EP1616137A1 - Heat-storing medium - Google Patents

Heat-storing medium

Info

Publication number
EP1616137A1
EP1616137A1 EP04727558A EP04727558A EP1616137A1 EP 1616137 A1 EP1616137 A1 EP 1616137A1 EP 04727558 A EP04727558 A EP 04727558A EP 04727558 A EP04727558 A EP 04727558A EP 1616137 A1 EP1616137 A1 EP 1616137A1
Authority
EP
European Patent Office
Prior art keywords
storage medium
heat storage
hollow body
helium
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04727558A
Other languages
German (de)
French (fr)
Inventor
Hans-Ulrich HÄFNER
Ernst Schnacke
Günter THUMMES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH, Leybold Vacuum GmbH filed Critical Leybold Vakuum GmbH
Publication of EP1616137A1 publication Critical patent/EP1616137A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to a heat storage medium for a low-temperature range, to a regenerator for low-temperature refrigerators and to a low-temperature refrigerator.
  • Low-temperature refrigerators are generally multi-stage gas refrigerators that are used to generate temperatures in the range below 15 Kelvin.
  • Such gas refrigeration machines work according to various methods, for example according to the Gifford-McMahon, Stirling or Pulse-Tube method.
  • These refrigerators are independent of the working processes common that they have in the area of a so-called cold head between the hot side and the cold side a volume flowed through by the working fluid, which is filled with the heat storage agent and is called a regenerator.
  • the regenerator is traversed alternately from a working fluid in both directions, and "serving as a buffer for received from the working fluid and at this released heat.
  • the regenerator is a thermal.
  • the regenerator It must have the highest possible heat capacity compared to the fluid flowing through. While temperatures of up to 15 Kelvin can be used as heat storage medium in the regenerator, stainless steel, bronze, lead or other metal bodies, this is not possible for significantly lower temperatures because the specific The heat capacity of these metals drastically decreases compared to that of helium from 30 Kelvin downwards and approaches zero in the range below 5 Kelvin.For very low temperature ranges, ie in the range below 15 Kelvin, are therefore used as heat sources in the rain Erator bulk material made of rare earth compounds used, as described for example in EP-A-0 411 591.
  • rare earth connections A disadvantage of the use of rare earth connections is their magnetism, which is problematic in applications in strong magnetic fields, for example in magnetic resonance tomographs. Furthermore, rare earth compounds are sensitive to oxidation, tend to break due to their partial brittleness when vibrations occur, and are expensive. Helium and other low-boiling gases are also suitable as storage media for very low temperature ranges. For example, helium in the range below 15 Kelvin has a high specific heat capacity with a pressure-dependent maximum at approximately 9 Kelvin, which is thus far above the heat capacity of metals in this temperature range.
  • regenerator in which helium is used as the heat storage medium, which, similar to a heat exchanger, is stationary in a spiral tube or a tube bundle in the regenerator housing.
  • the regenerator housing can be filled with the helium storage medium, while the working fluid flows through the regenerator housing in pipes.
  • regenerators constructed in this way showed, however, that a desired temperature of 4.2 Kelvin could not be reached, which is due to the high heat input due to the metallic spiral or tube material and the insufficient contact surface.
  • the object of the invention is to provide a heat storage medium with a high heat capacity in a very low temperature range, a regenerator and a low-temperature refrigerator with a heat storage medium with a high heat capacity for very low temperatures. This object is achieved according to the invention by the features of claims 1, 10, 11 and 12 respectively.
  • the heat storage medium according to the invention for ' a low temperature range i.e. for temperatures below 15 Kelvin, consists of a set of gas-tight hollow bodies that are permeable to the working fluid, and each hollow body has a filling of a low-boiling gas as a storage medium.
  • Low-boiling gases are gases that have a boiling point below 30 Kelvin. This applies, for example, to the gases hydrogen, helium and neon, and to all of their isotopes. Low-boiling gases naturally have a relatively high specific heat capacity at low temperatures and are therefore well suited as a storage medium at temperatures below 30 Kelvin.
  • Low-boiling gases are relatively inexpensive and can be enclosed in a hollow body with a hollow body wall made of non-magnetic, mechanically suitable, non-oxidizing and inexpensive material.
  • the chemical, mechanical and magnetic properties of the heat storage medium can thus be adapted to the application.
  • the gas-tight hollow bodies have a considerably larger surface than tubes or spirals, through which the heat exchange takes place. This significantly improves heat transfer.
  • the storage medium is preferably a hollow body filling made of helium.
  • a helium filling is a filling with a helium isotope, for example with 3 He or 4 He.
  • the storage medium has helium at temperatures below 15 Kelvin has a relatively high specific heat capacity and is therefore well suited as a storage medium at temperatures down to the range of 2 Kelvin. Helium is also available inexpensively.
  • the helium filling at a 'temperature of 4 Kelvin a pressure of about 0.5 bar, in particular a pressure above the critical pressure on.
  • a helium filling pressure of more than 0.5 bar an absolute heat capacity is realized, which can store the heat that occurs in a relatively small regenerator.
  • Such a regenerator is very compact compared to metallic heat accumulators.
  • the material and the wall thickness of the hollow body wall are preferably selected such that the thermal penetration depth is at least one wall thickness.
  • the thermal penetration depth ⁇ results from the equation
  • a is the temperature conductivity of the selected hollow wall material at the working temperature (for example 2 Kelvin) and f mo ( _ is the modulation frequency with which the working gas flows through the heat storage medium in an alternating cycle.
