pulses over time) may be 2S particularly desirable for certain applications.
Accordingly, the invention includes a method of enhancing the immune response to an IRM compound, comprising depositing within a localized tissue region an depot preparation that provides an extended residence time within the localized tissue region. This contrasts with either injection of a simple solution or topical delivery via cream, gel, or patch. The invention also includes IRM depot preparations disclosed herein, and methods of treatment using the IRM depot preparations disclosed herein.
The IRM localized tissue region may be, e.g., a cancer, infected lesion or organ, or vaccination site. The localized tissue region may be, e.g., a breast cancer tumor, stomach cancer tumor, lung cancer tumor, head or neck cancer tumor, colorectal cancer tumor, renal cell carcinoma tumor, pancreatic cancer tumor, basal cell carcinoma tumor, pancreatic cancer tumor, cervical cancer tumor, melanoma cancer tumor, prostate cancer tumor, ovarian cancer tumor, or bladder cancer tumor. The localized tissue region may include a vaccine.
The IRM depot preparation may comprise, e.g., a lipid-modified IRM, an IRM
compound attached to support material, solid particles of 1RM compound, an emulsion, micelles, an IRM within a biodegradable polymer matrix, IRM compound incorporated into lipid membranes, lipid vesicles, or liposomes.
The IRM depot preparation may provide pulsed delivery of an IRM compound to the localized tissue region. The IRM depot preparation may comprise an osmotically driven cylinder. The TRM depot preparation may be delivered within the localized tissue region using, e.g., needle injection, surgical implantation, laparoscopic implantation, catheter implantation, a microneedle array, or high-velocity particle implantation.
The IRM may be an agonist of at least one TLR selected from the group consisting of TLR6, TLR7, TLRB, TLR9 and combinations thereof. The IRM may be a selective TLR agonist of TLR 7, TLR 8, or TLR 9, or an agonist of both TLR 7 and 8. Many of the IRM compounds disclosed herein are TLR 7 andlor 8 agonists. The IRM may alternatively be a TLR 4 agonist. The 1RM may be preferably be a small molecule immune response modifier, fox example comprising a 2-aminopyridine fused to a five membered nitrogen-containing heterocyclic ring.
The term "comprises" and variations thereof do not have a limiting meaning where these terms appear in the description and claims, As used herein "a " "an " "the " "at least one " and "one or more" are used a > > > >
interchangeably.
As used herein, "treating" a condition or a subject includes therapeutic, prophylactic, and diagnostic treatments.
Also herein, the recitations of numerical ranges by endpoints include all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, etc.).
-3-The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The description that follows more particularly exemplifies illustrative embodiments. In several places throughout the application, guidance is provided through lists of examples, which examples can be used individually and in various combinations. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list.
Various other features and advantages of the present invention should become readily apparent with reference to the following detailed description, examples, claims and appended drawings. In several places throughout the specification, guidance is provided through lists of examples. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
OF THE INVENTION
The present invention is directed to methods and formulations of immune response modifiers (IRMs) that can be deposited within a localized tissue region and provide locally active IRM compounds for an extended period of time. One way this can be described is in terms of the IRM half life within a localized tissue region. To illustrate, if a conventional solution formulation of a given IRM compound is injected into a solid tumor so as to achieve a resulting tissue concentration of active IRM within the tumor, the concentration may be about half only two hours later. This would be considered an IRM
residence half life of about 2 hours, although the rate of IRM clearance may not always be constant. By contrast, if an IRM depot preparation such as those described herein is injected into a localized tissue region, such as solid tumor, so as to achieve a desired IRM
concentration, the concentration of active IRM in the tumor tissue (localized tissue region) may not be down to half until, e.g., 10-14 days later. This would be considered an IRM
residence half life of about 2 weeks.
The present invention thus provides active IRMs within a localized tissue region , for a time longer than a comparable concentration of the IRM in a conventional solution, wherein at Ieast about 50% of the IRM compound delivered via the TRM depot preparation remains localized at the treatment site for more than at least about 2 hours.
For example,
Various other features and advantages of the present invention should become readily apparent with reference to the following detailed description, examples, claims and appended drawings. In several places throughout the specification, guidance is provided through lists of examples. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
OF THE INVENTION
The present invention is directed to methods and formulations of immune response modifiers (IRMs) that can be deposited within a localized tissue region and provide locally active IRM compounds for an extended period of time. One way this can be described is in terms of the IRM half life within a localized tissue region. To illustrate, if a conventional solution formulation of a given IRM compound is injected into a solid tumor so as to achieve a resulting tissue concentration of active IRM within the tumor, the concentration may be about half only two hours later. This would be considered an IRM
residence half life of about 2 hours, although the rate of IRM clearance may not always be constant. By contrast, if an IRM depot preparation such as those described herein is injected into a localized tissue region, such as solid tumor, so as to achieve a desired IRM
concentration, the concentration of active IRM in the tumor tissue (localized tissue region) may not be down to half until, e.g., 10-14 days later. This would be considered an IRM
residence half life of about 2 weeks.
The present invention thus provides active IRMs within a localized tissue region , for a time longer than a comparable concentration of the IRM in a conventional solution, wherein at Ieast about 50% of the IRM compound delivered via the TRM depot preparation remains localized at the treatment site for more than at least about 2 hours.
For example,
-4-the IRM residence half life may be at least 12 hours, 24 hours, 7 days, two weeks, a month, or even several months.
As described below, the benefits of the present invention in terms of enhanced immune response and/or better targeting of the immune system to intended antigens can be accomplished with many different IRM depot preparations, IRM compounds, optionally with other active agents, and can be delivered to various localized tissue regions for a wide range of treatments.
IRMDepot Preparations As used herein, IR_M depot preparation refers to compositions that provide active IRM compound for an extended period to a localized tissue region (as opposed to an extended release IRM formulation for providing extended systemic delivery, although that may use a drug depot for systemic delivery).
There are at least two general ways of maintaining a localized IRM depot effect.
The IRM may either be attached to some other material that helps hold the 1RM
in place within the desired localized tissue region, or the IRM may be released over time from a controlled release formulation in such a way that active II2M is present locally at a desired concentration for an extended period.
Examples of attaching an 1RM to another material that can be used in an IRM
depot preparation include the IRM-support complexes disclosed in, e.g., copending applications US 60/462140, 60/515256, and US 2003/25523.
Examples of controlled release formulations and methods that can be used in an IRM depot preparation, although typically used for extended release systemic drug delivery, are disclosed in, e.g., US 6,126,919 (biocompatible compounds), O'Hagan and Singh, Microparticles as vaccine adjuvants and delivery systems, Expert Rev.
Vaccines 2(2), p. 269-S3 (2003), and Vogel et al., A Compendium of Vaccine Adjuvants and Excipients, 2"d Edition, Bethesda, MD: National Institute of Allergy &
Infectious Diseases, 199 (available at ww.maid.nih.gov/hiwaccines/pdf/compendium.pdf).
Also, it is usually desired to prevent, or at least reduce the occurrence of, the systemic distribution of the ZItM after it leaves the localized tissue region. One way to facilitate this is to select an IRM that is metabolized or cleared rapidly once the IRM leaves the localized tissue region.
As described below, the benefits of the present invention in terms of enhanced immune response and/or better targeting of the immune system to intended antigens can be accomplished with many different IRM depot preparations, IRM compounds, optionally with other active agents, and can be delivered to various localized tissue regions for a wide range of treatments.
IRMDepot Preparations As used herein, IR_M depot preparation refers to compositions that provide active IRM compound for an extended period to a localized tissue region (as opposed to an extended release IRM formulation for providing extended systemic delivery, although that may use a drug depot for systemic delivery).
There are at least two general ways of maintaining a localized IRM depot effect.
The IRM may either be attached to some other material that helps hold the 1RM
in place within the desired localized tissue region, or the IRM may be released over time from a controlled release formulation in such a way that active II2M is present locally at a desired concentration for an extended period.
Examples of attaching an 1RM to another material that can be used in an IRM
depot preparation include the IRM-support complexes disclosed in, e.g., copending applications US 60/462140, 60/515256, and US 2003/25523.
Examples of controlled release formulations and methods that can be used in an IRM depot preparation, although typically used for extended release systemic drug delivery, are disclosed in, e.g., US 6,126,919 (biocompatible compounds), O'Hagan and Singh, Microparticles as vaccine adjuvants and delivery systems, Expert Rev.
Vaccines 2(2), p. 269-S3 (2003), and Vogel et al., A Compendium of Vaccine Adjuvants and Excipients, 2"d Edition, Bethesda, MD: National Institute of Allergy &
Infectious Diseases, 199 (available at ww.maid.nih.gov/hiwaccines/pdf/compendium.pdf).
Also, it is usually desired to prevent, or at least reduce the occurrence of, the systemic distribution of the ZItM after it leaves the localized tissue region. One way to facilitate this is to select an IRM that is metabolized or cleared rapidly once the IRM leaves the localized tissue region.
-5-Some general examples of IRM depot preparations that can provide an increased IRM residence time within a localized tissue region include but are not limited to the following:
I. The IRM compound may be attached (e.g., conjugated, coated, or ion-paired) onto to other support materials, such as plastic, metal, minerals (e.g., alum), or silicone, in the form of particles, beads, fibers, meshes, polymers, etc., as disclosed in, e.g., copending applications US 60/462140, 60/515256, and US 2003/25523. These IRM
support complexes can then be deposited within a desired tissue site and remain in place and active for an extended period of time. This a highly versatile approach in part because the IRM compounds can be attached to many different support complex materials, and because the IRM can remain active even while they remain attached to the support complex material.
For example, IRM, and an antigen if desired, may adsorb onto the surface of alum particles to enhance antigen presentation and endocytosis of particulates.
Another I S example would where the IRM is covalently linked to a polymer backbone through a link that is subject to hydrolysis or enzymatic activity at a slow, controlled rate.
2. The IRM compound may be conjugated directly to a lipid group, as disclosed in, e.g., copending application US 60/515604, which in itself can provide an IRM depot preparation. These lipid-modified or lipidated IRMs may also be used as the IRM compound in the other IRM depot preparations described herein, e.g., for formation of suspensions, incorporation into emulsions, lipid membranes, lipid vesicles, liposomes, and the like.
For example, if a lipidated 1RM is in suspension, formulations of which are described below, is injected subcutaneously at l Omg/kg (200ug of drug in a normal B6 mouse), a substantial amount of the IRM depot preparation is still visible under the skin 10-14 days later.
3. The IRM compound may be used in the form of solid IRM particles, where the particles may have a limited solubility so that once implanted within the localized tissue region they dissolve slowly over an extended period. This contrasts with the situation where solid drug particle suspensions are delivered that then dissolve relatively quickly upon delivery (e.g., within an hour). The IRM particles may be amorphous or crystalline and in the form of fine powders, liquid suspensions, such as colloidal
I. The IRM compound may be attached (e.g., conjugated, coated, or ion-paired) onto to other support materials, such as plastic, metal, minerals (e.g., alum), or silicone, in the form of particles, beads, fibers, meshes, polymers, etc., as disclosed in, e.g., copending applications US 60/462140, 60/515256, and US 2003/25523. These IRM
support complexes can then be deposited within a desired tissue site and remain in place and active for an extended period of time. This a highly versatile approach in part because the IRM compounds can be attached to many different support complex materials, and because the IRM can remain active even while they remain attached to the support complex material.
For example, IRM, and an antigen if desired, may adsorb onto the surface of alum particles to enhance antigen presentation and endocytosis of particulates.
Another I S example would where the IRM is covalently linked to a polymer backbone through a link that is subject to hydrolysis or enzymatic activity at a slow, controlled rate.
