EP1616194A2 - Especes de polypeptides secretes associees a des troubles cardio-vasculaires - Google Patents

Especes de polypeptides secretes associees a des troubles cardio-vasculaires

Info

Publication number
EP1616194A2
EP1616194A2 EP04726116A EP04726116A EP1616194A2 EP 1616194 A2 EP1616194 A2 EP 1616194A2 EP 04726116 A EP04726116 A EP 04726116A EP 04726116 A EP04726116 A EP 04726116A EP 1616194 A2 EP1616194 A2 EP 1616194A2
Authority
EP
European Patent Office
Prior art keywords
cpp
amino acid
polypeptide
seq
nos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04726116A
Other languages
German (de)
English (en)
Inventor
Guilaine c/o GeneProt Inc. ARGOUD-PUY
Nassima c/o GeneProt Inc. BEDERR
Lydie c/o GeneProt Inc. BOUGUELERET
Isabelle c/o GeneProt Inc. CUSIN
Eve c/o GeneProt Inc. MAHE
Anne C/O Geneprot Inc. Niknejad
Samia c/o GeneProt Inc. REFFAS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis Pharma GmbH
Genova Ltd
Original Assignee
Novartis Pharma GmbH
Genova Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novartis Pharma GmbH, Genova Ltd filed Critical Novartis Pharma GmbH
Publication of EP1616194A2 publication Critical patent/EP1616194A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the invention relates to polypeptide species secreted preferentially in individuals with cardiovascular disorders, to isolated polynucleotides encoding such polypeptides, to polymorphic variants thereof, and to the use of said nucleic acids and polypeptides or compositions thereof in detection assays, for cardiovascular disorder diagnosis, and for drug development.
  • Cardiovascular disease is a major health risk throughout the industrialized world.
  • Coronary Artery Disease is characterized by atherosclerosis or hardening of the arteries.
  • Atherosclerosis is the most prevalent of cardiovascular diseases, is the principal cause of heart attack ⁇ stroke, and gangrene of the extremities, and thereby the principle cause of death in the United States.
  • Atherosclerosis is a complex disease involving many cell types and molecular factors (described in, for example, Ross, 1993, Nature 362: 801-809).
  • SMCs smooth muscle cells
  • the advanced lesions of atherosclerosis may occlude the artery concerned, and result from an excessive inflarnmatory-f ⁇ broproliferative response to numerous different forms of insult.
  • Injury or dysfunction of the vascular endothelium is a common feature of many conditions that predispose an individual to accelerated development of atherosclerotic cardiovascular disease.
  • Atherosclerotic plaques occlude the blood vessel concerned and restrict the flow of blood, resulting in ischemia.
  • Ischemia is a condition characterized by a lack of oxygen supply in tissues of organs due to inadequate perfusion. Such inadequate perfusion can have a number of natural causes, including atherosclerotic or restenotic lesions, anemia, or stroke.
  • the most common cause of ischemia in the heart is atherosclerotic disease of epicardial coronary arteries. By reducing the lumen of these vessels, atherosclerosis causes an absolute decrease in myocardial perfusion in the basal state or limits appropriate increases in perfusion when the demand for flow is augmented.
  • Coronary blood flow can also be limited by arterial thrombi, spasm, and, rarely, coronary emboli, as well as by ostial narrowing due to luetic aortitis.
  • Congenital abnormalities such as anomalous origin of the left anterior descending coronary artery from the pulmonary artery, may cause myocardial ischemia and infarction in infancy, but this cause is very rare in adults.
  • Myocardial ischemia can also occur if myocardial oxygen demands are abnormally increased, as in severe ventricular hypertrophy due to hypertension or aortic stenosis. The latter can be present with angina that is indistinguishable from that caused by coronary atherosclerosis.
  • a reduction in the oxygen-carrying capacity of the blood is a rare cause of myocardial ischemia. Not infrequently, two or more causes of ischemia will coexist, such as an increase in oxygen demand due to left ventricular hypertrophy and a reduction in oxygen supply secondary to coronary atherosclerosis.
  • risk factors that increase the risk of cardiovascular disorders. Some of these risk factors, such as age, gender, and family history cannot be changed. Other risk factors include the following: smoking, high blood pressure, high fat and high cholesterol diet, diabetes, lack of exercise, obesity, and stress.
  • cardiovascular disorders There may be no noticeable symptoms of a cardiovascular disorder at rest, but symptoms such as chest pressure may occur with increased activity or stress.
  • Other first signs that can appear are heartburn, nausea, vomiting, numbness, shortness of breath, heavy cold sweating, unexplained fatigue, and feelings of anxiety.
  • the more severe symptoms of cardiovascular disorders are chest pain (angina pectoris), rhythm disturbances (arrhythmias), stroke, or heart attack (myocardial infarction). Strokes and heart attacks result from a blocked artery in the brain and heart tissue, respectively. Because symptoms vary, the tests and treatments chosen can be very different from one patient to another.
  • Diagnostic tests useful in determining the extent and severity of cardiovascular disorder include: electrocardiogram (EKG), stress test, nuclear scanning, coronary angiography, resting EKG, EKG Multiphase Information Diagnosis Indexes, Holter monitor, late potentials, EKG mapping, echocardiogram, Thallium scan, PET, MRI, CT, angiogram and INUS. Additional risk factor measures and useful diagnostics are common and best applied by one of skill in the art of medicine. There are many different therapeutic approaches, depending on the seriousness of the disease. For many people, cardiovascular disorders are managed with lifestyle changes and medications. More severe diagnoses may indicate a need for surgery.
  • Surgical approaches to the treatment of ischemic atherosclerosis include bypass grafting, coronary angioplasty, laser angioplasty, atherectomy, endarterectomy, and percutaneous translumenal angioplasty (PCT A).
  • PCT A percutaneous translumenal angioplasty
  • the failure rate after these approaches due to restenosis, in which the occlusions recur and often become even worse, is extraordinarily high (30-50%). It appears that much of the restenosis due to further inflammation, smooth muscle accumulation, and thrombosis.
  • Additional therapeutic approaches to cardiovascular disease have included treatments that encouraged angiogenesis in such conditions as ischemic heart and limb disease.
  • CAD and cardiovascular disorder symptoms make definitive diagnosis difficult. More quantitative diagnostic methods suffer from variability, both between individuals and between readings on a single individual. Thus, diagnostic measures must be standardized and applied to individuals with well-documented and extensive medical histories. Further, current diagnostic methods often do not reveal the underlying cause for a given observation or reading. Therefore, a therapeutic strategy based on a particular positive result likely will not address the causative problem and may even be harmful to the individual.
  • Methods of diagnosis that rely on nucleotide detection include genetic approaches and expression profiling. For example, genes that are known to be involved in cardiovascular disorders may be screened for mutations using common genotyping techniques such as sequencing, hybridization-based techniques, or PCR.
  • expression from a known gene may be tracked by standard techniques including RTPCR, various hybridization-based techniques, and sequencing. These strategies often do not enable a practitioner to detect differences in mR ⁇ A processing and splicing, translation rate, mR ⁇ A stability, and posttranslational modifications such as proteolytic processing, phosphorylation, glycosylation, and amidation.
  • the invention provides specific plasma polypeptides that are differentially increased in plasma from individuals with Coronary Artery Disease compared to control plasma.
  • differences in mR ⁇ A processing and splicing, translation rate, mR ⁇ A stability, and posttranslational modifications such as proteolytic processing, phosphorylation, glycosylation, and amidation are revealed.
  • the polypeptides of the invention are thus described as "Cardiovascular disorder Plasma Polypeptides" or CPPs.
  • polypeptide sequences are described as SEQ ID NOs: 1-2, 6-7, 11-12, 15-17, and 24-25, and those comprising at least one of the amino acid sequences selected from SEQ ID NOs:3-5, 8-10, 13-14, 18-23 and 26-28 (see Figures 1-5).
  • CPP 2 corresponding to SEQ ID NOs:l-5, CPP 9 corresponding to SEQ LD NOs:6-10, CPP 17 corresponding to SEQ ID NOs:15-23, CPP 20 corresponding to SEQ ID NOs:24-28 and CPP 21 corresponding to SEQ LD NOs:l 1-14
  • Preferred fragments of the invention are those described as SEQ ID NOs:3-5, 8-10, 13-14, 18-23 and 26-28.
  • the CPPs of the invention represent an important diagnostic tool for determining the risk of coronary artery disease (CAD), coronary heart disease (CHD), peripheral vascular disease, cerebral ischemia (stroke), congestive heart failure, atherosclerosis, hypertension, and other cardiovascular diseases.
  • CPPs are secreted factors and as such, are readily detectable and useful for drug development, diagnosis, and prevention of cardiovascular diseases.
  • the present invention is directed to compositions related to secreted polypeptide species that are preferentially increased in plasma from individuals with a cardiovascular disorder.
  • These polypeptide species are designated herein "Cardiovascular disorder Plasma Polypeptides," or CPPs.
  • Cardiovascular disorder Plasma Polypeptides comprise an amino acid sequence selected from one of the groups consisting of SEQ LD NOs:l-5, 6-10, 11-14, 15-23 and 24-28, and are designated CPP 2, CPP 9, CPP 17, CPP 20 and CPP 21, respectively.
  • Compositions include CPP precursors, antibodies specific for CPPs, including monoclonal antibodies and other binding compositions derived therefrom. Further included are methods of making and using these compositions.
  • Precursors of the invention include unmodified precursors, proteolytic precursors of SEQ LD NOs: 1-28, and intermediates resulting from alternative proteolytic sites in the amino acid sequences of SEQ ID NOs: 1-28.
  • a preferred embodiment of the invention includes CPPs having a posttranslational modification, such as a phosphorylation, glycosylation, acetylation, amidation, or a C-, N- or O- linked carbohydrate group.
  • CPPs having intra- or inter-molecular interactions e.g., disulfide and hydrogen bonds that result in higher order structures.
  • CPPs that result from differential mRNA processing or splicing are also preferred.
  • the CPPs represent post-translationally modified species, structural variants, or splice variants that are present in plasma from individuals with a cardiovascular disorder.
  • the invention includes CPPs comprising a sequence which is at least 75 percent identical to a sequence selected from one of the groups consisting of SEQ ID NOs: 1-5, and 11-23.
  • the invention includes polypeptides comprising at least 85 percent, and more preferably at least 90 percent, and still more preferably at least 95 percent, identity with any one of the sequences selected from SEQ LD NOs: 1-5, and 11-23.
  • the invention includes polypeptides comprising a sequence at least 99 percent identical to a sequence selected from one of the groups consisting of SEQ LD NOs: 1-5, and 11-23.
  • the invention includes CPPs comprising a sequence which is at least 85 percent identical to a sequence selected from the group consisting of SEQ LD NOs:6-10.
  • the invention includes polypeptides comprising at least 90 percent, and more preferably at least 95 percent, and still more preferably at least 97 percent, identity with any one of the sequences selected from SEQ ID NOs:6-10.
  • the invention includes polypeptides comprising a sequence at least 99 percent identical to a sequence selected from the group consisting of SEQ LD NOs:6-10.
  • the invention includes CPPs comprising a sequence which is at least 95 percent identical to a sequence selected from the group consisting of SEQ LD NOs:24-28.
  • the invention includes polypeptides comprising at least 97 percent, and more preferably at least 98 percent, and still more preferably at least 99 percent, identity with any one of the sequences selected from SEQ LD NOs:24-28. Most preferably, the invention includes polypeptides comprising a sequence at least 99 percent identical to a sequence selected from the group consisting of SEQ LD NOs:24-28.
  • the invention includes natural variants of CPPs having a frequency in a selected population of at least two percent. More preferably, such natural variant has a frequency in a selected population of at least five percent, and still more preferably, at least ten percent. Most preferably, such natural variant has a frequency in a selected population of at least twenty percent.
  • the selected population may be any recognized population of study in the field of population genetics. Preferably, the selected population is Caucasian, Negroid, or Asian. More preferably, the selected population is French, German, English, Spanish, Swiss, Japanese, Chinese, Irish, Korean, Singaporean, Icelandic, North American, Israeli, Arab, Turkish, Greek, Italian, Polish, Pacific Islander, Finnish, Norwegian, Swedish, Estonian, Austrian, or Indian.
  • the selected population is Icelandic, Saami, Finnish, French of Caucasian ancestry, Swiss, Singaporean of Chinese ancestry, Korean, Japanese, Quebecian, North American Pima Indians, Pennsylvanian Amish and Amish Mennonite, Newfoundlander, or Polynesian.
  • a preferred aspect of the invention provides a composition comprising an isolated CPP, i.e., a CPP free from proteins or protein isoforms having a significantly different isoelectric point or a significantly different apparent molecular weight from the CPP.
  • the isoelectric point and molecular weight of a CPP may be indicated by affinity and size-based separation chromatography, 2- dimensional gel analysis, and mass spectrometry.
  • the invention provides particular polypeptide species that comprise an amino acid sequence selected from the one of the groups consisting of SEQ LD NOs:3-5, 8-10, 13-14, 18-23 and 26-28.
  • the particular polypeptide species further comprises contiguous amino acid sequence from SEQ LD NOs: 1-2, 6-7, 11-12, 15-17, and 24-25, respectively.
  • Preferred species are polypeptides that i) comprise an amino acid sequence selected from one of the groups consisting of SEQ LO NOs: 3-5, 8-10, 13-14, 18-23 and 26-28; ii) appear at a higher level in plasma from individuals with a cardiovascular disorder; and iii) optionally result from proteolytic processing of the polypeptides of SEQ LD NO: 1-2, 6-7, 11-12, 15-17, and 24-25, respectively.
  • the invention provides a combination of two or more of the polypeptides selected from the one of the groups consisting consisting of SEQ LD NOs:l-5, 6-10, 11- 14, 15-23 and 24-28.
  • the invention includes modified CPPs.
  • modifications include protecting/blocking groups, linkage to an antibody molecule or other cellular ligand, and detectable labels, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation of the protein.
  • Chemical modifications may be carried out by known techniques, including but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH4, acetylation, formylation, oxidation, reduction, or metabolic synthesis in the presence of tunicamycin.
  • chemically modified derivatives of the polypeptides of the invention which may provide additional advantages such as increased solubility, stability and circulating time of the polypeptide, or decreased immunogenicity (e.g., water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol).
  • the CPPs are modified at random positions within the molecule, or at predetermined positions within the molecule and may include one, two, three or more attached chemical moieties.
  • the invention provides a method of identifying a modulator of at least one CPP biological activity comprising the steps of: i) contacting a test modulator of a CPP biological activity with the polypeptide comprising the amino acid sequence selected from one of the groups consisting of the amino acid sequences listed in Table 1 (corresponding to CPP 2, CPP 9, CPP 17, CPP 20 and CPP 21); ii) detecting the level of said CPP biological activity; and iii) comparing the level of said CPP biological activity to that of a control sample lacking said test modulator.
  • the test modulator is an inhibitor of at least one CPP biological activity.
  • the test substance is an activator of at least one CPP biological activity.
  • the CPP biological activity tested is preferably increasing / decreasing lipase activity.
  • Another aspect of the invention relates to a method of identifying a modulator of a cardiovascular disorder comprising the steps of: (a) administering a candidate agent to a non-human test animal which is predisposed to be affected or which is affected by the cardiovascular disorder; (b) administering the candidate agent of (a) to a matched control non-human animal not predisposed to be affected or not being affected by the cardiovascular disorder; (c) detecting and /or quantifying the level of at least one polypeptide in a biological sample obtained from the non-human test of (a) or control animal of (b), wherein the at least one polypeptide is selected from: (i) a polypeptide comprising the amino acid sequence selected from one of the groups consisting of SEQ ID NOs: 1-2, 6-7, 11-12, 15-17, and 24-25; (ii) a variant, with at least 75% sequence identity, having one or more amino acid substitutions, deletions or insertions relative to the amino acid sequence shown in SEQ LD NOs:l, 2, 11, 12, 15, 16, or
  • a preferred embodiment of the invention provides that the non-human test animal which is predisposed to be affected or which is affected by the cardiovascular disorder comprises an increased plasma level of at least one of the polypeptides selected from: (i) a polypeptide comprising the amino acid sequence selected from one of the groups consisting of SEQ TD NOs: 1-2, 6-7, 11-12, 15-17, and 24-25; (ii) a variant, with at least 75% sequence identity, having one or more amino acid substitutions, deletions or insertions relative to the amino acid sequence shown in SEQ LD NOs:l, 2, 11, 12, 15, 16, or 17; (iii) a variant, with at least 85% sequence identity, having one or more amino acid substitutions, deletions or insertions relative to the amino acid sequence shown in SEQ 3D NOs:6, or 7; (iv) a variant, with at least 95% sequence identity, having one or more amino acid substitutions, deletions or insertions relative to the amino acid sequence shown in SEQ LD NOs:24, or 25; and (v
  • a method for monitoring the efficacy of a treatment of a subject having or at risk of developing a cardiovascular disorder with an agent comprises steps: (a) obtaining a pre-administration biological sample from the subject prior to administration of the agent; (b) detecting and /or quantifying the level of at least one polypeptide in the biological sample from said subject, wherein the at least polypeptide is selected from: (i) a polypeptide comprising the amino acid sequence selected from one of the groups consisting of SEQ LD NOs:l-2, 6-7, 11-12, 15-17, and 24-25; (ii) a variant, with at least 75% sequence identity, having one or more amino acid substitutions, deletions or insertions relative to the amino acid sequence shown in SEQ LD NOs:l, 2, 11, 12, 15, 16, or 17; (iii) a variant, with at least 85% sequence identity, having one or more amino acid substitutions, deletions or insertions relative to the amino acid sequence shown in SEQ LD
  • the invention includes polynucleotides encoding a CPP of the invention, polynucleotides encoding a polypeptide having an amino acid sequence selected from one of the groups consisting of SEQ ID NOs: 1-5, 6-10, 11-14, 15-23 and 24-28, oligonucleotides complementary to CPP gene sequences for diagnostic and analytical assays (e.g., PCR, hybridization- based techniques), and vectors for expressing CPPs.
  • diagnostic and analytical assays e.g., PCR, hybridization- based techniques
  • the invention provides a vector comprising DNA encoding a CPP.
  • the invention also includes host cells and transgenic non-human animals comprising such a vector.
  • One preferred method comprises the steps of (a) providing a host cell containing an expression vector as disclosed above; (b) culturing the host cell under conditions whereby the DNA segment is expressed; and (c) recovering the protein encoded by the DNA segment.
  • Another preferred method comprises the steps of: (a) providing a host cell capable of expressing a CPP; (b) culturing said host cell under conditions that allow expression of said CPP; and (c) recovering said CPP.
  • the expression vector further comprises a secretory signal sequence operably linked to the DNA segment, the cell secretes the protein into a culture medium, and the protein is recovered from the medium.
  • An especially preferred method of making a CPP includes chemical synthesis using standard peptide synthesis techniques, as described in the section titled "Chemical Manufacture of CPP Compositions" and in Example 2.
  • the invention includes isolated antibodies specific for any of the polypeptides, peptide fragments, or peptides described above.
  • the antibodies of the invention are monoclonal antibodies.
  • Anti-CPP antibodies have purification, diagnostic and prognostic applications.
  • Preferred anti-CPP antibodies for purification and diagnosis are attached to a label group.
  • Preferred CPP-related disorders for diagnosis include coronary artery disease (CAD), coronary heart disease (CHD), peripheral vascular disease, cerebral ischemia (stroke), congestive heart failure, atherosclerosis, hypertension, and other cardiovascular diseases.
  • Diagnostic methods include, but are not limited to, those that employ antibodies or antibody-derived compositions specific for a CPP antigen. Diagnostic methods for detecting CPPs in specific tissue samples and biological fluids (preferably plasma), and for detecting levels of expression of CPPs in tissues, also form part of the invention.
  • Compositions comprising one or more antibodies described above, together with a pharmaceutically acceptable carrier are also within the scope of the invention, for example, for in vivo diagnosis and drug screening assays.
  • the invention further provides methods for diagnosis of cardiovascular disorders that comprise detecting in a sample of body fluid, preferably blood plasma, the presence or level of at least one CPP disclosed herein or any combination thereof. Further included are methods of using CPP compositions, including primers complementary to CPP genes and/or messenger RNA and anti-CPP antibodies, for detecting and measuring quantities of CPPs in tissues and biological fluids, preferably plasma. These methods are also suitable for clinical screening, prognosis, monitoring the results of therapy, identifying patients most likely to respond to a particular therapeutic treatment, drug screening and development, and identifying new targets for drug treatment.
  • kits that may be used in the above-recited methods and that may comprise single or multiple preparations, or antibodies, together with other reagents, label groups, substrates, if needed, and directions for use.
  • the kits may be used for diagnosis of disease, or may be assays for the identification of new diagnostic and/or therapeutic agents.
  • Coronary Artery Disease is defined by the appearance of at least one symptom. Such symptoms become more serious as the disease progresses. CAD is often accompanied by reduced left ventricle capacity or output. Early CAD symptoms include elevated plasma levels of cholesterol and low-density lipoprotein (especially oxidized forms), as well as platelet-rich plasma aggregations. The vascular endothelium responds to inflammation and thus formation of plaques and levels of inflammatory and fibrinogenic factors increase. Lh addition, CAD, or atherosclerosis, is characterized by vascular calcification and hardening of the arteries. The resulting partial occlusion of the blood vessels leads to hypertension and ischemic heart disease.
  • CAD Coronary Artery Disease
  • detection of increased plasma levels of at least one CPP of the invention indicates an increased risk that an individual will develop CAD.
  • said detection indicates that an individual has at least a 1.05-fold, 1.1-fold, 1.15-fold, and more preferably at least a 1.2-fold increased likelihood of developing CAD.
  • detection of increased plasma levels of at least one CPP of the invention indicates that an individual has CAD. The amount of CPP increase observed in an individual compared to a control sample will correlate with the certainty of the prediction or diagnosis of CAD.
  • CPP is detected in a human plasma sample by the methods of the invention.
  • Especially preferred techniques are mass spectrometry and immunodetection.
  • a prediction or diagnosis of CAD is based on at least a 1.1 -, 1.15-, 1.2-, 1.25-, and more preferably a 1.5-fold increase in the experimental CPP level as compared to the control.
  • the invention further includes methods of using CPP-modulating compositions to prevent or treat disorders associated with aberrant expression or processing of CPPs of SEQ ID NOs: 1-28 in an individual.
  • CPP-related disorders include coronary artery disease (CAD), coronary heart disease (CHD), peripheral vascular disease, cerebral ischemia (stroke), congestive heart failure, atherosclerosis, hypertension, and other cardiovascular diseases.
  • a preferred embodiment of the invention is a method of preventing or treating a CPP-related disorder in an individual comprising the steps of: determining that an individual suffers from or is at risk of a CPP-related disorder and introducing a CPP-modulating composition to said individual.
  • SEQ LD NOs: 1 and 2 describe the amino acid sequences of the polypeptides present in plasma samples of individuals with coronary artery disease (hereinafter, SEQ LD NO:2 is designated CPP 2).
  • SEQ LD NOs:3-5 are the amino acid sequences of tryptic peptides found in MS-MS and/or MS-MALDL mass spectrometry in plasma samples of individuals with coronary artery disease.
  • SEQ LD NO: 6 describes the amino acid sequence of eosinophil-derived neurotoxin (EDN, hereinafter CPP 9), whereas SEQ LD NO:7 is the polypeptide sequence of the mature protein.
  • SEQ LD NOs:8, 9, and 10 are the amino acid sequences of tryptic peptides found by MS-MS mass spectrometry in plasma samples of individuals with coronary artery disease.
  • SEQ 3D NO: 11 describes the amino acid sequence of Human Epididymal secretory protein (HE) 1, whereas SEQ LD NO: 12 is the polypeptide sequence of the mature protein (hereinafter, CPP 21).
  • SEQ LD NOs: 13-14 are the amino acid sequences of tryptic peptides found by MS -MS mass spectrometry at a higher level in plasma samples of individuals with coronary artery disease.
  • SEQ ED NO: 15 describes the amino acid sequence of Defensin 1 precursor
  • SEQ LD NO: 16 is the polypeptide sequence of the preprotein
  • SEQ LD NO: 17 is the sequence of Defensin 1 (hereinafter, CPP 17).
  • SEQ LD NOs:18-23 are the amino acid sequences of tryptic peptides found by MS-MS mass spectrometry predominantly in plasma samples of individuals with coronary artery disease.
  • SEQ LD NO:24 describes the amino acid sequence of Plasminogen-related protein B precursor, whereas SEQ LD NO:25 is the polypeptide sequence of the mature protein (hereinafter, CPP 20).
  • SEQ LD NOs:26-28 are the amino acid sequences of tryptic peptides found by tandem mass spectrometry in plasma samples of individuals with Coronary Artery Disease.
  • Figure 1 shows mature human Colipase polypeptide sequences (SEQ LD NOs:l and 2) and the sequences of the tryptic peptides identified by tandem mass spectrometry in the plasma of individuals with coronary artery disease (SEQ LD NOs:3-5). The tryptic peptides are underlined in SEQ LD NOs:l and 2.
  • Figure 2 shows the sequence of CPP 9 (SEQ LD NO:6) and the peptide sequences found by MS-MS mass spectrometry in the plasma of individuals with coronary artery disease (SEQ LD NOs:8- 10).
  • the tryptic peptides observed by tandem mass spectrometry are underlined in SEQ 3D NOs:6 and 7.
  • the signal peptide is double-underlined.
  • Figure 3 shows the sequence of the precursor protein (SEQ LD NO:l 1) and of the mature protein (SEQ LD NO: 12, CPP 21) and peptide sequences found by MS-MS mass spectrometry in the plasma of individuals with coronary artery disease (SEQ 3D NOs: 13-14).
  • the tryptic peptides observed by tandem mass spectrometry are underlined in SEQ 3D NOs: 11 and 12.
  • the signal peptide is double-underlined.
  • Figure 4 shows the sequence of CPP 17 (SEQ ID NO: 17) and the peptide sequences found by MS-MS mass spectrometry in the plasma of individuals with coronary artery disease (SEQ ID NO: 17) and the peptide sequences found by MS-MS mass spectrometry in the plasma of individuals with coronary artery disease (SEQ ID NO: 17) and the peptide sequences found by MS-MS mass spectrometry in the plasma of individuals with coronary artery disease (SEQ ID NO: 17) and the peptide sequences found by MS-MS mass spectrometry in the plasma of individuals with coronary artery disease (SEQ ID NO: 17) and the peptide sequences found by MS-MS mass spectrometry in the plasma of individuals with coronary artery disease (SEQ ID NO: 17) and the peptide sequences found by MS-MS mass spectrometry in the plasma of individuals with coronary artery disease (SEQ ID NO: 17) and the peptide sequences found by MS-MS mass spectrometry in the plasma of
  • SEQ LD NOs: 15 and 16 represent the precursor and preprotein, respectively.
  • the signal peptide is double-underlined in SEQ 3D NO: 15.
  • Figure 5 shows the sequence of the precursor (SEQ ID NO:24) and mature protein (CPP20, SEQ 3D NO:25) of the invention, and peptide sequences found by tandem mass spectrometry in the plasma of individuals with Coronary Artery Disease (SEQ 3D NOs:26-28).
  • the tryptic peptides observed by tandem mass spectrometry are underlined in SEQ 3D NOs:24 and 25.
  • the signal peptide is double-underlined in SEQ ID NO:24.
  • the present invention described in detail below provides methods, compositions, and kits useful for screening, diagnosis, and prognosis of a cardiovascular disorder in a mammalian individual; for identifying individuals most likely to respond to a particular therapeutic treatment; for monitoring the results of cardiovascular disorder therapy; for screening CPP modulators; and for drug development.
  • the invention also encompasses the administration of therapeutic compositions to a mammalian individual to treat or prevent cardiovascular disorders.
  • the mammalian individual may be a non-human mammal, but is preferably human, more preferably a human adult.
  • the invention will be described with respect to the analysis of blood plasma samples.
  • the assays and techniques described below can be applied to other biological fluid samples (e.g. cerebrospinal fluid, lymph, bile, serum, saliva or urine) or tissue samples from an individual at risk of having or developing a cardiovascular disorder.
  • biological fluid samples e.g. cerebrospinal fluid, lymph, bile, serum, saliva or urine
  • tissue samples from an individual at risk of having or developing a cardiovascular disorder.
  • the methods and compositions of the present invention are useful for screening, diagnosis and prognosis of a living individual, but may also be used for postmortem diagnosis in an individual, for example, to identify family members who are at risk of developing the same disorder.
  • nucleic acids and “nucleic acid molecule” is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs.
  • the nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.
  • nucleotide sequence may be employed to designate indifferently a polynucleotide or a nucleic acid. More precisely, the expression “nucleotide sequence” encompasses the nucleic material itself and is thus not restricted to the sequence information (i.e.
  • nucleic acids are one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid.
  • an “isolated” nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
  • the isolated CPP nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived.
  • an "isolated" nucleic acid molecule such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.
  • CPP nucleic acid molecules can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning. A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).
  • hybridizes to is intended to describe conditions for moderate stringency or high stringency hybridization, preferably where the hybridization and washing conditions permit nucleotide sequences at least 60% homologous to each other to remain hybridized to each other.
  • the conditions are such that sequences at least about 70%, more preferably at least about 80%, even more preferably at least about 85%, 90%, 95% or 98% homologous to each other typically remain hybridized to each other.
  • Stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1 -6.3.6.
  • stringent hybridization conditions for nucleic acid interactions are as follows: the hybridization step is realized at 65°C in the presence of 6 x SSC buffer, 5 x Denhardt's solution, 0,5% SDS and lOO ⁇ g/ml of salmon sperm DNA. The hybridization step is followed by four washing steps: - two washings during 5 min, preferably at 65°C in a 2 x SSC and 0.1%SDS buffer;