  • the working frequency f m ⁇ d is for low-temperature refrigerators at 1.0 to 10.0 Hz.
  • the wall of the hollow body is made of metal. Metals and also metal alloys have good thermal conductivity and have good mechanical properties, which in turn can result in a low hollow body wall thickness.
  • the hollow body wall can consist of copper, aluminum, silver, brass, steel or of other metals or metal alloys.
  • the hollow body wall can alternatively also consist of ceramic.
  • a heat storage medium can be used. Be made available that can be used without further measures for use in strong magnetic fields, e.g. for use in magnetic resonance tomographs etc. suitable is.
  • each hollow body has a diameter of less than 3.0 mm. With diameters of less than 3.0 mm, a set of hollow bodies has such a large volume-specific surface that sufficient heat absorption or release is ensured. Typical diameters are 0.2 to 0.7 mm.
  • Each hollow body preferably has approximately a spherical shape.
  • a defined ratio between the surface of the hollow body, the total volume of the hollow body and the volume of the fill is approximately constant in the hollow body fill.
  • a regenerator according to the invention has a housing which is filled with the heat storage medium described above.
  • a low-temperature refrigerator according to the invention has the aforementioned regenerator and is designed as a regenerative circuit. process, preferably designed as a Gifford-McMahon, Stirling or Pulse-Tube refrigerator, helium being used as the working fluid. It is therefore used both as a storage medium helium and, separately, as a working fluid helium.
  • FIG. 1 is a schematic representation of a refrigerator
  • FIG. 2 shows a section through a refrigerator regenerator with a filling from a set of helium-filled hollow bodies
  • Fig. 3 shows a section through a helium-filled hollow body.
  • a refrigerator 10 is shown schematically in FIG. 1, the essential components of which are a compressor 12, a regenerator 14 and an expansion space 16 having a cold head.
  • the compressor 12 and the regenerator 14 and the expansion space 16 are connected to one another by lines 18, 20.
  • a working fluid preferably helium, is compressed by the compressor 12 and possibly pre-cooled.
  • the compressed working fluid then runs through the gas line 18 and through the regenerator 14, in which it emits heat to a heat storage medium located in the regenerator 14.
  • the working fluid flows further into the expansion space 16 and is subjected to a relaxation there.
  • the working fluid that cools down in this way absorbs heat from the environment, in particular via a cold surface, and is then led back through line 20 to regenerator 14.
  • the working fluid absorbs heat stored in the heat storage means and is fed back to the compressor 12 through the line 18.
  • the regenerator 14 is used for thermal insulation between the compressor 12 and the expansion space 16.
  • the refrigerator 10 can be designed as a Gifford-McMahon, Stirling or Pulse-Tube refrigerator, but can in principle also work according to another regenerative cycle, with a regenerator 14 being used for intermediate heat storage in a low-temperature range.
  • a low temperature range means temperatures between 0 and 15 Kelvin.
  • the regenerator 14 shown in longitudinal section in FIG. 2 is essentially formed by a cylindrical or oval housing 24, on the transverse housing walls 26, 27 of which the lines 18, 20 open.
  • the regenerator housing 24 has, as heat storage means, a hollow body 30 that is pourable and gas-tight for the working fluid and closed gas-tight.
  • the regenerator 14 can be filled homogeneously or in layers with different layers of different heat storage means.
  • All hollow bodies 30 are approximately the same size and have approximately spherical shape.
  • the bed can also consist of a mixture of hollow bodies of different diameters be formed.
  • the hollow body wall 32 is made of copper or another metal or a metal alloy and has a thickness of approximately 0.2 mm. or less.
  • the diameter of a hollow body 30 is 0.2 to 2.0 mm, but can also be larger, but not larger than 3.0 mm.
  • the hollow body 30 is closed gas-tight and has a filling 34 made of helium.
  • the helium filling 34 has a pressure of approximately 200 bar at room temperature and a pressure of several bar at a temperature of 4 Kelvin.
  • the hollow bodies 30 filled with the helium filling 34 can be produced, for example, by a production method in which drops of the molten hollow wall material pass through a cooling chamber filled with helium gas.
  • the filling of the hollow bodies can be formed from a single or a mixture of the different helium isotopes or from isotopes of hydrogen or neon or a mixture of the aforementioned elements.
  • the choice of material for the hollow body wall, the modulation frequency with which the working gas flows through the regenerator alternately, and the wall thickness of the hollow body must be selected such that the depth of penetration ⁇ is at least one times the wall thickness. The depth of penetration ⁇ results from the equation
  • a is the temperature conductivity of the selected hollow wall material at the working temperature (for example 4 Kelvin) and f mod is the modulation frequency with which the working gas cyclically alternates the heat storage medium flows through.
  • the working frequency f mod can be assumed to be about 1.0 Hz for low-temperature refrigerators.
  • the heat storage medium formed by the gas-tightly closed hollow bodies 30 having a helium filling has a high absolute heat storage capacity in a small volume, particularly in the very low temperature range of less than 15 Kelvin, due to the high specific heat capacity of helium in this temperature range.
  • the heat storage means can be optimally adapted with regard to its electrical, mechanical and chemical requirements for each application, for example non-magnetic materials for the hollow body wall can be selected for cooling in magnetic resonance tomographs.
  • heat storage elements can also be present in separate layers or mixed with the helium-filled hollow bodies 30 in the regenerator housing, for example heat storage elements made of rare earth alloys.