2. The IRM compound may be conjugated directly to a lipid group, as disclosed in, e.g., copending application US 60/515604, which in itself can provide an IRM depot preparation. These lipid-modified or lipidated IRMs may also be used as the IRM compound in the other IRM depot preparations described herein, e.g., for formation of suspensions, incorporation into emulsions, lipid membranes, lipid vesicles, liposomes, and the like.
For example, if a lipidated 1RM is in suspension, formulations of which are described below, is injected subcutaneously at l Omg/kg (200ug of drug in a normal B6 mouse), a substantial amount of the IRM depot preparation is still visible under the skin 10-14 days later.
3. The IRM compound may be used in the form of solid IRM particles, where the particles may have a limited solubility so that once implanted within the localized tissue region they dissolve slowly over an extended period. This contrasts with the situation where solid drug particle suspensions are delivered that then dissolve relatively quickly upon delivery (e.g., within an hour). The IRM particles may be amorphous or crystalline and in the form of fine powders, liquid suspensions, such as colloidal
-6-suspensions, or may be included within gels or creams, and the like. The solid IRM
particles may be essentially pure IRM compound, or may include carriers or fillers. The average size of the particles may be less than 1 micron, or from about I-100 microns, or larger than 100 microns, depending on the particular IRM used and the desired release characteristics. An average particle size of between 1-20 microns will often be suitable.
When introduced within a localized tissue region the solid IRM particles can slowly release active IRM compound the local area, providing extended residence times. The rate of release will depend on solubility of the particular IRM used, which may be influenced by such things as selection of polyrnorph forms, salts, and stereoisomers, in addition to the physicochemical properties of any carriers or fillers, if used.
For example, a colloidal IRM suspension may be formed using an IRM dissolved in a water-miscible organic injectable solvent (e.g. N-methyl pyrrolidone or NMP) (compartment 1). Then, an antigen, if desired, may be dissolved in an aqueous solution with surfactants (e.g. Tween 80) (compartment 2). Prior to administration to a localized tissue region, such as subcutaneous injection, colloidal particles of IRM are formed by mixing compartment 1 into compartment 2, causing precipitation of IRM into fine particles. Of course, where appropriate an IRM colloidal suspension can be made prior to packaging, with instructions for shaking/vortexing prior to administration.
4. The IRM compound may be encapsulated, incorporated, or dissolved into biodegradable polymeric matrices such as poly lactic acid (polylactides), poly glycolic acid (polyglycolides), poly(d,l-lactide-co-glycolide) (PLGA), polyorthoesters, polyanhydrides, polyphosphazenes, and polyurethanes. Such biodegradable matrices are often used to provide extended release systemic drug delivery, but can also be adapted for use to provide extended IRM delivery within a localized tissue region, for example directly within a tumor mass, infection site, or vaccination site.
For example, an IRM compound and a vaccine antigen may be dissolved in a polymer solvent like N-methyl pyrrolidone or NMP (compartment 1). A selected polymer may then be dissolved in the solvent (compartment 2). Compartment 1 and 2 are mixed upon administration, e.g., using a double cartridge syringe with a static mixer. When injected, the solvent (e.g. NMP) which is miscible with water, diffuses away, leaving a semi-solid implant containing both IRM and Antigen.
7_ S. The IRM compound may be incorporated into single emulsions such as oil-in-water (o/w) or water-in-oil (w/o), or multiple emulsions such as water-in-oil-in water (w/o/w) and oil-in-water-in-oil (o/w/o). Antigen can also be incorporated into the emulsion in addition to the IRM (e.g. to generate a more specific immune response). The S IRM and antigen can partition between the oil and water phases, or lie on the discrete phase (e.g. oil droplet) surface. The emulsion format may act synergistically with the IRM
for improved immune response (e.g. antigen on oil droplet surface may enhance its presentation to cells of the immune system, while IRM can enhance uptake of the antigen on the oil droplet by cells of the immune system.
For example, an o/w emulsion may use an IRM in a MFS9-based emulsion containing squalene (oil-phase) and surfactant (e.g., Tween 80, Span 8S), and water. The IRM may be pre-dissolved in the water phase or the oil phase. Another example is to use a vegetable oil (sesame oil, soybean oil, mineral oil, e.g. emulsion based on Freund's Incomplete Adjuvant, etc.) with IRM and surfactant (e.g., lecithin) in water.
A w/o 1 S emulsion may use an IRM dissolved in water, surfactant (e.g., mannide monooleate) and mineral oil. A w/o emulsion can also be made using water with IRM dissolved, and injectable vegetable oils with appropriate emulsifiers and surfactants (Tween 80, Cremophore EL, etc.). Antigen may also be pre-dissolved in water or the oil phase and incorporated in the emulsion.
6. The IRM compound may be incorporated into lipid membranes, lipid vesicles, and liposomes. Within lipsome preparations, the IRM may be loaded into the membrane, on the membrane surface, or in the liposome core. For example, IRM
liposomes may use DOTAP transfection agent and cholesterol to entrap 1RM, and antigen if desired, in a liposome.
2S 7. The IRM compound may be delivered to the localized tissue region using an osrnotically driven cylinder implanted within the tissue.
8. The IR.M compound may be incorporated into a bioadhesive polymer such as a hydrogel, including, fox example, those described by H. S. Sawhney, C. P.
Pathak and J. A. Hubell in Macromolecules, (1993) 26:581-587, as well as polyhyaluronic acids, casein, polysaccharides, keratin, collagen, gelatin, glutin, polyethylene glycol, crosslinked albumin, fibrin, polyanhydndes, polyacrylic acids, alginate, chitosan, poly(methyl methacrylates), poly(ethyl methacrylates), poly(butyl methacrylate), poly(isobutyl _g_ methacrylate), poly(hexyl methacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), poly(octadecyl acrylate), and cellulose gums.
Alternatively, polymeric hydrogel materials can be constructed from polyvinyl alcohol) precursors as disclosed in U.S. Pat. Nos. 4,528,325 and 4,618,649 or from poly(methyl methacrylate).
Poly(methyl methacrylate) is commercially available and is often used in ophthalmic devices such as intraocular lenses, contact lenses, and the like.
A suitable hydrogel can be natural, synthetic, or a combination thereof. In some embodiments, the hydrogel can be thermally responsive to a designed temperature such as, for example, a hydrogel as described in U.S. Patent Application Serial Number 10/626261, filed July 24, 2003. For example, the thermally responsive hydrogels can be harden when they are warmed up to body temperature, can be further harden upon UV
irradiation.
Bioadhesive organic polymers are preferred for certain applications of IRMs.
For I S example, if the IRM is to be used for treating bladder cancer, a bioadhesive polymer may be desired. Advantageously, the adhesive qualities of the formulation would allow the IRM to be in contact with the biological tissue allowing for greater contact time for cytokine induction.
It should also be noted that where solid particles are involved, the particles may be in any number of forms, e.g., irregular particulates, spheres, plates, flakes, rods or other shapes, and they may be porous or non-porous. Particles can be lyophilized, then for example provided with a diluent to create a microsuspension prior to administration. For vaccines, antigen may be encapsulated within a particle matrix, for example a biodegradable polymer, and lltM compound either incorporated into or adsorbed on 2S surface of the particle, either by physical or chemical adsorption.
The IRM depot preparations may provide IRM compound to the desired localized tissue region with various IRM residence half life times, generally of at least 2 hours. For example, the IRM residence half life may be at least 12 hours, 24 hours, 7 days, two weeks, a month, or even several months.
Further, the IRM depot preparation can be designed to achieve constant or pulsed delivery to the localized tissue region. Pulsed delivery may be desirable in order to provide intermittent dosing of an IRM to the local tissue region over time.
For example, a combination of biodegradable polymers can be used that have differing degradation, and thus 1RM release, rates. The depot preparation may contain a homogeneous mixture of various biodegradable polymers, or the polymers may be utilized in a segmented fashion to achieve complex degradation profiles. The depot preparation may also be coated with various polymers to achieve zero-order, first-order, and pulsatile lRM
release. If in the form of particles, some particles may use a polymer matrix that releases the IRM (and other optional ingredients, such as vaccine antigen) over 24 hours, other particles that release about two weeks later, and so on. It may be particularly desirable for vaccine purposes to provide continuous release of an antigen and use an 1RM depot preparation that provides pulsatile release of the IRM compound. Also, the IRM release timing may either be regular, e.g., initially and once weekly for several weeks, or it may be irregular, e.g., initially and then 3 days, 2 weeks, and 2 months apart.
The IRM depot preparations may be delivered into a desired localized tissue region via any suitable route, e.g., including but not limited to a subcutaneous, intradermal, intramuscular, intrathecal, infra-organ, intratumoral, intralesional, intravesicle, and intraperitoneal route of delivery. A "localized tissue region" will generally be a relatively small portion of the body, e.g., less than 10% by volume, and often less than 1% by volume. For example, depending on the size of, e.g., a solid tumor or cancerous organ, the localized tissue region will typically be on the order of no more than about 500 cm3, often less than about 100 cm3, and in many instances 10 cm3 or less. For some applications the localized tissue region will be 1 cm3 or less (e.g., for small tumor nodules, viral lesions, or vaccination sites). However, in certain instances the localized tissue region may be a particularly large region, up to several liters, for example to treat metastasized cancer within the entire peritoneal cavity (e.g., using an IRM depot preparation to retain the IRM
for an extended time within the peritoneal cavity). The IRM depot preparations may be delivered using, e.g., needle injection, surgical, laparoscopic, or catheter implantation, microneedle array, high-velocity particle implantation, or any other known method for introducing a preparation into a localized tissue region. Delivery to the localized tissue region may be in conjunction with image guiding techniques using, for example, ultrasound, MRI, real-time X-ray (fluoroscopy), etc.
Additional Agents In addition to one or more IRM compounds, the IRM depot preparations and methods of the present invention can include additional agents. Alternatively, the additional agents) can be administered separately from the TRM depot preparation.
Such additional agents may be additional drugs, including, for example, a vaccine or a tumor necrosis factor receptor (TNFR) agonist. Vaccines include any material that raises either humoral and/or cell mediated immune response, such as live or attenuated viral and bacterial immunogens and inactivated viral, tumor-derived, protozoal, organism-derived, fungal, and bacterial immunogens, toxoids, toxins, polysaccharides, proteins, glycoproteins, peptides, cellular vaccines, such as using dendritic cells, DNA
vaccines, recombinant proteins, glycoproteins, and peptides, and the like, for use in connection with, e.g., cancer vaccines, BCG, cholera, plague, typhoid, hepatitis A, B, and C, influenza A
and B, parainfluenza, polio, rabies, measles, mumps, rubella, yellow fever, tetanus, diphtheria, hemophilus influenza b, tuberculosis, meningococcal and pneumococcal vaccines, adenovirus, HIV, chicken pox, cytomegalovirus, dengue, feline leukemia, fowl plague, HSV-1 and HSV-2, hog cholera, Japanese encephalitis, respiratory syncytial virus, rotavirus, papilloma virus, severe acute respiratory syndrome (SARS), anthrax, and yellow fever. See also, e.g., vaccines disclosed in WO 02/24225. Such additional agents can include, but are not limited to, drugs, such as antiviral agents or cytokines. The vaccine may be separate or may be physically or chemically linked to the IRM, such as by chemical conjugation or other means, so that they are delivered as a unit.
TNFR agonists that may be delivered in conjunction with the IRM depot preparation include, but are not limited to, CD40 receptor agonists, such as disclosed in copending application US
601437398. Other active ingredients for use in combination with an IRM depot preparation of the present invention include those disclosed in, e.g., US
2003/0139364.