  • hybridization conditions being suitable for a nucleic acid molecule of about 20 nucleotides in . length.
  • hybridization conditions described above are to be adapted according to the length of the desired nucleic acid, following techniques well known to the one skilled in the art, for example be adapted according to the teachings disclosed in Hames B.D. and Higgins S.J. (1985) Nucleic Acid Hybridization: A Practical Approach. Hames and Higgins Ed., IRL Press, Oxford; and Current Protocols in Molecular Biology.
  • Percent homology is used herein to refer to both nucleic acid sequences and amino acid sequences.
  • Amino acid or nucleic acid “identity” is equivalent to amino acid or nucleic acid, "homology”.
  • the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence and non-homologous sequences can be disregarded for comparison purposes).
  • the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, 90% or 95% of the length of the reference sequence.
  • the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position.
  • the comparison of sequences and determination of percent homology between two sequences can be accomplished using a mathematical algorithm.
  • a preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-68, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-77, the disclosures of which are incorporated herein by reference in their entireties.
  • Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10.
  • Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Research 25(17):3389-3402.
  • the default parameters of the respective programs e.g., XBLAST and NBLAST
  • polypeptide refers to a polymer of amino acids without regard to the length of the polymer; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term also does not specify or exclude post-translational modifications of polypeptides, for example, polypeptides which include the covalent attachment of glycosyl, acetyl, phosphate, amide, lipid, carboxyl, acyl, or carbohydrate groups are expressly encompassed by the term polypeptide.
  • polypeptides which contain one or more analogs of an amino acid (including, for example, non-naturally occurring amino acids, amino acids which only occur naturally in an unrelated biological system, modified amino acids from mammalian systems etc.), polypeptides with substituted linkages, as well as other modifications known in the art, both naturally occurring and non-naturally occurring.
  • amino acid including, for example, non-naturally occurring amino acids, amino acids which only occur naturally in an unrelated biological system, modified amino acids from mammalian systems etc.
  • polypeptides with substituted linkages as well as other modifications known in the art, both naturally occurring and non-naturally occurring.
  • protein as used herein may be used synonymously with the term “polypeptide” or may refer to, in addition, a complex of two or more polypeptides which may be linked by bonds other than peptide bonds, for example, such polypeptides making up the protein may be linked by disulfide bonds.
  • protein may also comprehend a family of polypeptides having identical amino acid sequences but different post-translational modifications, particularly as may be added when such proteins are expressed in eukaryotic hosts.
  • an “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein of the invention (i.e., CPP or biologically active fragment thereof) is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized.
  • the language “substantially free of cellular material” includes preparations of a protein according to the invention in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced.
  • the language "substantially free of cellular material” includes preparations of a protein according to the invention having less than about 30% (by dry weight) of protein other than the protein of the invention (also referred to herein as a "contaminating protein"), more preferably less than about 20% of protein other than the protein according to the invention, still more preferably less than about 10% of protein other than the protein according to the invention, and most preferably less than about 5% of protein other than the protein according to the invention.
  • contaminating protein protein other than the protein of the invention
  • the protein according to the invention or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation.
  • the language “substantially free of chemical precursors or other chemicals” includes preparations of a protein of the invention in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Ln one embodiment, the language “substantially free of chemical precursors or other chemicals” includes preparations of a protein of the invention having less than about 30% (by dry weight) of chemical precursors or non- protein chemicals, more preferably less than about 20% chemical precursors or non-protein chemicals, still more preferably less than about 10% chemical precursors or non-protein chemicals, and most preferably less than about 5% chemical precursors or non-protein chemicals.
  • recombinant polypeptide is used herein to refer to polypeptides that have been artificially designed and which comprise at least two polypeptide sequences that are not found as contiguous polypeptide sequences in their initial natural environment, or to refer to polypeptides which have been expressed from a recombinant polynucleotide.
  • CPP Cardiovascular disorder Plasma Polypeptide
  • SEQ LD NOs: 1-28 Such polypeptide may be post- translationally modified as described herein.
  • CPPs may also contain other structural or chemical modifications such as disulfide linkages or amino acid side chain interactions such as hydrogen and amide bonds that result in complex secondary or tertiary structures.
  • CPPs also include mutant polypeptides, such as deletion, addition, swap, or truncation mutants, fusion polypeptides comprising such polypeptides, and polypeptide fragments of at least three, but preferably, and where applicable, 8, 10, 12, 15, or 21 contiguous amino acids of the sequence of SEQ LD NOs:l-28. Further included are CPP proteolytic precursors and intermediates of the sequence selected from the group consisting of SEQ LD NOs: 1-28.
  • the invention embodies polypeptides encoded by the nucleic acid sequences of CPP genes or CPP rhRNA species, preferably human CPP genes and mRNA species, including isolated CPPs consisting of, consisting essentially of, or comprising the sequence of SEQ 3D NOs:l- 28.
  • Preferred CPPs have a sequence comprising one of the sequences of SEQ ID NOs: 1-2, 6-7, 11- 12, 15-17, and 24-25.
  • Preferred CPP fragments have a sequence comprising one of the sequences of SEQ 3D Nos: 3-5, 8-10, 13-14, 18-23 and 26-28.
  • Preferred CPPs retain at least one biological activity ofCPPs of SEQ ID NOs:l-28.
  • biological activity refers to any single function carried out by a CPP. These include but are not limited to: (1) indicating that an individual has or will have a cardiovascular disorder; (2) circulating through the bloodstream of individuals with a cardiovascular disorder; (3) antigenicity, or the ability to bind an anti-CPP specific antibody; (4) immunogenicity, or the ability to generate an anti-CPP specific antibody; and for CPP 2: (5) interacting with a CPP target protein, preferably a lipase; (6) stabilizing the active site of a lipase; (7) increasing lipase activity; (8) interacting with a CPP target molecule such as a phospholipid, micelle, or triglyceride; and (9) forming at least one disulfide bond; for CPP 9: (5) forming intramolecular amino acid side chain interactions such as hydrogen, amide, or preferably disulfide links; (6) interaction with a CPP target molecule, preferably an RNA molecule or virion (such
  • a "CPP modulator” is a molecule (e.g., polynucleotide, polypeptide, small molecule, or antibody) that is capable of modulating (i.e., increasing or decreasing) either the expression or the biological activity of the CPPs of the invention.
  • a CPP modulator that enhances CPP expression or activity is described as a CPP activator or agonist.
  • a CPP modulator that represses CPP expression or activity is described as a CPP inhibitor or antagonist.
  • CPP modulators increase/ decrease the expression or activity by at least 5, 10, or 20%.
  • CPP inhibitors include anti-CPP antibodies, fragments thereof, antisense polynucleotides, and molecules characterized by screening assays, as described herein.
  • CPP agonists include polynucleotide expression vectors and molecules characterized by screening assays as described herein.
  • a “CPP-related disorder” or “CPP-related disease” describes a cardiovascular disorder.
  • Preferred disorders include coronary artery disease (CAD), coronary heart disease (CHD), peripheral vascular disease, cerebral ischemia (stroke), congestive heart failure, atherosclerosis, hypertension, and other cardiovascular diseases.
  • CAD coronary artery disease
  • CHD coronary heart disease
  • stroke cerebral ischemia
  • congestive heart failure atherosclerosis
  • hypertension hypertension
  • other cardiovascular diseases CAD
  • the likelihood that an individual will develop or already has such a disorder is indicated by higher than normal plasma levels of at least one CPP.
  • antibody refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen-binding site which specifically binds (immunoreacts with) an antigen, such as CPP, or a biologically active fragment or homologue thereof.
  • an antigen such as CPP
  • a biologically active fragment or homologue thereof binds to a CPP exclusively and do not recognize other polypeptides with high affinity.
  • immunologically active portions of immunoglobulin molecules include F(ab) and F(ab') 2 fragments which can be generated by treating the antibody with an enzyme such as pepsin.
  • the invention provides polyclonal and monoclonal antibodies that bind a CPP, or a biologically active fragment or homologue thereof.
  • the term "monoclonal antibody” or “monoclonal antibody composition”, as used herein, refers to a population of antibody molecules that contain only one species of an antigen-binding site capable of immunoreacting with a particular epitope of a CPP.
  • a monoclonal antibody composition thus typically displays a single binding affinity for a particular CPP with which it immunoreacts.
  • Preferred CPP antibodies are attached to a label group.
  • label group is any compound that, when attached to a polynucleotide or polypeptide (including antibodies), allows for detection or purification of said polynucleotide or polypeptide. Label groups may be detected or purified directly or indirectly by a secondary compound, including an antibody specific for said label group. Useful label groups include
  • radioisotopes e.g., P, S, H, I
  • fluorescent compounds e.g., 5-bromodesoxyuridin, umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride, phycoerythrin acetylaminofluorene, digoxigenin
  • luminescent compounds e.g., luminol, GFP, luciferin, aequorin
  • enzymes or enzyme co-factor detectable labels e.g., peroxidase, luciferase, alkaline phosphatase, galactosidase, or acetylcholinesterase
  • compounds that are recognized by a secondary factor such as strepavidin, GST, or biotin.
  • a label group is attached to a polynucleotide or polypeptide in such a
  • Radioisotopes may be detected by direct counting of radioemission, film exposure, or by scintillation counting, for example.
  • Enzymatic labels may be detected by determination of conversion of an appropriate substrate to product, usually causing a fluorescent reaction.
  • Fluorescent and luminescent compounds and reactions may be detected by, e.g., radioemission, fluorescent microscopy, fluorescent activated cell sorting, or a luminometer.
  • an antibody is said to "selectively bind" or
  • vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • plasmid refers to a circular double stranded DNA loop into which additional DNA segments can be ligated.
  • viral vector Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome.
  • Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
  • vectors e.g., non-episomal mammalian vectors
  • Other vectors are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.
  • certain vectors are capable of directing the expression of genes to which they are operatively linked.
  • Such vectors are referred to herein as "expression vectors".
  • expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
  • plasmid and vector can be used interchangeably as the plasmid is the most commonly used form of vector.
  • the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.
  • an anticardiovascular disorder effective amount is the amount of an agent required to reduce a symptom of a cardiovascular disorder in an individual by at least 1, 2, 5, 10, 15, or preferably 25%.
  • the term may also describe the amount of an agent required to ameliorate a cardiovascular disorder-caused symptom in an individual.
  • Common symptoms of cardiovascular disorders include: chest pressure, heartburn, nausea, vomiting, numbness, shortness of breath, heavy cold sweating, unexplained fatigue, and feelings of anxiety. The more severe symptoms of cardiovascular disorders are chest pain (angina pectoris), rhythm disturbances (arrhythmias), stroke, or heart attack.
  • the effective amount for a particular patient may vary depending on such factors as the diagnostic method of the symptom being measured, the state of the condition being treated, the overall health of the patient, method of administration, and the severity of side-effects.
  • CPPs of the invention The Cardiovascular disorder Plasma Polypeptides (CPPs) of the invention are described in the sequence listing as SEQ 3D NOs: 1-2, 6-7, 11-12, 15-17, and 24-25.
  • CPPs comprising an amino acid sequence selected from one of the groups consisting of SEQ 3D NOs: 1-2, 6-7, 11-12, 15-17, and 24- 25 are secreted and circulate at a higher level in blood plasma of individuals that have or are at risk of developing a cardiovascular disorder.
  • CPPs are polypeptides comprising an amino acid sequence selected from one of the groups consisting of SEQ 3D NOs: 3-5, 8-10, 13-14, 18-23 and 26-28. Such CPPs also are secreted and circulate in the plasma.
  • such CPPs also comprise additional amino acids from one of the groups of SEQ ID NO: 1-2, 6-7, 11-12, 15-17, and 24-25.
  • additional amino acids are fused in frame with the selected sequence to form contiguous amino acid sequence from the proteins of SEQ 3D NO: 1-2, 6-7, 11-12, 15-17, and 24-25.
  • levels of the CPPs of the invention are increased in the plasma of individuals suffering from cardiovascular disorders.
  • the CPPs of the invention provide a useful diagnostic tool, wherein an increased level of a CPP indicates an increased risk of developing, or the presence of, a cardiovascular disorder.
  • CPPs are useful for drug design and in therapeutic strategies for prevention and treatment of cardiovascular disorders.
  • CPP 2 of SEQ 3D NO:2, represents the sequence of the protein Colipase.
  • Colipase is a small protein cofactor for pancreatic triglyceride lipase (PTL), which is required for efficient dietary lipid hydrolysis.
  • PTL pancreatic triglyceride lipase
  • Mature colipase is 90 amino acids in length, with five conserved disulfide bonds.
  • the protein is synthesized as preprocolipase, with 112 amino acids, and processed to procolipase, from which an additional 5 amino acids are cleaved at the N-terminus.
  • Colipase is a secreted protein that binds to the C-terminal, non-catalytic domain of the lipase, thereby contributing to the hydrophobic active binding site; stabilizing activity in the presence of inhibitory substances such as bile acids; and directing the enzyme to the oil- water interface.
  • Five residues of colipase form polar interactions with PTL: Arg39, Glu40, Glu59, Arg60, and Asn84. In the active conformation, GlulO and Arg33 also interact with PTL.
  • the lipase-colipase complex is activated by micelles, which also stabilize the open conformation and expose the hydrophobic active site.
  • CPPs of the invention are useful for drug design and in therapeutic strategies for prevention and treatment of cardiovascular disorders.
  • a therapeutic approach against obesity has been developed through the use of a lipase inhibitor, Orlistat (Stemby, B. et al, Clin.Nutr. (2002) 21(5), 395-402).
  • the inhibitor is thought to act through the reduction of triglycerides intake, and has been observed to cause steatorrhoea, a condition also associated with defects in colipase (Gaskin, KJ. et al., Gastroenterology (1984) 86(1), 1-7).
  • Full length CPP 9 (SEQ 3D NO:7) forms four disulfide bonds; is glycosylated, including a rare C-linked glycosylation; is a major eosinophil granule component, degrades RNA phosphodiester bonds, and has antiviral activity.
  • Full length CPP 9 has the sequence of nonsecretory RNase 2. Ribonucleases catalyze the hydrolysis of phosphodiester bonds in RNA chains.
  • Human ribonucleases include: RNase 1 or secretory/pancreatic, nonsecretory RNase 2 or eosinophil-derived neurotoxin (EDN), nonsecretory RNase 3 or eosinophil cationic protein (ECP), RNase 4, angiogenin, and the recently described RNase k6.
  • EDN a nonsecretory ribonuclease, degrades mRNA by hydrolyzing single-stranded polyribonucleotides in the 3' to 5' direction.
  • EDN is a major eosinophil granule protein, and as such is found in tissues affected by eosinophils, including pancreas, liver, lung, spleen, and body fluids. Increased serum levels of human Rnase 1 are indicative of pancreatic cancer (Fernandez-
  • EDN promotes the destruction of extracellular RSN virions via an RNase-dependent, yet EDN-specific, mechanism.
  • the CPP 21 of the invention represent a plasma form of the Human Epididymal secretory protein (HE)1.
  • HEl Human Epididymal secretory protein
  • HEl a novel human epididymal gene product isolated by differential screening, predicts an abundant, small secretory glycopeptide.
  • HEl is encoded by a well- conserved, single-copy gene (Kirchhoff, et al., Biol Reprod, 1996, 54:847-56). The gene is broadly expressed, with highest levels in testies, kidney, and liver.
  • HEl protein is normally present in the lysosomal compartment and makes up a major component of epididymal fluid secretions.
  • Niemann-Pick Type C2 results from mutations in the HEl (or NPC2) gene that cause abnormally high cellular cholesterol accumulation (Naureckiene S et al., Science (2000) 290:2298 and WO 02059369). Niemann Pick type C disease is associated with intracellular cholesterol and glycolipid trafficking defects. (Ong YY et al., Exp Brain Res (2001) 141:218-31). In ⁇ STPC2 patients, cholesterol is not transported through the late endosomal / lysosomal system and accumulates in the lysosomes, meanwhile depriving cells of free cholesterol.
  • HEl has been discovered in the plasma of Coronary Artery Disease patients. This protein is normally associated with intracellular trafficking and epididymal secretions, and thus is not expected in the plasma of control individuals. Thus, HEl is an important biomarker for cardiovascular disorders.
  • CPP 17 (SEQ 3D NO: 17) is the plasma form of the antimicrobial peptides Defensin 1-3.
  • Defensins 1-3 alpha-defensins
  • Defensins 1-3 were cloned from a leukemia cell library, and expression was found in normal bone marrow and circulating lymphocytes (Daher, et al., PNAS. 85:7327-7331 (1988)).
  • Alpha-defensins are constitutively expressed in neutrophils and can make up to 5% of cellular protein.
  • the full-length proteins are processed to form 29-35 amino acid peptides that are released in response to microbial and viral infection. These cationic peptides insert and disrupt prokaryotic membranes (Hill, et al. Science 251:1481-1485 (1991)). In addition, alpha-defensins reduce H3N replication in response to the CD8 T cell factor CAF (Zhang, et al. Science 298:995-1000 (2002)).
  • Alpha-defensins bind low-density lipoprotein (LDL) particles in the blood and prevent LDL receptor-binding and subsequent degradation (Higazi, et al. Blood 96:1393-1398 (2000) and references cited therein). It has since been discovered that alpha-defensins interact with vesicular smooth muscle cells and inhibit contraction (Nassar, et al. Blood 100:4026-32 (2002)).
  • LDL low-density lipoprotein
  • the inventors have revealed an elevated level of alpha-defensin peptides in the plasma of individuals with Coronary Artery Disease. These results provide direct evidence that alpha-defensins are useful plasma biomarkers for the disease.
  • CPP 20 (SEQ ID NO:25) is a plasma form of the Plasminogen-related Protein B.
  • Plasminogen-related protein B (also Plasimilar) was cloned from chondrocytes and is highly homologous to the N terminus of plasminogen (Ichinose, Biochemistry 31:3113-8 (1992)).
  • the 96 amino acid-long precursor protein is secreted after removal of a 19 amino acid signal sequence.
  • Plasminogen-related protein B binds to kringle domains and is thought to interfere with plasminogen binding to fibrin or alpha-2 anti-plasmin (Lewis, et al., Eur J Biochem. 259:618-625 (1999)). Plasminogen-related protein B is expressed in metastatic tumor cells (WO 9321341and Weissbach and Treadwell, Biochem. Biophys. Res. Commun. 186:1108-1114 (1992)). In addition, Lewis, et al. (Anticancer Res 21 :2287-91 (2001 ) demonstrated that the protein reduces the growth of tumors explanted in mice, while plasminogen has little effect. Thus, it is described as a treatment for malignant conditions as well as a treatment for angiogenesis-related disorders (WO 9946282).
  • Plasminogen-related protein B has been discovered in the plasma of Coronary Artery Disease patients. This protein is usually associated with the extracelluar matrix and is undetectable in the plasma of control individuals. Thus, Plasminogen- related protein B is an important biomarker for cardiovascular disorders.
  • Cardiovascular disorder Plasma Polypeptide and "CPP" are used herein to embrace any and all of the peptides, polypeptides and proteins of the present invention. Also forming part of the invention are polypeptides encoded by the polynucleotides of the invention, as well as fusion polypeptides comprising such polypeptides.
  • the invention embodies CPPs from humans, including isolated or purified CPPs consisting of, consisting essentially of, or comprising an amino acid sequence selected from one of the groups consisting of SEQ LD NOs: 1-5, 6-10, 11-14, 15-23 and 24-28. Further included are unmodified precursors, proteolytic precursors and intermediates of the sequence selected from one of the groups consisting of SEQ LD NOs: 1-5, 6-10, 11-14, 15-23 and 24- 28.
  • the present invention embodies isolated, purified, and recombinant polypeptides comprising a contiguous span of at least 3 amino acids, preferably at least 8 to 10 amino acids, with a CPP biological activity.
  • the contiguous stretch of amino acids comprises the site of a mutation or functional mutation, including a deletion, addition, swap or truncation of the amino acids in the CPP sequence.
  • the invention also concerns the polypeptide encoded by the CPP nucleotide sequences of the invention, or a complementary sequence thereof or a fragment thereof.
  • One aspect of the invention pertains to isolated CPPs, and biologically active portions thereof, as well as polypeptide fragments suitable for use as immunogens to raise anti-CPP antibodies.
  • native CPP peptides can be isolated from plasma, cells or tissue sources by an appropriate purification scheme using standard protein purification techniques.
  • CPPs are produced by recombinant DNA techniques.
  • a CPP can be synthesized chemically using peptide synthesis techniques, as described in the section titled "Chemical Manufacture of CPP compositions" and in Example 2.
  • biologically active portions comprise a domain or motif with at least one activity of a CPP.
  • a biologically active CPP may, for example, comprise at least 1, 2, 3, or 5 amino acid changes from the sequence selected from one of the groups consisting of SEQ 3D NOs: 1-5, 6-10, 11-14, 15-23 and 24-28, or comprise at least 1%, 2%, 3%, 5%, 8%, 10% or 15% change in amino acids from the sequence selected from one of the groups consisting of SEQ 3D NOs: 1-5, 6-10, 11-14, 15-23 and 24- 28.
  • CPPs are defined by the tryptic peptides of SEQ 3D NOs:
  • SEQ 3D NOs: 1-2, 6-7, 11-12, 15-17, and 24-25 represent the polypeptide species found in CAD plasma from which the tryptic peptides were released.
  • the CPPs of the invention are all less than or around 20kD in molecular weight, as the plasma sample is first separated based on molecular weight. Higher molecular weight polypeptide species are separated and characterized by a different method. As described in Example 1, the plasma sample is subjected to a number of chromatography separations.
  • Example 1 Details about these chromatography methods are given in Example 1. The first separation is on a cation exchange chromatography column, which is eluted with increasing salt concentration. Eighteen fractions are collected. The CEX column in Table 1 lists which fractions contained each tryptic peptide, as well as its elution conditions. Separation by cation exchange provides an indication of the overall positive charge of a polypeptide species. Cation exchange is followed by a reverse phase HPLC separation. The RP1 column in Table 1 lists in which of the 30 fractions each tryptic peptide eluted, as well as its elution conditions. Separation by reverse phase provides an indication of the overall hydrophobicity of a polypeptide species.
  • Table lb shows that the same tryptic peptide is found in more than one fraction of a given separation. Some of the fractions are widely spaced, which indicates that the tryptic peptide is released from different circulating polypeptide species.
  • CPP 9 was observed in a continuous set of CEX fractions from 2 to 5, and then again in another continuous set of CEX fractions from 8 to 9. This indicates the existence of at least two polypeptide species from which the tryptic peptides were derived, which possess different positive charge properties.
  • the first elution cluster includes fragments eluted in CEX fraction 2 and RP1 fraction 8; the second cluster includes fragments eluting in CEX fractions 3-5 and RP1 fractions 10-11; and the third includes fragments eluting in CEX fractions 8-9 and RPl fractions 11-12.
  • the tryptic peptides of SEQ 3D NOs:3-5 it is likely that three different forms or species of CPP 9 circulate in plasma of individuals with CAD. These CPP 9 forms likely differ in post-translational modification and/or amino acid length.
  • the tryptic peptides of SEQ 3D NOs:8-10 are derived from the polypeptide of SEQ 3D NO:7, which is processed to form the different polypeptide species present in the plasma of individuals with CAD.
  • the ratio of protein levels in CAD versus control plasma samples is calculated by two methods.
  • the first method calculates the CAD/Control ratio by the number of fractions from each sample containing CPP 17.
  • the result is 2.4 (see Table Id).
  • the Olav scores obtained for each peptide in the mass spectrometry data analysis software are used to give a weighted ratio.
  • This result is 2.1, indicating that the CPPs of the invention are present at 2.1 times the level in CAD plasma compared to control plasma.
  • the CPPs provide a useful diagnostic tool, wherein an increased level of a CPP indicates an increased risk of developing, or the presence of, a cardiovascular disorder.
  • Table Id displays the tryptic peptide of SEQ 3D NO: 18 (ADEVAAAPEQIAADIPEVWSLAWDESLAPK), which is derived from the preprotein of SEQ 3D NO: 16, and which as such is not expected to be found in plasma. Besides, this tryptic peptide was identified in diseased plasma only. This observation may reflect an altered processing of the preprotein in the case of the disease.
  • One aspect of the invention pertains to purified or isolated nucleic acid molecules that encode CPPs or biologically active portions thereof as further described herein, as well as nucleic acid fragments thereof.
  • Said nucleic acids may be used for example in therapeutic (DNA vaccine) and diagnostic methods and in drug screening assays as further described herein.
  • An object of the invention is a purified, isolated, or recombinant nucleic acid coding for a CPP, complementary sequences thereto, and fragments thereof.
  • the invention also pertains to a purified or isolated nucleic acid comprising a polynucleotide having at least 95% nucleotide identity with a polynucleotide coding for a CPP, advantageously 99 % nucleotide identity, preferably 99.5% nucleotide identity and most preferably 99.8% nucleotide identity with a polynucleotide coding for a CPP, or a sequence complementary thereto or a biologically active fragment thereof.
  • Another object of the invention relates to purified, isolated or recombinant nucleic acids comprising a polynucleotide that hybridizes, under the stringent hybridization conditions defined herein, with a polynucleotide coding for a CPP, or a sequence complementary thereto or a variant thereof or a biologically active fragment thereof.
  • the invention pertains to purified or isolated nucleic acid molecules that encode a portion or variant of a CPP, wherein the portion or variant displays a CPP biological activity.
  • the portion or variant is a portion or variant of a naturally occurring CPP or precursor thereof.
  • Another object of the invention is a purified, isolated, or recombinant nucleic acid encoding a CPP comprising, consisting essentially of, or consisting of the amino acid sequence selected from one of the groups of SEQ 3D Nos: 1-5, 6-10, 11-14, 15-23 and 24-28, or fragments thereof, wherein the isolated nucleic acid molecule encodes one or more motifs such as, for CPP 2: a lipase binding region, a hydrophobic face, or a disulfide bond; for CPP 9: a substrate RNA-binding site, a substrate virion binding site (preferably a RSV virion), a ribonuclease active site, or a disulfide bond; for CPP 21 : a cholesterol-binding domain, a glycosylation site, or a disulfide bond; for CPP 17: a bacterial endotoxin binding site or a disulfide bond; for CPP 20: a kringle-bind
  • the nucleotide sequence determined from the cloning of the CPP-encoding gene allows for the generation of probes and primers designed for use in identifying and/or cloning other CPPs (e.g. sharing the novel functional domains), as well as CPP homologues from other species.
  • a nucleic acid fragment encoding a "biologically active portion of a CPP" can be prepared by isolating a portion of a nucleotide sequence coding for a CPP, which encodes a polypeptide having a CPP biological activity, expressing the encoded portion of the CPP (e.g., by recombinant expression in vitro or in vivo) and assessing the activity of the encoded portion of the CPP.
  • the invention further encompasses nucleic acid molecules that differ from the CPP nucleotide sequences of the invention due to degeneracy of the genetic code and encode the same CPPs of the invention.
  • DNA sequence polymorphisms that lead to changes in the amino acid sequences of the CPPs may exist within a population (e.g., the human population). Such genetic polymorphism may exist among individuals within a population due to natural allelic variation. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of a CPP-encoding gene or nucleic acid sequence.
  • Nucleic acid molecules corresponding to natural allelic variants and homologues of the CPP nucleic acids of the invention can be isolated based on their homology to the CPP nucleic acids disclosed herein using the cDNAs disclosed herein, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.
  • the invention comprises polypeptides having an amino acid sequence encoded by any of the polynucleotides of the invention.
  • Polynucleotide sequences (or the complements thereof) encoding CPPs have various applications, including uses as hybridization probes, in chromosome and gene mapping, and in the generation of antisense PvNA and DNA.
  • CPP-encoding nucleic acids are useful as targets for pharmaceutical intervention, e.g. for the development of DNA vaccines, and for the preparation of CPPs by recombinant techniques, as described herein.
  • the polynucleotides described herein, including sequence variants thereof, can be used in diagnostic assays. Accordingly, diagnostic methods based on detecting the presence of such polynucleotides in body fluids or tissue samples are a feature of the present invention.
  • nucleic acid based diagnostic assays examples include, but are not limited to, hybridization assays, e.g., in situ hybridization, and PCR-based assays.
  • Polynucleotides including extended length polynucleotides, sequence variants and fragments thereof, as described herein, may be used to generate hybridization probes or PCR primers for use in such assays.
  • Such probes and primers will be capable of detecting polynucleotide sequences, including genomic sequences that are similar, or complementary to, the CPP polynucleotides described herein.
  • the invention includes primer pairs for carrying out a PCR to amplify a segment of a polynucleotide of the invention.
  • Each primer of a pair is an oligonucleotide having a length of between 15 and 30 nucleotides such that i) one primer of the pair forms a perfectly matched duplex with one strand of a polynucleotide of the invention and the other primer of the pair form a perfectly match duplex with the complementary strand of the same polynucleotide, and ii) the primers of a pair form such perfectly matched duplexes at sites on the polynucleotide that separated by a distance of between 10 and 2500 nucleotides.
  • the annealing temperature of each primer of a pair to its respective complementary sequence is substantially the same.