Abstract

The inventive heat-storing medium for a very low temperature range consists of a set (22) of pourable, gas tight, closed, hollow bodies (30). Each hollow body (30) has a filling (34) consisting of a low-boiling gas which is in the form of a storage medium and the wall of the hollow body (32) is made of metal. As a result, a relatively economical heat-storing medium is produced whose physical, chemical, magnetic and mechanical properties can be adapted to the respective use thereof by selecting material in a corresponding manner.

Description

Wärmespeichermittel Heat storage medium
Die Erfindung bezieht sich auf ein Wärmespeichermittel für einen Tieftemperaturbereich, auf einen Regenerator für Tieftemperatur-Refrigeratoren sowie auf einen Tieftemperatur- Refrigerator.The invention relates to a heat storage medium for a low-temperature range, to a regenerator for low-temperature refrigerators and to a low-temperature refrigerator.
Tieftemperatur-Refrigeratoren sind in der Regel mehrstufige Gaskältemaschinen, mit denen Temperaturen im Bereich von unter 15 Kelvin erzeugt werden. Derartige Gaskältemaschinen arbeiten nach verschiedenen Verfahren, beispielsweise nach dem Gifford- McMahon- , nach dem Stirling- oder dem Pulse-Tube-Verfahren. Unabhängig von den Arbeitsverfahren ist diesen Refrigeratoren gemeinsam, dass sie im Bereich eines sogenannten Kaltkopfs zwischen der Warmseite und der Kaltseite ein vom Arbeitsfluid durchströmtes Volumen aufweisen, welches mit dem Wärmespeichermittel gefüllt ist und Regenerator genannt wird. Der Regenerator ' wird von einem Arbeitsfluid in beiden Richtungen alternierend durchströmt und" dient als Zwischenspeicher für von dem Arbeitsfluid aufgenommene bzw. an dieses abgegebene Wärme. Der Regenerator dient also einer thermischen. Separierung zwischen dem Arbeitsfluid im Kaltraum von demjenigen im kompressorseitigen Warmraum. Der Regenerator muss dafür im Vergleich zum durchströmenden Fluid über eine möglichst hohe Wärmekapazität verfügen. Während für Temperaturen bis 15 Kelvin als Wärmespeichermittel in dem Regenerator Edelstahl, Bronze, Blei oder andere Metallkörper verwendet werden können, ist dies für deutlich darunter liegende Temperaturen nicht möglich, da die spezifische Wärmekapazität dieser Metalle gegenüber der des Heliums ab 30 Kelvin abwärts drastisch abnimmt und im Bereich von unter 5 Kelvin sich der Null annähert. Für sehr niedrige Temperaturbereiche, also im Bereich von unter 15 Kelvin werden daher als Wärmespeiehermit- tel in dem Regenerator Schüttkörper aus Selten-Erd- Verbindungen eingesetzt, wie beispielsweise in EP-A-0 411 591 beschrieben. Nachteilig an der Verwendung von Selten-Erd- Verbindungen ist ihr Magnetismus, der bei Anwendungen in starken Magnetfeldern, beispielsweise in Kernspintomographen, problematisch ist. Ferner sind Selten-Erdverbindungen oxidationsempfindlich, neigen wegen ihrer teilweisen Sprödigkeit beim Auftreten von Vibrationen zum Zerbrechen und sind teuer. Auch Helium und andere tiefsiedende Gase sind als Speichermedium für sehr niedrige Temperaturbereiche geeignet. So hat beispielsweise Helium im Bereich von unter 15 Kelvin eine hohe spezifische Wärmekapazität mit einem druckabhängigem Maximum bei ungefähr 9 Kelvin, die damit in diesem Temperaturbereich weit über der Wärmekapazität von Metallen liegt. Aus DE-A-199 24 184 ist ein • Regenerator bekannt,, in dem als Wärme-Speichermedium Helium verwendet wird, das, ähnlich wie bei einem Wärmetauscher, in einer Rohrspirale oder einem Rohrbündel in dem Regenerator-Gehäuse stationär gelagert ist.. Alternativ hierzu kann das Regenerator-Gehäuse mit dem Speichermedium Helium gefüllt sein, während das Arbeitsfluid das Regenerator- Gehäuse in Rohren durchströmt .Low-temperature refrigerators are generally multi-stage gas refrigerators that are used to generate temperatures in the range below 15 Kelvin. Such gas refrigeration machines work according to various methods, for example according to the Gifford-McMahon, Stirling or Pulse-Tube method. These refrigerators are independent of the working processes common that they have in the area of a so-called cold head between the hot side and the cold side a volume flowed through by the working fluid, which is filled with the heat storage agent and is called a regenerator. The regenerator 'is traversed alternately from a working fluid in both directions, and "serving as a buffer for received from the working fluid and at this released heat. Thus, the regenerator is a thermal. Separation between the working fluid in the cold room from that in the compressor-side hot space. The regenerator It must have the highest possible heat capacity compared to the fluid flowing through. While temperatures of up to 15 Kelvin can be used as heat storage medium in the regenerator, stainless steel, bronze, lead or other metal bodies, this is not possible for significantly lower temperatures because the specific The heat capacity of these metals drastically decreases compared to that of helium from 30 Kelvin downwards and approaches zero in the range below 5 Kelvin.For very low temperature ranges, ie in the range below 15 Kelvin, are therefore used as heat sources in the rain Erator bulk material made of rare earth compounds used, as described for example in EP-A-0 411 591. A disadvantage of the use of rare earth connections is their