Imrnune Response Modzfier Compounds:
Immune response modifiers ("IRM") useful in the present invention include compounds that act on the immune system by inducing and/or suppressing cytokine biosynthesis. IRM compounds possess potent immunostimulating activity including, but not limited to, antiviral and antitumor activity, and can also down-regulate other aspects of the immune response, for example shifting the immune response away from a TH-2 immune response, which is useful for treating a wide range of TH-2 mediated diseases.
IRM compounds can also be used to modulate humoral immunity by stimulating antibody production by B cells. Further, various IRM compounds have been shown to be useful as vaccine adjuvants (see, e.g., U.S. Patent Nos. 6,083,SOS, U.S. 6,406,705, and WO
02/24225).
S In particular, certain IRM compounds effect their immunostimulatory activity by inducing the production and secretion of cytokines such as, e.g., Type I
interferons, TNF-a, IL-1, IL-6, IL-8, IL-10, IL-12, IP-10, MIP-1, MIP-3, and/or MCP-1, and can also inhibit production and secretion of certain TH-2 cytokines, such as IL-4 and IL-S.
Some IRM
compounds are said to suppress IL-1 and TNF (U.S. Patent No. 6,S 18,265).
For some embodiments, the preferred IRM compounds are so-called small molecule IRMs, which are relatively small organic compounds (e.g., molecular weight under about 1000 daltons, preferably under about 500 daltons, as opposed to large biologic protein, peptides, and the like). Although not bound by any single theory of activity, some IRMs are known to be agonists of at least one Toll-like receptor (TLR). lRM
compounds 1 S that are agonists for TLRs selected from 6, 7, 8, and/or 9 may be particularly useful for certain applications. In some applications, for example, the preferred IRM
compound is not a TLR7 agonist and is a TLR8 or TLR9 agonist. In other applications, for example, the IRM is a TLR7 agonist and is not a TLR 8 agonist. Some small molecule IRM
compounds are agonists of TLRs such as 6, 7, and/or 8, while oligonucleotide compounds are agonists of TLR9, and perhaps others. Thus, in some embodiments, 'the IRM that is included in the IRM delivery apparatus may be a compound identified as an agonist of one or more TLRs.
For example, without being bound to any particular theory or mechanism of action, IRM compounds that activate a strong cytotoxic lymphocyte (CTL) response may be 2S particularly desirable as vaccine adjuvants, especially for therapeutic viral and/or cancer vaccines because a therapeutic effect in these settings is dependent on the activation of cellular immunity. For example, studies have shown that activation of T cell immunity in a given patient has a significant positive effect on the prognosis of the patient. Therefore the ability to enhance T cell immunity is believed to be critical to producing a therapeutic effect in these disease settings.
TRM compounds that are TLR 8 agonists may be particularly desirable for use with therapeutic cancer vaccines because antigen presenting cells that express TLRB
have been shown to produce IL-12 upon stimulation through TLRB. IL-12 is believed to play a significant role in activation of CTLs, which are important for mediating therapeutic efficacy as described above.
IRM compounds that are TLR 7 agonists and/or TLR 9 agonists may be particularly desirable for use with prophylactic vaccines because the type I
interferon induced by stimulation through these TLRs is believed to contribute to the formation of neutralizing Thl-like humoral and cellular responses.
1RM compounds that are both TLR 7 and TLR 8 agonists may be particularly desirable for use with therapeutic viral vaccines and/or cancer vaccines because TLR7 stimulation is believed to induce the production of type I IFN and activation of innate cells such as macrophages and NK cells, and TLRB stimulation is believed to activate antigen presenting cells to initiate cellular adaptive immunity as described above.
These cell types are able to mediate viral clearance and/or therapeutic growth inhibitory effects against neoplasms.
IRM compounds that are non-TLR 7 agonists, and do not induce substantial amounts of interferon alpha, may be desirable for use with certain vaccines such as bacterial vaccines because TLR7 induces type I IFN production, which down-regulates the production of IL-12 from macrophages and DCs. IL-12 contributes to the subsequent activation of macrophages, NIA cells and CTLs, all of which contribute to anti-bacterial immunity. Therefore the induction of anti-bacterial immunity against some kinds of bacteria may be enhanced in the absence of IFNa.
For purposes of the present application, one way to determine if an 1RM
compound is considered to be an agonist for a particular TLR is if it activates an NFIcB/luciferase reporter construct through that TLR from the target species more than about 1.5 fold, and usually at least about 2 fold, in TLR transfected host cells such as, e.g., HEK293 or Namalwa cells relative to control transfectants. For information regarding TLR
activation, see, e.g., applications WO 03/043573, US 60/447179, US 60/432650, US
60/432651, and US 60/450484, WO 03/043588 and the other IRM patents and applications disclosed herein.
Preferred IRM compounds include a 2-aminopyridine fused to a five-membered nitrogen-containing heterocyclic ring.
Examples of classes of small molecule IRM compounds include, but are not limited to, derivatives of imidazoquinoline amines including but not limited to amide substituted imidazoquinoline amines, sulfonamide substituted imidazoquinoline amines, urea substituted imidazoquinoline amines, aryl ether substituted ixnidazoquinoline amines, S heterocyclic ether substituted imidazoquinoline amines, amido ether substituted imidazoquinoline amines, sulfonamido ether substituted imidazoquinoline amines, urea substituted imidazoquinoline ethers, and thioether substituted imidazoquinoline amines;
tetrahydroimidazoquinoline amines including but not limited to amide substituted tetrahydroimidazoquinoline amines, sulfonamide substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline amines, aryl ether substituted tetrahydroimidazoquinoline amines, heterocyclic ether substituted tetrahydroimidazoquinoline amines, amido ether substituted tetrahydroimidazoquinoline amines, sulfonamido ether substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline ethers, and thioether substituted tetrahydroimidazoquinoline 1 S amines; imidazopyridine amines including but not limited to amide substituted imidazopyridines, sulfonamido substituted imidazopyridines, and urea substituted imidazopyridines; 1,2-bridged imidazoquinoline amines; 6,7-fused cycloalkylimidazopyridine amines; imidazonaphthyridine amines;
tetrahydroimidazonaphthyridine amines; oxazoloquinoline amines;
thiazoloquinoline amines; oxazolopyridine amines; thiazolopyridine amines; oxazolonaphthyridine amines;
and thiazolonaphthyridine amines, such as those disclosed in, for example, U.S. Patent Nos. 4,689,338; 4,929,624; 4,988,815; 5,037,986; S,17S,296; 5,238,944;
5,266,S7S;
5,268,376; 5,346,905; S,3S2,784; 5,367,076; 5,389,640; S,39S,937; 5,446,153;
5,482,936;
5,693,811; 5,741,908; S,7S6,747; 5,939,090; 6,039,969; 6,083,505; 6,110,929;
6,194,425;
2S 6,245,776; 6,331,539; 6,376,669; 6,451,810; 6,S2S,064; 6,S4S,016;
6,S4S,017; 6,SS8,9S1;
and 6,573,273; European Patent 0 394 026; U.S. Patent Publication No.
2002/OOSSS17;
and International Patent Publication Nos. WO 01/74343; WO 02/46188; WO
02/46189;
WO 02/46190; WO 02/46191; WO 02/46192; WO 02/46193; WO 02/46749; WO
02/102377; WO 03/020889; WO 03/043572 and WO 03/045391.
Additional examples of small molecule IRMs said to induce interferon (among other things), include purine derivatives (such as those described in U.S.
Patent Nos.
6,376,501, and 6,028,076), imidazoquinoline amide derivatives (such as those described in U.S. Patent No. 6,069,149), and benzimidazole derivatives (such as those described in U.S. Patent 6,387,938). IH-imidazopyridine derivatives (such as those described in U.S.
Patent 6,5I8,265) are said to inhibit TNF and IL-1 cytokines. Other small molecule IRMs said to be TLR 7 agonists are shown in U.S. 2003/0199461 Al.
Examples of small molecule IRMs that include a 4-aminopyrimidine fused to a five-membered nitrogen-containing heterocyclic ring include adenine derivatives (such as those described in U. S. Patent Nos. 6,376,501; 6,028,076 and 6,329,381; and in WO
02/08595).
In some applications, for example, the preferred IRM compound is other than imiquimod or S-28463 (i.e., resiquimod: 4-Amino-c~ a-dimethyl-1H-imidazo[4,5-c]quinoline-1-ethanol).
Examples ofparticular IRM compounds include 2-propyl[1,3]thiazolo[4,5-c]quinolin-4-amine, which is considered predominantly a TLR 8 agonist (and not a substantial TLR 7 agonist), 4-amino-a,a-dimethyl-1H imidazo[4,5-c]quinoline-1-ethanol, which is considered predominantly a TLR 7 agonist (and not a substantial TLR 8 agonist), and 4-amino-2-(ethoxymethyl)-a,a dimethyl-6,7,8,9-tetrahydro-1H imidazo[4,5-c]quinoline-1-ethanol, which is a TLR 7 and TLR 8 agonist. In addition to its activity (and TLR 6 activity, but Iow TLR 8 activity), 4-amino-a,a-dimethyl-1H
imidazo[4,5-c]quinoline-1-ethanol has beneficial characteristics, including that it has a much lower CNS effect when delivered systemically compared to imiquimod. Other examples of specific IRM compounds include, e.g., N-[4-(4-amino-2-butyl-1H
imidazo[4,5-c][1,5]naphthyridin-1-yl)butyl]-N'-cyclohexylurea, 2-methyl-1-(2-methylpropyl)-1H imidazo[4,5-c][1,5]naphthyridin-4-amine, 1-(2-methylpropyl)-imidazo[4,5-c][1,5]naphthyridin-4-amine, N-~2-[4-amino-2-(ethoxymethyl)-1H
imidazo[4,5-c]quinolin-1-yl]-1,1-dimethylethyl)methanesulfonamide, N-[4-(4-amino-2-ethyl-1H imidazo[4,5-c]quinolin-1-yl)butyl]methanesulfonamide, 2-methyl-1-[5-(methylsulfonyl)pentyl]-1H imidazo[4,5-c]quinolin-4-amine, N-[4-(4-amino-2-propyl-1H
imidazo[4,5-c]quinolin-1-yl)butyl]methanesulfonamide, 2-butyl-I-[3-(methylsulfonyl)propyl]-1H imidazo[4,5-c]quinoline-4-amine, 2-butyl-1- f 2-[(I-methylethyl)sulfonyl]ethyl}- 1H imidazo[4,5-c]quinolin-4-amine, N- f 2-[4-amino-2-(ethoxymethyl)-1H imidazo[4,5-c]quinolin-1-yI]-1,1-dimethylethyl}-N'-cyclohexylurea, N-~2-[4-amino-2-(ethoxymethyl)-1H imidazo[4,5-c]quinolin-1-yl]-l,l-dimethylethyl)cyclohexanecarboxamide, N- f 2-[4-amino-2-(ethoxymethyl)-1H
imida.zo[4,S-c]quinolin-1-yl]ethyl)-N'-isopropylurea. Resiquimod, 4-amino-2-ethoxymethyl-a,a-dimethyl-1H imidazo[4,S-c]quinoline-1-ethanol, may also be 'used in certain situations where a combination TLR 7 and TLR 8 agonist is desired.
S Other IRM compounds include large biological molecules such as oligonucleotide sequences. Some IRM oligonucleotide sequences contain cytosine-guanine dinucleotides (CpG) and are described, for example, in U.S. Patent Nos. 6,194,388;
6,207,646;
6,239,116; 6,339,068; and 6,406,705. Some CpG-containing oligonucleotides can include synthetic immunomodulatory structural motifs such as those described, for example, in U.S. Pat. Nos. 6,426,334 and 6,476,000. CpG7909 is a specific example. Other IRM
nucleotide sequences lack CpG and are described, for example, in International Patent Publication No. WO 00/75304. However, the large biological molecule IRMs may be less susceptible to rapid clearance from a localized tissue region and, consequently, the 1RM
depot preparations described herein may be especially useful in connection with small 1S molecule IRMs described above.