  • Hybridization probes derived from polynucleotides of the invention can be used, for example, in performing in situ hybridization on tissue samples, such as fixed or frozen tissue sections prepared on microscopic slides or suspended cells. Briefly, a labeled DNA or RNA probe is allowed to bind its DNA or RNA target sample in the tissue section on a prepared microscopic, under controlled conditions.
  • dsDNA probes consisting of the DNA of interest cloned into a plasmid or bacteriophage DNA vector are used for this purpose, although ssDNA or ssRNA probes may also be used.
  • the probes are generally oligonucleotides between about 15 and 40 nucleotides in length.
  • the probes can be polynucleotide probes generated by PCR random priming primer extension or in vitro transcription of RNA from plasmids (riboprobes). These latter probes are typically several hundred base pairs in length.
  • the probes can be labeled by any of a number of label groups and the particular detection method will correspond to the type of label utilized on the probe (e.g., autoradiography, X-ray detection, fluorescent or visual microscopic analysis, as appropriate).
  • the reaction can be further amplified in situ using immunocytochemical techniques directed against the label of the detector molecule used, such as an antibody directed to a fluorescein moiety present on a fluorescently labeled probe.
  • immunocytochemical techniques directed against the label of the detector molecule used, such as an antibody directed to a fluorescein moiety present on a fluorescently labeled probe.
  • Specific labeling and in situ detection methods can be found, for example, in Howard, G. C, Ed., Methods in Nonradioactive Detection, Appleton & Lange, Norwalk, Conn., (1993), herein inco ⁇ orated by reference.
  • Hybridization probes and PCR primers may also be selected from the genomic sequences corresponding to the full-length proteins identified in accordance with the present invention, including promoter, enhancer elements and introns of the gene encoding the naturally occurring polypeptide.
  • Nucleotide sequences encoding a CPP can also be used to construct hybridization probes for mapping the gene encoding that CPP and for the genetic analysis of individuals. Individuals carrying variations of, or mutations in the gene encoding a CPP of the present invention may be detected at the DNA level by a variety of techniques. Nucleic acids used for diagnosis may be obtained from a patient's cells, including, for example, tissue biopsy and autopsy material.
  • Genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR (Saiki, et al. Nature 324:163-166 (1986)) prior to analysis.
  • RNA or cDNA may also be used for the same purpose.
  • PCR primers complementary to the nucleic acid of the present invention can be used to identify and analyze mutations in the gene of the present invention. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to radiolabeled RNA of the invention or alternatively, radiolabeled antisense DNA sequences of the invention.
  • Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and SI protection or the chemical cleavage method (e.g. Cotton, et al., Proc. Natl. Acad. Sci. USA 85:4397-4401 (1985)), or by differences in melting temperatures. "Molecular beacons” (Kostrikis L. G. et al., Science 279:1228- 1229 (1998)), hairpin-shaped, single-stranded synthetic oligonucleotides containing probe sequences which are complementary to the nucleic acid of the present invention, may also be used to detect point mutations or other sequence changes as well as monitor expression levels of CPPs.
  • Oligonucleotides of the invention are synthesized by conventional means on a commercially available automated DNA synthesizer, e.g. an Applied Biosystems (Foster City, CA) model 380B, 392 or 394 DNA/RNA synthesizer, or like instrument.
  • a commercially available automated DNA synthesizer e.g. an Applied Biosystems (Foster City, CA) model 380B, 392 or 394 DNA/RNA synthesizer, or like instrument.
  • phosphoramidite chemistry is employed, e.g. as disclosed in the following references: Beaucage and Iyer, Tetrahedron, 48: 2223-2311 (1992); Molko et al, U.S. patent 4,980,460; Koster et al, U.S. patent 4,725,677; Caruthers et al, U.S.
  • nuclease resistant backbones are preferred.
  • modified oligonucleotides are available that confer nuclease resistance, e.g. phosphorothioate, phosphorodithioate, phosphoramidate, or the like, described in many references, e.g. phosphorothioates: Stec et al, U.S. patent 5,151,510; Hirschbein, U.S. patent 5,166,387; Bergot, U.S.
  • the length of the antisense oligonucleotides has to be sufficiently large to ensure that specific binding will take place only at the desired target polynucleotide and not at other fortuitous sites.
  • the upper range of the length is determined by several factors, including the inconvenience and expense of synthesizing and purifying oligomers greater than about 30-40 nucleotides in length, the greater tolerance of longer oligonucleotides for mismatches than shorter oligonucleotides, and the like.
  • the antisense oligonucleotides of the invention have lengths in the range of about 15 to 40 nucleotides. More preferably, the oligonucleotide moieties have lengths in the range of about 18 to 25 nucleotides.
  • Primers and probes of the invention can be prepared by any suitable method, including, for example, cloning and restriction of appropriate sequences and direct chemical synthesis by a method such as the phosphodiester method of Narang SA et al (Methods Enzymol 1979;68:90-98), the phosphodiester method of Brown EL et al (Methods Enzymol 1979;68:109-151), the diethylphosphoramidite method of Beaucage et al (Tetrahedron Lett 1981, 22: 1859-1862) and the solid support method described in EP 0 707 592, the disclosures of which are incorporated herein by reference in their entireties.
  • a method such as the phosphodiester method of Narang SA et al (Methods Enzymol 1979;68:90-98), the phosphodiester method of Brown EL et al (Methods Enzymol 1979;68:109-151), the diethylphosphoramidite method of Beaucage
  • Detection probes are generally nucleic acid sequences or uncharged nucleic acid analogs such as, for example peptide nucleic acids which are disclosed in International Patent Application WO 92/20702, morpholino analogs which are described in U.S. Patents Numbered 5,185,444; 5,034,506 and 5, 142,047.
  • the probe may be rendered "non-extendable" in that additional dNTPs cannot be added to the probe.
  • 3h and of themselves analogs usually are non-extendable and nucleic acid probes can be rendered non-extendable by modifying the 3' end of the probe such that the hydroxyl group is no longer capable of participating in elongation.
  • the 3' end of the probe can be functionalized with the capture or detection label to thereby consume or otherwise block the hydroxyl group.
  • any of the polynucleotides of the present invention can be labeled, if desired, by inco ⁇ orating any label group known in the art to be detectable by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. Additional examples include non-radioactive labeling of nucleic acid fragments as described in Urdea et al. (Nucleic Acids Research. 11:4937-4957, 1988) or Sanchez-Pescador et al. (J. Clin. Microbiol. 26(10):1934-1938, 1988).
  • the probes according to the present invention may have structural characteristics such that they allow the signal amplification, such structural characteristics being, for example, branched DNA probes as those described by Urdea et al (Nucleic Acids Symp. Ser. 24: 197-200, 1991) or in the European patent No. EP 0225807 (Chiron).
  • a label can also be used to capture the primer, so as to facilitate the immobilization of either the primer or a primer extension product, such as amplified DNA, on a solid support.
  • a capture label is attached to the primers or probes and can be a specific binding member which forms a binding pair with the solid's phase reagent's specific binding member (e.g. biotin and streptavidin).
  • a polynucleotide or a probe it may be employed to capture or to detect the target DNA.
  • the polynucleotides, primers or probes provided herein may, themselves, serve as the capture label.
  • a solid phase reagent's binding member is a nucleic acid sequence
  • a polynucleotide probe itself serves as the binding member those skilled in the art will recognize that the probe will contain a sequence or "tail" that is not complementary to the target.
  • a polynucleotide primer itself serves as the capture label, at least a portion of the primer will be free to hybridize with a nucleic acid on a solid phase. DNA labeling techniques are well known to the skilled technician.
  • the probes of the present invention are useful for a number of pu ⁇ oses. They can be notably used in Southern hybridization to genomic DNA. The probes can also be used to detect PCR amplification products. They may also be used to detect mismatches in CPP-encoding genes or mRNA using other techniques. Any of the nucleic acids, polynucleotides, primers and probes of the present invention can be conveniently immobilized on a solid support. Solid supports are known to those skilled in the art and include the walls of wells of a reaction tray, test tubes, polystyrene beads, magnetic beads, nitrocellulose strips, membranes, microparticles such as latex particles, sheep (or other animal) red blood cells, duracytes and others.
  • the solid support is not critical and can be selected by one skilled in the art. Thus, latex particles, microparticles, magnetic or non-magnetic beads, membranes, plastic tubes, walls of microtiter wells, glass or silicon chips, sheep (or other suitable animal's) red blood cells and duracytes are all suitable examples. Suitable methods for immobilizing nucleic acids on solid phases include ionic, hydrophobic, covalent interactions and the like.
  • a solid support, as used herein, refers to any material which is insoluble, or can be made insoluble by a subsequent reaction. The solid support can be chosen for its intrinsic ability to attract and immobilize the capture reagent. Alternatively, the solid phase can retain an additional receptor which has the ability to attract and immobilize the capture reagent.
  • the additional receptor can include a charged substance that is oppositely charged with respect to the capture reagent itself or to a charged substance conjugated to the capture reagent.
  • the receptor molecule can be any specific binding member attached to the solid support and which has the ability to immobilize the capture reagent through a specific binding reaction. The receptor molecule enables the indirect binding of the capture reagent to a solid support material before the performance of the assay or during the performance of the assay.
  • the solid phase thus can be a plastic, derivatized plastic, magnetic or non-magnetic metal, glass or silicon surface of a test tube, microtiter well, sheet, bead, microparticle, chip, sheep (or other suitable animal's) red blood cells, duracytes and other configurations known to those of ordinary skill in the art.
  • the nucleic acids, polynucleotides, primers and probes of the invention can be attached to or immobilized on a solid support individually or in groups of at least 2, 5, 8, 10, 12, 15, 20, or 25 distinct polynucleotides of the invention to a single solid support.
  • polynucleotides other than those of the invention may be attached to the same solid support as one or more polynucleotides of the invention.
  • any polynucleotide provided herein may be attached in overlapping areas or at random locations on a solid support.
  • the polynucleotides of the invention may be attached in an ordered array wherein each polynucleotide is attached to a distinct region of the solid support which does not overlap with the attachment site of any other polynucleotide.
  • such an ordered array of polynucleotides is designed to be "addressable" where the distinct locations are recorded and can be accessed as part of an assay procedure.
  • Addressable polynucleotide arrays typically comprise a plurality of different oligonucleotide probes that are coupled to a surface of a substrate in different known locations.
  • allelic variants of the CPP sequences that may exist in the population, the skilled artisan will appreciate that changes can be introduced by mutation into the nucleotide sequences coding for CPPs, thereby leading to changes in the amino acid sequence of the encoded CPPs, with or without altering the functional ability of the CPPs.
  • variants including 1) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue and such substituted amino acid residue may or may not be one encoded by the genetic code, or 2) one in which one or more of the amino acid residues includes a substituent group, or 3) one in which the mutated CPP is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or 4) one in which the additional amino acids are fused to the CPP, such as a leader, a signal or anchor sequence, a sequence which is employed for purification of the CPP, or sequence from a precursor protein.
  • Such variants are deemed to be within the scope of those skilled in the art.
  • nucleotide substitutions leading to amino acid substitutions can be made in the sequences that do not substantially change the biological activity of the protein.
  • amino acid residues that are shared among the CPPs of the present invention are predicted to be less amenable to alteration.
  • the invention pertains to nucleic acid molecules encoding CPPs that contain changes in amino acid residues that result in increased biological activity, or a modified biological activity.
  • the invention pertains to nucleic acid molecules encoding CPPs that contain changes in amino acid residues that are essential for a CPP biological activity.
  • Such CPPs differ in amino acid sequence from SEQ 3D NOs: 1-5, 6-10, 11-14, 15-23 and 24-28 and display reduced activity, or essentially lack one or more CPP biological activities.
  • Mutations, substitutions, additions, or deletions can be introduced into any of SEQ 3D NOs: 1- 5, 6-10, 11-14, 15-23 and 24-28, by standard techniques, such as site-directed mutagenesis and PCR- mediated mutagenesis. For example, conservative amino acid substitutions may be made at one or more predicted non-essential amino acid residues.
  • a "conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
  • amino acids with basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic acid, glutamic acid
  • uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • beta-branched side chains e.g., threonine, valine, isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
  • a predicted nonessential amino acid residue in a CPP, or a biologically active fragment or homologue thereof may be replaced with another amino acid residue from the same side chain family.
  • mutations can be introduced randomly along all or part of a CPP coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for CPP biological activity to identify mutants that retain activity.
  • the encoded protein can be expressed recombinantly and the activity of the protein can be determined in any suitable assay, for example, as provided herein.
  • a CPP "chimeric protein" or “fusion protein” comprises a CPP of the invention or fragment thereof, operatively linked or fused in frame to a non-CPP polypeptide sequence.
  • a CPP fusion protein comprises at least one biologically active portion of a CPP.
  • a CPP fusion protein comprises at least two biologically active portions of a CPP.
  • the fusion protein is a GST-CPP fusion protein in which CPP domain sequences are fused to the C-terminus of the GST sequences.
  • Such fusion proteins can facilitate the purification of recombinant CPPs.
  • the fusion protein is a CPP containing a heterologous signal sequence at its N-terminus, for example, to allow for a desired cellular localization in a certain host cell.
  • the fusion is a CPP biologically active fragment and an immunoglobulin molecule.
  • Such fusion proteins are useful, for example, to increase the valency of CPP binding sites.
  • a bivalent CPP binding site may be formed by fusing biologically active CPP fragments to an IgG Fc protein.
  • CPP fusion proteins of the invention can be used as immunogens to produce anti-CPP antibodies in a subject, to purify CPP or CPP ligands, and in screening assays to identify CPP modulators.
  • isolated fragments of CPPs can also be obtained by screening peptides recombinantly produced from the corresponding fragment of the nucleic acid encoding such peptides.
  • fragments can be chemically synthesized using techniques known in the art such as conventional Merrifield solid phase f-Moc or t-Boc chemistry.
  • a CPP of the present invention may be arbitrarily divided into fragments of desired length with no overlap of the fragments, or preferably divided into overlapping fragments of a desired length.
  • the fragments can be produced (recombinantly or by chemical synthesis) and tested to identify those peptidyl fragments with a CPP biological activity, for example, by microinjection assays or in vitro protein binding assays.
  • peptidyl portions of a CPP can be tested for CPP activity by expression as thioredoxin fusion proteins, each of which contains a discrete fragment of the CPP (see, for example, U.S. Patents 5, 270,181 and 5,292,646; and PCT publication WO94/02502, the disclosures of which are inco ⁇ orated herein by reference).
  • libraries of fragments of a CPP coding sequence can be used to generate a variegated population of CPP fragments for screening and subsequent selection of variants of a CPP.
  • a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of CPP coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with SI nuclease, and ligating the resulting fragment library into an expression vector.
  • an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the CPP. Whether a change in the amino acid sequence of a peptide results in a functional CPP homolog can be readily determined by assessing at least one CPP biological activity of the variant peptide. Peptides in which more than one replacement has taken place can readily be tested in the same manner.
  • Peptides of the invention are synthesized by standard techniques (e.g. Stewart and Young, Solid Phase Peptide Synthesis, 2nd Ed., Pierce Chemical Company, Rockford, IL, 1984).
  • a commercial peptide synthesizer is used, e.g. Applied Biosystems, Inc. (Foster City, CA) model 430A, and polypeptides of the invention may be assembled from multiple, separately synthesized and purified, peptide in a convergent synthesis approach, e.g. Kent et al, U.S. patent 6,184,344 and Dawson and Kent, Annu. Rev. Biochem., 69: 923-960 (2000).
  • Peptides of the invention may be assembled by solid phase synthesis on a cross-linked polystyrene support starting from the carboxyl terminal residue and adding amino acids in a stepwise fashion until the entire peptide has been formed.
  • the following references are guides to the chemistry employed during synthesis: Schnolzer et al, Int. J. Peptide Protein Res., 40: 180-193 (1992); Merrifield, J. Amer. Chem. Soc, Vol. 85, pg. 2149 (1963); Kent et al., pg 185, in Peptides 1984, Ragnarsson, Ed. (Almquist and Weksell, Sweden, 1984); Kent et al., pg.
  • a first peptide fragment is provided with an N-terminal cysteine having an unoxidized sulfhydryl side chain
  • a second peptide fragment is provided with a C-terminal thioester.
  • the unoxidized sulfhydryl side chain of the N-terminal cysteine is then condensed with the C-terminal thioester to produce an intermediate peptide fragment which links the first and second peptide fragments with a ⁇ -aminothioester bond.
  • the ⁇ -aminothioester bond of the intermediate peptide fragment then undergoes an intramolecular rearrangement to produce the peptide fragment product which links the first and second peptide fragments with an amide bond.
  • the N-terminal cysteine of the internal fragments is protected from undesired cyclization and/or concatenation reactions by a cyclic thiazolidine protecting group as described below.
  • a cyclic thiazolidine protecting group is a thioprolinyl group.
  • Peptide fragments having a C-terminal thioester may be produced as described in the following references, which are inco ⁇ orated by reference: Kent et al, U.S. patent 6, 184,344; Tarn et al, Proc. Natl. Acad. Sci., 92: 12485-12489 (1995); Blake, Int. J.
  • HBTU 2-(lH-benzotriazol-l-yl)-l,l,3,3-tetramethyluronium hexafluorophosphate and Boc is tert- butoxycarbonyl).
  • Each synthetic cycle consists of INT-Boc removal by a 1- to 2- minute treatment with neat TFA, a 1 -minute DMF flow wash, a 10- to 20-minute coupling time with 1.0 mmol of preactivated Boc-amino acid in the presence of DLEA, and a second DMF flow wash.
  • N ⁇ - Boc-amino acids (1.1 mmol) are preactivated for 3 minutes with 1.0 mmol of HBTU (0.5 M in DMF) in the presence of excess DIEA (3 mmol). After each coupling step, yields are determined by measuring residual free amine with a conventional quantitative ninhydrin assay, e.g. as disclosed in Sarin et al, Anal. Biochem., 117: 147-157 (1981).
  • a DCM flow wash is used before and after deprotection by using TFA, to prevent possible high-temperature (TFA/DMF)-catalyzed pyrrolidone formation.
  • TFA high-temperature
  • the peptide fragments are deprotected and cleaved from the resin by treatment with anhydrous HF for 1 hour at 0°C with 4% />-cresol as a scavenger.
  • the imidazole side-chain 2,4-dinitrophenyl (dnp) protecting groups remain on the His residues because the dnp-removal procedure is incompatible with C- terminal thioester groups.
  • dnp is gradually removed by thiols during the ligation reaction. After cleavage, peptide fragments are precipitated with ice-cold diethylether, dissolved in aqueous acetonitrile, and lyophilized.
  • Thioester peptide fragments described above are preferably synthesized on a trityl-associated mercaptopropionic acid-leucine (TAMPAL) resin, made as disclosed by Hackeng et al (1999), or comparable protocol. Briefly, l ⁇ f-Boc-Leu (4 mmol) is activated with 3.6 mmol of HBTU in the presence of 6 mmol of DLEA and coupled for 16 minutes to 2 mmol of p-methylbenzhydrylamine (MBHA) resin, or the equivalent.
  • TAMPAL trityl-associated mercaptopropionic acid-leucine
  • TAMPAL resin can be used as a starting resin for polypeptide-chain assembly after removal of the trityl protecting group with two 1 -minute treatments with 3.5% triisopropylsilane and 2.5% H 2 0 in TFA.
  • the thioester bond can be formed with any desired amino acid by using standard in situ-neutralization peptide coupling protocols for 1 hour, as disclosed in Schnolzer et al (cited above).
  • thiazolidine-protected thioester peptide fragment intermediates are used in native chemical ligation under conditions as described byhackeng et al (1999), or like conditions.
  • 0.1 M phosphate buffer (pH 8.5) containing 6 M guanidine, 4% (vol/vol) benzylmercaptan, and 4% (vol/vol) thiophenol is added to dry peptides to be ligated, to give a final peptide concentration of 1-3 mM at about pH 7, lowered because of the addition of thiols and TFA from the lyophilized peptide.
  • the ligation reaction is performed in a heating block at 37°C and is periodically vortexed to equilibrate the thiol additives. The reaction may be monitored for degree of completion by MALDI-MS or HPLC and electrospray ionization MS.
  • the N-terminal thiazolidine ring of the product is opened by treatment with a cysteine deprotecting agent, such as O- methylhydroxylamine (0.5 M) at pH 3.5-4.5 for 2 hours at 37° C, after which a 10-fold excess of Tris- (2-carboxyethyl)-phosphine is added to the reaction mixture to completely reduce any oxidizing reaction constituents prior to purification of the product by conventional preparative HPLC.
  • a cysteine deprotecting agent such as O- methylhydroxylamine (0.5 M) at pH 3.5-4.5 for 2 hours at 37° C
  • Tris- (2-carboxyethyl)-phosphine is added to the reaction mixture to completely reduce any oxidizing reaction constituents prior to purification of the product by conventional preparative HPLC.
  • fractions containing the ligation product are identified by electrospray MS, are pooled, and lyophilized.
  • the final polypeptide product may be refolded by conventional techniques, e.g. Creighton, Meth. Enzymol., 107: 305-329 (1984); White, Meth. Enzymol., 11: 481-484 (1967); Wetiaufer, Meth. Enzymol., 107: 301-304 (1984); and the like.
  • a final product is refolded by air oxidation by the following, or like:
  • the reduced lyophilized product is dissolved (at about 0.1 mg/mL) in 1 M guanidine hydrochloride (or like chaotropic agent) with 100 mM Tris, 10 mM methionine, at pH 8.6. After gentle overnight stirring, the re-folded product is isolated by reverse phase HPLC with conventional protocols.
  • the polynucleotide sequences described herein can be used in recombinant DNA molecules that direct the expression of the corresponding polypeptides in appropriate host cells. Because of the degeneracy in the genetic code, other DNA sequences may encode the equivalent amino acid sequence, and may be used to clone and express the CPPs. Codons preferred by a particular host cell may be selected and substituted into the naturally occurring nucleotide sequences, to increase the rate and/or efficiency of expression.
  • the nucleic acid e.g., cDNA or genomic DNA
  • encoding the desired CPP may be inserted into a replicable vector for cloning (amplification of the DNA), or for expression.
  • the polypeptide can be expressed recombinantly in any of a number of expression systems according to methods known in the art (Ausubel, et al., editors, Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1990).
  • Appropriate host cells include yeast, bacteria, archebacteria, fungi, and insect and animal cells, including mammalian cells, for example primary cells, including stem cells, including, but not limited to bone marrow stem cells. More specifically, these include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid or cosmid DNA expression vectors, and yeast transformed with yeast expression vectors.
  • insect cells infected with a recombinant insect virus include yeast, bacteria, archebacteria, fungi, and insect and animal cells, including mammalian cells, for example primary cells, including stem cells, including, but not limited to bone marrow stem cells. More specifically, these include, but are not limited to
  • nucleic acid sequence to be expressed may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site using techniques known in the art.
  • Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques which are known to the skilled artisan.
  • the CPPs of the present invention are produced by culturing a host cell transformed with an expression vector containing a nucleic acid encoding a CPP, under the appropriate conditions to induce or cause expression of the protein.
  • the conditions appropriate for CPP expression will vary with the choice of the expression vector and the host cell, as ascertained by one skilled in the art.
  • the use of constitutive promoters in the expression vector may require routine optimization of host cell growth and proliferation, while the use of an inducible promoter requires the appropriate growth conditions for induction.
  • the timing of the harvest is important.
  • the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.
  • a host cell strain may be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion.
  • modifications of the protein include, but are not limited to, glycosyl, acetyl, phosphate, amide, lipid, carboxyl, acyl, or carbohydrate groups.
  • Post-translational processing which cleaves a "prepro" form of the protein, may also be important for correct insertion, folding and/or function.
  • host cells such as CHO, HeLa, BHK, MDCK, 293, W138, etc. have specific cellular machinery and characteristic mechanisms for such post-translational activities and may be chosen to ensure the correct modification and processing of the introduced, foreign protein.
  • Drosophila melanogaster cells Saccharomyces cerevisiae and other yeasts, E. coli, Bacillus subtilis, SF9 cells, C129 cells, 293 cells, Neurospora, BHK, CHO, COS, and HeLa cells, fibroblasts, Schwanoma cell lines, immortalized mammalian myeloid and lymphoid cell lines, Jurkat cells, human cells and other primary cells.
  • the nucleic acid encoding a CPP must be "operably linked” by placing it into a functional relationship with another nucleic acid sequence.
  • DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or
  • a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.
  • "operably linked" DNA sequences are contiguous, and, in the case of a secretory leader or other polypeptide sequence, contiguous and in reading phase.
  • promoter sequences encode either constitutive or inducible promoters.
  • the promoters may be either naturally occurring promoters or hybrid promoters.
  • Hybrid promoters which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.
  • the expression vector may comprise additional elements, for example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, for example in mammalian or insect cells for expression and in a procaryotic host for cloning and amplification.
  • Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses.
  • the origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2: plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells.
  • the expression vector contains at least one sequence homologous to the host cell genome, and preferably, two homologous sequences which flank the expression construct.
  • the integrating vector may be directed to a specific locus in the host cell by selecting the appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art.
  • a heterologous expression control element may be operably linked with the endogenous gene in the host cell by homologous recombination (described in US Patents 6410266 and 6361972, disclosures of which are hereby inco ⁇ orated by reference in their entireties). This technique allows one to regulate expression to a desired level with a chosen control element while ensuring proper processing and modification of CPP endogenously expressed by the host cell.
  • Useful heterologous expression control elements include but are not limited to CMV immediate early promoter, the HSV thymidine kinase promoter, the early and late SV40 promoters, the promoters of retroviral LTRs, such as those of the Rous Sarcoma Virus (RSV), and metallothionein promoters.
  • CMV immediate early promoter the HSV thymidine kinase promoter
  • the early and late SV40 promoters the promoters of retroviral LTRs, such as those of the Rous Sarcoma Virus (RSV), and metallothionein promoters.
  • the expression vector contains a selectable marker gene to allow the selection of transformed host cells.
  • Selection genes are well known in the art and will vary with the host cell used.
  • Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker.
  • Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available for from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.
  • Host cells transformed with a nucleotide sequence encoding a CPP may be cultured under conditions suitable for the expression and recovery of the encoded protein from cell culture.
  • the protein produced by a recombinant cell may be secreted, membrane-bound, or contained infracellularly depending on the sequence and/or the vector used.
  • expression vectors containing polynucleotides encoding the CPP can be designed with signal sequences which direct secretion of the CPP through a prokaryotic or eukaryotic cell membrane.
  • the desired CPP may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
  • a heterologous polypeptide which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
  • the signal sequence may be a component of the vector, or it may be a part of the CPP-encoding DNA that is inserted into the vector.
  • the signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin 33 leaders.
  • the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces a-factor leaders, the latter described in U.S. Pat. No. 5,010,182), or acid phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published Apr. 4, 1990), or the signal described in WO 90113646 published Nov. 15, 1990.
  • mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders.
  • the coding sequence is inserted into an appropriate vector, which in turn may require the presence of certain characteristic "control elements” or "regulatory sequences.”
  • Appropriate constructs are known generally in the art (Ausubel, et al., 1990) and, in many cases, are available from commercial suppliers such as Invitrogen (San Diego, Calif.), Stratagene (La Jolla, Calif.), Gibco BRL (Rockville, Md.) or Clontech (Palo Alto, Calif.).
  • Transformation of bacterial cells may be achieved using an inducible promoter such as the hybrid lacZ promoter of the "BLUESCRLPT” Phagemid (Stratagene) or "pSPORTl” (Gibco BRL).
  • a number of expression vectors may be selected for use in bacterial cells to produce cleavable fusion proteins that can be easily detected and/or purified, including, but not limited to "BLUESCRLPT” (a-galactosidase; Stratagene) or pGEX (glutathione S-transferase; Promega, Madison, Wis.).
  • a suitable bacterial promoter is any nucleic acid sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of the coding sequence of the CPP gene into mRNA.
  • a bacterial promoter has a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region typically includes an RNA polymerase binding site and a transcription initiation site. Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose and maltose, and sequences derived from biosynthetic enzymes such as tryptophan. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters are also useful; for example, the tat promoter is a hybrid of the tip and lac promoter sequences.