magnetism, which is problematic in applications in strong magnetic fields, for example in magnetic resonance tomographs. Furthermore, rare earth compounds are sensitive to oxidation, tend to break due to their partial brittleness when vibrations occur, and are expensive. Helium and other low-boiling gases are also suitable as storage media for very low temperature ranges. For example, helium in the range below 15 Kelvin has a high specific heat capacity with a pressure-dependent maximum at approximately 9 Kelvin, which is thus far above the heat capacity of metals in this temperature range. From DE-A-199 24 184 a regenerator is known, in which helium is used as the heat storage medium, which, similar to a heat exchanger, is stationary in a spiral tube or a tube bundle in the regenerator housing. Alternatively For this purpose, the regenerator housing can be filled with the helium storage medium, while the working fluid flows through the regenerator housing in pipes.
Versuche mit derartig konstruierten Regeneratoren ergaben jedoch, dass eine angestrebte Temperatur von 4,2 Kelvin nicht erreicht werden konnte, was auf den hohen Wärmeeintrag durch das metallische Spiral- bzw. Rohrmaterial und die zu geringe Kontaktoberfläche zurückzuführen ist.Experiments with regenerators constructed in this way showed, however, that a desired temperature of 4.2 Kelvin could not be reached, which is due to the high heat input due to the metallic spiral or tube material and the insufficient contact surface.
In US-A-4, 359, 872 ist als Wärmespeichermittel eine Schüttung aus mit Helium gefüllten Glaskugeln beschrieben. Die Wandstärke der Glaskugeln muss relativ groß sein, um bei dem erforderlichen Innendruck und der niedrigen Temperatur ausreichende Festigkeit aufzuweisen.In US Pat. No. 4,359,872, a bed of helium-filled glass balls is described as the heat storage medium. The wall thickness of the glass spheres must be relatively large in order to have sufficient strength at the required internal pressure and the low temperature.
Aufgabe der Erfindung ist es, ein Wärmespeichermittel mit einer hohen Wärmekapazität in einem sehr niedrigen Temperaturbereich, einen Regenerator und einen Tieftemperatur- Refrigerator mit einem Wärmespeichermittel hoher Wärmekapazität für sehr niedrige Temperaturen zu schaffen. Diese Aufgabe wird erfindungsgemäß gelöst durch die Merkmale der Ansprüche 1, 10, 11 bzw. 12.The object of the invention is to provide a heat storage medium with a high heat capacity in a very low temperature range, a regenerator and a low-temperature refrigerator with a heat storage medium with a high heat capacity for very low temperatures. This object is achieved according to the invention by the features of claims 1, 10, 11 and 12 respectively.
Das erfindungsgemäße Wärmespeichermittel für ' einen Tieftemperaturbereich, d h. für Temperaturen unter 15 Kelvin, besteht aus einem für das Arbeitsfluid durchlässigen Satz gasdicht geschlossener Hohlkörper, obei jeder Hohlkörper als Speichermedium eine Füllung aus einem tiefsiedenden Gas aufweist. Tiefsiedende Gase sind Gase, die einen Siedepunkt unterhalb 30 Kelvin haben. Dies trifft beispielsweise auf die Gase Wasserstoff, Helium und Neon, und zwar auf alle ihre Isotope zu. Tiefsiedende Gase haben naturgemäß bei niedrigen Temperaturen eine relativ hohe spezifische Wärmekapazität und sind daher gut geeignet als Speichermedium bei Temperaturen unterhalb von 30 Kelvin. Tiefsiedende Gase sind relativ preiswert und können in einem Hohlkörper mit einer Hohlkörperwand aus nicht magnetischem, mechanisch geeignetem, nicht oxidierendem und preiswertem Material eingeschlossen sein. Das Wärmespeichermittel kann also hinsichtlich seiner chemischen, mechanischen und magnetischen Eigenschaften an die Anwendung konstruktiv angepasst werden. Ferner weisen die gasdicht geschlossenen Hohlkörper gegenüber Rohren bzw. Spiralen eine erheblich größere Oberfläche auf, über die der Wärmeaustausch stattfindet. Hierdurch wird die Wärmeübertragung erheblich begünstigt.The heat storage medium according to the invention for ' a low temperature range, i.e. for temperatures below 15 Kelvin, consists of a set of gas-tight hollow bodies that are permeable to the working fluid, and each hollow body has a filling of a low-boiling gas as a storage medium. Low-boiling gases are gases that have a boiling point below 30 Kelvin. This applies, for example, to the gases hydrogen, helium and neon, and to all of their isotopes. Low-boiling gases naturally have a relatively high specific heat capacity at low temperatures and are therefore well suited as a storage medium at temperatures below 30 Kelvin. Low-boiling gases are relatively inexpensive and can be enclosed in a hollow body with a hollow body wall made of non-magnetic, mechanically suitable, non-oxidizing and inexpensive material. The chemical, mechanical and magnetic properties of the heat storage medium can thus be adapted to the application. Furthermore, the gas-tight hollow bodies have a considerably larger surface than tubes or spirals, through which the heat exchange takes place. This significantly improves heat transfer.