Exemplary Applications:
IRM depot preparations delivered to a localized tissue region can be used in a wide variety of applications, such as in the treatment of a wide variety of conditions. For example, IRMs such as imiquimod - a small molecule, imidazoquinoline IRM, marketed as ALDARA (3M Pharmaceuticals, St. Paul, MN) - have been shown to be useful for the therapeutic treatment of warts, as well as certain cancerous or pre-cancerous lesions (See, e.g., Geisse et al., J. Am. Acad. Dermatol., 47(3): 390-398 (2002); Shumack et al., Arch.
Dermatol., 138: 1163-1171 (2002); U.S. Patent No. 5,238,944 and International 2S Publication No. WO 03/045391.
Other diseases fox which IRMs identified herein, including as an IRM depot preparation, may be used as treatments include, but are not limited to:
viral diseases, such as genital warts, common warts, plantar warts, hepatitis B, hepatitis C, herpes simplex virus type I and type II, molluscum contagiosum, variola, HTV, CMV, VZV, rhinovirus, adenovirus, coronavirus, influenza, para-influenza;
bacterial diseases, such as tuberculosis, and mycobacterium avium, leprosy;
other infectious diseases, such as fungal diseases, chlamydia, candida, aspergillus, cryptococcal meningitis, pneumocystis carnii, cryptosporidiosis, histoplasmosis, toxoplasmosis, trypanosome infection, leishmaniasis;
neoplastic diseases, such as intraepithelial neoplasias, cervical dysplasia, actinic keratosis, basal cell carcinoma, squamous cell carcinoma, hairy cell leukemia, Karposi's sarcoma, melanoma, renal cell carcinoma, myelogeous leukemia, multiple myeloma, non-Hodgkin's lymphoma, cutaneous T-cell lymphoma, and other cancers;
TH-2 mediated, atopic, and autoimmune diseases, such as atopic dermatitis or eczema, eosinophilia, asthma, allergy, allergic rhinitis, systemic lupus erythematosis, IO essential thrombocythaemia, multiple sclerosis, Ommen's syndrome, discoid lupus, alopecia areata, inhibition of keloid formation and other types of scarnng, and enhancing would healing, including chronic wounds; and as a vaccine adjuvant for use in conjunction with any material that raises either humoral and/or cell mediated immune response, such live viral and bacterial immunogens and inactivated viral, tumor-derived, protozoal, organism-derived, fungal, and bacterial immunogens, toxoids, toxins, polysaccharides, proteins, glycoproteins, peptides, cellular vaccines, DNA vaccines, recombinant proteins, glycoproteins, and peptides, and the like, for use in connection with, e.g., cancers, BCG, cholera, plague, typhoid, hepatitis A, B, and C, influenza A and B, paxainfluenza, polio, rabies, measles, mumps, rubella, yellow fever, tetanus, diphtheria, hemophilus influenza b, tuberculosis, meningococcal and pneumococcal vaccines, adenovirus, HTV, chicken pox, cytomegalovirus, dengue, feline leukemia, fowl plague, HSV-1 and HSV-2, hog cholera, Japanese encephalitis, respiratory syncytial virus, rotavirus, papilloma virus, and yellow fever.
The IRM depot preparations of the invention may be particularly beneficial for use within solid tumors and cancerous organs or tissue regions. If the residence time of the 1RM is extended within the cancerous tissue, it is believed that the body's immune response to the cancer can be enhanced and directly targeted to relevant tumor antigens.
This not only may help reduce or eliminate cancer at the site of IRM depot preparation delivery, but, by sensitizing the immune system to the cancer, may help the immune system attack the cancer in other Locations throughout the body. This approach to treatment may be used alone or in conjunction with other treatments for the cancer, such as therapeutic cancer vaccination (which may further include use of an ll2M
depot _I7_ preparation), antibody based therapies such as Rituxan and Herceptin, and other chemotherapies. Examples of cancers that may be particularly suitable for direct injection of an IRM depot preparation into a localized tissue region include, but are not limited to, breast cancer, Iung cancer, stomach cancer, head and neck cancer, colorectal cancer, renal S cell carcinoma, pancreatic cancer, basal cell carcinoma, cervical cancer, melanoma, prostate cancer, ovarian cancer, and bladder cancer.
The methods, materials, and articles of the present invention may be applicable for any suitable subject. Suitable subjects include, but are not limited to, animals such as, but not limited to, humans, non-human primates, rodents, dogs, cats, horses, pigs, sheep, goats, cows, or birds. IRMs may also be particularly helpful in individuals having compromised immune functioning, such as those with HIV AIDS, transplant patients, and cancer patients.
An amount of an IRM depot preparation effective for a given therapeutic or prophylactic application is an amount sufficient to achieve the intended therapeutic or prophylactic application. The precise amount of IRM depot preparation used will vary according to factors known in the art including but not limited to the physical and chemical nature of the IRM compound, the nature of the composition, the intended dosing regimen, the state of the subject's immune system (e.g., suppressed, compromised, stimulated), the method of administering the 1RM compound, and the species to which the formulation is being administered. Accordingly it is not practical to set forth generally the amount that constitutes an amount of IRM and IRM depot preparation effective for all possible applications. Those of ordinary skill in the art, however, can readily determine an appropriate amount with due consideration of such factors.
EXAMPLE
The following example has been selected merely to further illustrate features, advantages, and other details of the invention. It is to be expressly understood, however, that while the example serve this purpose, the particular materials and amounts used as well as other conditions and details are not to be construed in a matter that would unduly limit the scope of this invention.
Mice were immunized via subcutaneous injection with SOOug ovalbumin protein alone (formulated as an aqueous solution in phosphate buffered saline) or mixed with 200ug of one of the following IRMs:
NHz / ~ 'N
OH
Prepared as a non-depot preparation, formulated to deliver 200ug as an aqueous solution in an acetate buffered saline mixture containing cyclodextrin.
O
w/
OH
Prepared as a non-depot preparation, formulated to deliver 200ug as an aqueous solution in a acetate buffered saline mixture containing cyclodextrin.
IRM 3 (lipidated IRM) NHZ
N ~ ~~0~
O
IRM 3 is a lipidated IRM. IRM 3 was formulated to deliver 200ug using a depot preparation formulated as a micropartical precipitate (ppt), colloidal suspension, or as a micellar suspension. The precipitate composition was a microparticle (>
lmicron, around 10-500 microns) composition formed by simply injecting IRM 3 dissolved in an organic solvent into an aqueous solution without surfactants. The resulting particle size range was broad, unlike the colloidal suspension (which provided a more monomodal submicron size). To form the colloidal formulation, lltM 3 was first dissolved in an organic and water miscible solvent (e.g. N-methyl pyrrolidone, DMSO, Cremophore EL), then added to an aqueous solution containing an appropriate amount of Tween 80. This causes the lipophilic 1RM 3 to precipitate into colloidal particles, coated or surrounded by Tween 80 molecules, which act to prevent or minimize flocculation or agglomeration of the IRM
particles. The higher the concentration of Tween 80, the finer the IRM
colloidal particle size will be. At a concentration of Tween 80 greater than 2%, the 1RM
colloidal suspension turned into a translucent, almost clear solution, suggestive of a micellar encapsulation of the IRM by Tween 80. In this approach, the IRM may also partition between the inside of the micelle or be embedded in the micelle shell itself, contributing to its stability.
IRM 4 is known as CpG 1826 and was formulated to deliver 200ug as an aqueous solution in phosphate buffered saline.
Tn each of the above cases, mice were injected subcutaneously 100u1 of formulation containing 200ug of 1RM and SOOug of ovalbumin, then boosted 2 weeks later with same formulation. Five days after the boost, the spleens were removed and the cells stained with CDB, CD44, B220 and Kb-SIINFEKL tetramer.
The results are shown in Figure 1. The data shown was gated on all live, CD8+, B220- events. The numbers in the upper right quadrants indicate the percent tetramer staining cells (antigen specific cells) out of total CD8+ T cells. The lipidated IRM
molecule provides a clearly enhanced immune response than the non lipidated molecules.
It is believed that this is due to both the lipid-modified nature of the compound, and the precipitate, colloidal suspension, and micellar suspension compositions, causing the IRM
to remain resident within the localized tissue region for an extended period.
The complete disclosures of the patents, patent documents and publications cited herein are incorporated by reference in their entirety as if each were individually incorporated. In case of conflict, the present specification, including definitions, shall control. Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention.
Illustrative embodiments and examples are provided as examples only and are not intended to limit the scope of the present invention. The scope of the invention is limited only by the claims set forth as follows.
particles may be essentially pure IRM compound, or may include carriers or fillers. The average size of the particles may be less than 1 micron, or from about I-100 microns, or larger than 100 microns, depending on the particular IRM used and the desired release characteristics. An average particle size of between 1-20 microns will often be suitable.
When introduced within a localized tissue region the solid IRM particles can slowly release active IRM compound the local area, providing extended residence times. The rate of release will depend on solubility of the particular IRM used, which may be influenced by such things as selection of polyrnorph forms, salts, and stereoisomers, in addition to the physicochemical properties of any carriers or fillers, if used.
For example, a colloidal IRM suspension may be formed using an IRM dissolved in a water-miscible organic injectable solvent (e.g. N-methyl pyrrolidone or NMP) (compartment 1). Then, an antigen, if desired, may be dissolved in an aqueous solution with surfactants (e.g. Tween 80) (compartment 2). Prior to administration to a localized tissue region, such as subcutaneous injection, colloidal particles of IRM are formed by mixing compartment 1 into compartment 2, causing precipitation of IRM into fine particles. Of course, where appropriate an IRM colloidal suspension can be made prior to packaging, with instructions for shaking/vortexing prior to administration.
4. The IRM compound may be encapsulated, incorporated, or dissolved into biodegradable polymeric matrices such as poly lactic acid (polylactides), poly glycolic acid (polyglycolides), poly(d,l-lactide-co-glycolide) (PLGA), polyorthoesters, polyanhydrides, polyphosphazenes, and polyurethanes. Such biodegradable matrices are often used to provide extended release systemic drug delivery, but can also be adapted for use to provide extended IRM delivery within a localized tissue region, for example directly within a tumor mass, infection site, or vaccination site.
For example, an IRM compound and a vaccine antigen may be dissolved in a polymer solvent like N-methyl pyrrolidone or NMP (compartment 1). A selected polymer may then be dissolved in the solvent (compartment 2). Compartment 1 and 2 are mixed upon administration, e.g., using a double cartridge syringe with a static mixer. When injected, the solvent (e.g. NMP) which is miscible with water, diffuses away, leaving a semi-solid implant containing both IRM and Antigen.
7_ S. The IRM compound may be incorporated into single emulsions such as oil-in-water (o/w) or water-in-oil (w/o), or multiple emulsions such as water-in-oil-in water (w/o/w) and oil-in-water-in-oil (o/w/o). Antigen can also be incorporated into the emulsion in addition to the IRM (e.g. to generate a more specific immune response). The S IRM and antigen can partition between the oil and water phases, or lie on the discrete phase (e.g. oil droplet) surface. The emulsion format may act synergistically with the IRM
for improved immune response (e.g. antigen on oil droplet surface may enhance its presentation to cells of the immune system, while IRM can enhance uptake of the antigen on the oil droplet by cells of the immune system.