  • a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. An efficient ribosome-binding site is also desirable.
  • the expression vector may also include a signal peptide sequence that provides for secretion of the CPP in bacteria.
  • the signal sequence typically encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell, as is well known in the art.
  • the protein is either secreted into the growth media (gram- positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria).
  • the bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed.
  • Suitable selection genes include drug resistance genes such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways. When large quantities of CPPs are needed, e.g., for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified may be desirable. Such vectors include, but are not limited to, multifunctional E.
  • Expression vectors for bacteria include the various components set forth above, and are well known in the art. Examples include vectors for Bacillus subtilis, E. coli, Streptococcus cremoris, and Streptococcus lividans, among others. Bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride mediated transfection, electroporation, and others.
  • Yeast expression systems are well known in the art, and include expression vectors for Saccharomyces cerevisiae, Candida albicans and C. maltosa, Hansenula polymorpha, Kluyveromyces fragilis and K. lactis, Pichia guillermondii and Ppastoris, Schizosaccharomycespon.be, and
  • Yarrowia lipolytica examples include the promoters for 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem. 255:2073 (1980)) or other glycolytic enzymes (Hess etal., J. Adv. Enzyme Reg.
  • yeast promoters which are inducible have the additional advantage of transcription controlled by growth conditions, include the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3 -phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. Yeast selectable markers include ADE2. HIS4. LEU2. TRP1.
  • Yeast expression vectors can be constructed for intracellular production or secretion of a CPP from the DNA encoding the CPP of interest.
  • a selected signal peptide and the appropriate constitutive or inducible promoter may be inserted into suitable restriction sites in the selected plasmid for direct intracellular expression of the CPP.
  • DNA encoding the CPP can be cloned into the selected plasmid, together with DNA encoding the promoter, the yeast alpha-factor secretory signal/leader sequence, and linker sequences (as needed), for expression of the CPP.
  • Yeast cells can then be transformed with the expression plasmids described above, and cultured in an appropriate fermentation media.
  • the protein produced by such transformed yeast can then be concentrated by precipitation with 10% trichloroacetic acid and analyzed following separation by SDS-PAGE and staining of the gels with Coomassie Blue stain.
  • the recombinant CPP can subsequently be isolated and purified from the fermentation medium by techniques known to those of skill in the art.
  • the CPP may be expressed in mammalian cells.
  • Mammalian expression systems are known in the art, and include retroviral vector mediated expression systems.
  • Mammalian host cells may be transformed with any of a number of different viral-based expression systems, such as adenovirus, where the coding region can be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a nonessential El or E3 region of the viral genome results in a viable virus capable of expression of the polypeptide of interest in infected host cells.
  • a preferred expression vector system is a retroviral vector system such as is generally described in PCT/US97/01019 and PCT/US97/101048.
  • Suitable mammalian expression vectors contain a mammalian promoter which is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence for CPP into mRNA.
  • a promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, using a located 25-30 base pairs upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site.
  • a mammalian promoter will also contain an upstream promoter element (enhancer element), typically located within 100 to 200 base pairs upstream of the TATA box.
  • An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation.
  • mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211, 504 published Jul.
  • adenovirus such as Adenovirus 2
  • bovine papilloma virus such as Adenovirus 2
  • bovine papilloma virus such as avian sarcoma virus
  • cytomegalovirus such as a retrovirus
  • hepatitis-B viras and Simian Viras 40 SV40
  • heterologous mammalian promoters e.g., the actin promoter or an immunoglobulin promoter
  • heat-shock promoters provided such promoters are compatible with the host cell systems. Transcription of DNA encoding a CPP by higher eukaryotes may be increased by inserting an enhancer sequence into the vector.
  • Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter, to increase its transcription.
  • Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, a-fetoprotein, and insulin).
  • an enhancer from a eukaryotic cell viras. Examples include the SV40 enhancer, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.
  • the enhancer is preferably located at a site 5' from the promoter.
  • the transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence.
  • the 3' terminus of the mature mRNA is formed by site-specific post-translational cleavage and polyadenylation.
  • transcription terminator and polyadenylation signals include those derived from SV40. Long term, high-yield production of recombinant proteins can be effected in a stable expression system.
  • Expression vectors which contain viral origins of replication or endogenous expression elements and a selectable marker gene may be used for this pu ⁇ ose.
  • selectable markers for use in mammalian cells are readily available commercially and are known to persons skilled in the art.
  • selectable markers include, but are not limited to he ⁇ es simplex viras thymidine kinase and adenine phosphoribosyltransferase for use in tk- or hprt-cells, respectively.
  • the methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used.
  • CPPs can be purified from culture supernatants of mammalian cells transiently transfected or stably transformed by an expression vector carrying a CPP-encoding sequence.
  • CPP is purified from culture supernatants of COS 7 cells transiently transfected by the pcD expression vector.
  • Transfection of COS 7 cells with pcD proceeds as follows: One day prior to transfection, approximately 10° " COS 7 monkey cells are seeded onto individual 100 mm plates in Dulbecco's modified Eagle medium (DME) containing 10% fetal calf serum and 2 mM glutamine. To perform the transfection, the medium is aspirated from each plate and replaced with 4 ml of DME containing 50 mM Tris.HCl pH 7.4, 400 mg/ml DEAE-Dextran and 50 ⁇ g of plasmid DNA. The plates are incubated for four hours at 37°C, then the DNA-containing medium is removed, and the plates are washed twice with 5 ml of serum-free DME.
  • DME Dulbecco's modified Eagle medium
  • DME is added back to the plates which are then incubated for an additional 3 hrs at 37°C.
  • the plates are washed once with DME, after which DME containing 4% fetal calf serum, 2 mM glutamine, penicillin (100 U/L) and streptomycin (100 ⁇ g/L) at standard concentrations is added.
  • the cells are then incubated for 72 hrs at 37°C, after which the growth medium is collected for purification of CPP.
  • Plasmid DNA for the transfections is obtained by growing pcD(SR ⁇ ), or like expression vector, containing the CPP-encoding cDNA insert in E. coli MC1061 (described by Casadaban and Cohen, J. Mol. Biol., Vol.
  • the plasmid DNA is isolated from the cultures by standard techniques, e.g. Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition (Cold Spring Harbor Laboratory, New York, 1989) or Ausubel et al (1990, cited above).
  • CPPs may also be produced in insect cells.
  • Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art. Ln one such system, the CPP-encoding DNA is fused upstream of an epitope tag contained within a baculovirus expression vector. Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodopterafrugiperda Sf9 cells or in Trichoplusia larvae. The CPP-encoding sequence is cloned into a nonessential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter.
  • AcNPV Autographa californica nuclear polyhedrosis virus
  • Suitable epitope tags for fusion to the CPP-encoding DNA include poly-his tags and immunoglobulin tags (like Fc regions of IgG).
  • plasmids may be employed, including commercially available plasmids such as pVL1393 (Novagen). Briefly, the CPP-encoding DNA or the desired portion of the CPP-encoding DNA is amplified by PCR with primers complementary to the 5' and 3 ' regions. The 5' primer may inco ⁇ orate flanking restriction sites. The PCR product is then digested with the selected restriction enzymes and subcloned into an expression vector.
  • Recombinant baculovirus is generated by co-transfecting the above plasmid and BaculoGoldTM virus DNA (Pharmingen) into Spodopterafrugiperda (“Sf9”) cells (ATCC CRL 1711) using lipofectin (commercially available from GJ-BCO-BRL), or other methods known to those of skill in the art.
  • Virus is produced by day 4-5 of culture in Sf9 cells at 28°C, and used for further amplifications. Procedures are performed as further described in O'Reilley et al., BACULOVIRUS EXPRESSION VECTORS: A LABORATORY MANUAL, Oxford University Press (1994).
  • Extracts may be prepared from recombinant virus-infected Sf9 cells as described in Rupert et al., Nature 362: 175- 179 (1993).
  • expressed epitope-tagged CPP can be purified by affinity chromatography, or for example, purification of an IgG tagged (or Fc tagged) CPP can be performed using chromatography techniques, including Protein A or protein G column chromatography.
  • Gene expression may be evaluated in a sample directly, for example, by standard techniques known to those of skill in the art, e.g., Northern blotting to determine the transcription of mRNA, dot blotting (DNA or RNA), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein.
  • antibodies may be used in assays for detection of polypeptides, nucleic acids, such as specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes.
  • Such antibodies may be labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.
  • Gene expression alternatively, may be measured by immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to directly evaluate the expression of a CPP polypeptide or polynucleotide.
  • Antibodies useful for such immunological assays may be either monoclonal or polyclonal, and may be prepared against a native sequence CPP. Protein levels may also be detected by mass spectrometry. A further method of protein detection is with protein chips.
  • Expressed CPP may be purified or isolated after expression, using any of a variety of methods known to those skilled in the art. The appropriate technique will vary depending upon what other components are present in the sample. Contaminant components that are removed by isolation or purification are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other solutes.
  • the purification step(s) selected will depend, for example, on the nature of the production process used and the particular CPP produced. As CPPs are secreted, they may be recovered from culture medium. Alternatively, the CPP may be recovered from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g.
  • Triton-X 100 or by enzymatic cleavage.
  • cells employed in expression of CPP can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or by use of cell lysing agents.
  • Exemplary purification methods include, but are not limited to, ion-exchange column chromatography; chromatography using silica gel or a cation-exchange resin such as DEAE; gel filtration using, for example, Sephadex G-75; protein A Sepharose columns to remove contaminants such as IgG; chromatography using metal chelating columns to bind epitope-tagged forms of the CPP; ethanol precipitation; reverse phase HPLC; chromatofocusing; SDS-PAGE; and ammonium sulfate precipitation.
  • an isolated CPP will be prepared by at least one purification step.
  • the CPP may be purified using a standard anti-CPP antibody column.
  • a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which CPP-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous CPP sequences have been introduced into their genome or homologous recombinant animals in which endogenous CPP sequences have been altered. Such animals are useful for studying the function and/or activity of a CPP or fragment thereof and for identifying and/or evaluating modulators of CPP biological activity.
  • a "transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal include a transgene.
  • Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc.
  • a transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal.
  • a "homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.
  • a transgenic animal of the invention can be created by introducing a CPP-encoding nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection or retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal.
  • the CPP cDNA sequence or a fragment thereof can be introduced as a transgene into the genome of a non-human animal.
  • a nonhuman homologue of a human CPP-encoding gene such as from mouse or rat, can be used as a transgene.
  • 3htronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene.
  • a tissue-specific regulatory sequence(s) can be operably linked to a CPP transgene to direct expression of a CPP to particular cells.
  • Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al., U.S. Pat. No. 4,873,191 by Wagner et al. and in Hogan, B., Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986, the disclosure of which is inco ⁇ orated herein by reference in its entirety). Similar methods are used for production of other transgenic animals.
  • a transgenic founder animal can be identified based upon the presence of a CPP transgene in its genome and/or expression of CPP mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene encoding a CPP can further be bred to other transgenic animals carrying other transgenes.
  • a vector is prepared which contains at least a portion of a CPP-encoding sequence into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the CPP-encoding sequence.
  • the CPP-encoding sequence can be a human gene, but more preferably, is a non-human homologue of a human CPP-encoding sequence (e.g., a cDNA isolated by stringent hybridization with a nucleotide sequence coding for a CPP).
  • a mouse CPP-encoding sequence can be used to construct a homologous recombination vector suitable for altering an endogenous gene in the mouse genome.
  • the vector is designed such that, upon homologous recombination, the endogenous CPP-encoding sequence is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector).
  • the vector can be designed such that, upon homologous recombination, the endogenous CPP-encoding sequence is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous CPP-encoding sequence).
  • the altered portion of the CPP-encoding sequence is flanked at its 5' and 3' ends by additional nucleic acid sequence of the CPP gene to allow for homologous recombination to occur between the exogenous sequence carried by the vector and an endogenous gene in an embryonic stem cell.
  • the additional flanking nucleic acid sequence is of sufficient length for successful homologous recombination with the endogenous gene.
  • flanking DNA both at the 5' and 3' ends
  • flanking DNA both at the 5' and 3' ends
  • the vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced CPP-encoding sequence has homologously recombined with the endogenous gene are selected (see e.g., Li, E. et al. (1992) Cell 69:915, the disclosure of which is inco ⁇ orated herein by reference in its entirety).
  • the selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras (see e.g., Bradley, A. in Teratocarcinomas and Embryonic Stem Cells. A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987) pp. 113-152, the disclosure of which is inco ⁇ orated herein by reference in its entirety).
  • a chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term.
  • Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene.
  • Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, A.
  • transgenic non-human animals can be produced which contain selected systems which allow for regulated expression of the transgene.
  • One example of such a system is the cre/loxP recombinase system of bacteriophage PI.
  • cre/loxP recombinase system see, e.g., Lakso et al. (1992) PNAS 89:6232-6236, the disclosure of which is inco ⁇ orated herein by reference in its entirety.
  • Another example of a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 251:1351-1355, the disclosure of which is inco ⁇ orated herein by reference in its entirety).
  • mice containing transgenes encoding both the Cre recombinase and a selected protein are required.
  • Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
  • the invention further provides methods of testing the activity of or obtaining functional fragments and variants of CPPs and CPP sequences. Such methods involve providing a variant or modified CPP-encoding nucleic acid and assessing whether the encoded polypeptide displays a CPP biological activity. Encompassed is thus a method of assessing the function of a CPP comprising: (a) providing a CPP, or a biologically active fragment or homologue thereof; and (b) testing said CPP, or a biologically active fragment or homologue thereof for a CPP biological activity under conditions suitable for CPP activity. Cell free, cell-based and in vivo assays may be used to test CPP activity.
  • said assay may comprise expressing a CPP nucleic acid in a host cell, and observing CPP activity in said cell and other affected cells.
  • a CPP, or a biologically active fragment or homologue thereof is contacted with a cell, and a CPP biological activity is observed.
  • CPP biological activities include: (1) indicating that an individual has or will have a cardiovascular disorder; (2) circulating through the bloodstream of individuals with a cardiovascular disorder; (3) antigenicity, or the ability to bind an anti-CPP specific antibody; (4) immunogenicity, or the ability to generate an anti-CPP specific antibody; and for CPP 2: (5) interacting with a CPP target protein, preferably a lipase; (6) stabilizing the active site of a lipase; (7) increasing lipase activity; (8) interacting with a CPP target molecule such as a phospholipid, micelle, or triglyceride; and (9) forming at least one disulfide bond; for CPP 9: (5) forming intramolecular amino acid side chain interactions such as hydrogen, amide, or especially disulfide links; (6) interaction with a CPP target molecule, preferably an RNA molecule or virion (such as respiratory syncytial viras or RSV); (7) antiviral activity, and (8) hydrolysis
  • CPP biological activity can be assayed by any suitable method known in the art.
  • Antigenicity and immunogenicity may be detected, for example, as described in the sections titled “Anti CPP antibodies” and “Uses of CPP antibodies”.
  • Circulation in blood plasma may be detected as described in "Diagnostic and Prognostic Uses”.
  • Interaction with a CPP target molecule may be detected according to any of the methods described herein, for example, in the section titled "Drug Screening Assays”.
  • Determining the ability of the CPP to bind to or interact with a CPP target molecule can be accomplished by a method for directly or indirectly determining binding, as is common to the art.
  • Such methods can be cell-based (e.g., such that binding to a membrane-bound CPP is detected) or cell free.
  • Interaction of a test compound with a CPP can be detected, for example, by coupling the CPP or biologically active portion thereof with a label group such that binding of the CPP or biologically active portion thereof to its cognate target molecule can be determined by detecting the labeled CPP or biologically active portion thereof in a complex.
  • BIOS Biomolecular Interaction Analysis
  • BIOA is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore). Changes in the optical phenomenon of surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.
  • SPR surface plasmon resonance
  • Lipase activity may be determined by any assay capable of detecting the hydrolysis reaction catalyzed by lipase. For example, a reduction in the amount of substrate or, alternatively, an increase in the amount of product, in a test sample can be measured.
  • a preferred assay is described by Panteghini, et al. (Ann Clin Biochem (2001) 38:365-370, disclosures of which are inco ⁇ orated herein in its entirety). Briefly, a chromogenic substrate, DGGR, is provided in an assay mixture with lipase, bile salts, calcium, and colipase.
  • Lipase activity on the substrate is measured by detecting the formation of methylresorafin, the chromophore product, at 580nm. Lipase activity is ideally measured to detect the CPP biological activities of stabilizing the active site of a lipase and increasing lipase activity.
  • An example of such a method comprises the steps of: contacting a biological sample with an assay mixture of chromogenic substrate and lipase under conditions suitable for lipase activity; and detecting lipase activity.
  • the biological sample is plasma, more preferably plasma from an individual suspected of having a cardiovascular disorder.
  • CPP activity is indicated by an increase in lipase activity when compared to an appropriate negative control.
  • RNase activity may be assayed by the following exemplary techniques. Enzyme is incubated 15 min at 37C in Buffer B (ImM reduced glutathione (Sigma Chemical Co., St Louis, MO), 0.5 mM oxidized glutathione, 0.1 mM DTT, 0.5 mM Tris-HCl 8.2, 0.01 mM EDTA, and 0.1M urea) with lug yeast tRNA (Sigma) as a substrate. Electrophoresis is carried out in a 1.5% agarose gel in 0.09 M Tris-phosphate, 0.002 M EDTA, and 0.5 microg/ml ethidium bromide. RNA is visualized by UN.
  • Buffer B ImM reduced glutathione (Sigma Chemical Co., St Louis, MO)
  • 0.5 mM oxidized glutathione 0.1 mM DTT
  • 0.5 mM Tris-HCl 8.2, 0.01 mM EDTA 0.1M urea
  • R ⁇ ase activity leads to the disappearance of the full-length R ⁇ A.
  • R ⁇ ase activity may be detected spectrophotometrically. Briefly, the concentration of perchloric acid-soluble ribonucleotides generated from acid-insoluble yeast tR ⁇ A (Sigma) in a 40 mM sodium phosphate, pH 7.5, buffer by a given quantity of R ⁇ ase is measured spectrophotometrically at 260 nm. For example, an R ⁇ ase-containing sample corresponding to approximately 100 nM recombinant R ⁇ ase is added in a 0.8 ml reaction volume with 10 ⁇ l of 4 mg/ml yeast tR ⁇ A. Increasing R ⁇ ase activity results in reduced 260 nm values.
  • antiviral activity may be detected as follows. Briefly, CPP 9-containing sample at various concentrations (or buffer control) is added directly to suspensions containing virions (2-5 x 10 3 infectious units/ml) in culture medium (Iscove's Modified Dulbecco's Medium with 10% heat- inactivated fetal calf serum and 2 mM glutamine) and incubated with gentle rotation at room temperature.
  • culture medium Iscove's Modified Dulbecco's Medium with 10% heat- inactivated fetal calf serum and 2 mM glutamine
  • target cells human respiratory epithelial HEp-2 cells, in the case of respiratory syncytial virus
  • confluent monolayers 3-4 x 10 5 cells/monolayer
  • coverslips within a one dram shell vial (Viromed, Minneapolis, MN).
  • target cells human respiratory epithelial HEp-2 cells, in the case of respiratory syncytial virus
  • confluent monolayers 3-4 x 10 5 cells/monolayer
  • coverslips coverslips within a one dram shell vial (Viromed, Minneapolis, MN).
  • spin amplification 700 g at 22°C
  • 16 h incubation 37°C, 5% C0 2
  • the primary infected cells are identified by immunofluorescent staining (mouse anti-RSN blend, FITC- labeled; Chemicon International, Temencula, CA). Data is presented as infectious units ⁇ SD.
  • Antimicrobial activity may be detected according to any method Icnown in the art, such as those described by Porter et al. (3hfect.Immun. 65: 2396-2401 (1997)). Briefly, L. monocytogenes EGD, E. coli ML35p, S. typhimurium 14028S and 7953S, and C. albicans 820 are used. The bacterial cultures are harvested in midgrowth phase, washed, and resuspended at a working dilution of 10 6 bacteria/ml in 10 mM sodium phosphate (pH7.4), 1% Trypticase Soy Broth. C. albicans is harvested in the same manner but isolated in stationary phase.
  • Colony Forming Unit (CFU) assays and Radial diffusion assays are performed as described in the presence of a test compound, a positive control compound, or no compound. A reduction in the value obtained for either the CFU or radial diffusion assays in the presence of a test compound as compared to the control without compound indicates that the compound has antimicrobial activity.
  • CFU Colony Forming Unit
  • CPP 9 CPP 17, CPP 20 and CPP 21
  • intramolecular interactions may be detected by sequence-based structural predictions. Such predictions are generally based on X-ray crystallography or NMR structural data for a polypeptide with similar sequence. Detection of intramolecular interactions may also be accomplished using SDS-PAGE.
  • Disulfide bonds links formed between different portions of a given protein result in a more compacted protein, and thus, a reduced apparent molecular weight.
  • Disulfide bonds may be disrupted by a reducing agent, for example, dithiothreitol (DTT).
  • DTT dithiothreitol
  • a protein sample that has been treated with a reducing agent may thus be compared to an untreated control by SDS-PAGE to detect a change in apparent molecular weight.
  • DTT dithiothreitol
  • antimicrobial activity may be detected according to any method Icnown in the art, such as those described by Porter et al. (3hfect.3xnmun. 65: 2396-2401 (1997)). Briefly, L. monocytogenes EGD, E. coli ML35p, S. typhimurium 14028S and 7953S, and C. albicans 820 are used. The bacterial cultures are harvested in midgrowth phase, washed, and resuspended at a working dilution of 10 6 bacteria ml in 10 mM sodium phosphate (pH7.4), 1% Trypticase Soy Broth. C. albicans is harvested in the same manner but isolated in stationary phase.
  • Colony Forming Unit (CFU) assays and Radial diffusion assays are performed as described in the presence of a test compound, a positive control compound, or no compound. A reduction in the value obtained for either the CFU or radial diffusion assays in the presence of a test compound as compared to the confrol without compound indicates that the compound has antimicrobial activity.
  • CFU Colony Forming Unit
  • specific proteolysis may be detected by comparing the molecular weight of a sample peptide to that of a peptide of known molecular weight.
  • Molecular weights are easily compared according to any method common to the art such as SDS-PAGE, gel chromatography, or mass spectrometry.
  • the molecular weight of a test peptide is obtained by mass spectrometry and compared to a database comprising molecular weights of peptides with posttranslational modifications.
  • Exemplary databases include Genpept, SWISSPROT, EMBL, and the Protein Sequence Database. Such techniques are detailed further herein.
  • chemotactic activity may be assessed as described for T cells in U.S. Patent 5837247. Briefly, lymphocyte migration was assessed using a 48 well microchemotaxis chamber (Neuro Probe Inc. Cabin John, Md.). 25 ul of the sample to be tested diluted in chemotaxis medium was placed in the lower compartment and 50 ul of cell suspension (at 5xl0 6 cells/ ml) in the upper compartment. The two compartments were separated by a polycarbonate filter (for T cells, 5 ⁇ m pore size, larger for other lymphocytes) coated with 10 ug/ml collagen type IV overnight at 4C. The apparatus was incubated at 37C for 3 h in humidified air with 5% C0 2 .
  • the filter was removed, fixed and stained with LeukoStat (Fisher Scientific, Pittsburgh, Pa.). The number of cells that migrate through the filter were counted by light microscopy per high-power fields. The results are expressed as the mean ( ⁇ SD) value of the migration in triplicate samples and are representative of at least three experiments. The statistical significance of the number of cells migrating in response to stimuli versus control medium was calculated using the Student's T test.
  • BALB/C and CB-17 scid scid (SOD) mice were obtained from the Animal Production Area (NCI-FCRDC, Frederick, Md.). Mice were used at 8-12 wk of age and kept in pathogen free conditions.
  • SCLD mice were treated with anti-ASGM-1 and injected with 1x10 s huPBL i.p. Immediately thereafter 0.1 ml PBS containing purified preparations of 1.0 ug compound or control PBS were injected daily subcutaneously into the same injection site. The injection site was examined histologically either at 4 hr after the first or at 24 hr by 4 hr after a second injection. Experiments were performed on three to four mice per group in duplicate.
  • vascular smooth muscle contraction may be measured as described in Nassar, et al. (Blood 100:4026-32 (2002)) or EP0582631B1, relevant disclosures of which are inco ⁇ orated by reference.
  • aortic ring tissue sections from rat or another suitable animal are used for the assay.
  • the tissue section rings are treated with, for example, epinephrine, a powerful contractile stimulant and the lengths are measured in the presence and absence of a test substance.
  • An increased length of the section relative to the negative control indicates that a substance reduces contractile activity.
  • any method known in the art may be used to assay for tumor growth.
  • C57B16/J mice were implanted with Lewis lung carcinomas.
  • a suspension of 10 6 tumor cells in 100 microliters of PBS was injected into the subcutaneous dorsa of the mice.
  • Tumors were measured with a dial-caliper, and volumes were determined using a general formula for the volume of an ellipsoid sphere (width 2 x length x 0.52).
  • the mice were randomized into two groups once the tumor volume reached about 160 mm3. One group was treated with the test substance and the other received a PBS control. Tumor growth was monitored over 11 days.
  • Cardiovascular disorders may be diagnosed by any method determined appropriate for an individual by one of skill in the art. Further examples of symptoms and diagnostics may be found in the Background section, and are best determined appropriately by one of skill in the art based on the particular profile of a patient.
  • Intramolecular interactions may be detected by sequence-based structural predictions. Such predictions are generally based on X-ray crystallography or NMR structural data for a polypeptide with similar sequence. Detection of intramolecular interactions may also be accomplished using SDS-PAGE. For the example of disulfide bonds, links formed between different portions of a given protein result in a more compacted protein, and thus, a reduced apparent molecular weight. Disulfide bonds may be disrupted by a reducing agent, for example, dithiothreitol (DTT). A protein sample that has been treated with a reducing agent may thus be compared to an untreated control by SDS-PAGE to detect a change in apparent molecular weight. Such methods are common to the art.
  • a reducing agent for example, dithiothreitol (DTT).
  • the present invention provides antibodies and binding compositions specific for CPPs.
  • Such antibodies and binding compositions include polyclonal antibodies, monoclonal antibodies, Fab and single chain Fv fragments thereof, bispecific antibodies, heteroconjugates, and humanized antibodies.
  • Such antibodies and binding compositions may be produced in a variety of ways, including hybridoma cultures, recombinant expression in bacteria or mammalian cell cultures, and recombinant expression in transgenic animals. There is abundant guidance in the literature for selecting a particular production methodology, e.g. Chadd and Chamow, Curr. Opin. Biotechnol., 12: 188-194 (2001).
  • antibody structure desired, the importance of carbohydrate moieties on the antibodies, ease of culturing and purification, and cost.
  • Many different antibody structures may be generated using standard expression technology, including full-length antibodies, antibody fragments, such as Fab and Fv fragments, as well as chimeric antibodies comprising components from different species.
  • Antibody fragments of small size, such as Fab and Fv fragments, having no effector functions and limited pharmoldnetic activity may be generated in a bacterial expression system.
  • Single chain Fv fragments are highly selective for in vivo tumors, show good tumor penetration and low immunogenicity, and are cleared rapidly from the blood, e.g. Freyre et al, J. Biotechnol., 76: 157-163 (2000). Thus, such molecules are desirable for radioimmunodetection.
  • the anti-CPP antibodies of the present invention may be polyclonal antibodies.
  • Such polyclonal antibodies can be produced in a mammal, for example, following one or more injections of an immunizing agent, and preferably, an adjuvant.
  • the immunizing agent and/or adjuvant will be injected into the mammal by a series of subcutaneous or intraperitoneal injections.
  • the immunizing agent may include CPPs or a fusion protein thereof. It may be useful to conjugate the antigen to a protein known to be immunogenic in the mammal being immunized.
  • immunogenic proteins include, but are not limited to, keyhole limpet hemocyanin (KLH), methylated bovine serum albumin (mBSA), bovine serum albumin (BSA), Hepatitis B surface antigen, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor.