Vorzugsweise ist das Speichermedium eine Hohlkörper-Füllung aus Helium. Unter einer Helium-Füllung ist eine Füllung mit einem Helium-Isotop zu verstehen, beispielsweise mit 3He oder 4He. Das Speichermedium Helium hat bei Temperaturen unter 15 Kelvin eine relativ hohe spezifische Wärmekapazität und ist daher gut geeignet als Speichermedium bei Temperaturen bis hinab in den Bereich 2 Kelvin. Helium ist ferner preiswert erhältlich.The storage medium is preferably a hollow body filling made of helium. A helium filling is a filling with a helium isotope, for example with 3 He or 4 He. The storage medium has helium at temperatures below 15 Kelvin has a relatively high specific heat capacity and is therefore well suited as a storage medium at temperatures down to the range of 2 Kelvin. Helium is also available inexpensively.
Vorzugsweise weist die Heliumfüllung bei einer' Temperatur von 4 Kelvin einen Druck von über 0,5 bar, insbesondere einen Druck oberhalb des kritischen Drucks auf . Bei einem Druck der Heliumfüllung von mehr als 0,5 bar wird eine absolute Wärmekapazität realisiert, die die auftretenden Wärmemengen in einem relativ kleinen Regenerator speichern kann. Ein derartiger Regenerator ist im Vergleich zu metallischen Wärmespeiehern sehr kompakt .Preferably, the helium filling at a 'temperature of 4 Kelvin a pressure of about 0.5 bar, in particular a pressure above the critical pressure on. At a helium filling pressure of more than 0.5 bar, an absolute heat capacity is realized, which can store the heat that occurs in a relatively small regenerator. Such a regenerator is very compact compared to metallic heat accumulators.
Vorzugsweise sind das Material und die Wandstärke der Hohlkörperwand so gewählt, dass die thermische Eindringtiefe mindestens eine Wandstärke beträgt. Die thermische Eindringtiefe μ ergibt sich aus der GleichungThe material and the wall thickness of the hollow body wall are preferably selected such that the thermal penetration depth is at least one wall thickness. The thermal penetration depth μ results from the equation
wobei a die Temperaturleitfähigkeit des gewählten Hohlkörper- wand-Materiales bei der Arbeitstemperatur (beispielsweise 2 Kelvin) ist und fmo(_ die Modulationsfrequenz ist, mit der das Arbeitsgas das Wärmespeichermittel zyklisch alternierend durchströmt. Die Arbeitsfrequenz fd ist dabei für Tieftemperatur-Refrigeratoren mit 1,0 bis 10,0 Hz anzunehmen.where a is the temperature conductivity of the selected hollow wall material at the working temperature (for example 2 Kelvin) and f mo ( _ is the modulation frequency with which the working gas flows through the heat storage medium in an alternating cycle. The working frequency f d is for low-temperature refrigerators at 1.0 to 10.0 Hz.
Die Wand des Hohlkörpers besteht aus Metall . Metalle und auch Metalllegierungen weisen eine gute Wärmeleitfähigkeit auf und haben gute mechanische Eigenschaften, wodurch wiederum eine geringe Hohlkörperwandstärke realisiert werden kann. Die Hohlkorperwand kann aus Kupfer, Aluminium, Silber, Messing, Stahl oder aus anderen Metallen oder Metalllegierungen bestehen. Die Hohlkörperwand kann alternativ auch aus Keramik bestehen.The wall of the hollow body is made of metal. Metals and also metal alloys have good thermal conductivity and have good mechanical properties, which in turn can result in a low hollow body wall thickness. The hollow body wall can consist of copper, aluminum, silver, brass, steel or of other metals or metal alloys. The hollow body wall can alternatively also consist of ceramic.
Durch die Wahl nicht-ferromagnetischer Metalle für die Hohlkörperwand kann ein Wärmespeichermittel zur . Verfügung gestellt werden, das auch ohne weitere Maßnahmen für den Einsatz in starken Magnetfeldern, beispielsweise für den Einsatz in Kernspintomographen u.a. geeignet ist.By choosing non-ferromagnetic metals for the hollow body wall, a heat storage medium can be used. Be made available that can be used without further measures for use in strong magnetic fields, e.g. for use in magnetic resonance tomographs etc. suitable is.
Gemäß einer bevorzugten Ausgestaltung weist jeder Hohlkörper einen Durchmesser von weniger als 3,0 mm auf. Bei Durchmessern von weniger als 3,0 mm hat ein Satz von Hohlkörpern eine so große volumenspezifische Oberfläche, dass eine ausreichend schnelle Wärmeaufnahme bzw. -abgäbe sichergestellt ist. Typische Durchmesser sind 0,2 bis 0,7 mm.According to a preferred embodiment, each hollow body has a diameter of less than 3.0 mm. With diameters of less than 3.0 mm, a set of hollow bodies has such a large volume-specific surface that sufficient heat absorption or release is ensured. Typical diameters are 0.2 to 0.7 mm.
Vorzugsweise weist jeder Hohlkörper annähernd eine Kugelform auf. Durch die Wahl der Kugelform ist in der Hohlkörperschüt- tung ein über das gesamte Schüttungsvolumen ungefähr gleichbleibendes definiertes Verhältnis zwischen Hohlkörperoberfläche, Gesamt-Hohlkörpervolumen und Schüttungsvolumen sichergestellt.Each hollow body preferably has approximately a spherical shape. Through the choice of the spherical shape, a defined ratio between the surface of the hollow body, the total volume of the hollow body and the volume of the fill is approximately constant in the hollow body fill.