For example, an o/w emulsion may use an IRM in a MFS9-based emulsion containing squalene (oil-phase) and surfactant (e.g., Tween 80, Span 8S), and water. The IRM may be pre-dissolved in the water phase or the oil phase. Another example is to use a vegetable oil (sesame oil, soybean oil, mineral oil, e.g. emulsion based on Freund's Incomplete Adjuvant, etc.) with IRM and surfactant (e.g., lecithin) in water.
A w/o 1 S emulsion may use an IRM dissolved in water, surfactant (e.g., mannide monooleate) and mineral oil. A w/o emulsion can also be made using water with IRM dissolved, and injectable vegetable oils with appropriate emulsifiers and surfactants (Tween 80, Cremophore EL, etc.). Antigen may also be pre-dissolved in water or the oil phase and incorporated in the emulsion.
6. The IRM compound may be incorporated into lipid membranes, lipid vesicles, and liposomes. Within lipsome preparations, the IRM may be loaded into the membrane, on the membrane surface, or in the liposome core. For example, IRM
liposomes may use DOTAP transfection agent and cholesterol to entrap 1RM, and antigen if desired, in a liposome.
2S 7. The IRM compound may be delivered to the localized tissue region using an osrnotically driven cylinder implanted within the tissue.
8. The IR.M compound may be incorporated into a bioadhesive polymer such as a hydrogel, including, fox example, those described by H. S. Sawhney, C. P.
Pathak and J. A. Hubell in Macromolecules, (1993) 26:581-587, as well as polyhyaluronic acids, casein, polysaccharides, keratin, collagen, gelatin, glutin, polyethylene glycol, crosslinked albumin, fibrin, polyanhydndes, polyacrylic acids, alginate, chitosan, poly(methyl methacrylates), poly(ethyl methacrylates), poly(butyl methacrylate), poly(isobutyl _g_ methacrylate), poly(hexyl methacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), poly(octadecyl acrylate), and cellulose gums.
Alternatively, polymeric hydrogel materials can be constructed from polyvinyl alcohol) precursors as disclosed in U.S. Pat. Nos. 4,528,325 and 4,618,649 or from poly(methyl methacrylate).
Poly(methyl methacrylate) is commercially available and is often used in ophthalmic devices such as intraocular lenses, contact lenses, and the like.
A suitable hydrogel can be natural, synthetic, or a combination thereof. In some embodiments, the hydrogel can be thermally responsive to a designed temperature such as, for example, a hydrogel as described in U.S. Patent Application Serial Number 10/626261, filed July 24, 2003. For example, the thermally responsive hydrogels can be harden when they are warmed up to body temperature, can be further harden upon UV
irradiation.
Bioadhesive organic polymers are preferred for certain applications of IRMs.
For I S example, if the IRM is to be used for treating bladder cancer, a bioadhesive polymer may be desired. Advantageously, the adhesive qualities of the formulation would allow the IRM to be in contact with the biological tissue allowing for greater contact time for cytokine induction.
It should also be noted that where solid particles are involved, the particles may be in any number of forms, e.g., irregular particulates, spheres, plates, flakes, rods or other shapes, and they may be porous or non-porous. Particles can be lyophilized, then for example provided with a diluent to create a microsuspension prior to administration. For vaccines, antigen may be encapsulated within a particle matrix, for example a biodegradable polymer, and lltM compound either incorporated into or adsorbed on 2S surface of the particle, either by physical or chemical adsorption.
The IRM depot preparations may provide IRM compound to the desired localized tissue region with various IRM residence half life times, generally of at least 2 hours. For example, the IRM residence half life may be at least 12 hours, 24 hours, 7 days, two weeks, a month, or even several months.
Further, the IRM depot preparation can be designed to achieve constant or pulsed delivery to the localized tissue region. Pulsed delivery may be desirable in order to provide intermittent dosing of an IRM to the local tissue region over time.
For example, a combination of biodegradable polymers can be used that have differing degradation, and thus 1RM release, rates. The depot preparation may contain a homogeneous mixture of various biodegradable polymers, or the polymers may be utilized in a segmented fashion to achieve complex degradation profiles. The depot preparation may also be coated with various polymers to achieve zero-order, first-order, and pulsatile lRM
release. If in the form of particles, some particles may use a polymer matrix that releases the IRM (and other optional ingredients, such as vaccine antigen) over 24 hours, other particles that release about two weeks later, and so on. It may be particularly desirable for vaccine purposes to provide continuous release of an antigen and use an 1RM depot preparation that provides pulsatile release of the IRM compound. Also, the IRM release timing may either be regular, e.g., initially and once weekly for several weeks, or it may be irregular, e.g., initially and then 3 days, 2 weeks, and 2 months apart.
The IRM depot preparations may be delivered into a desired localized tissue region via any suitable route, e.g., including but not limited to a subcutaneous, intradermal, intramuscular, intrathecal, infra-organ, intratumoral, intralesional, intravesicle, and intraperitoneal route of delivery. A "localized tissue region" will generally be a relatively small portion of the body, e.g., less than 10% by volume, and often less than 1% by volume. For example, depending on the size of, e.g., a solid tumor or cancerous organ, the localized tissue region will typically be on the order of no more than about 500 cm3, often less than about 100 cm3, and in many instances 10 cm3 or less. For some applications the localized tissue region will be 1 cm3 or less (e.g., for small tumor nodules, viral lesions, or vaccination sites). However, in certain instances the localized tissue region may be a particularly large region, up to several liters, for example to treat metastasized cancer within the entire peritoneal cavity (e.g., using an IRM depot preparation to retain the IRM
for an extended time within the peritoneal cavity). The IRM depot preparations may be delivered using, e.g., needle injection, surgical, laparoscopic, or catheter implantation, microneedle array, high-velocity particle implantation, or any other known method for introducing a preparation into a localized tissue region. Delivery to the localized tissue region may be in conjunction with image guiding techniques using, for example, ultrasound, MRI, real-time X-ray (fluoroscopy), etc.
Additional Agents In addition to one or more IRM compounds, the IRM depot preparations and methods of the present invention can include additional agents. Alternatively, the additional agents) can be administered separately from the TRM depot preparation.
Such additional agents may be additional drugs, including, for example, a vaccine or a tumor necrosis factor receptor (TNFR) agonist. Vaccines include any material that raises either humoral and/or cell mediated immune response, such as live or attenuated viral and bacterial immunogens and inactivated viral, tumor-derived, protozoal, organism-derived, fungal, and bacterial immunogens, toxoids, toxins, polysaccharides, proteins, glycoproteins, peptides, cellular vaccines, such as using dendritic cells, DNA
vaccines, recombinant proteins, glycoproteins, and peptides, and the like, for use in connection with, e.g., cancer vaccines, BCG, cholera, plague, typhoid, hepatitis A, B, and C, influenza A
and B, parainfluenza, polio, rabies, measles, mumps, rubella, yellow fever, tetanus, diphtheria, hemophilus influenza b, tuberculosis, meningococcal and pneumococcal vaccines, adenovirus, HIV, chicken pox, cytomegalovirus, dengue, feline leukemia, fowl plague, HSV-1 and HSV-2, hog cholera, Japanese encephalitis, respiratory syncytial virus, rotavirus, papilloma virus, severe acute respiratory syndrome (SARS), anthrax, and yellow fever. See also, e.g., vaccines disclosed in WO 02/24225. Such additional agents can include, but are not limited to, drugs, such as antiviral agents or cytokines. The vaccine may be separate or may be physically or chemically linked to the IRM, such as by chemical conjugation or other means, so that they are delivered as a unit.
TNFR agonists that may be delivered in conjunction with the IRM depot preparation include, but are not limited to, CD40 receptor agonists, such as disclosed in copending application US
601437398. Other active ingredients for use in combination with an IRM depot preparation of the present invention include those disclosed in, e.g., US
2003/0139364.
Imrnune Response Modzfier Compounds:
Immune response modifiers ("IRM") useful in the present invention include compounds that act on the immune system by inducing and/or suppressing cytokine biosynthesis. IRM compounds possess potent immunostimulating activity including, but not limited to, antiviral and antitumor activity, and can also down-regulate other aspects of the immune response, for example shifting the immune response away from a TH-2 immune response, which is useful for treating a wide range of TH-2 mediated diseases.
IRM compounds can also be used to modulate humoral immunity by stimulating antibody production by B cells. Further, various IRM compounds have been shown to be useful as vaccine adjuvants (see, e.g., U.S. Patent Nos. 6,083,SOS, U.S. 6,406,705, and WO
02/24225).
S In particular, certain IRM compounds effect their immunostimulatory activity by inducing the production and secretion of cytokines such as, e.g., Type I
interferons, TNF-a, IL-1, IL-6, IL-8, IL-10, IL-12, IP-10, MIP-1, MIP-3, and/or MCP-1, and can also inhibit production and secretion of certain TH-2 cytokines, such as IL-4 and IL-S.
Some IRM
compounds are said to suppress IL-1 and TNF (U.S. Patent No. 6,S 18,265).
For some embodiments, the preferred IRM compounds are so-called small molecule IRMs, which are relatively small organic compounds (e.g., molecular weight under about 1000 daltons, preferably under about 500 daltons, as opposed to large biologic protein, peptides, and the like). Although not bound by any single theory of activity, some IRMs are known to be agonists of at least one Toll-like receptor (TLR). lRM
compounds 1 S that are agonists for TLRs selected from 6, 7, 8, and/or 9 may be particularly useful for certain applications. In some applications, for example, the preferred IRM
compound is not a TLR7 agonist and is a TLR8 or TLR9 agonist. In other applications, for example, the IRM is a TLR7 agonist and is not a TLR 8 agonist. Some small molecule IRM
compounds are agonists of TLRs such as 6, 7, and/or 8, while oligonucleotide compounds are agonists of TLR9, and perhaps others. Thus, in some embodiments, 'the IRM that is included in the IRM delivery apparatus may be a compound identified as an agonist of one or more TLRs.
For example, without being bound to any particular theory or mechanism of action, IRM compounds that activate a strong cytotoxic lymphocyte (CTL) response may be 2S particularly desirable as vaccine adjuvants, especially for therapeutic viral and/or cancer vaccines because a therapeutic effect in these settings is dependent on the activation of cellular immunity. For example, studies have shown that activation of T cell immunity in a given patient has a significant positive effect on the prognosis of the patient. Therefore the ability to enhance T cell immunity is believed to be critical to producing a therapeutic effect in these disease settings.
TRM compounds that are TLR 8 agonists may be particularly desirable for use with therapeutic cancer vaccines because antigen presenting cells that express TLRB
have been shown to produce IL-12 upon stimulation through TLRB. IL-12 is believed to play a significant role in activation of CTLs, which are important for mediating therapeutic efficacy as described above.
IRM compounds that are TLR 7 agonists and/or TLR 9 agonists may be particularly desirable for use with prophylactic vaccines because the type I
interferon induced by stimulation through these TLRs is believed to contribute to the formation of neutralizing Thl-like humoral and cellular responses.
1RM compounds that are both TLR 7 and TLR 8 agonists may be particularly desirable for use with therapeutic viral vaccines and/or cancer vaccines because TLR7 stimulation is believed to induce the production of type I IFN and activation of innate cells such as macrophages and NK cells, and TLRB stimulation is believed to activate antigen presenting cells to initiate cellular adaptive immunity as described above.
These cell types are able to mediate viral clearance and/or therapeutic growth inhibitory effects against neoplasms.