  • Adjuvants include, for example, Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicoryno-mycolate).
  • the immunization protocol may be determined by one skilled in the art based on standard protocols or by routine experimentation.
  • a crude protein preparation which has been enriched for a CPP or a portion thereof can be used to generate antibodies.
  • Such proteins, fragments or preparations are introduced into the non-human mammal in the presence of an appropriate adjuvant. If the seram contains polyclonal antibodies to undesired epitopes, the polyclonal antibodies are purified by immunoaffinity chromatography.
  • Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. Also, host animals vary in response to site of inoculations and dose, with both inadequate and excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appear to be most reliable. Techniques for producing and processing polyclonal antisera are known in the art, see for example, Mayer and Walker (1987), the disclosure of which is inco ⁇ orated herein by reference in its entirety. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al. J. Clin. Endocrinol. Metab.
  • Booster injections can be given at regular intervals, and antiseram harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology D. Wier (ed) Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum. Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, 2d Ed. (Rose and Friedman, Eds.) Amer. Soc. For Microbiol., Washington, D. C. (1980).
  • the anti-CPP antibodies may be monoclonal antibodies.
  • Monoclonal antibodies may be produced by hybridomas, wherein a mouse, hamster, or other appropriate host animal, is immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent, e.g. Kohler and Milstein, Nature
  • the immunizing agent will typically include the CPP or a fusion protein thereof and optionally a carrier.
  • the lymphocytes may be immunized in vitro. Generally, spleen cells or lymph node cells are used if non-human mammalian sources are desired, or peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired.
  • PBLs peripheral blood lymphocytes
  • the lymphocytes are fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to produce a hybridoma cell, e.g. Goding, MONOCLONAL ANTIBODIES: PRINCIPLES AND PRACTICE, Academic Press, pp.
  • immortalized cell lines are transformed mammalian cells, for example, myeloma cells of rat, mouse, bovine or human origin.
  • the hybridoma cells are cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of unfused, immortalized cells.
  • the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT), substances which prevent the growth of HGPRT-deficient cells.
  • HAT hypoxanthine guanine phosphoribosyl transferase
  • Preferred immortalized cell lines are those that fuse efficiently, support stable high level production of antibody, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine or human myeloma lines, which can be obtained, for example, from the American Type Culture Collection (ATCC), Rockville, MD.
  • the culture medium (supernatant) in which the hybridoma cells are cultured can be assayed for the presence of monoclonal antibodies directed against a CPP.
  • the binding specificity of monoclonal antibodies present in the hybridoma supernatant is determined by immunoprecipitation or by an in vitro binding assay, such as radio- immunoassay (BIA) or Enzyme-Linked Imrnuno Sorbent Assay (ELISA). Appropriate techniques and assays are known in the art.
  • the binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem. 107:220 (1980).
  • the cells may be cloned by limiting dilution procedures and grown by standard methods (Goding, 1986, supra). Suitable culture media for this pu ⁇ ose include, for example, Dulbecco's Modified Eagle's Medium and RPMI- 1640 medium. Alternatively, the hybridoma cells may be grown in vivo as ascites in a mammal.
  • the monoclonal antibodies secreted by selected clones may be isolated or purified from the culture medium or ascites fluid by immunoglobulin purification procedures routinely used by those of skill in the art such as, for example, protein A-Sepharose, hydroxyl-apatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • the monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Pat. No. 4,816,567.
  • DNA encoding the monoclonal antibodies of the invention can be isolated from the CPP-specific hybridoma cells and sequenced, e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies.
  • the DNA may be inserted into an expression vector, which is then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
  • host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
  • the DNA also may be modified, for example, by substituting the coding sequence for the murine heavy and light chain constant domains for the homologous human sequences (Morrison et al., Proc. Nat. Acad. Sci.
  • the non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.
  • the antibodies may also be monovalent antibodies. Methods for preparing monovalent antibodies are well known in the art. For example, in vitro methods are suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly, Fab fragments, can be accomplished using routine techniques known in the art.
  • Antibodies and antibody fragments characteristic of hybridomas of the invention can also be produced by recombinant means by extracting messenger R ⁇ A, constructing a cD ⁇ A library, and selecting clones which encode segments of the antibody molecule.
  • the following are exemplary references disclosing recombinant techniques for producing antibodies: Wall et al., Nucleic Acids Research, Vol. 5, pgs. 3113-3128 (1978); Zakut et al., Nucleic Acids Research, Vol. 8, pgs. 3591- 3601 (1980); Cabilly et al., Proc. Natl. Acad. Sci., Vol. 81, pgs.
  • such techniques can be used to produce interspecific monoclonal antibodies, wherein the binding region of one species is combined with non-binding region of the antibody of another species to reduce immunogenicity, e.g. Liu et al., Proc. Natl. Acad. Sci., Vol. 84, pgs. 3439-3443 (1987), and patents 6,054,297 and 5,530,101.
  • recombinantly produced Fab and Fv fragments are expressed in bacterial host systems.
  • full-length antibodies are produced by mammalian cell culture techniques. More preferably, full-length antibodies are expressed in Chinese Hamster Ovary (CHO) cells or NSO cells.
  • Both polyclonal and monoclonal antibodies can be screened by ELISA.
  • the test is based on the tendency of macromolecules to adsorb nonspecifically to plastic. The irreversibility of this reaction, without loss of immunological activity, allows the formation of antigen-antibody complexes with a simple separation of such complexes from unbound material.
  • peptide conjugated to a carrier different from that used in immunization is adsorbed to the wells of a 96-well microtiter plate. The adsorbed antigen is then allowed to react in the wells with dilutions of anti-peptide serum.
  • the invention includes immunogens derived from CPPs, and immunogens comprising conjugates between carriers and peptides of the invention.
  • immunogen refers to a substance which is capable of causing an immune response.
  • carrier refers to any substance which when chemically conjugated to a peptide of the invention permits a host organism immunized with the resulting conjugate to generate antibodies specific for the conjugated peptide.
  • Carriers include red blood cells, bacteriophages, proteins, or synthetic particles such as agarose beads.
  • carriers are proteins, such as serum albumin, gamma-globulin, keyhole limpet hemocyanin (KLH), thyroglobulin, ovalbumin, fibrinogen, or the like.
  • MCS cysteine (or other sulfhydryls) for coupling cysteine (or other sulfhydryls) to amino groups
  • a general rule for selecting an appropriate method for coupling a given peptide to a protein carrier can be stated as follows: the group involved in attachment should occur only once in the sequence, preferably at the appropriate end of the segment. For example, BDB should not be used if a tyrosine residue occurs in the main part of a sequence chosen for its potentially antigenic character.
  • centrally located lysines rule out the glutaraldehyde method, and the occurrences of aspartic and glutamic acids frequently exclude the carbodiimide approach.
  • suitable residues can be positioned at either end of chosen sequence segment as attachment sites, whether or not they occur in the "native" protein sequence. Internal segments, unlike the amino and carboxy termini, will differ significantly at the "unattached end” from the same sequence as it is found in the native protein where the polypeptide backbone is continuous. The problem can be remedied, to a degree, by acetylating the ⁇ -amino group and then attaching the peptide by way of its carboxy terminus.
  • the coupling efficiency to the carrier protein is conveniently measured by using a radioactively labeled peptide, prepared either by using a radioactive amino acid for one step of the synthesis or by labeling the completed peptide by the iodination of a tyrosine residue.
  • a radioactively labeled peptide prepared either by using a radioactive amino acid for one step of the synthesis or by labeling the completed peptide by the iodination of a tyrosine residue.
  • the presence of tyrosine in the peptide also allows one to set up a sensitive radioimmune assay, if desirable. Therefore, tyrosine can be introduced as a terminal residue if it is not part of the peptide sequence defined by the native polypeptide.
  • Preferred carriers are proteins, and preferred protein carriers include bovine serum albumin, myoglobulin, ovalbumin (OVA), keyhole limpet hemocyanin (KLH), or the like.
  • Peptides can be linked to KLH through cysteines by MBS as disclosed by Liu et al., Biochemistry, Vol. 18, pgs. 690- 697 (1979).
  • MBS phosphate-buffered saline
  • pH 9.0 0.1 M sodium borate buffer
  • 1.0 M sodium acetate buffer pH for the dissolution of the peptide is chosen to optimize peptide solubility.
  • the content of free cysteine for soluble peptides is determined by Ellman's method, Ellman, Arch. Biochem. Biophys., Vol. 82, pg. 7077 (1959).
  • 4 mg 3 ⁇ LH in 0.25 ml of 10 mM sodium phosphate buffer (pH 7.2) is reacted with 0.7 mg MBS (dissolved in dimethyl formamide) and stirred for 30 min at room temperature.
  • the MBS is added dropwise to ensure that the local concentration of formamide is not too high, as KLH is insoluble in >30% formamide.
  • the reaction product, KLH-MBS is then passed through Sephadex G-25 equilibrated with 50 mM sodium phosphate buffer (pH 6.0) to remove free MBS, KLH recovery from peak fractions of the column eluate (monitored by OD280) is estimated to be approximately 80%.
  • KLH-MBS is then reacted with 5 mg peptide dissolved in 1 ml of the chosen buffer.
  • the pH is adjusted to 7-7.5 and the reaction is stirred for 3 hr at room temperature. Coupling efficiency is monitored with radioactive peptide by dialysis of a sample of the conjugate against phosphate- buffered saline, and may range from 8% to 60%.
  • polyclonal or monoclonal antibodies are produced by standard techniques, e.g. as disclosed by Campbell, Monoclonal Antibody Technology (Elsevier, New York, 1984); Hurrell, ed. Monoclonal Hybridoma Antibodies: Techniques and Applications (CRC l?ress, Boca Raton, FL, 1982); Schreier et al. Hybridoma Techniques (Cold Spring Harbor Laboratory, New York, 1980); U.S. Patent 4,562,003; or the like. In particular, U.S. Patent 4,562,003 is inco ⁇ orated by reference.
  • the anti-CPP antibodies of the invention may further comprise humanized antibodies or human antibodies.
  • humanized antibody refers to humanized forms of non-human (e.g., murine) antibodies that are chimeric antibodies, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab'), or other antigen-binding partial sequences of antibodies) which contain some portion of the sequence derived from non-human antibody.
  • Humanized antibodies include human immunoglobulins in which residues from a complementary determining region (CDR) of the human immunoglobulin are replaced by residues from a CDR of a non-human species such as mouse, rat or rabbit having the desired binding specificity, affinity and capacity.
  • CDR complementary determining region
  • the humanized antibody will comprise substantially all of at least one, and generally two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence.
  • the humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., Nature 321:522-525 (1986) and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992)).
  • Fc immunoglobulin constant region
  • a humanized antibody has one or more amino acids introduced into it from a source which is non-human in order to more closely resemble a human antibody, while still retaining the original binding activity of the antibody.
  • Methods for humanization of antibodies are further detailed in Jones et al., Nature 321 :522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); and Verhoeyen et al, Science 239:1534-1536 (1988).
  • Such "humanized" antibodies are chimeric antibodies in that substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
  • Heteroconjugate antibodies which comprise two covalently joined antibodies, are also within the scope of the present invention.
  • Heteroconjugate antibodies may be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents.
  • immunotoxins may be prepared using a disulfide exchange reaction or by forming a thioether bond.
  • Bispecific antibodies have binding specificities for at least two different antigens. Such antibodies are monoclonal, and preferably human or humanized. One of the binding specificities of a bispecific antibody of the present invention is for a CPP, and the other one is preferably for a cell- surface protein or receptor or receptor subunit. Methods for making bispecific antibodies are known in the art, and in general, the recombinant production of bispecific antibodies is based on the co- expression of two immunoglobulin heavy-chain/light-chain pairs in hybridoma cells, where the two heavy chains have different specificities, e.g. Milstein and Cuello, Nature 305:537-539 (1983). Given that the random assortment of immunoglobulin heavy and light chains results in production of potentially ten different antibody molecules by the hybridomas, purification of the correct molecule usually requires some sort of affinity purification, e.g. affinity chromatography.
  • CPP antibodies are preferably specific for the CPPs of the invention and, as such, do not bind peptides derived from other proteins with high affinity.
  • the term "heavy chain variable region” means a polypeptide (1) which is from 110 to 125 amino acids in length, and (2) whose amino acid sequence corresponds to that of a heavy chain of an antibody of the invention, starting from the heavy chain's N-terminal amino acid.
  • the term “light chain variable region” means a polypeptide (1) which is from 95 to 115 amino acids in length, and (2) whose amino acid sequence corresponds to that of a light chain of an antibody of the invention, starting from the light chain's N-terminal amino acid.
  • the term "monoclonal antibody” refers to homogeneous populations of immunoglobulins which are capable of specifically binding to CPPs.
  • CPP antibodies may be used as functional modulators, preferably as antagonists.
  • antibody modulators of the invention are derived from monoclonal antibodies specific for CPPs.
  • Monoclonal antibodies capable of blocking, or neutralizing, CPPs are selected by their ability to inhibit a CPP biological activity.
  • antibody fragments are also well known, e.g. Fab fragments: Tijssen, Practice and Theory of Enzyme Immunoassays (Elsevier, Amsterdam, 1985); and Fv fragments: Hochman et al. Biochemistry, Vol. 12, pgs. 1130-1135 (1973), Sharon et al., Biochemistry, Vol. 15, pgs. 1591-1594 (1976) and Ehrlich et al., U.S. Patent 4,355,023; and antibody half molecules: Auditore- Hargreaves, U.S. Patent 4,470,925.
  • monoclonal antibodies, Fv fragments, Fab fragments, or other binding compositions derived from monoclonal antibodies of the invention have a high affinity to CPPs.
  • the affinity of monoclonal antibodies and related molecules to CPPs may be measured by conventional techniques including plasmon resonance, ELISA, or equilibrium dialysis. Affinity measurement by plasmon resonance techniques may be carried out, for example, using a BIAcore 2000 instrument (Biacore AB, Uppsala, Sweden) in accordance with the manufacturer's recommended protocol.
  • affinity is measured by ELISA, as described in U.S. patent 6,235,883, for example.
  • the dissociation constant between CPPs and monoclonal antibodies of the invention is less than 10 "5 molar. More preferably, such dissociation constant is less than 10 "8 molar; still more preferably, such dissociation constant is less than 10 "9 molar; and most preferably, such dissociation constant is in the range of 10 "9 to 10 "n molar.
  • the antibodies of the present invention are useful for detecting CPPs. Such detection methods are advantageously applied to diagnosis of cardiovascular disorders, in particular, coronary artery disease.
  • the antibodies of the invention may be used in most assays involving antigen-antibody reactions.
  • the assays may be homogeneous or heterogeneous.
  • the sample can be a biological sample or fluid such as serum, urine, whole blood, lymphatic fluid, plasma, saliva, cells, tissue, and material secreted by cells or tissues cultured in vitro.
  • the sample can be pretreated if necessary to remove unwanted materials.
  • the immunological reaction usually involves the specific antibody, a labeled analyte, and the sample suspected of containing the antigen.
  • the signal arising from the label is modified, directly or indirectly, upon the binding of the antibody to the labeled analyte. Both immunological reaction and detection of the extent thereof are carried out in a homogeneous solution. Imrnunochemical labels which may be employed include free radicals, fluorescent dyes, enzymes, bacteriophages, coenzymes, and so forth.
  • the reagents are usually the sample, the specific antibody, and means for producing a detectable signal.
  • the specimen is generally placed on a support, such as a plate or a slide, and contacted with the antibody in a liquid phase.
  • the support is then separated from the liquid phase and either the support phase or the liquid phase is examined for a detectable signal employing means for producing such signal or signal producing system.
  • the signal is related to the presence of the antigen in the sample.
  • Means for producing a detectable signal includes the use of radioactive labels, fluorescent compounds, enzymes, and so forth.
  • Exemplary heterogeneous immunoassays are the radioimmunoassay, immunofluorescence methods, enzyme-linked immunoassays, and the like.
  • antibodies of the invention may be employed is immunoperoxidase labeling.
  • the antibodies may be bound to a radioactive material or to a drug to form a radiopharmaceutical or pharmaceutical, respectively.
  • an assay employing an antibody of the present invention involves the use of a surface to which the monoclonal antibody of the invention is attached.
  • the underlying structure of the surface may take different forms, have different compositions and may be a mixture of compositions or laminates or combinations thereof.
  • the surface may assume a variety of shapes and forms and may have varied dimensions, depending on the manner of use and measurement.
  • Illustrative surfaces may be pads, beads, discs, or strips which may be flat, concave or convex. Thickness is not critical, generally being from about 0.1 to 2 mm thick and of any convenient diameter or other dimensions.
  • the surface typically will be supported on a rod, tube, capillary, fiber, strip, disc, plate, cuvette and will typically be porous and polyfunctional or capable of being polyfunctionalized so as to permit covalent binding of an antibody and permit bonding of other compounds which form a part of a means for producing a detectable signal.
  • organic and inorganic polymers may be employed as the material for the solid surface.
  • Illustrative polymers include polyethylene, polypropylene, poly(4-methylbutene), polystyrene, polymethracrylate, poly(ethylene terephthalate), rayon, nylon, poly(vinyl butyrate), silicones, polyforrnaldehyde, cellulose, cellulose acetate, nitrocellulose, and latex.
  • Other surfaces include paper, glasses, ceramics, metals, metaloids, semiconductor materials, cements, silicates, or the like.
  • substrates that form gels, gelatins, lipopolysaccharides, silicates, agarose and polyacrylamides or polymers which form several aqueous phases such as dextrans, polyalkylene glycols (alkylene of 2 to 3 carbon atoms) or surfactants such as phospholipids.
  • dextrans polyalkylene glycols (alkylene of 2 to 3 carbon atoms)
  • surfactants such as phospholipids.
  • the binding of the antibody to the surface may be accomplished by well known techniques, commonly available in the literature (see, for example, “Immobilized Enzymes,” Ichiro Chibata, Press, New York (1978) and Cuatrecasas, J. Bio. Chem., 245: 3059 (1970)).
  • the sample is mixed with aqueous medium and the medium is contacted with the surface having an antibody bound thereto.
  • Labels may be included in the aqueous medium, either concurrently or added subsequently so as to provide a detectable signal associated with the surface.
  • the means for producing the detectable signal can involve the inco ⁇ oration of a labeled analyte or it may involve the use of a second monoclonal antibody having a label conjugated thereto. Separation and washing steps will be carried out as needed.
  • the signal detected is related to the presence of CPP in the sample. It is within the scope of the present invention to include a calibration on the same support.
  • a particular embodiment of an assay in accordance with the present invention involves the use of a support such as a slide or a well of a petri dish.
  • the technique involves fixing the sample to be analyzed on the support with an appropriate fixing material and incubating the sample on the slide with a monoclonal antibody. After washing with an appropriate buffer such as, for example, phosphate buffered saline, the support is contacted with a labeled specific binding partner for the antibody. After incubation as desired, the slide is washed a second time with an aqueous buffer and the dete ⁇ nination is made of the binding of the labeled monoclonal antibody to the antigen.
  • an appropriate buffer such as, for example, phosphate buffered saline
  • the slide may be covered with a fluorescent antibody mounting fluid on a cover slip and then examined with a fluorescent microscope to determine the extent of binding.
  • the label can be an enzyme conjugated to the monoclonal antibody and the extent of binding can be determined by examining the slide for the presence of enzyme activity, which may be indicated by the formation of a precipitate, color, etc.
  • a particular example of an assay utilizing the present antibodies is a double determinant ELISA assay.
  • a support such as, e.g., a glass or vinyl plate, is coated with an antibody specific for CPP by conventional techniques. The support is contacted with the sample suspected of containing CPP, usually in aqueous medium.
  • the support is separated from the medium, washed to remove unbound CPP with, for example, water or an aqueous buffered medium, and contacted with an antibody specific for CPP, again usually in aqueous medium.
  • the antibody is labeled with an enzyme directly or indirectly such as, e.g., horseradish peroxidase or alkaline phosphatase.
  • the support is separated from the medium, and washed as above. The enzyme activity of the support or the aqueous medium is determined. This enzyme activity is related to the amount of CPP in the sample.
  • kits for carrying out the methods disclosed above.
  • the kit comprises in packaged combination (a) a monoclonal antibody more specifically defined above and (b) a conjugate of a specific binding partner for the above monoclonal antibody and a label capable of producing a detectable signal.
  • the reagents may also include ancillary agents such as buffering agents and protein stabilizing agents, e.g., polysaccharides and the like.
  • the kit may further include, where necessary, other members of the signal producing system of which system the label is a member, agents for reducing background interference in a test, control reagents, apparatus for conducting a test, and the like, lh another embodiment, the diagnostic kit comprises a conjugate of monoclonal antibody of the invention and a label capable of producing a detectable signal. Ancillary agents as mentioned above may also be present.
  • an anti-CPP antibody e.g., monoclonal antibody
  • an anti- CPP antibody can facilitate the purification of natural CPPs from cells and of recombinantly produced CPP expressed in host cells.
  • an anti-CPP antibody can be used to isolate CPP to aid in detection of low concentrations of CPP (e.g., in plasma, cellular lysate or cell supernatant) or in order to evaluate the abundance and pattern of expression of the CPP.
  • Anti-CPP antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a label group.
  • Protein Arrays Detection, purification, and screening of the polypeptides of the invention may be accomplished using retentate chromatography (preferably, protein arrays or chips), as described by U.S. Patent 6225027 and U.S. Patent Application 20010014461, disclosures of which are herein inco ⁇ orated by reference in their entireties.
  • retentate chromatography describes methods in which polypeptides (and/ or other sample components) are retained on an adsorbent (e.g., array or chip) and subsequently detected.
  • Such methods involve (1) selectively adsorbing polypeptides from a sample to a substrate under a plurality of different adsorbent/eluant combinations ("selectivity conditions") and (2) detecting the retention of adsorbed polypeptides by deso ⁇ tion spectrometry (e.g., by mass specfrometry).
  • selectivity conditions a plurality of different adsorbent/eluant combinations
  • deso ⁇ tion spectrometry e.g., by mass specfrometry
  • the coupling of adso ⁇ tion chromatography with detection by deso ⁇ tion spectrometry provides extraordinary sensitivity, the ability to rapidly analyze retained components with a variety of different selectivity conditions, and parallel processing of components adsorbed to different sites (i.e., "affinity sites” or “spots") on the array under different elution conditions.
  • this invention provides a molecular discovery and diagnostic device that is characterized by the inclusion of both parallel and multiplex polypeptide processing capabilities.
  • Polypeptides of the invention and CPP-binding substances are preferably attached to a label group, and thus directly detected, enabling simultaneous transmission of two or more signals from the same "circuit" (i.e., addressable "chip” location) during a single unit operation.
  • any instrument, method, process, etc. can be utilized to determine the identity and abundance of proteins in a sample.
  • a preferred method of obtaining identity is by mass spectrometry, where protein molecules in a sample are ionized and then the resultant mass and charge of the protein ions are detected and determined.
  • mass spectrometry it is preferred that the protein be converted to a gas-ion phase.
  • Various methods of protein ionization are useful, including, e.g., fast ion bombardment (FAB), plasma deso ⁇ tion, laser deso ⁇ tion, thermal deso ⁇ tion, preferably, electrospray ionization (ESI) and matrix-assisted laser deso ⁇ tion/ionization (MALDI).
  • FAB fast ion bombardment
  • ESI electrospray ionization
  • MALDI matrix-assisted laser deso ⁇ tion/ionization
  • mass analyzers are available for peptide and protein analysis, including, but not limited to, Time-of-Flight (TOF), ion trap (3TMS), Fourier transform ion cyclotron (FTMS), quadrupole ion trap, and sector (electric and/or magnetic) spectrometers. See, e.g., U.S. Pat. No. 5,572,025 for an ion trap MS.
  • Mass analyzers can be used alone, or in combination with other mass analyzers in tandem mass spectrometers. In the latter case, a first mass analyzer can be use to separate the protein ions (precursor ion) from each other and determine the molecular weights of the various protein constituents in the sample. A second mass analyzer can be used to analyze each separated constituents, e.g., by fragmenting the precursor ions into product ions by using, e.g. an inert gas. Any desired combination of mass analyzers can be used, including, e.g., triple quadrupoles, tandem time-of-flights, ion traps, and/or combinations thereof.
  • detectors can be used to detect the protein ions.
  • destructive detectors can be utilized, such as ion electron multipliers or cryogenic detectors (e.g., U.S. Pat. No. 5,640,010).
  • non-destractive detectors can be used, such as ion traps which are used as ion current pick-up devices in quadrupole ion trap mass analyzers or FTMS.
  • sample preparation methods can be utilized including, dried droplet (Karasand Hillenkamp, Anal. Chem., 60:2299-2301, 1988), vacuum-drying (Winberger et al., 3h Proceedings of the 41st ASMS Conference on Mass Spectrometry and Allied Topics, San Francisco, May 31 -June 4, 1993, pp. 775a-b), crush crystals (Xiang et al., Rapid Comm. Mass
  • samples are prepared as solid-state co-crystals or thin films by mixing them with an energy absorbing compound or colloid (the matrix) in the liquid phase, and ultimately drying the solution to the solid state upon the surface of an inert probe.
  • an energy absorbing compound or colloid the matrix
  • an energy absorbing molecule is an integral component of the sample presenting surface.
  • the probe contents are allowed to dry to the solid state prior to introduction into the laser deso ⁇ tion ionization time-of-flight mass spectrometer (LDHVIS).
  • LDHVIS laser deso ⁇ tion ionization time-of-flight mass spectrometer
  • Ion detection in TOF mass spectrometry is typically achieved with the use of electro-emissive detectors such as electron multipliers (EMP) or microchannel plates (MCP). Both of these devices function by converting primary incident charged particles into a cascade of secondary, tertiary, quaternary, etc. electrons. The probability of secondary electrons being generated by the impact of a single incident charged particle can be taken to be the ion-to-elecfron conversion efficiency of this charged particle (or more simply, the conversion efficiency). The total electron yield for cascading events when compared to the total number of incident charged particles is typically described as the detector gain.
  • EMP electron multipliers
  • MCP microchannel plates
  • MCPs are the preferred electro-emissive detector for enhancing mass/charge resolving power.
  • EMPs function well for detecting ion populations of disbursed kinetic energies, where rapid response time and broad frequency bandwidth are not necessary.
  • LC-TMS liquid-chromatography tandem mass spectrometer
  • a protein eluted from a column according to the system described in Example 1 is analyzed using both MS and MS-MS analysis.
  • a small portion of intact proteins eluting from RP2 may be diverted to online detection using LC-ESI MS.
  • the proteins are aliquoted on a number of plates allowing digestion or not with trypsin, preparation for MALDI-MS as well as for ESI-MS, as well as preparation of the MALDI plates with different matrices.
  • the methods thus allow, in addition to information on intact mass, to conduct an analysis by both peptide mass finge ⁇ rinting and MS-MS techniques.
  • the methods described herein of separating and fractionating proteins provide individual proteins or fractions containing small numbers of distinct proteins.
  • proteins can be identified by mass spectral determination of the molecular masses of the protein and peptides resulting from the fragmentation thereof. Making use of available information in protein sequence databases, a comparison can be made between proteolytic peptide mass patterns generated in silico, and experimentally observed peptide masses. A "hit-list" can be compiled, ranking candidate proteins in the database, based on (among other criteria) the number of matches between the theoretical and experimental proteolytic fragments.
  • Several Web sites are accessible that provide software for protein identification on-line, based on peptide mapping and sequence database search strategies (e.g., http://www.expasy.ch). Methods of peptide mapping and sequencing using MS are described in WO 95/252819, U.S. Pat No.
  • Data collected from a mass spectrometer typically comprises the intensity and mass to charge ratio for each detected event.
  • Spectral data can be recorded in any suitable form, including, e.g., in graphical, numerical, or electronic formats, either in digital or analog form.
  • Spectra are preferably recorded in a storage medium, including, e.g., magnetic, such as floppy disk, tape, or hard disk; optical, such as CD-ROM or laser-disc; or, ROM-CHIPS.
  • the mass spectrum of a given sample typically provides information on protein intensity, mass to charge ratio, and molecular weight.
  • the molecular weights of proteins in the sample are used as a matching criterion to query a database.
  • the molecular weights are calculated conventionally, e.g., by subtracting the mass of the ionizing proton for singly- charged protonated molecular ions, by multiplying the measured mass/charge ratio by the number of charges for multiply-charged ions and subtracting the number of ionizing protons.