Ein erfindungsgemäßer Regenerator weist ein Gehäuse auf, das mit dem oben beschriebenen Wärmespeichermittel gefüllt ist. • Ein erfindungsgemäßer Tieftemperatur-Refrigerator weist den vorgenannten Regenerator auf und ist als regenerativer Kreis- prozess, vorzugsweise als Gifford-McMahon- , Stirling- oder Pulse-Tube-Refrigerator ausgebildet, wobei als Arbeitsfluid Helium verwendet wird. Es wird also sowohl als Speichermedium Helium als auch, getrennt hiervon, als Arbeitsfluid Helium verwendet .A regenerator according to the invention has a housing which is filled with the heat storage medium described above. A low-temperature refrigerator according to the invention has the aforementioned regenerator and is designed as a regenerative circuit. process, preferably designed as a Gifford-McMahon, Stirling or Pulse-Tube refrigerator, helium being used as the working fluid. It is therefore used both as a storage medium helium and, separately, as a working fluid helium.
Im Folgenden wird ein Ausführungsbeispiel der Erfindung anhand der Figuren näher erläutert .An exemplary embodiment of the invention is explained in more detail below with reference to the figures.
Es zeigen:Show it:
Fig. 1 eine schematische Darstellung eines Refrigerators,1 is a schematic representation of a refrigerator,
Fig. 2 einen Schnitt durch einen Refrigerator-Regenerator mit einer Füllung aus einem Satz heliumgefüllter Hohlkörper, und2 shows a section through a refrigerator regenerator with a filling from a set of helium-filled hollow bodies, and
Fig. 3 einen Schnitt durch einen heliumgefüllten Hohlkörper.Fig. 3 shows a section through a helium-filled hollow body.
In Figur 1 ist schematisch ein Refrigerator 10 dargestellt, der als wesentliche Komponenten einen Kompressor 12, einen Regenerator 14 und einen einen Kaltkopf aufweisenden Expansionsraum 16 aufweist. Der Kompressor 12 sowie der Regenerator 14 und der Expansionsraum 16 sind durch Leitungen 18,20 miteinander verbunden.A refrigerator 10 is shown schematically in FIG. 1, the essential components of which are a compressor 12, a regenerator 14 and an expansion space 16 having a cold head. The compressor 12 and the regenerator 14 and the expansion space 16 are connected to one another by lines 18, 20.
Durch den Kompressor 12 wird ein Arbeitsfluid, vorzugsweise Helium, verdichtet und ggf. vorgekühlt. Anschließend läuft das verdichtete Arbeitsfluid durch die Gasleitung 18 und durch den Regenerator 14, in dem es Wärme an ein in dem Regenerator 14 befindliches Wärmespeichermittel abgibt. Das Arbeitsfluid fließt weiter in den Expansionsraum 16 und wird dort einer Entspannung unterzogen. Das dabei sich abkühlende Arbeitsfluid nimmt insbesondere über eine Kaltfläche Wärme aus der Umgebung auf und wird anschließend durch die Leitung 20 wieder zurück zum Regenerator 14 geführt . Beim Durchströmen des Regenerators 14 nimmt das Arbeitsfluid in dem Wärmespeichermittel gespeicherte Wärme auf und wird durch die Leitung 18 wieder dem Kompressor 12 zugeführt. Der Regenerator 14 dient der thermischen Isolierung zwischen Kompressor 12 und Expansionsraum 16.A working fluid, preferably helium, is compressed by the compressor 12 and possibly pre-cooled. The compressed working fluid then runs through the gas line 18 and through the regenerator 14, in which it emits heat to a heat storage medium located in the regenerator 14. The working fluid flows further into the expansion space 16 and is subjected to a relaxation there. The working fluid that cools down in this way absorbs heat from the environment, in particular via a cold surface, and is then led back through line 20 to regenerator 14. When flowing through the regenerator 14, the working fluid absorbs heat stored in the heat storage means and is fed back to the compressor 12 through the line 18. The regenerator 14 is used for thermal insulation between the compressor 12 and the expansion space 16.
Der Refrigerator 10 kann als Gifford-McMahon- , Stirling- oder Pulse-Tube-Refrigerator ausgebildet sein, kann jedoch grundsätzlich auch nach einem anderen regenerativen Zyklus arbeiten, wobei zur Wärmezwischenspeicherung in einem Tieftemperaturbereich ein Regenerator 14 eingesetzt wird. Unter einem Tieftemperaturbereich sind Temperaturen zwischen 0 und 15 Kelvin zu verstehen.The refrigerator 10 can be designed as a Gifford-McMahon, Stirling or Pulse-Tube refrigerator, but can in principle also work according to another regenerative cycle, with a regenerator 14 being used for intermediate heat storage in a low-temperature range. A low temperature range means temperatures between 0 and 15 Kelvin.
Der in Figur 2 im Längsschnitt dargestellte Regenerator 14 wird im Wesentlichen gebildet von einem zylinderförmigen oder ovalen Gehäuse 24, an dessen querseitigen Gehäusewänden 26,27 die Leitungen 18,20 münden. Das Regenerator-Gehäuse 24 weist als Wärmespeichermittel einen für das Arbeitsfluid gasdurchlässigen Satz 22 schüttbarer und gasdicht geschlossener Hohlkörper 30 auf. Der Regenerator 14 kann homogen oder geschichtet mit verschiedenen Schichten verschiedener Wärmespeichermittel gefüllt sein.The regenerator 14 shown in longitudinal section in FIG. 2 is essentially formed by a cylindrical or oval housing 24, on the transverse housing walls 26, 27 of which the lines 18, 20 open. The regenerator housing 24 has, as heat storage means, a hollow body 30 that is pourable and gas-tight for the working fluid and closed gas-tight. The regenerator 14 can be filled homogeneously or in layers with different layers of different heat storage means.