IRM compounds that are non-TLR 7 agonists, and do not induce substantial amounts of interferon alpha, may be desirable for use with certain vaccines such as bacterial vaccines because TLR7 induces type I IFN production, which down-regulates the production of IL-12 from macrophages and DCs. IL-12 contributes to the subsequent activation of macrophages, NIA cells and CTLs, all of which contribute to anti-bacterial immunity. Therefore the induction of anti-bacterial immunity against some kinds of bacteria may be enhanced in the absence of IFNa.
For purposes of the present application, one way to determine if an 1RM
compound is considered to be an agonist for a particular TLR is if it activates an NFIcB/luciferase reporter construct through that TLR from the target species more than about 1.5 fold, and usually at least about 2 fold, in TLR transfected host cells such as, e.g., HEK293 or Namalwa cells relative to control transfectants. For information regarding TLR
activation, see, e.g., applications WO 03/043573, US 60/447179, US 60/432650, US
60/432651, and US 60/450484, WO 03/043588 and the other IRM patents and applications disclosed herein.
Preferred IRM compounds include a 2-aminopyridine fused to a five-membered nitrogen-containing heterocyclic ring.
Examples of classes of small molecule IRM compounds include, but are not limited to, derivatives of imidazoquinoline amines including but not limited to amide substituted imidazoquinoline amines, sulfonamide substituted imidazoquinoline amines, urea substituted imidazoquinoline amines, aryl ether substituted ixnidazoquinoline amines, S heterocyclic ether substituted imidazoquinoline amines, amido ether substituted imidazoquinoline amines, sulfonamido ether substituted imidazoquinoline amines, urea substituted imidazoquinoline ethers, and thioether substituted imidazoquinoline amines;
tetrahydroimidazoquinoline amines including but not limited to amide substituted tetrahydroimidazoquinoline amines, sulfonamide substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline amines, aryl ether substituted tetrahydroimidazoquinoline amines, heterocyclic ether substituted tetrahydroimidazoquinoline amines, amido ether substituted tetrahydroimidazoquinoline amines, sulfonamido ether substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline ethers, and thioether substituted tetrahydroimidazoquinoline 1 S amines; imidazopyridine amines including but not limited to amide substituted imidazopyridines, sulfonamido substituted imidazopyridines, and urea substituted imidazopyridines; 1,2-bridged imidazoquinoline amines; 6,7-fused cycloalkylimidazopyridine amines; imidazonaphthyridine amines;
tetrahydroimidazonaphthyridine amines; oxazoloquinoline amines;
thiazoloquinoline amines; oxazolopyridine amines; thiazolopyridine amines; oxazolonaphthyridine amines;
and thiazolonaphthyridine amines, such as those disclosed in, for example, U.S. Patent Nos. 4,689,338; 4,929,624; 4,988,815; 5,037,986; S,17S,296; 5,238,944;
5,266,S7S;
5,268,376; 5,346,905; S,3S2,784; 5,367,076; 5,389,640; S,39S,937; 5,446,153;
5,482,936;
5,693,811; 5,741,908; S,7S6,747; 5,939,090; 6,039,969; 6,083,505; 6,110,929;
6,194,425;
2S 6,245,776; 6,331,539; 6,376,669; 6,451,810; 6,S2S,064; 6,S4S,016;
6,S4S,017; 6,SS8,9S1;
and 6,573,273; European Patent 0 394 026; U.S. Patent Publication No.
2002/OOSSS17;
and International Patent Publication Nos. WO 01/74343; WO 02/46188; WO
02/46189;
WO 02/46190; WO 02/46191; WO 02/46192; WO 02/46193; WO 02/46749; WO
02/102377; WO 03/020889; WO 03/043572 and WO 03/045391.
Additional examples of small molecule IRMs said to induce interferon (among other things), include purine derivatives (such as those described in U.S.
Patent Nos.
6,376,501, and 6,028,076), imidazoquinoline amide derivatives (such as those described in U.S. Patent No. 6,069,149), and benzimidazole derivatives (such as those described in U.S. Patent 6,387,938). IH-imidazopyridine derivatives (such as those described in U.S.
Patent 6,5I8,265) are said to inhibit TNF and IL-1 cytokines. Other small molecule IRMs said to be TLR 7 agonists are shown in U.S. 2003/0199461 Al.
Examples of small molecule IRMs that include a 4-aminopyrimidine fused to a five-membered nitrogen-containing heterocyclic ring include adenine derivatives (such as those described in U. S. Patent Nos. 6,376,501; 6,028,076 and 6,329,381; and in WO
02/08595).
In some applications, for example, the preferred IRM compound is other than imiquimod or S-28463 (i.e., resiquimod: 4-Amino-c~ a-dimethyl-1H-imidazo[4,5-c]quinoline-1-ethanol).
Examples ofparticular IRM compounds include 2-propyl[1,3]thiazolo[4,5-c]quinolin-4-amine, which is considered predominantly a TLR 8 agonist (and not a substantial TLR 7 agonist), 4-amino-a,a-dimethyl-1H imidazo[4,5-c]quinoline-1-ethanol, which is considered predominantly a TLR 7 agonist (and not a substantial TLR 8 agonist), and 4-amino-2-(ethoxymethyl)-a,a dimethyl-6,7,8,9-tetrahydro-1H imidazo[4,5-c]quinoline-1-ethanol, which is a TLR 7 and TLR 8 agonist. In addition to its activity (and TLR 6 activity, but Iow TLR 8 activity), 4-amino-a,a-dimethyl-1H
imidazo[4,5-c]quinoline-1-ethanol has beneficial characteristics, including that it has a much lower CNS effect when delivered systemically compared to imiquimod. Other examples of specific IRM compounds include, e.g., N-[4-(4-amino-2-butyl-1H
imidazo[4,5-c][1,5]naphthyridin-1-yl)butyl]-N'-cyclohexylurea, 2-methyl-1-(2-methylpropyl)-1H imidazo[4,5-c][1,5]naphthyridin-4-amine, 1-(2-methylpropyl)-imidazo[4,5-c][1,5]naphthyridin-4-amine, N-~2-[4-amino-2-(ethoxymethyl)-1H
imidazo[4,5-c]quinolin-1-yl]-1,1-dimethylethyl)methanesulfonamide, N-[4-(4-amino-2-ethyl-1H imidazo[4,5-c]quinolin-1-yl)butyl]methanesulfonamide, 2-methyl-1-[5-(methylsulfonyl)pentyl]-1H imidazo[4,5-c]quinolin-4-amine, N-[4-(4-amino-2-propyl-1H
imidazo[4,5-c]quinolin-1-yl)butyl]methanesulfonamide, 2-butyl-I-[3-(methylsulfonyl)propyl]-1H imidazo[4,5-c]quinoline-4-amine, 2-butyl-1- f 2-[(I-methylethyl)sulfonyl]ethyl}- 1H imidazo[4,5-c]quinolin-4-amine, N- f 2-[4-amino-2-(ethoxymethyl)-1H imidazo[4,5-c]quinolin-1-yI]-1,1-dimethylethyl}-N'-cyclohexylurea, N-~2-[4-amino-2-(ethoxymethyl)-1H imidazo[4,5-c]quinolin-1-yl]-l,l-dimethylethyl)cyclohexanecarboxamide, N- f 2-[4-amino-2-(ethoxymethyl)-1H
imida.zo[4,S-c]quinolin-1-yl]ethyl)-N'-isopropylurea. Resiquimod, 4-amino-2-ethoxymethyl-a,a-dimethyl-1H imidazo[4,S-c]quinoline-1-ethanol, may also be 'used in certain situations where a combination TLR 7 and TLR 8 agonist is desired.
S Other IRM compounds include large biological molecules such as oligonucleotide sequences. Some IRM oligonucleotide sequences contain cytosine-guanine dinucleotides (CpG) and are described, for example, in U.S. Patent Nos. 6,194,388;
6,207,646;
6,239,116; 6,339,068; and 6,406,705. Some CpG-containing oligonucleotides can include synthetic immunomodulatory structural motifs such as those described, for example, in U.S. Pat. Nos. 6,426,334 and 6,476,000. CpG7909 is a specific example. Other IRM
nucleotide sequences lack CpG and are described, for example, in International Patent Publication No. WO 00/75304. However, the large biological molecule IRMs may be less susceptible to rapid clearance from a localized tissue region and, consequently, the 1RM
depot preparations described herein may be especially useful in connection with small 1S molecule IRMs described above.
Exemplary Applications:
IRM depot preparations delivered to a localized tissue region can be used in a wide variety of applications, such as in the treatment of a wide variety of conditions. For example, IRMs such as imiquimod - a small molecule, imidazoquinoline IRM, marketed as ALDARA (3M Pharmaceuticals, St. Paul, MN) - have been shown to be useful for the therapeutic treatment of warts, as well as certain cancerous or pre-cancerous lesions (See, e.g., Geisse et al., J. Am. Acad. Dermatol., 47(3): 390-398 (2002); Shumack et al., Arch.
Dermatol., 138: 1163-1171 (2002); U.S. Patent No. 5,238,944 and International 2S Publication No. WO 03/045391.
Other diseases fox which IRMs identified herein, including as an IRM depot preparation, may be used as treatments include, but are not limited to:
viral diseases, such as genital warts, common warts, plantar warts, hepatitis B, hepatitis C, herpes simplex virus type I and type II, molluscum contagiosum, variola, HTV, CMV, VZV, rhinovirus, adenovirus, coronavirus, influenza, para-influenza;
bacterial diseases, such as tuberculosis, and mycobacterium avium, leprosy;
other infectious diseases, such as fungal diseases, chlamydia, candida, aspergillus, cryptococcal meningitis, pneumocystis carnii, cryptosporidiosis, histoplasmosis, toxoplasmosis, trypanosome infection, leishmaniasis;
neoplastic diseases, such as intraepithelial neoplasias, cervical dysplasia, actinic keratosis, basal cell carcinoma, squamous cell carcinoma, hairy cell leukemia, Karposi's sarcoma, melanoma, renal cell carcinoma, myelogeous leukemia, multiple myeloma, non-Hodgkin's lymphoma, cutaneous T-cell lymphoma, and other cancers;
TH-2 mediated, atopic, and autoimmune diseases, such as atopic dermatitis or eczema, eosinophilia, asthma, allergy, allergic rhinitis, systemic lupus erythematosis, IO essential thrombocythaemia, multiple sclerosis, Ommen's syndrome, discoid lupus, alopecia areata, inhibition of keloid formation and other types of scarnng, and enhancing would healing, including chronic wounds; and as a vaccine adjuvant for use in conjunction with any material that raises either humoral and/or cell mediated immune response, such live viral and bacterial immunogens and inactivated viral, tumor-derived, protozoal, organism-derived, fungal, and bacterial immunogens, toxoids, toxins, polysaccharides, proteins, glycoproteins, peptides, cellular vaccines, DNA vaccines, recombinant proteins, glycoproteins, and peptides, and the like, for use in connection with, e.g., cancers, BCG, cholera, plague, typhoid, hepatitis A, B, and C, influenza A and B, paxainfluenza, polio, rabies, measles, mumps, rubella, yellow fever, tetanus, diphtheria, hemophilus influenza b, tuberculosis, meningococcal and pneumococcal vaccines, adenovirus, HTV, chicken pox, cytomegalovirus, dengue, feline leukemia, fowl plague, HSV-1 and HSV-2, hog cholera, Japanese encephalitis, respiratory syncytial virus, rotavirus, papilloma virus, and yellow fever.
The IRM depot preparations of the invention may be particularly beneficial for use within solid tumors and cancerous organs or tissue regions. If the residence time of the 1RM is extended within the cancerous tissue, it is believed that the body's immune response to the cancer can be enhanced and directly targeted to relevant tumor antigens.