  • Various databases are useful in accordance with the present invention. Useful databases include, databases containing genomic sequences, expressed gene sequences, and/or expressed protein sequences.
  • Preferred databases contain nucleotide sequence-derived molecular masses of proteins present in a known organism, organ, tissue, or cell-type. There are a number of algorithms to identify open reading frames (ORF) and convert nucleotide sequences into protein sequence and molecular weight information.
  • ORF open reading frames
  • Several publicly accessible databases are available, including, the SwissPROT/TrEMBL database (http://www.expasy.ch).
  • a mass spectrometer is equipped with commercial software that identifies peaks above a certain threshold level, calculates mass, charge, and intensity of detected ions. Correlating molecular weight with a given output peak can be accomplished directly from the spectral data, i.e., where the charge on an ion is one and the molecular weight is therefore equal to the numerator value minus the mass of the ionizing proton.
  • protein ions can be complexed with various counter- ions and adducts, such as N, C, and K'.3h such a case, it would be expected that a given protein ion would exhibit multiple peaks, such as a triplet, representing different ionic states (or species) of the same protein.
  • post-translation processing may have to be considered.
  • processing events including, proteolytic processing, removal of N-terminal methionine, acetylation, methylation, glycosylation, phosphorylation, etc.
  • a database can be queried for a range of proteins matching the molecular mass of the unknown.
  • the range window can be determined by the accuracy of the instrument, the method by which the sample was prepared, etc. Based on the number of hits (where a hit is match) in the spectrum, the unknown protein or peptide is identified or classified.
  • Methods of identifying one or more CPP by mass spectrometry are useful for diagnosis and prognosis of cardiovascular disorders.
  • such methods are used to detect one or more CPP present in human plasma.
  • Exemplary techniques are described in U.S. Patent Applications 02/0060290, 02/0137106, 02/0138208, 02/0142343, 02/0155509, disclosures of which are inco ⁇ orated by reference in their entireties.
  • nucleic acid molecules, proteins, protein homologues, and antibodies described herein can be used in one or more of the following methods: diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenetics; and in drag screening as further described herein.
  • the invention provides diagnostic and prognostic assays for detecting CPP nucleic acids and proteins, as further described. Also provided are diagnostic and prognostic assays for detecting interactions between CPPs and CPP target molecules, particularly natural agonists and antagonists.
  • the present invention provides methods for identifying polypeptides that are differentially expressed between two or more samples. "Differential expression” refers to differences in the quantity or quality of a polypeptide between samples. Such differences could result at any stage of protein expression from transcription through post-translational modification.
  • an adsorbent can have an array of affinity spots selected for a combination of markers diagnostic for a disease or syndrome.
  • Differences in polypeptide levels between samples can be identified by exposing the samples to a variety of conditions for analysis by deso ⁇ tion spectrometry (e.g., mass spectrometry).
  • Unknown proteins can be identified by detecting physicochemical characteristics (e.g., molecular mass), and this information can be used to search databases for proteins having similar profiles.
  • Preferred methods of detecting a CPP utilize mass spectrometry techniques. Such methods provide information about the size and character of the particular CPP isoform that is present in a sample, e.g., a biological sample submitted for diagnosis or prognosis.
  • Example 1 outlines a preferred detection scheme, wherein a biological sample is separated by chromatography before characterization by mass spectrometry.
  • the invention provides a method of detecting a CPP in a biological sample comprising the steps of: fractionating a biological sample (e.g., plasma, seram, lymph, cerebrospinal fluid, cell lysate of a particular tissue) by at least one chromatographic step; subjecting a fraction to mass spectrometry; and comparing the characteristics of polypeptide species observed in mass spectrometry with known characteristics of CPP polypeptides (e.g., CPP 2, CPP 9, CPP 17, CPP 20 and CPP 21 , as disclosed in Table 1).
  • a biological sample e.g., plasma, seram, lymph, cerebrospinal fluid, cell lysate of a particular tissue
  • the isolated nucleic acid molecules of the invention can be used, for example, to detect CPP mRNA (e.g., in a biological sample) or a genetic alteration in a CPP-encoding gene, and to modulate a CPP activity, as described further below.
  • the CPPs can be used to screen for naturally occurring CPP target molecules, and to screen for drugs or compounds which modulate CPP activity.
  • the anti- CPP antibodies of the invention can be used to detect and isolate CPPs, regulate the bioavailability of CPPs, and modulate CPP activity.
  • one embodiment of the present invention involves a method of use wherein a molecule of the present invention (e.g., a CPP, CPP nucleic acid, or CPP modulator) is used, for example, to diagnose, and/or prognose a disorder in which any of the aforementioned CPP activities is indicated.
  • the present invention involves a method of use wherein a molecule of the present invention is used, for example, for the diagnosis, and/or prognosis of subjects, preferably a human subject, in which any of the aforementioned activities is pathologically perturbed.
  • the invention encompasses a method of determining whether a CPP is expressed within a biological sample comprising: a) contacting said biological sample with: i) a polynucleotide that hybridizes under stringent conditions to a CPP nucleic acid; or ii) a detectable polypeptide (e.g. antibody) that selectively binds to a CPP; and b) detecting the presence or absence of hybridization between said polynucleotide and an RNA species within said sample, or the presence or absence of binding of said detectable polypeptide to a polypeptide within said sample. Detection of said hybridization or of said binding indicates that said CPP is expressed within said sample.
  • a detectable polypeptide e.g. antibody
  • the polynucleotide is a primer
  • said hybridization is detected by detecting the presence of an amplification product comprising said primer sequence, or the detectable polypeptide is an antibody.
  • detection involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683, 195 and 4,683,202, the disclosures of which are inco ⁇ orated herein by reference in their entireties), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegren et al.
  • PCR polymerase chain reaction
  • LCR ligation chain reaction
  • Also envisioned is a method of determining whether a mammal, preferably human, has an elevated or reduced level of expression of a CPP comprising: a) providing a biological sample from said mammal; and b) comparing the amount of a CPP or of a CPP RNA species encoding a CPP within said biological sample with a level detected in or expected from a control sample.
  • An increased amount of said CPP or said CPP RNA species within said biological sample compared to said level detected in or expected from said control sample indicates that said mammal has an elevated level of CPP expression
  • a decreased amount of said CPP or said CPP RNA species within said biological sample compared to said level detected in or expected from said control sample indicates that said mammal has a reduced level of expression of a CPP.
  • the present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, and monitoring clinical trials are used for prognostic pu ⁇ oses. Accordingly, one aspect of the present invention relates to diagnostic assays for determining CPP and/or nucleic acid expression as well as CPP activity, in the context of a biological sample (e.g., blood, plasma, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant CPP expression or activity. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with a CPP, nucleic acid expression or activity.
  • a biological sample e.g., blood, plasma, cells, tissue
  • mutations in a CPP-encoding gene can be assayed in a biological sample.
  • Such assays can be used for prognostic or predictive pu ⁇ ose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with CPP expression or activity.
  • biological sample is intended to include tissues, cells and biological fluids isolated from an individual, as well as tissues, cells and fluids present within an individual. That is, the detection methods of the invention can be used to detect a CPP mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo.
  • Preferred biological samples are biological fluids such as lymph, cerebrospinal fluid, blood, and especially blood plasma.
  • in vitro techniques for detection of a CPP mRNA include Northern hybridizations and in situ hybridizations.
  • in vitro techniques for detection of a CPP include mass spectrometry, Enzyme Linked Immuno Sorbent
  • ELISAs Assays
  • Western blots Western blots
  • in vivo techniques for detection of a CPP include introducing into an individual a labeled anti- CPP antibody.
  • immunoassays detecting the CPP 9 polypeptides of the invention see Kurokawa, E. et al., Clin.Chim.Acta (1983), 128(l):83-93.
  • the subject methods can be characterized by generally comprising detecting, in a tissue sample of the individual (e.g. a human patient), the presence or absence of a genetic lesion characterized by at least one of (i) a mutation of a gene encoding one of the subject CPP or (ii) the mis-expression of a CPP-encoding gene.
  • such genetic lesions can be detected by ascertaining the existence of at least one of (i) a deletion of one or more nucleotides from the CPP-encoding gene, (ii) an addition of one or more nucleotides to the gene, (iii) a substitution of one or more nucleotides of the gene, (iv) a gross chromosomal rearrangement or amplification of the gene, (v) a gross alteration in the level of a messenger RNA transcript of the gene, (vi) aberrant modification of the gene, such as of the methylation pattern of the genomic DNA, (vii) the presence of a non-wild type splicing pattern of a messenger RNA transcript of the gene, and (viii) reduced level of expression, indicating lesion in regulatory element or reduced stability of a CPP-encoding transcript.
  • aberrant methylation patterns of a CPP nucleic acid can be detected by digesting genomic DNA from a patient sample with one or more restriction endonucleases that are sensitive to methylation and for which recognition sites exist in the CPP- encoding gene (including in the flanking and intronic sequences). See, for example, Buiting et al. (1994) Human Mol Genet 3:893-895. Digested DNA is separated by gel electrophoresis, and hybridized with probes derived from, for example, genomic or cDNA sequences. The methylation status of the CPP-encoding gene can be determined by comparison of the restriction pattern generated from the sample DNA with that for a standard of known methylation.
  • a diagnostic assay which detects the ability of a CPP to bind to a cell surface or extracellular protein. For instance, it will be desirable to detect CPP mutants which, while expressed at appreciable levels in the cell, are defective at binding a CPP target protein (having either diminished or enhanced binding affinity for the target). Such mutants may arise, for example, from mutations, e.g., point mutants, which may be impractical to detect by the diagnostic DNA sequencing techniques or by the immunoassays described above.
  • the present invention accordingly further contemplates diagnostic screening assays which generally comprise cloning one or more CPP-encoding gene from the sample tissue, and expressing the cloned genes under conditions which permit detection of an interaction between that recombinant gene product and a target protein.
  • diagnostic screening assays which generally comprise cloning one or more CPP-encoding gene from the sample tissue, and expressing the cloned genes under conditions which permit detection of an interaction between that recombinant gene product and a target protein.
  • diagnostic screening assays which generally comprise cloning one or more CPP-encoding gene from the sample tissue, and expressing the cloned genes under conditions which permit detection of an interaction between that recombinant gene product and a target protein.
  • the subject assay can also be used to detect CPP target protein mutants which have a higher or lower binding affinity for a CPP relative to a wild type form of that CPP target protein.
  • a target protein can be provided as an immobilized protein (a "target"), such as by use of GST fusion proteins and glutathione treated microtiter plates as described herein.
  • the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting a CPP, mRNA, or genomic DNA, such that the level of a CPP, mRNA or genomic DNA is measured in the biological sample, and comparing the level of a CPP, mRNA or genomic DNA in the control sample with the level of a CPP, mRNA or genomic DNA in the test sample.
  • a compound or agent capable of detecting a CPP, mRNA, or genomic DNA, such that the level of a CPP, mRNA or genomic DNA is measured in the biological sample, and comparing the level of a CPP, mRNA or genomic DNA in the control sample with the level of a CPP, mRNA or genomic DNA in the test sample.
  • kits for detecting the presence of a CPP, mRNA or genomic DNA in a biological sample are kits for detecting the presence of a CPP, mRNA or genomic DNA in a biological sample.
  • the kit can comprise: a labeled compound or agent capable of detecting a CPP, mRNA or genomic DNA in a biological sample; means for determining the amount of a CPP in the sample; and means for comparing the amount of CPP in the sample with a standard.
  • the compound or agent can be packaged in a suitable container.
  • the kit can further comprise instructions for using the kit to detect CPP or nucleic acid. CPPs clusters
  • methods for the diagnosis of cardiovascular disorders comprise detecting in a test biological sample the presence or level of one or more CPP of the invention in combination with the detection of other Cardiovascular disorder Plasma Polypeptides (CPPs).
  • CPPs Cardiovascular disorder Plasma Polypeptides
  • Particularly preferred other CPPs for use in the diagnosis of cardiovascular disorders in combination with CPPs of the invention are listed in Table 2. Table 2
  • Table 2 details, for each CPP, the sequences detected by mass spectrometry according to the procedures described in Example 1. In addition, Table 2 indicates in which fractions of the CEX, RP1, and RP2 chromatographies each sequence was found.
  • the CPPs listed in Table 2 were all identified as differentially expressed between individuals with cardiovascular disorders and control individuals using the procedure described in Example 1. In particular, each CPP listed in Table 2 was found to vary between the control and disease samples as detailed in Table 3 below.
  • CPPs of the invention with a number of additional CPPs from Table 2, chosen using a suitable analysis of the levels of the CPPs from Table 2 measured in a number of diseased individuals and control individuals through the methods of Example 1.
  • the strategies for discovering such combinations of CPPs need to regard each CPP as one variable and the disease as a joint, multi-variate effect caused by interaction of these variables.
  • LDA Linear Discriminant Analysis
  • CPPs Cluster of variables
  • CPPs cardiovascular diseases
  • Enhancements to the LDA allow stepwise inclusion (or removal) of variables to optimize the discriminant power of the model.
  • the results of the LDA is therefore a cluster of CPPs which can be used without limitations for diagnosis, prognosis, therapy or drug development.
  • LDA Flexible Discriminant Analysis
  • Other enhanced versions of LDA permit the use of non-linear combinations of variables to discriminate a disease state from a normal state.
  • the results of the discriminant analysis can be verified by post-hoc tests and also by repeating the analysis using alternative techniques such as classification trees.
  • the invention provides a method (also referred to herein as a "screening assay") for identifying candidate modulators (e.g., small molecules and peptides, antibodies, peptidomimetics or other drugs) which bind to CPPs, have a modulatory effect on, for example, CPP expression or preferably CPP biological activity.
  • candidate modulators e.g., small molecules and peptides, antibodies, peptidomimetics or other drugs
  • small molecules can be generated using combinatorial chemistry or can be obtained from a natural products library.
  • Assays may be cell based or non-cell based assays.
  • Drug screening assays maybe binding assays or more preferentially functional assays, as further described.
  • the body fluid analyzed for the level of at least one CPP is preferably from a non-human mammal.
  • the non-human mammal is preferably one in which the induction of an anti-cardiovascular disorder response by endogenous and/or exogenous agents is predictive of the induction of such a response in a human.
  • Rodents mice, rats, etc
  • primates are particularly suitable for use in this aspect of the invention.
  • Agents that are found, using screening assays as further described herein, to modulate CPP activity by at least 5%, more preferably by at least 10%, still more preferably by at least 30%, still more preferably by at least 50%, still more preferably by at least 70%, even more preferably by at least 90 %, may be selected for further testing as a prophylactic and/or therapeutic anti-cardiovascular disease agent.
  • agents that are found, using screening assays as further described herein, to modulate CPP expression by at least 5%, more preferably by at least 10%, still more preferably by at least 30%, still more preferably by at least 50%, still more preferably by at least 70%, even more preferably by at least 90 %, may be selected for further testing as a prophylactic and/or therapeutic anti-cardiovascular disease agent.
  • Agents that are found to modulate CPP activity may be used, for example, to modulate treatment regimens for cardiovascular disorders, or to reduce the symptoms of a cardiovascular disorder alone or in combination with other appropriate agents or treatments.
  • Protein array methods are useful for screening and drug discovery. For example, one member of a receptor/ ligand pair is docked to an adsorbent, and its ability to bind the binding partner is determined in the presence of the test substance. Because of the rapidity with which adsorption can be tested, combinatorial libraries of test substances can be easily screened for their ability to modulate the interaction. In preferred screening methods, CPPs are docked to the adsorbent. Binding partners are preferably labeled, thus enabling detection of the interaction. Alternatively, in certain embodiments, a test substance is docked to the adsorbent. The polypeptides of the invention are exposed to the test substance and screened for binding.
  • an assay is a cell-based assay in which a cell which expresses a CPP or biologically active portion thereof is contacted with a test compound and the ability of the test compound to modulate CPP activity determined. Determining the ability of the test compound to modulate CPP activity can be accomplished by monitoring the bioactivity of the CPP or biologically active portion thereof.
  • the cell for example, can be of mammalian origin, insect origin, bacterial origin or a yeast cell.
  • the invention provides assays for screening candidate or test compounds which are target molecules of a CPP or biologically active portion thereof. In another embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of a CPP or biologically active portion thereof.
  • the test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the 'one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection.
  • Determining the ability of the test compound to modulate CPP activity can also be accomplished, for example, by coupling the CPP or biologically active portion thereof with a label group such that binding of the CPP or biologically active portion thereof to its cognate target molecule can be determined by detecting the labeled CPP or biologically active portion thereof in a complex. For example, the extent of complex formation may be measured by immunoprecipitating the complex or by performing gel electrophoresis.
  • a microphysiometer can be used to detect the interaction of a compound with its cognate target molecule without the labeling of either the compound or the target molecule. McConnell, H. M. et al. (1992) Science 257:1906-1912, the disclosure of which is inco ⁇ orated by reference in its entirety.
  • a microphysiometer such as a cytosensor is an analytical instrament that measures the rate at which a cell acidifies its environment using a Light-Addressable Potentiometric Sensor (LAPS). Changes in this acidification rate can be used as an indicator of the interaction between compound and receptor.
  • LAPS Light-Addressable Potentiometric Sensor
  • the assay comprises: contacting a cell which expresses a CPP or biologically active portion thereof with a target molecule to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to modulate the activity of the CPP or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of the CPP or biologically active portion thereof comprises: dete ⁇ riining the ability of the test compound to modulate a biological activity of the CPP expressing cell (e.g., interaction with a CPP target molecule, as discussed above).
  • the assay comprises contacting a cell which is responsive to a CPP or biologically active portion thereof with a CPP or biologically active portion thereof, to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to modulate the activity of the CPP or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of the CPP or biologically active portion thereof comprises determining the ability of the test compound to modulate a biological activity of the CPP-responsive cell.
  • an assay is a cell-based assay comprising contacting a cell expressing a CPP target molecule (i.e. a molecule with which CPPs interact) with a test compound and determining the ability of the test compound to modulate the activity of the CPP target molecule. Determining the ability of the test compound to modulate the activity of a CPP target molecule can be accomplished, for example, by assessing the activity of a target molecule, or by assessing the ability of the CPP to bind to or interact with the CPP target molecule.
  • a CPP target molecule i.e. a molecule with which CPPs interact
  • Determining the ability of the CPP to bind to or interact with a CPP target molecule can be accomplished by one of the methods described above for directly or indirectly determining binding.
  • Determining the ability of the CPP to bind to a CPP target molecule can also be accomplished using a technology such as real-time Biomolecular Interaction Analysis (BIA).
  • BIA Biomolecular Interaction Analysis
  • BIOA is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore). Changes in the optical phenomenon of surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.
  • the assay is a cell-free assay in which a CPP or biologically active portion thereof is contacted with a test compound and the ability of the test compound to modulate the activity of the CPP or biologically active portion thereof is determined.
  • determining the ability of the CPP to modulate or interact with a CPP target molecule can be accomplished by determining the activity of the target molecule.
  • the activity of the target molecule can be determined by contacting the target molecule with the CPP or a fragment thereof and measuring induction of a cellular second messenger of the target (e.g., cAMP, STAT3, Akt, intracellular Ca2+, diacylglycerol, 3P3, etc.), detecting catalytic/enzymatic activity of the target for an appropriate substrate, detecting the induction of a reporter gene (comprising a target-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., luciferase), or detecting a target-regulated cellular response, for example, signal transduction or proteimprotein interactions.
  • a cellular second messenger of the target e.g., cAMP, STAT3, Akt, intracellular Ca2+, diacylglycerol, 3P3, etc.
  • a reporter gene comprising a target-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker,
  • the cell-free assays of the present invention are amenable to use of both soluble and/or membrane-bound forms of isolated proteins (e.g. CPPs or biologically active portions thereof or molecules to which CPPs targets bind).
  • isolated proteins e.g. CPPs or biologically active portions thereof or molecules to which CPPs targets bind.
  • a solubilizing agent such that the membrane-bound form of the isolated protein is maintained in solution.
  • non-ionic detergents such as n-o
  • a CPP or its target molecule it may be desirable to immobilize either a CPP or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.
  • Binding of a test compound to a CPP, or interaction of a CPP with a target molecule in the presence and absence of a candidate compound can be accomplished in any vessel suitable for containing the reactants and by any immobilization protocol described herein.
  • the complexes can be dissociated from the matrix, and the level of CPP binding or activity determined using standard techniques. Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention.
  • either a CPP or a CPP target molecule can be immobilized utilizing conjugation of biotin and streptavidin.
  • Biotinylated CPP or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, HI.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical).
  • antibodies reactive with CPP or target molecules but which do not interfere with binding of the CPP to its target molecule can be derivatized to the wells of the plate, and unbound target or CPP trapped in the wells by antibody conjugation.
  • Methods for detecting such complexes include immunodetection of complexes using antibodies reactive with the CPP or target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the CPP or target molecule.
  • modulators of CPP expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of CPP mRNA or protein in the cell is determined.
  • the level of expression of CPP mPvNA or protein in the presence of the candidate compound is compared to the level of expression of CPP mRNA or protein in the absence of the candidate compound.
  • the candidate compound can then be identified as a modulator of CPP expression based on this comparison. For example, when expression of CPP mRNA or protein is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of CPP mRNA or protein expression.
  • the candidate compound when expression of CPP mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of CPP mRNA or protein expression.
  • the level of CPP mRNA or protein expression in the cells can be determined by methods described herein for detecting CPP mRNA or protein.
  • the CPP can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al.
  • CPP-binding proteins proteins which bind to or interact with CPPs
  • CPP-binding proteins proteins which bind to or interact with CPPs
  • CPP-binding proteins are also likely to be involved in the propagation of signals by the CPP or CPP targets as, for example, downstream elements of a CPP-mediated signaling pathway.
  • the two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains.
  • the assay utilizes two different DNA constructs.
  • the gene that codes for a CPP or a fragment thereof is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4).
  • a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein (“prey" or "sample”) is fused to a gene that codes for the activation domain of the known franscription factor.
  • the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the CPP.
  • a reporter gene e.g., LacZ
  • the present invention includes a compound or agent obtainable by a method comprising the steps of any one of the aforementioned screening assays (e.g., cell-based assays or cell-free assays).
  • an agent identified as described herein in an appropriate animal model.
  • an agent identified as described herein e.g., a CPP modulating agent, or a CPP -binding partner
  • an agent identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent.
  • an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent.
  • this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.
  • the present invention also pertains to uses of novel agents identified by the above-described screening assays for diagnoses, prognoses, prevention, and treatments as described herein.
  • the present invention includes a method of synthesizing or producing a drag or pharmaceutical composition by reference to the stracture and/or properties of a compound obtainable by one of the above-described screening assays.
  • a drug or pharmaceutical composition can be synthesized based on the structure and/or properties of a compound obtained by a method in which a cell which expresses a CPP target molecule is contacted with a test compound and the ability of the test compound to bind to, or modulate the activity of, the CPP target molecule is determined.
  • the present invention includes a method of synthesizing or producing a drug or pharmaceutical composition based on the structure and/or properties of a compound obtainable by a method in which a CPP or biologically active portion thereof is contacted with a test compound and the ability of the test compound to bind to, or modulate the activity of the CPP or biologically active portion thereof is determined.
  • In vivo screening assays are carried out in nonhuman animals to discover effective CPP modulators that may play a role in cardiovascular disease.
  • Animal-based model systems of cardiovascular disease include, but are not limited to, non-recombinant animals and transgenic animals.
  • Non-recombinant animal models for cardiovascular disease may include, for example, genetic models.
  • Such genetic cardiovascular disease models include apoB or apoR deficient pigs (Rapacz, et al., 1986, Science 234:1573-1577) and Watanabe heritable hyperlipidemic (WHHL) rabbits (Kita et al., 1987, Proc Natl. Acad. Sci U.S.A. 84: 5928-5931).
  • Non-recombinant, non-genetic animal models of atherosclerosis may include, for example, pig, rabbit, or rat models in which the animal has been exposed to either chemical wounding through dietary supplementation of LDL, or mechanical wounding through balloon catheter angioplasty, for example.
  • the rat carotid artery injury model of restenosis can be a useful indication of potential therapeutic action.
  • An example of this method is described in US Patent 6500859, the disclosure of which is inco ⁇ orated herein by reference. Briefly, the protocol approved by the National Institute on Aging Animal Care and use Committee used 6 month Wistar rats from the GRC colony anesthetized with 20 mg/kg body weight pentobarbital, 2 mg/kg body weight ketamine, and 4 mg/kg body weight xylazine intraperitoneally.
  • the left external carotid artery was cannulated with 2-French Fogarty embolectomy catheter, inflated with saline and passed three times up and down the common carotid artery to produce a distending, deendothelializing injury.
  • the animals were treated with an appropriate dosage of the test substance or with vehicle alone (e.g., based on body weight per day in an appropriate solution such as 1 :2:2: 165 DMSO:Cremophor ELDehydrated ethanol :phosphate buffered saline) by intraperitoneal injection beginning 2 hours after injury.
  • Test substance or vehicle alone was administered once daily, as an intraperitoneal injection, for the next 4 days.
  • the animals (8 treated and 10 vehicle-treated) were anesthetized as above and the carotid artery was isolated and fixed in 10% buffered formalin and embedded in paraffin. Cross sections of the carotids were mounted on microscope slides and stained with hematoxylin and eosin stain. The image of the carotid artery was projected onto a digitizing board and the cross sectional areas of the intima and the media were measured. Reduction of the neointimal area (thickening) indicates that the test substance is an effective antirestenosis agent. Interfering with the recirculation of bile acids from the lumen of the intestinal tract is found to reduce the levels of serum cholesterol in a causal relationship.
  • CETP should lead to elevation of plasma HDL cholesterol and lowering of plasma LDL cholesterol, thereby providing a therapeutically beneficial plasma lipid profile (McCarthy, Medicinal Res. Revs., 13, 139-59 (1993)).
  • An in vivo assay for compounds that inhibit rat ileal uptake of I4 C-Taurocholate into bile (CETP inhibition) is disclosed in US Patent 6489366 and Une, et al. Biochimica et Biophysica Acta, 833, 196-202 (1985), disclosures of which are inco ⁇ orated herein by reference.
  • the distal opening is cannulated with a 20 cm length of silicone tubing (0.02" I.D..times.0.037" O.D.).
  • the proximal cannulae is hooked up to a peristaltic pump and the intestine is washed for 20 min with warm PBS at 0.25 ml/min. Temperature of the gut segment is to be monitored continuously.
  • 2.0 ml of confrol sample 14 C- taurocholate at 0.05 mCi/mL with 5 mM non-radiolabeled taurocholate