Alle Hohlkörper 30 sind annähernd gleich groß ausgebildet und haben annähernd Kugelform. Die Schüttung kann aber auch aus einer Mischung von Hohlkörpern verschiedener Durchmesser gebildet werden. Die Hohlkörperwand 32 besteht aus Kupfer oder aus einem anderen Metall oder einer Metalllegierung und weist eine Stärke von ungefähr 0,2 mm . oder weniger auf . Der Durchmesser eines Hohlkörpers 30 beträgt 0,2 bis 2,0 mm, kann jedoch auch größer, jedoch nicht größer als 3,0 mm sein. Der Hohlkörper 30 ist gasdicht geschlossen und weist eine Füllung 34 aus Helium auf. Die Heliumfüllung 34 weist bei Raumtemperatur einen Druck von ungefähr 200 bar und bei einer Temperatur von 4 Kelvin einen Druck von mehreren bar auf . Die mit der Heliumfüllung 34 gefüllten Hohlkörper 30 können beispielsweise durch ein Herstellungsverfahren erzeugt werden, bei dem Tropfen des geschmolzenen Hohlkörperwand-Materials eine mit Heliumgas gefüllte Kühlkammer durchlaufen. Die Füllung der Hohlkörper kann aus einem einzigen oder einer Mischung der verschiedenen Helium-Isotope oder aber aus Isotopen des Wasserstoffes oder Neons oder einer Mischung aus den vorgenannten Elementen gebildet werden. Die Wahl des Materiales für die Hohlkörperwand, die Modulationsfrequenz, mit der das Arbeitsgas den Regenerator alternierend durchströmt, sowie die Wandstärke des Hohlkörpers müssen so gewählt sein, dass die Eindringtiefe μ mindestens das einfache der Wandstärke beträgt. Die Eindringtiefe μ ergibt sich aus der GleichungAll hollow bodies 30 are approximately the same size and have approximately spherical shape. The bed can also consist of a mixture of hollow bodies of different diameters be formed. The hollow body wall 32 is made of copper or another metal or a metal alloy and has a thickness of approximately 0.2 mm. or less. The diameter of a hollow body 30 is 0.2 to 2.0 mm, but can also be larger, but not larger than 3.0 mm. The hollow body 30 is closed gas-tight and has a filling 34 made of helium. The helium filling 34 has a pressure of approximately 200 bar at room temperature and a pressure of several bar at a temperature of 4 Kelvin. The hollow bodies 30 filled with the helium filling 34 can be produced, for example, by a production method in which drops of the molten hollow wall material pass through a cooling chamber filled with helium gas. The filling of the hollow bodies can be formed from a single or a mixture of the different helium isotopes or from isotopes of hydrogen or neon or a mixture of the aforementioned elements. The choice of material for the hollow body wall, the modulation frequency with which the working gas flows through the regenerator alternately, and the wall thickness of the hollow body must be selected such that the depth of penetration μ is at least one times the wall thickness. The depth of penetration μ results from the equation
wobei a die Temperaturleitfähigkeit des gewählten Hohlkörper- wand-Materiales bei der Arbeitstemperatur (beispielsweise 4 Kelvin) ist und fmod die Modulationsfrequenz ist, mit der das Arbeitsgas das Wärmespeichermittel zyklisch alternierend durchströmt. Die Arbeitsfrequenz fmod ist dabei bei Tieftemperatur-Refrigeratoren beispielsweise mit ca. 1,0 Hz anzunehmen.where a is the temperature conductivity of the selected hollow wall material at the working temperature (for example 4 Kelvin) and f mod is the modulation frequency with which the working gas cyclically alternates the heat storage medium flows through. The working frequency f mod can be assumed to be about 1.0 Hz for low-temperature refrigerators.
Das von den gasdicht geschlossenen und eine Heliumfüllung aufweisenden Hohlkörpern 30 gebildete Wärmespeichermittel weist gerade in dem sehr niedrigen Temperaturbereich von weniger als 15 Kelvin, aufgrund der hohen spezifischen Wärmekapazität von Helium in diesem Temperaturbereich eine hohe absolute Wärme- Speicherkapazität in einem kleinen Volumen auf. Durch die Wahl eines geeigneten Metalles für die Hohlkörperwand 32 kann das Wärmespeichermittel in Bezug auf seine elektrischen, mechanischen und chemischen Anforderungen für jede Anwendung optimal angepasst werden, beispielsweise können für die Kühlung in Kernspintomographen nichtmagnetische Materialien für die Hohlkörperwand gewählt werden.The heat storage medium formed by the gas-tightly closed hollow bodies 30 having a helium filling has a high absolute heat storage capacity in a small volume, particularly in the very low temperature range of less than 15 Kelvin, due to the high specific heat capacity of helium in this temperature range. Through the selection of a suitable metal for the hollow body wall 32, the heat storage means can be optimally adapted with regard to its electrical, mechanical and chemical requirements for each application, for example non-magnetic materials for the hollow body wall can be selected for cooling in magnetic resonance tomographs.
Neben den heliumgefüllten Hohlkörpern 30 können in dem Regenerator-Gehäuse auch andere Wärmespeicherelemente in separaten Schichten oder vermischt mit den heliumgefüllten Hohlkörpern 30 vorhanden sein, beispielsweise Wärmespeicherelemente aus Seltenen Erd-Legierungen. In addition to the helium-filled hollow bodies 30, other heat storage elements can also be present in separate layers or mixed with the helium-filled hollow bodies 30 in the regenerator housing, for example heat storage elements made of rare earth alloys.