This not only may help reduce or eliminate cancer at the site of IRM depot preparation delivery, but, by sensitizing the immune system to the cancer, may help the immune system attack the cancer in other Locations throughout the body. This approach to treatment may be used alone or in conjunction with other treatments for the cancer, such as therapeutic cancer vaccination (which may further include use of an ll2M
depot _I7_ preparation), antibody based therapies such as Rituxan and Herceptin, and other chemotherapies. Examples of cancers that may be particularly suitable for direct injection of an IRM depot preparation into a localized tissue region include, but are not limited to, breast cancer, Iung cancer, stomach cancer, head and neck cancer, colorectal cancer, renal S cell carcinoma, pancreatic cancer, basal cell carcinoma, cervical cancer, melanoma, prostate cancer, ovarian cancer, and bladder cancer.
The methods, materials, and articles of the present invention may be applicable for any suitable subject. Suitable subjects include, but are not limited to, animals such as, but not limited to, humans, non-human primates, rodents, dogs, cats, horses, pigs, sheep, goats, cows, or birds. IRMs may also be particularly helpful in individuals having compromised immune functioning, such as those with HIV AIDS, transplant patients, and cancer patients.
An amount of an IRM depot preparation effective for a given therapeutic or prophylactic application is an amount sufficient to achieve the intended therapeutic or prophylactic application. The precise amount of IRM depot preparation used will vary according to factors known in the art including but not limited to the physical and chemical nature of the IRM compound, the nature of the composition, the intended dosing regimen, the state of the subject's immune system (e.g., suppressed, compromised, stimulated), the method of administering the 1RM compound, and the species to which the formulation is being administered. Accordingly it is not practical to set forth generally the amount that constitutes an amount of IRM and IRM depot preparation effective for all possible applications. Those of ordinary skill in the art, however, can readily determine an appropriate amount with due consideration of such factors.
EXAMPLE
The following example has been selected merely to further illustrate features, advantages, and other details of the invention. It is to be expressly understood, however, that while the example serve this purpose, the particular materials and amounts used as well as other conditions and details are not to be construed in a matter that would unduly limit the scope of this invention.
Mice were immunized via subcutaneous injection with SOOug ovalbumin protein alone (formulated as an aqueous solution in phosphate buffered saline) or mixed with 200ug of one of the following IRMs:
NHz / ~ 'N
OH
Prepared as a non-depot preparation, formulated to deliver 200ug as an aqueous solution in an acetate buffered saline mixture containing cyclodextrin.
O
w/
OH
Prepared as a non-depot preparation, formulated to deliver 200ug as an aqueous solution in a acetate buffered saline mixture containing cyclodextrin.
IRM 3 (lipidated IRM) NHZ
N ~ ~~0~
O
IRM 3 is a lipidated IRM. IRM 3 was formulated to deliver 200ug using a depot preparation formulated as a micropartical precipitate (ppt), colloidal suspension, or as a micellar suspension. The precipitate composition was a microparticle (>
lmicron, around 10-500 microns) composition formed by simply injecting IRM 3 dissolved in an organic solvent into an aqueous solution without surfactants. The resulting particle size range was broad, unlike the colloidal suspension (which provided a more monomodal submicron size). To form the colloidal formulation, lltM 3 was first dissolved in an organic and water miscible solvent (e.g. N-methyl pyrrolidone, DMSO, Cremophore EL), then added to an aqueous solution containing an appropriate amount of Tween 80. This causes the lipophilic 1RM 3 to precipitate into colloidal particles, coated or surrounded by Tween 80 molecules, which act to prevent or minimize flocculation or agglomeration of the IRM
particles. The higher the concentration of Tween 80, the finer the IRM
colloidal particle size will be. At a concentration of Tween 80 greater than 2%, the 1RM
colloidal suspension turned into a translucent, almost clear solution, suggestive of a micellar encapsulation of the IRM by Tween 80. In this approach, the IRM may also partition between the inside of the micelle or be embedded in the micelle shell itself, contributing to its stability.
IRM 4 is known as CpG 1826 and was formulated to deliver 200ug as an aqueous solution in phosphate buffered saline.
Tn each of the above cases, mice were injected subcutaneously 100u1 of formulation containing 200ug of 1RM and SOOug of ovalbumin, then boosted 2 weeks later with same formulation. Five days after the boost, the spleens were removed and the cells stained with CDB, CD44, B220 and Kb-SIINFEKL tetramer.
The results are shown in Figure 1. The data shown was gated on all live, CD8+, B220- events. The numbers in the upper right quadrants indicate the percent tetramer staining cells (antigen specific cells) out of total CD8+ T cells. The lipidated IRM
molecule provides a clearly enhanced immune response than the non lipidated molecules.
It is believed that this is due to both the lipid-modified nature of the compound, and the precipitate, colloidal suspension, and micellar suspension compositions, causing the IRM
to remain resident within the localized tissue region for an extended period.
The complete disclosures of the patents, patent documents and publications cited herein are incorporated by reference in their entirety as if each were individually incorporated. In case of conflict, the present specification, including definitions, shall control. Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention.
Illustrative embodiments and examples are provided as examples only and are not intended to limit the scope of the present invention. The scope of the invention is limited only by the claims set forth as follows.
Claims (46)
1. A method of enhancing the immune response to an IRM compound, comprising:
depositing within a localized tissue region an IRM depot preparation that provides an extended residence time within the localized tissue region.
depositing within a localized tissue region an IRM depot preparation that provides an extended residence time within the localized tissue region.
2. The method of claim 1, wherein the localized tissue region is a breast cancer tumor.
3. The method of claim 1, wherein the localized tissue region is a stomach cancer tumor.
4. The method of claim 1, wherein the localized tissue region is a lung cancer tumor.
5. The method of claim 1, wherein the localized tissue region is a head or neck cancer tumor.
6. The method of claim 1, wherein the localized tissue region is a colorectal cancer tumor.
7. The method of claim 1, wherein the localized tissue region is a renal cell carcinoma tumor.
8. The method of claim 1, wherein the localized tissue region is a pancreatic cancer tumor
9. The method of claim 1, wherein the localized tissue region is a basal cell carcinoma tumor
10. The method of claim 1, wherein the localized tissue region is a cervical cancer tumor
11. The method of claim 1, wherein the localized tissue region is melanoma cancer tumor.
12. The method of claim 1, wherein the localized tissue region is prostate cancer tumor.
13. The method of claim 1, wherein the localized tissue region is ovarian cancer tumor.
14. The method of claim 1, wherein the localized tissue region is bladder cancer tumor.
15. The method of claim 1, wherein the localized tissue region is viral-infected lesion or organ.
16. The method of claim 1, wherein the localized tissue region is includes a vaccine.
17. The method of claim 1, wherein the localized tissue region is a particular organ subject to a disease that is treatable using the IRM compound.
18. The method of claim 1, wherein the IRM depot preparation comprises a lipid-modified IRM.
19. The method of claim 1, wherein the IRM depot preparation comprises an IRM
compound attached to support material.
compound attached to support material.
20. The method of claim 1, wherein the IRM depot preparation comprises solid particles of IRM compound.
21. The method of claim 1, wherein the IRM depot preparation comprises an emulsion.
22. The method of claim 1, wherein the IRM depot preparation comprises micelles.
23. The method of claim 1, wherein the IRM depot preparation comprises IRM
within a biodegradable polymer matrix.
within a biodegradable polymer matrix.
24. The method of claim 1, wherein the IRM depot preparation comprises IRM
compound incorporated into lipid membranes, lipid vesicles, or liposomes.
compound incorporated into lipid membranes, lipid vesicles, or liposomes.
25. The method of claim 1, wherein the IRM depot preparation provides pulsed delivery of an IRM compound.
26. The method of claim 1, wherein the IRM depot preparation comprises an osmotically driven cylinder.
27. The method of claim 1, wherein the IRM depot preparation is delivered within the localized tissue region using needle injection.
28. The method of claim 1, wherein the IRM depot preparation is delivered within the localized tissue region using surgical implantation.
29. The method of claim 1, wherein the IRM depot preparation is delivered within the localized tissue region using laparoscopic implantation.
30. The method of claim 1, wherein the IRM depot preparation is delivered within the localized tissue region using catheter implantation.
31. The method of claim 1, wherein the IRM depot preparation is delivered within the localized tissue region using a microneedle array.
32. The method of claim 1, wherein the IRM depot preparation is delivered within the localized tissue region using high-velocity particle implantation.
33. The method of claim 1, wherein the IRM depot preparation is delivered within the localized tissue region using an image guiding technique selected from ultrasound, MRI, or real-time X-ray fluoroscopy.
34. The method of claim 1 wherein the IRM is an agonist of at least one TLR
selected from the group consisting of TLR6, TLR7, TLR8, TLR9 and combinations thereof.
selected from the group consisting of TLR6, TLR7, TLR8, TLR9 and combinations thereof.
35. The method of claim 1 wherein the IRM is a selective TLR agonist of TLR 7.
36. The method of claim 1 wherein the IRM is a selective TLR agonist of TLR 8.
37. The method of claim 1 wherein the IRM is a selective TLR agonist of TLR 9.
38. The method of claim 1 wherein the IRM is a TLR agonist of both TLR 7 and 8.
39. The method of claim 1 wherein the IRM is a small molecule immune response modifier.
40. The method of claim 1 wherein the IRM is selected from the group consisting of imidazoquinoline amines including, but not limited to, amide substituted imidazoquinoline amines, sulfonamide substituted imidazoquinoline amines, urea substituted imidazoquinoline amines, aryl ether substituted imidazoquinoline amines, heterocyclic ether substituted imidazoquinoline amines, amido ether substituted imidazoquinoline amines, sulfonamido ether substituted imidazoquinoline amines, urea substituted imidazoquinoline ethers, and thioether substituted imidazoquinoline amines; tetrahydroimidazoquinoline amines including, but not limited to, amide substituted tetrahydroimidazoquinoline amines, sulfonamide substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline amines, aryl ether substituted tetrahydroimidazoquinoline amines, heterocyclic ether substituted tetrahydroimidazoquinoline amines, amido ether substituted tetrahydroimidazoquinoline amines, sulfonamido ether substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline ethers, and thioether substituted tetrahydroimidazoquinoline amines;
imidazopyridine amines including, but not limited to, amide substituted imidazopyridines, sulfonamido substituted imidazopyridines, and urea substituted imidazopyridines; 1,2-bridged imidazoquinoline amines; 6,7-fused cycloalkylimidazopyridine amines; imidazonaphthyridine amines;
tetrahydroimidazonaphthyridine amines; oxazoloquinoline amines;
thiazoloquinoline amines; oxazolopyridine amines; thiazolopyridine amines;
oxazolonaphthyridine amines; thiazolonaphthyridine amines; pharmaceutically acceptable salts thereof; and combinations thereof.
imidazopyridine amines including, but not limited to, amide substituted imidazopyridines, sulfonamido substituted imidazopyridines, and urea substituted imidazopyridines; 1,2-bridged imidazoquinoline amines; 6,7-fused cycloalkylimidazopyridine amines; imidazonaphthyridine amines;
tetrahydroimidazonaphthyridine amines; oxazoloquinoline amines;
thiazoloquinoline amines; oxazolopyridine amines; thiazolopyridine amines;
oxazolonaphthyridine amines; thiazolonaphthyridine amines; pharmaceutically acceptable salts thereof; and combinations thereof.