  • a 3 ml syringe is begun.
  • hepatic cholesterol concentration is a useful assay for determining the effectiveness of a test substance against cardiovascular disorders.
  • liver tissue is weighed and homogenized in chloroform:methanol (2:1). After homogenization and centrifugation the supernatant is separated and dried under nitrogen. The residue is to be dissolved in isopropanol and the cholesterol content measured enzymatically, using a combination of cholesterol oxidase and peroxidase, as described by Allain, C. A. et al., Clin. Chem., 20, 470 (1974) (herein inco ⁇ orated by reference).
  • serum cholesterol may be determined as follows. Total serum cholesterol is measured enzymatically using a commercial kit from Wako Fine Chemicals (I ichmond, Va.); Cholesterol CI 1, Catalog No. 276-64909. HDL cholesterol may be assayed using this same kit after precipitation of VLDL and LDL with Sigma Chemical Co. HDL Cholesterol reagent, Catalog No. 352-3 (dextran sulfate method). Total seram triglycerides (blanked) (TGI) is also assayed enzymatically with Sigma Chemical Co. GPO-Trinder, Catalog No. 337-B. VLDL and LDL (VLDL+LDL) cholesterol concentrations are calculated as the difference between total and FLDL cholesterol. A reduction in VLDL+LDL cholesterol in the test substance-treated sample relative to control is indicative of an effective anti-cardiovascular disorder agent.
  • a dog model for evaluating lipid lowering drugs may also be utilized, for example, as described in US Patent 6489366.
  • male beagle dogs obtained from a vendor such as Marshall farms and weighing 6-12 kg are fed once a day for two hours and given water ad libitum. Dogs may be randomly assigned to a dosing groups consisting of 6 to 12 dogs each, such as: vehicle, i.g.; 1 mg/kg, i.g.; 2 mg/kg, i.g.; 4 mg/kg, i.g.; 2 mg/kg, p.o. (powder in capsule).
  • Intra-gastric dosing of a therapeutic material dissolved in aqueous solution for example, 0.2% Tween 80 solution [polyoxyethylene mono-oleate, Sigma Chemical Co., St.
  • a gavage tube Prior to initiating dosing, blood samples may be drawn from the cephalic vein in the morning before feeding in order to evaluate seram cholesterol (total and HDL) and triglycerides. For several consecutive days animals are dosed in the morning, prior to feeding. Animals are to be allowed 2 hours to eat before any remaining food is removed. Feces are to be collected over a 2 day period at the end of the study and may be analyzed for bile acid or lipid content. Blood samples are also to be taken, at the end of the treatment period, for comparison with pre-study serum lipid levels. Statistical significance will be determined using the standard student's T-test with p ⁇ 0.05.
  • Serum lipid measurement is measured similarly. Blood is collected from the cephalic vein of fasted dogs in serum separator tubes (Nacutainer SST, Becton Dickinson and Co., Franklin Lakes, ⁇ .J.). The blood is centrifuged at 2000 ⁇ m for 20 minutes and the seram decanted. Total cholesterol may be measured in a 96 well format using a Wako enzymatic diagnostic kit (Cholesterol CU) (Wako Chemicals, Richmond, Va.), utilizing the cholesterol oxidase reaction to produce hydrogen peroxide which is measured colorimetrically. A standard curve from 0.5 to 10 ug cholesterol is to be prepared in the first 2 columns of the plate.
  • the serum samples (20-40 ul, depending on the expected lipid concentration) or known seram control samples are added to separate wells in duplicate. Water is added to bring the volume to 100 ul in each well. A 100 ul aliquot of color reagent is added to each well and the plates will be read at 500 nm after a 15 minute incubation at 37 degrees centigrade.
  • HDL cholesterol may be assayed using Sigma kit No. 352-3 (Sigma Chemical Co., St. Louis, Mo.) which utilizes dextran sulfate and Mg ions to selectively precipitate LDL and VLDL.
  • a volume of 150 ul of each serum sample is to be added to individual microfuge tubes, followed by 15 ul of HDL cholesterol reagent (Sigma 352-3). Samples are to be mixed and centrifuged at 5000 ⁇ m for 5 minutes. A 50 ul aliquot of the supernatant is to be then mixed with 200 ul of saline and assayed using the same procedure as for total cholesterol measurement.
  • Triglycerides are measured using Sigma kit No. 337 in a 96 well plate format. This procedure will measure glycerol, following its release by reaction of triglycerides with lipoprotein lipase. Standard solutions of glycerol (Sigma 339-11) ranging from 1 to 24 ug are to be used to generate the standard curve. Serum samples (20-40 ul, depending on the expected lipid concenfration) are added to wells in duplicate. Water is added to bring the volume to 100 ul in each well and 100 ul of color reagent is also added to each well. After mixing and a 15 minute incubation, the plates will be read at 540 nm and the triglyceride values calculated from the standard curve.
  • Test compounds may be evaluated for their effect on serum glucose and serum insulin in db/db mice (C578BL/KsJ-db/db Jcl) as described in US 6462046, disclosure of which is inco ⁇ orated herein.
  • the compounds are dissolved in a vehicle (e.g., consisting of 2% Tween80 in distilled water) and administered orally. Dosage is determined by body weight. All aspects of the work including experimentation and disposal of the animals is performed in general accordance with the International Guiding Principles for Biomedical Research Involving Animals (CIOMS Publication No. ISBN 92 90360194, 1985).
  • Glucose-HA Assay kits (Wako, Japan) are used for determination of serum glucose and ELISA Mouse Insulin Assay kits (SPI bio, France) are utilized for determination of insulin.
  • An appropriate positive control is troglitazone (Helios Pharmaceutical, Louisville, Ky.).
  • the animals are divided into twenty groups of four animals each.
  • the animals weighed 52 +/- 5 gms at age 8-10 weeks.
  • the animals are provided free access to laboratory chow (Fwusow Industry Co., Taiwan) and water.
  • a blood sample Prior to any treatment a blood sample (pretreatment blood) was taken from each animal.
  • Four groups of animals, the vehicle groups receive only doses of the vehicle.
  • Each of the vehicle groups receive 100, 30, 10 or 1 ml/kg body weight of the vehicle orally.
  • a triglitazone solution (10 ml/kg body weight in tween 80/water) is administered orally to the four positive control groups in doses of 100, 30, 10 and 1 ml/kg body weight respectively.
  • the test compound is similarly administered orally as a solution to four groups of animals with each group receiving a different dose of the compound.
  • the vehicle, positive confrol and test compound solutions are administered to the groups immediately, 24 hours and 48 hours after drawing the pretreatment blood.
  • Blood is withdrawn (post treatment blood) 1.5 hours after administration of the last dose.
  • the serum glucose are determined enzymatically (Mutaratose-GOD) and the insulin levels by ELISA (mouse insulin assay kit).
  • the mean SEM of each group is calculated and the percent inhibition of serum glucose and insulin obtained by comparison between pretreatment blood and post treatment blood.
  • the percent aortic surface area covered by lesions in test substance treated and untreated lipid-fed rabbits is graphed.
  • the aortas of the rabbits treated with an effective anti-atherosclerotic agent have less staining, indicating decreased atherosclerosis.
  • sections of the aortas are immunostained for
  • NCAM-1 expression or macrophage accumulation using antibodies for VCAM-1 or Ram-11 antigen are indicative of an effective agent.
  • Reduction in LDL cholesterol may also be determined in a primate model.
  • Cynomolgus monkeys are made hypercholesterolemic prior to test compound dosing by feeding a high fat cholesterol diet. The monkeys are then dosed orally with the test compound or control vehicle for two weeks. A reduction in the percentage serum LDL cholesterol in the monkeys over this time period is indicative of an effective anti-atherosclerotic agent.
  • polypeptides of the present invention When polypeptides of the present invention are expressed in soluble form, for example as a secreted product of transformed yeast or mammalian cells, they can be purified according to standard procedures of the art, including steps of ammonium sulfate precipitation, ion exchange chromatography, gel filtration, electrophoresis, affinity chromatography, according to, e.g., "Enzyme Purification and Related Techniques," Methods in Enzymology, 22:233-577 (1977), and Scopes, R., Protein Purification: Principles and Practice (Springer-Verlag, New York, 1982) provide guidance in such purifications.
  • polypeptides of the invention when expressed in insoluble form, for example as aggregates or inclusion bodies, they can be purified by appropriate techniques, including separating the inclusion bodies from disrupted host cells by centrifugation, solubilizing the inclusion bodies with chaotropic and reducing agents, diluting the solubilized mixture, and lowering the concentration of chaotropic agent and reducing agent so that the polypeptide takes on a biologically active conformation.
  • chaotropic and reducing agents diluting the solubilized mixture
  • concentration of chaotropic agent and reducing agent so that the polypeptide takes on a biologically active conformation.
  • compositions suitable for administration can be inco ⁇ orated into pharmaceutical compositions suitable for administration.
  • Such compositions typically comprise a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and abso ⁇ tion delaying agents, and the like, compatible with pharmaceutical administration.
  • the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be inco ⁇ orated into the compositions.
  • a pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration.
  • routes of adniinisfration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration.
  • Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
  • the parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
  • compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
  • suitable carriers include physiological saline, bacteriostatic water, Cremophor EL® (BASF, Parsippany, NJ.) or phosphate buffered saline (PBS).
  • the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
  • the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • Prevention of the action microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
  • isotonic agents for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition.
  • Prolonged abso ⁇ tion of the injectable compositions can be brought about by including in the composition an agent which delays abso ⁇ tion, for example, aluminum monostearate and gelatin.
  • the active compound is a protein, e.g., an anti-CPP antibody
  • sterile injectable solutions can be prepared by inco ⁇ orating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
  • dispersions are prepared by inco ⁇ orating the active compound into a sterile vehicle which contains a basic dispersion medium and other required ingredients from those enumerated above.
  • a sterile vehicle which contains a basic dispersion medium and other required ingredients from those enumerated above.
  • the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile- filtered solution thereof.
  • Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets.
  • the active compound can be inco ⁇ orated with excipients and used in the form of tablets, troches, or capsules.
  • the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
  • a suitable propellant e.g., a gas such as carbon dioxide, or a nebulizer.
  • Systemic administration can also be by transmucosal or fransdermal means. For transmucosal or transdermal administration, penevers appropriate to the barrier to be permeated are used in the formulation.
  • penetrants are generally known in the art, and include, for example, for fransmucosal administration, detergents, bile salts, and fusidic acid derivatives.
  • Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
  • the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art. Most preferably, active compound is delivered to a subject by intravenous injection.
  • the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
  • a controlled release formulation including implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
  • the materials can also be obtained commercially from Alza Co ⁇ oration and Nova Pharmaceuticals, Inc.
  • Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers.
  • the active compound may be coated on a microchip drug delivery device.
  • microchip drug delivery devices are useful for controlled delivery of proteinaceous compositions into the bloodstream, cerebrospinal fluid, lymph, or tissue of an individual without subjecting such compositions to digestion or subjecting the individual to injection. Methods of using microchip drug delivery devices are described in US Patents 6123861, 5797898 and US Patent application 20020119176A1 , disclosures of which are hereby inco ⁇ orated in their entireties.
  • Dosage unit form refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • the specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
  • Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population).
  • the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50.
  • Compounds which exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
  • the data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans.
  • the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity.
  • the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
  • the therapeutically effective dose can be estimated initially from cell culture assays.
  • a dose may be formulated in animal models to achieve a circulating used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.
  • compositions can be included in a container, pack, or dispenser together with instructions for administration.
  • the CPP modulators and anti-CPP antibodies of the invention can be used in the treatment or prevention of CPP-related disorders.
  • the invention relates to pharmaceutical compositions containing an antibody, antibody fragment, or peptide modulator of CPP, preferably containing a pharmaceutically acceptable carrier or diluent.
  • the carrier or diluent is preferably adapted for oral, intravenous, intramuscular or subcutaneous administration.
  • Pharmaceutical compositions may comprise or consist essentially of any of the CPP modulators, anti-CPP antibodies, or anti-CPP antibody fragments described herein.
  • agents are useful for the treatment and prevention of cardiovascular disorders. Such agents may be used advantageously in combination with a CPP-related composition. For example, cell cycle inhibitors and proto-oncogenes (Simari and Nabel, Semin. Intervent.
  • nitric oxide donor drugs such as NO (nitric oxide) donor drugs; pro-apoptotic agents such as bcl-x (Pollman et al., Nature Med. 2:222-227 (1998)); he ⁇ es virus thymidine kinase (tk) gene and systemic ganciclovir (Ohno et al, Science 265:781-784 (1994); Guzman et al., Proc. Natl. Acad. Sci. USA 91:10732-10736 (1994); Chang et al., Mol. Med.
  • pro-apoptotic agents such as bcl-x (Pollman et al., Nature Med. 2:222-227 (1998)); he ⁇ es virus thymidine kinase (tk) gene and systemic ganciclovir (Ohno et al, Science 265:781-784 (1994); Guzman et al., Proc. Natl. Acad.
  • Anti-thrombotic agents useful in combination with the compositions of the invention include, for example, inhibitors of the Jlb/ILIa integrin; tissue factor inhibitors; and anti-thrombin agents.
  • An antiarrhythmic agent such as a local anesthetic (class I agent), sympathetic antagonist (class 33 agent), antifibrillatory agent (class LH agent) calcium channel agent (class IV agent) or anion antagonist (class V agent) as described in Vukmir, Am. J. Emer. Med. 13:459-470 (1995); Grant, PACE 20:432-444 (1997); Assmann I., Curr. Med. Res. Opin. 13:325-343 (1995); and Lipka et al., Am. Heart J.
  • class I agents include: procainamide; quinidine or disopyramide; lidocaine; phenytoin; tocainide or mexiletine; encainide; flecainide; lorcainide; propafenone (3-LT) or moricizine.
  • Sympathetic antagonists include: propranolol, esmolol, metoprolol, atenelal, or acebutolol.
  • antifibrillatory agents are bretylium, amiodarone, sotalol (H) or N-acetylprocainamide.
  • Class IV agents include verapamil, diltiazem, and bepridil, and anion antagonists such as alinidine.
  • Congestive heart failure therapeutic agents include TNF inhibitors such as Embrel.TM. (Immunex Co ⁇ .; Seattle, Wash.), TBCl 1251, or an ACE (angiotensin converting enzyme) inhibitor, such as Natrecor (nesiritide; Scios, Inc.).
  • VEGF vascular endothelial growth factor
  • VEGF vascular endothelial growth factor
  • rhVEGF a nucleic acid molecule encoding the 121 amino acid isoform of VEGF
  • BioByPass.TM. GenVec/Parke Davis
  • VEGF-2 a nucleic acid encoding VEGF-2 (Vascular Genetics, Inc.); F3BLAST.TM., a recombinant form of FGF-2 being developed by Scios, Inc.
  • CAD coronary artery disease
  • 125 ml frozen plasma were defrost and filtered on 0.45 ⁇ m sterile filter in a sterile hood. Filtrate was injected on two inline columns of respectively 300 ml of HSA ligand Sepharose fast Flow column (Amersham, Upsala, Sweden), 5cm 3D, 15 cm length; and 100 ml Protein G Sepharose fast Flow column (Amersham, Upsala, Sweden), 5 cm ID, 5 cm length.
  • Step 2 Gel Filtration /Reverse Phase Capture step Sample from step 1 was defrosted and filtered on 0.45 ⁇ m sterile filter in a sterile hood.
  • Low molecular weight proteins ( ⁇ 20 kDa) were oriented to in line reverse phase capture column: 50 ml PLRPS 100 angstroms (Polymer labs, UK). The three-way valve controlling injection on PLRPS column was switched at a cut-off of 33 rnAU (280 nm) to send gel filtration eluate into reverse phase capture column. This cut-off value was established by first using SDS-PAGE to provide an estimated range of OD values and by subsequently evaluating three cut-off values (high, median and low values of OD range). The final cut-off value was chosen to maximize the low molecular weight protein obtained, with a low molecular protein proportion of at least 85%.
  • Step 3 Cation Exchange Sample from step 2 (147 ml) was defrosted and mixed -with an equal volume of cation exchange buffer A (Gly/HCl buffer 50 mM, pH 2.7, urea 8M).
  • Sample was injected on a 100 ml Source 15S column (Amersham, Upsala, Sweden), 35 mm 3D, 100 mm length. Column was equilibrated and washed with buffer A. Flow rate was 10 ml/min. Proteins and peptides were eluted with step gradient from 100% buffer A until 100 % buffer
  • each of the 18 cation exchange fractions was reduced with dithioerythritol (DTE, 30 mM, 3 hours at 37°C) and alkylated with iodoacetamid (120 mM, 1 hour 25 °C in the dark). The latter reaction was stopped with the addition of DTE (30 mM) followed by acidification (TFA, 0.1 %). The fractions were then injected on an DTE (DTE, 30 mM, 3 hours at 37°C) and alkylated with iodoacetamid (120 mM, 1 hour 25 °C in the dark). The latter reaction was stopped with the addition of DTE (30 mM) followed by acidification (TFA, 0.1 %). The fractions were then injected on an
  • Dried samples from step 4 were resuspended in 1 ml of solution A (0.03% TFA in water) and injected on a Nydac LCMS C4 column, 5 micrometers, 300 angstroms (Vydac, USA), 4.6 mm 3D, 150 mm length. Flow rate was 0.8 ml/min.
  • 96-well plates were recovered and subjected to two sequential concentration steps. Volumes were concentrated from 0.8 ml to about 50 microl per well by drying with a SpeedVac, and then resolubilized to ca. 200 microl and reconcentrated to about 50 microl per well, and stored at +4 C. Proteins were then digested by re-buffering, adding trypsin to the wells, sealing and incubating the plates at 37 C for 12 hours, followed by quenching (addition of formic acid to bring the pH down to 2.0). The concenfration of trypsin to be added to the wells was adjusted based on the OD at 280 nm recorded for each particular fraction.
  • Automated spotting devices (Bruker MALDI sample prep. Robots) were used to deposit a volume from each well, pre-mixed with a HCCA matrix onto a
  • MALDI plate together with sensitivity and mass calibration standards.
  • MALDI plates were analyzed using a Bruker Reflex JJJ MALDI MS device. Contents from each well of the 96 well plates were analyzed with LC-ESI-MS-MS Bruker Esquire ESI Ion-Trap MS devices. Step 7: Detection and Identification of Low Abundance Peptides in Human Plasma
  • Separated fractions are further subjected to mass specfrometry (both matrix-assisted laser deso ⁇ tion ionization (MALDI) and MS-MS) for separation and detection.
  • mass specfrometry both matrix-assisted laser deso ⁇ tion ionization (MALDI) and MS-MS
  • Calgranulin A (SI 00 calcium-binding protein A8, of SwissProt accession number P05109), was found to be expressed to a greater extent in the pooled sample from confrols than in the pooled sample from CAD patients (e.g., peptides from the protein were observed in twice as many control fractions compared with disease fractions, and the cumulated scores obtained during mass spectra identification of this protein were 2.5-fold higher for the control sample).
  • Calgranulin A has been characterized as a pro-inflammatory protein (Odink, et al., Nature 330 (6143), 80-82 (1987) and numerous later references).
  • PCT publication WO 00/61742 discloses the use of Calgranulin A for the treatment of cardiac insufficiency, e.g. caused by arteriosclerosis.
  • PCT publication WO 00/18970 discloses the use of Calgranulin A as an inhibitor of vascular membrane growth for prevention of myocardial infarction and hypertension. It appears therefore that the protein separation and identification approach described herein is efficient at providing proteins which, when detected at higher levels in the confrol sample than in the disease sample, have a beneficiary effect for the treatment of the studied disease.
  • MGP is a vitamin K-dependent protein which associates with the organic matrix of bone and cartilage. Mori, et al. demonstrated that MGP is capable of inhibiting vascular calcification (FEBS Letters 433 : 19-22 (1998)).
  • MGP levels are increased in atherosclerotic plaques as a likely feedback response to vessel calcification.
  • PCT publications WO 01/02863 and WO 01/25427 describe MGP as a biomarker for atherosclerosis and cardiovascular disorders. It appears therefore that the protein separation and identification approach described herein is efficient at providing proteins which have a recognized use in the diagnosis of the studied disease.
  • the presence of a tryptic peptide indicates that a polypeptide comprising the amino acid sequence of SEQ 3D NO:3 (SNCCQHSSALGLAR), SEQ 3D NO:4 (CTSMASENSECSV), or SEQ 3D NO:5 (T3NGSITNTNFGICHDAGR) was present at a higher level in the starting plasma sample from individuals with CAD.
  • Such polypeptides include those represented by the sequences of SEQ 3D NOs: l and 2 (CPP 2).
  • a tryptic peptide indicates that a polypeptide comprising the amino acid sequence of SEQ LD NO:8 (YAQTPANMFYIVACDNR), SEQ 3D NO:9 (I ⁇ PPQYPVVPVHLDR), or SEQ 3D NO: 10 (DPPQYPWPVHLDR) was present at a higher level in the starting plasma sample from individuals with CAD.
  • polypeptides include those represented by the sequences of SEQ 3D NOs:6 and 7 (CPP 9).
  • polypeptide comprising the amino acid sequence of SEQ 3D NO: 13 (AVVHG3LMG VPVPFPLPEPDGCK) or SEQ 3D NO: 14 (SGINCPIQK) was present at a higher level in the starting plasma sample from individuals with CAD.
  • polypeptides include those represented by the sequences of SEQ ID NOs: 11 and 12 (CPP 21).
  • a tryptic peptide indicates that a polypeptide comprising the amino acid sequence of SEQ ID NO:26 (EPLDDYVNTQGPSLFSVTK), SEQ 3D NO:37 (CEEDKEFTCR), or SEQ 3D NO:28 (AFQYHSK) was present at a higher level in the starting plasma sample from individuals with CAD.
  • polypeptides include those represented by the sequences of SEQ ID NOs:24 and 25 (CPP 20).
  • tryptic peptides of SEQ 3D NOs: 18-23 were observed by tandem mass spectrometry at a higher level in the Coronary Artery Disease sample.
  • the presence of a tryptic peptide indicates that a polypeptide comprising the amino acid sequence of SEQ 3D NO: 18 (ADEVAAAPEQIAAD3PEWVSLAWDESLAPK), SEQ 3D NO: 19 (IPACIAGER), SEQ ID NO:20 (RYGTCIYQGR), SEQ 3D NO:21 (YGTCIYQGR), SEQ 3D NO:22 (YGTCIYQGRLWAFCC), or SEQ 3D NO:23 (LWAFCC) was present at a higher level in the starting plasma sample from individuals with CAD.
  • Such polypeptides include those represented by the sequences of SEQ 3D NOs:15, 16 and 17 (CPP 17). The tryptic peptides were reduced in the non- CAD control sample.
  • the tryptic peptides for CPP 2, CPP 9, CPP 20 and CPP 21 were undetectable in the non- CAD control sample, and they were detecteable at a much reduced level for CPP 17. Furthermore, the tryptic peptide of SEQ 3D NO: 18 from CPP 17, which is derived from the preprotein of SEQ LD NO: 16, and which, as such, is not expected to be found in plasma, has been observed in diseased plasma only (Table Id). This observation may reflect an altered processing of the preprotein in the case of the disease.
  • the methods of protein separation and identification according to the invention are extremely sensitive.
  • the Microprot.TM process is able to detect very low abundance proteins with a plasma concentration in the range of a few hundreds of pM. The accuracy was confirmed while carrying out the presently described methods.
  • proteins with a well-characterized role in atherosclerosis and CAD were differentially detected in CAD and confrol samples (supra).
  • the absence of some of the listed peptides in control plasma indicates that the corresponding CPPs (CPP 2, CPP 9, CPP 20 and CPP 21) are normally present at vanishingly low levels in plasma, if at all.
  • Example 2 Chemical Synthesis of CPPs
  • a CPP of the invention is synthesized.
  • Peptide fragment intermediates are first synthesized and then assembled into the desired polypeptide.
  • a CPP can initially be prepared in, e.g. 5 fragments, selected to have a Cys residue at the N- terminus of the fragment to be coupled.
  • Fragment 1 is initially coupled to fragment 2 to give a first product, then after preparative HPLC purification, the first product is coupled to fragment 3 to give a second product. After preparative HPLC purification, the second product is coupled to fragment 4 to give a third product. Finally, after preparative HPLC purification, the third product is coupled to fragment 5 to give the desired polypeptide, which is purified and refolded.
  • Fragments 2, 3, 4, and 5 are synthesized on a thioester generating resin, as described above.
  • the following resin is prepared: S-acetylthioglycolic acid pentafluorophenylester is coupled to a Leu-PAM resin under conditions essentially as described by Hackeng et al (1999).
  • the resulting resin is used as a starting resin for peptide chain elongation on a 0.2 mmol scale after removal of the acetyl protecting group with a 30 min treatment with 10% mercaptoethanol, 10% piperidine in DMF.
  • N ⁇ of the N-terminal Cys residues of fragments 2 through 5 are protected by coupling a Boc-thioproline (Boc-SPr, i.e. Boc-L-thioproline) to the terminus of the respective chains instead of a Cys having conventional N ⁇ or S ⁇ protection, e.g. Brik et al, J. Org. Chem., 65: 3829-3835
  • Each synthetic cycle consists of N ⁇ -Boc -removal by a 1 to 2 min treatment with neat TFA, a 1-min DMF flow wash, a 10-min coupling time with 2.0 mmol of preactivated Boc-amino acid in the presence of excess DLEA and a second DMF flow wash.
  • N ⁇ -Boc-amino acids (2 mmol) are preactivated for 3min with l. ⁇ mmol HBTU (0.5M in DMF) in the presence of excess DIEA (6mmol).
  • a dichloromethane flow wash is used before and after deprotection using TFA, to prevent possible high temperature (TFA/DMF)-catalyzed pyrrolidone carboxylic acid formation.
  • Side-chain protected amino acids are Boc-Arg(p-toluenesulfonyl)-OH, Boc-Asn(xanthyl)- OH, Boc-Asp(0-cyclohexyl)-OH, Boc-Cys(4-methylbenzyl)-OH, Boc-Glu(0-cyclohexyl)-OH, Boc- His(dinitrophenylbenzyl)-OH, Boc-Lys(2-Cl-Z)-OH, Boc-Ser(benzyl)-OH, Boc-Thr(benzyl)-OH, Boc-T ⁇ (cyclohexylcarbonyl)-OH and Boc-Tyr(2-Br-Z)-OH (O ⁇ agen Pharma, Heidelberg, Germany).
  • C-terminal Fragment 1 is synthesized on Boc-Leu-0-CH 2 -Pam resin (0.71mmol/g of loaded resin), while for Fragments 2 through 5 machine-assisted synthesis is started on the Boc-Xaa-S-CH 2 -CO-Leu-Pam resin.
  • This resin is obtained by the coupling of S-acetylthioglycolic acid pentafluorophenylester to a Leu-PAM resin under standard conditions. The resulting resin is used as a starting resin for peptide chain elongation on a 0.2 mmol scale after removal of the acetyl protecting group with a 30min treatment with 10% mercaptoethanol, 10% piperidine in DMF.
  • the peptide fragments are deprotected and cleaved from the resin by treatment with anhydrous hydrogen fluoride for lhr at 0°C with 5% p-cresol as a scavenger.
  • anhydrous hydrogen fluoride for lhr at 0°C with 5% p-cresol as a scavenger In all cases except Fragment 1, the imidazole side chain 2,4-dinitrophenyl (DNP) protecting groups remain on His residues because the DNP-removal procedure is incompatible with C-terminal thioester groups. However DNP is gradually removed by thiols during the ligation reaction, yielding unprotected His.
  • DNP imidazole side chain 2,4-dinitrophenyl
  • peptide fragments are precipitated with ice-cold diethylether, dissolved in aqueous acetonitrile and lyophilized.
  • the peptide fragments are purified by RP-HPLC with a C18 column from Waters by using linear gradients of buffer B (acetonitile/0.1% trifluoroacetic acid) in buffer A (H 2 O/0.1% frifluoroacetic acid) and UN detection at 214nm.
  • Samples are analyzed by electrospray mass spectrometry (ESMS) using an Esquire instrument (Briicker, Bremen , Germany), or like instrument.
  • ESMS electrospray mass spectrometry
  • the ligation of unprotected fragments is performed as follows: the dry peptides are dissolved in equimolar amounts in 6M guanidine hydrochloride (GuHCl), 0.2M phosphate, pH 7.5 in order to get a final peptide concentration of 1-8 mM at a pH around 7, and 1% benzylmercaptan, 1% thiophenol is added. Usually, the reaction is carried out overnight and is monitored by HPLC and elecfrospray mass spectrometry. The ligation product is subsequently treated to remove protecting groups still present.
  • GuHCl 6M guanidine hydrochloride
  • Opening of the N-terminal thiazolidine ring further required the addition of solid methoxamine to a 0.5M final concenfration at pH3.5 and a further incubation for 2h at 37°C.
  • a 10-fold excess of Tris(2-carboxyethyl)phosphine is added before preparative HPLC purification. Fractions containing the polypeptide chain are identified by ESMS, pooled and lyophilized.
  • the ligation of fragments 4 and 5 is performed at pH7.0 in 6 M GuHCl.
  • the concenfration of each reactant is 8mM, and 1% benzylmercaptan and 1% thiophenol were added to create a reducing environment and to facilitate the ligation reaction.
  • An almost quantitative ligation reaction is observed after overnight stirring at 37°C.
  • CH 3 -0-NH 2 .HCl is added to the solution to get a 0.5M final concenfration, and the pH adjusted to 3.5 in order to open the N-terminal thiazolidine ring.
  • ESMS is used to confirm the completion of the reaction.
  • the reaction mixture is subsequently treated with a 10-fold excess of Tris(2- carboxyethylphosphine) over the peptide fragment and after 15min, the ligation product is purified using the preparative HPLC (e.g., C4, 20-60% CH 3 CN, 0.5% per min), lyophilized, and stored at - 20°C.
  • the preparative HPLC e.g., C4, 20-60% CH 3 CN, 0.5% per min
  • the full length peptide is refolded by air oxidation by dissolving the reduced lyophilized protein (about 0.1 mg/mL) in IM GuHCl, lOOmM Tris, lOmM methionine, pH 8.6 After gentle stirring overnight, the protein solution is purified by RP-HPLC as described above.
  • Substantially pure CPP or a portion thereof is obtained.
  • concentration of protein in the final preparation is adjusted, for example, by concenfration on an Amicon filter device, to the level of a few micrograms per ml.
  • Monoclonal or polyclonal antibodies to the protein are then prepared as described in the sections titled "Monoclonal antibodies” and "Polyclonal antibodies.”
  • a mouse is repetitively inoculated with a few micrograms of the CPP or a portion thereof over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued.
  • HAT media aminopterin
  • Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70: 419 (1980), the disclosure of which is inco ⁇ orated herein by reference in its entirety. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al. Basic Methods in Molecular Biology Elsevier, New York. Section 21-2, the disclosure of which is inco ⁇ orated herein by reference in its entirety.
  • polyclonal antiseram containing antibodies to heterogeneous epitopes in the CPP or a portion thereof are prepared by immunizing a mouse with the CPP or a portion thereof, which can be unmodified or modified to enhance immunogenicity.
  • Any suitable nonhuman animal preferably a non-human mammal, may be selected including rat, rabbit, goat, or horse.
  • Antibody preparations prepared according to either the monoclonal or the polyclonal protocol are useful in quantitative immunoassays which determine concentrations of CPP in biological samples; or they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample.
  • the antibodies may also be used in therapeutic compositions for killing cells expressing the protein or reducing the levels of the protein in the body.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

L'invention concerne des polypeptides humains sécrétés circulant à un taux accru dans le plasma de patients souffrant de troubles cardio-vasculaires. L'invention concerne également des procédés d'utilisation de compositions renfermant les polypeptides, des polynucléotides codant ceux-ci et des anticorps spécifiques de ces polypeptides, aux fins de diagnostic, de pronostic et de développement de médicaments.
EP04726116A 2003-04-08 2004-04-07 Especes de polypeptides secretes associees a des troubles cardio-vasculaires Withdrawn EP1616194A2 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US46162303P 2003-04-08 2003-04-08
US46155803P 2003-04-08 2003-04-08
US47147903P 2003-05-16 2003-05-16
US47486303P 2003-05-30 2003-05-30
US48414003P 2003-06-30 2003-06-30
PCT/EP2004/003737 WO2004090551A2 (fr) 2003-04-08 2004-04-07 Especes de polypeptides secretes associees a des troubles cardio-vasculaires

Publications (1)

Publication Number Publication Date
EP1616194A2 true EP1616194A2 (fr) 2006-01-18

Family

ID=33163255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04726116A Withdrawn EP1616194A2 (fr) 2003-04-08 2004-04-07 Especes de polypeptides secretes associees a des troubles cardio-vasculaires

Country Status (3)

Country Link
EP (1) EP1616194A2 (fr)
JP (1) JP2006523191A (fr)
WO (1) WO2004090551A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070082363A1 (en) * 2003-04-25 2007-04-12 Lydie Bougueleret Secreted polypeptide species reduced cardiovascular disorders
FI118265B (fi) * 2004-01-15 2007-09-14 Jurilab Ltd Oy Menetelmä akuutin sydäninfarktin ja sepelvaltimotaudin riskin havaitsemiseksi
JP2013076691A (ja) * 2011-09-12 2013-04-25 Taisho Pharmaceutical Co Ltd 疲労バイオマーカー

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2754827B1 (fr) * 1996-10-17 1998-12-24 Biocem Lipases pancreatiques et/ou colipases recombinantes et polypeptides dervies produits par les plantes, leurs procedes d'obtention et leurs utilisations
FR2758143B1 (fr) * 1997-01-07 1999-02-19 Laphal Laboratoire De Pharmaco Inhibiteurs specifiques de la lipase pancreatique et leurs applications
US6503540B1 (en) * 1999-03-25 2003-01-07 David E. Reese Cloning and characterization of bves, a novel gene expressed in heart and uses thereof
IL137307A0 (en) * 2000-07-13 2001-07-24 Biopreventive Ltd A rapid non-invasive method for differential acute cardiac disease diagnosis
EP1428022A1 (fr) * 2001-09-12 2004-06-16 National Research Council of Canada Methode pour la determination simultanee et directe du cholesterol serique dans les lipoproteines de haute et de basse densite au moyen d'une spectroscopie infrarouge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004090551A3 *

Also Published As

Publication number Publication date
JP2006523191A (ja) 2006-10-12
WO2004090551A2 (fr) 2004-10-21
WO2004090551A3 (fr) 2005-01-20

Similar Documents

Publication Publication Date Title
US20070082363A1 (en) Secreted polypeptide species reduced cardiovascular disorders
US20080227125A1 (en) Secreted Polypeptide Species Reduced in Cardiovascular Disorders
US20070009955A1 (en) Secreted polypeptide species associated with cardiovascular disorders
WO2005015206A2 (fr) Espece de polypeptides secretes associee aux troubles cardiovasculaires
JP2005533086A5 (fr)
WO2004106941A2 (fr) Especes de polypeptides secretes associees a des troubles cardio-vasculaires
EP1620735A1 (fr) Especes polypeptidiques secretees presentes en quantite reduite en cas de troubles cardiovasculaires
WO2006029838A2 (fr) Especes polypeptidiques secretees impliquees dans la maladie d'alzheimer
EP1616194A2 (fr) Especes de polypeptides secretes associees a des troubles cardio-vasculaires
US20070128664A1 (en) Secreted polypeptide species associated with cardiovascular disorders
US20070105169A1 (en) Secreted polypeptide species associated with cardiovascular disorders
US20070098635A1 (en) Secreted polypeptide species associatedwith cardiovascular disorders
WO2006005585A2 (fr) Especes polypeptidiques secretees exprimees de maniere differentielle au cours de la grossesse
WO2004101615A2 (fr) Especes de polypeptides secretes associes aux troubles cardio-vasculaires
WO2005003782A1 (fr) Especes polypeptides secretees dont le taux diminue en cas de maladies cardiovasculaires
CA2512629A1 (fr) Especes polypeptidiques secretees (fragments de chitotriosidase) reduites dans des troubles cardiovasculaires
WO2005003161A2 (fr) Nouvelles proteines secretoires
US20060147447A1 (en) Secreted peptides
WO2004005331A2 (fr) Peptides secretes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051108

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1091262

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091016

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1091262

Country of ref document: HK