41. The method of claim 1 wherein the IRM is selected from the group consisting of amide substituted imidazoquinoline amines, sulfonamide substituted imidazoquinoline amines, urea substituted imidazoquinoline amines, aryl ether substituted imidazoquinoline amines, heterocyclic ether substituted imidazoquinoline amines, amido ether substituted imidazoquinoline amines, sulfonamido ether substituted imidazoquinoline amines, urea substituted imidazoquinoline ethers, and thioether substituted imidazoquinoline amines;
tetrahydroimidazoquinoline amines including, but not limited to, amide substituted tetrahydroimidazoquinoline amines, sulfonamide substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline amines, aryl ether substituted tetrahydroimidazoquinoline amines, heterocyclic ether substituted tetrahydroimidazoquinoline amines, amido ether substituted tetxahydroimidazoquinoline amines, sulfonamido ether substituted tetxahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline ethers, and thioether substituted tetrahydroimidazoquinoline amines;
imidazopyridine amines including, but not limited to, amide substituted imidazopyridines, sulfonamido substituted imidazopyridines, and urea substituted imidazopyridines; 1,2-bridged imidazoquinoline amines; 6,7-fused cycloalkylimidazopyridine amines; imidazonaphthyridine amines;
tetrahydroimidazonaphthyridine amines; oxazoloquinoline amines;
thiazoloquinoline amines; oxazolopyridine amines; thiazolopyridine amines;
oxazolonaphthyridine amines; thiazolonaphthyridine amines; pharmaceutically acceptable salts thereof; and combinations thereof.
tetrahydroimidazoquinoline amines including, but not limited to, amide substituted tetrahydroimidazoquinoline amines, sulfonamide substituted tetrahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline amines, aryl ether substituted tetrahydroimidazoquinoline amines, heterocyclic ether substituted tetrahydroimidazoquinoline amines, amido ether substituted tetxahydroimidazoquinoline amines, sulfonamido ether substituted tetxahydroimidazoquinoline amines, urea substituted tetrahydroimidazoquinoline ethers, and thioether substituted tetrahydroimidazoquinoline amines;
imidazopyridine amines including, but not limited to, amide substituted imidazopyridines, sulfonamido substituted imidazopyridines, and urea substituted imidazopyridines; 1,2-bridged imidazoquinoline amines; 6,7-fused cycloalkylimidazopyridine amines; imidazonaphthyridine amines;
tetrahydroimidazonaphthyridine amines; oxazoloquinoline amines;
thiazoloquinoline amines; oxazolopyridine amines; thiazolopyridine amines;
oxazolonaphthyridine amines; thiazolonaphthyridine amines; pharmaceutically acceptable salts thereof; and combinations thereof.
42. The method of claim 1, wherein the IRM comprises a 2-aminopyridine fused to a five membered nitrogen-containing heterocyclic ring.
43. The method of claim 1, wherein the IRM depot preparation comprises a CpG
IRM.
IRM.
44. The method of claim 1 wherein the IRM depot preparation further comprises one or more additional active ingredients.
45. The method of claim 28, wherein the active ingredient comprises a vaccine.
46. An IRM depot preparation according to any of the preceding claims.
Applications Claiming Priority (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US46214003P | 2003-04-10 | 2003-04-10 | |
US60/462,140 | 2003-04-10 | ||
US10/640,904 US7427629B2 (en) | 2002-08-15 | 2003-08-14 | Immunostimulatory compositions and methods of stimulating an immune response |
US10/640,904 | 2003-08-14 | ||
US51525603P | 2003-10-29 | 2003-10-29 | |
US60/515,256 | 2003-10-29 | ||
US53370303P | 2003-12-31 | 2003-12-31 | |
US60/533,703 | 2003-12-31 | ||
US54542404P | 2004-02-18 | 2004-02-18 | |
US54554204P | 2004-02-18 | 2004-02-18 | |
US60/545,542 | 2004-02-18 | ||
US60/545,424 | 2004-02-18 | ||
PCT/US2004/011085 WO2005001022A2 (en) | 2003-04-10 | 2004-04-09 | Methods and compositions for enhancing immune response |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2521662A1 true CA2521662A1 (en) | 2005-01-06 |
Family
ID=34923557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002521662A Abandoned CA2521662A1 (en) | 2003-04-10 | 2004-04-09 | Methods and compositions for enhancing immune response |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1617872A4 (en) |
JP (1) | JP2007514644A (en) |
AU (1) | AU2004252409A1 (en) |
CA (1) | CA2521662A1 (en) |
WO (1) | WO2005001022A2 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006007433A1 (en) * | 2006-02-17 | 2007-08-23 | Curevac Gmbh | Immunostimulant adjuvant useful in vaccines against cancer or infectious diseases comprises a lipid-modified nucleic acid |
EP2046954A2 (en) | 2006-07-31 | 2009-04-15 | Curevac GmbH | NUCLEIC ACID OF FORMULA (I): GIXmGn, OR (II): CIXmCn, IN PARTICULAR AS AN IMMUNE-STIMULATING AGENT/ADJUVANT |
WO2009030254A1 (en) | 2007-09-04 | 2009-03-12 | Curevac Gmbh | Complexes of rna and cationic peptides for transfection and for immunostimulation |
MX2010008468A (en) | 2008-01-31 | 2010-08-30 | Curevac Gmbh | NUCLEIC ACIDS COMPRISING FORMULA (NuGlX<sub >mGnNv)a AND DERIVATIVES THEREOF AS AN IMMUNOSTIMULATING AGENTS /ADJUVANTS. |
WO2010037408A1 (en) | 2008-09-30 | 2010-04-08 | Curevac Gmbh | Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof |
SI2341933T1 (en) | 2008-10-24 | 2018-03-30 | Glaxosmithkline Biologicals Sa | Lipidated imidazoquinoline derivatives |
US20110053829A1 (en) | 2009-09-03 | 2011-03-03 | Curevac Gmbh | Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids |
CN103025876A (en) | 2010-07-30 | 2013-04-03 | 库瑞瓦格有限责任公司 | Complexation of nucleic acids with disulfide-crosslinked cationic components for transfection and immunostimulation |
WO2013113326A1 (en) | 2012-01-31 | 2013-08-08 | Curevac Gmbh | Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen |
SG10201801431TA (en) | 2013-08-21 | 2018-04-27 | Curevac Ag | Respiratory syncytial virus (rsv) vaccine |
JP6446054B2 (en) * | 2013-11-05 | 2018-12-26 | スリーエム・イノベイティブ・プロパティーズ・カンパニー | Sesame oil-based injection formulation |
EP3129050A2 (en) | 2014-04-01 | 2017-02-15 | CureVac AG | Polymeric carrier cargo complex for use as an immunostimulating agent or as an adjuvant |
CN108348618B (en) | 2015-09-29 | 2021-06-15 | 大日本住友制药株式会社 | Adenine conjugate compounds and their use as vaccine adjuvants |
FI3868741T3 (en) | 2015-10-07 | 2023-10-02 | Sumitomo Pharma Co Ltd | Composition comprising a pyrimidine compound and a pathogen derived antigen |
MA44334A (en) | 2015-10-29 | 2018-09-05 | Novartis Ag | ANTIBODY CONJUGATES INCLUDING A TOLL-TYPE RECEPTOR AGONIST |
WO2018009916A1 (en) | 2016-07-07 | 2018-01-11 | The Board Of Trustees Of The Leland Stanford Junior University | Antibody adjuvant conjugates |
CA3107409A1 (en) | 2018-07-23 | 2020-01-30 | Japan As Represented By Director General Of National Institute Of Infectious Diseases | Composition containing influenza vaccine |
AU2020241686A1 (en) | 2019-03-15 | 2021-11-04 | Bolt Biotherapeutics, Inc. | Immunoconjugates targeting HER2 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5194581A (en) * | 1989-03-09 | 1993-03-16 | Leong Kam W | Biodegradable poly(phosphoesters) |
US5342940A (en) * | 1989-05-27 | 1994-08-30 | Sumitomo Pharmaceuticals Company, Limited | Polyethylene glycol derivatives, process for preparing the same |
WO1991017724A1 (en) * | 1990-05-17 | 1991-11-28 | Harbor Medical Devices, Inc. | Medical device polymer |
US5858397A (en) * | 1995-10-11 | 1999-01-12 | University Of British Columbia | Liposomal formulations of mitoxantrone |
US6273913B1 (en) * | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
US6486214B1 (en) * | 1997-09-10 | 2002-11-26 | Rutgers, The State University Of New Jersey | Polyanhydride linkers for production of drug polymers and drug polymer compositions produced thereby |
US6518280B2 (en) * | 1998-12-11 | 2003-02-11 | 3M Innovative Properties Company | Imidazonaphthyridines |
CN1555264A (en) * | 1999-01-08 | 2004-12-15 | 3M | Formulations for treatment of mucosal associated conditions with an immune response modifier |
US6486168B1 (en) * | 1999-01-08 | 2002-11-26 | 3M Innovative Properties Company | Formulations and methods for treatment of mucosal associated conditions with an immune response modifier |
EP1360486A2 (en) * | 2000-12-08 | 2003-11-12 | 3M Innovative Properties Company | Screening method for identifying compounds that selectively induce interferon alpha |
CN1292751C (en) * | 2002-04-23 | 2007-01-03 | 四川大学 | Imiquimod or its derivative liposome for local skin and its preparing method and use |
WO2004032829A2 (en) * | 2002-08-15 | 2004-04-22 | 3M Innovative Properties Company | Immunostimulatory compositions and methods of stimulating an immune response |
US7312301B2 (en) * | 2002-12-31 | 2007-12-25 | Nektar Therapeutics Al, Corporation | Methods for the formation of hydrogels using thiosulfonate compositions and uses thereof |
-
2004
- 2004-04-09 AU AU2004252409A patent/AU2004252409A1/en not_active Abandoned
- 2004-04-09 CA CA002521662A patent/CA2521662A1/en not_active Abandoned
- 2004-04-09 JP JP2006532393A patent/JP2007514644A/en not_active Withdrawn
- 2004-04-09 WO PCT/US2004/011085 patent/WO2005001022A2/en active Application Filing
- 2004-04-09 EP EP04775877A patent/EP1617872A4/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
WO2005001022A2 (en) | 2005-01-06 |
WO2005001022A3 (en) | 2005-09-15 |
AU2004252409A1 (en) | 2005-01-06 |
EP1617872A2 (en) | 2006-01-25 |
JP2007514644A (en) | 2007-06-07 |
EP1617872A4 (en) | 2011-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9801947B2 (en) | Methods and compositions for enhancing immune response | |
CA2521662A1 (en) | Methods and compositions for enhancing immune response | |
US10383938B2 (en) | Lipidated immune response modifier compound compositions, formulations, and methods | |
AU2004268616B2 (en) | Delivery of immune response modifier compounds | |
US20050048072A1 (en) | Immunostimulatory combinations and treatments | |
EA030863B1 (en) | Synthetic nanocarrier compositions for enhancing an immune response to an antigen and uses thereof | |
CN108324938B (en) | Granular adjuvant and preparation method and application thereof | |
WO2004053056A2 (en) | Nanoparticle-based vaccine delivery system containing adjuvant | |
EP3220913B1 (en) | Nanoparticle-based vaccine targeting cancer/testis antigens (cta) and its use in solid and hematological malignancies | |
KR102638773B1 (en) | Mucoadhesive-PLGA nanoparticles | |
AU2016253667B2 (en) | Lipidated immune response modifier compound compositions, formulations, and methods | |
AU2022368937A1 (en) | Immunotherapies for the treatment of cancer | |
KR20240083827A (en) | Microstructures containing water-soluble and fat-soluble immunomodulators | |
CN118475357A (en) | Immunotherapy for the treatment of cancer | |
橋田充 et al. | Development of Immunostimulatory Motif-containing DNA-based Delivery System for Drugs and Antigens | |
Koppolu | Development and Evaluation of Chitosan Particle Based Antigen Delivery Systems for Enhanced Antigen Specific Immune Response |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Dead |