Claims

PATENTANSPRUCHE PATENT CLAIMS
1. WärmeSpeichermittel für einen Tieftemperaturbereich, bestehend aus einem Satz (22) schüttbarer Körper, wobei die Körper gasdicht geschlossene Hohlkörper (30) sind und jeder Hohlkörper (30) als Speichermedium eine Füllung (34) aus einem tiefsiedenden Gas aufweist,1. Heat storage medium for a low temperature range, consisting of a set (22) of pourable bodies, the bodies being gas-tight closed hollow bodies (30) and each hollow body (30) as a storage medium having a filling (34) made of a low-boiling gas,
d a d u r c h g e k e n n z e i c h n e t ,characterized ,
dass die Hohlkörperwand (32) aus Metall besteht.that the hollow body wall (32) consists of metal.
2. Wärmespeichermittel nach Anspruch 1, dadurch gekennzeichnet, dass die Hohlkörperwand (32) aus Kupfer besteht.2. Heat storage medium according to claim 1, characterized in that the hollow body wall (32) consists of copper.
3. Wärmespeichermittel nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass das Material und die Wandstärke der Hohlkörperwand (32) so gewählt sind, dass die thermische Eindringtiefe mindestens eine Wandstärke beträgt.3. Heat storage medium according to claim 1 or 2, characterized in that the material and the wall thickness of the hollow body wall (32) are selected so that the thermal penetration depth is at least one wall thickness.
4. Wärmespeichermittel nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass das Speichermedium eine Füllung (34) aus Helium ist.4. Heat storage medium according to one of claims 1-3, characterized in that the storage medium is a filling (34) made of helium.
5. Wärmespeichermittel nach Anspruch 4, dadurch gekennzeichnet, dass die Heliumfüllung (34) bei einer Temperatur von 4 K einen Druck von mehr als 0,5 bar aufweist.5. Heat storage medium according to claim 4, characterized in that the helium filling (34) at a temperature of 4 K has a pressure of more than 0.5 bar.
6. Wärmespeichermittel nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Heliumfüllung (34) bei Raumtemperatur einen Druck von annähernd 200 bar aufweist. 6. Heat storage medium according to claim 4 or 5, characterized in that the helium filling (34) has a pressure of approximately 200 bar at room temperature.
7. Wärmespeichermittel nach einem der Ansprüche 1-6, dadurch gekennzeichnet, dass die Wands.tärke der Hohlkörperwand7. Heat storage medium according to one of claims 1-6, characterized in that the Wands.tärke the hollow body wall
(32) kleiner als 1,0 mm ist.(32) is less than 1.0 mm.
8. Wärmespeichermittel nach einem der Ansprüche 1-7, dadurch gekennzeichnet, dass der Hohlkörper (30) annähernd eine Kugelform hat.8. Heat storage medium according to one of claims 1-7, characterized in that the hollow body (30) has approximately a spherical shape.
9. Wärmespeichermittel nach Anspruch 8, dadurch gekennzeichnet, dass der Hohlkörper (30) einen Durchmesser von weniger als 3,0 mm hat.9. Heat storage medium according to claim 8, characterized in that the hollow body (30) has a diameter of less than 3.0 mm.
10. Wärmespeichermittel für einen Tieftemperaturbereich, bestehend aus einem Satz (22) schüttbarer Körper, wobei die Körper gasdicht geschlossene Hohlkörper (30) sind und jeder Hohlkörper (30) als Speichermedium eine Füllung (34) aus einem tiefsiedenden Gas aufweist, dadurch gekennzeichnet, dass die Hohlkorperwand (32) aus Keramik besteht .10. Heat storage medium for a low temperature range, consisting of a set (22) of pourable bodies, the bodies being gas-tight closed hollow bodies (30) and each hollow body (30) as a storage medium has a filling (34) made of a low-boiling gas, characterized in that the hollow body wall (32) consists of ceramic.
11. Regenerator (14) für einen Tieftemperatur-Refrigerator11. Regenerator (14) for a low-temperature refrigerator
(10) , mit einem Gehäuse (24) , das mit dem Wärmespeichermittel (22) nach einem der Ansprüche 1-10 gefüllt ist.(10), with a housing (24) which is filled with the heat storage means (22) according to any one of claims 1-10.
12. Tieftemperatur-Refrigerator (10) mit einem Regenerator (14) nach Anspruch 11, gekennzeichnet durch seine Ausbildung als Gifford-McMahon-, Stirling- oder Pulse-Tube- Refrigerator, wobei als Arbeitsfluid Heliumgas verwendet wird. 12. Low-temperature refrigerator (10) with a regenerator (14) according to claim 11, characterized by its design as a Gifford-McMahon, Stirling or Pulse-Tube refrigerator, helium gas being used as the working fluid.
EP04727558A 2003-04-24 2004-04-15 Heat-storing medium Withdrawn EP1616137A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10318510A DE10318510A1 (en) 2003-04-24 2003-04-24 Heat storage medium
PCT/EP2004/003944 WO2004094927A1 (en) 2003-04-24 2004-04-15 Heat-storing medium

Publications (1)

Publication Number Publication Date
EP1616137A1 true EP1616137A1 (en) 2006-01-18

Family

ID=33154372

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04727558A Withdrawn EP1616137A1 (en) 2003-04-24 2004-04-15 Heat-storing medium

Country Status (8)

Country Link
US (1) US20060201163A1 (en)
EP (1) EP1616137A1 (en)
JP (1) JP2006524307A (en)
KR (1) KR20050113675A (en)
CN (1) CN1777782A (en)
DE (1) DE10318510A1 (en)
TW (1) TW200506296A (en)
WO (1) WO2004094927A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377555B2 (en) * 2008-02-22 2013-02-19 Toyota Motor Engineering & Manufacturing North America, Inc. Gas storage materials, including hydrogen storage materials
JP5610679B2 (en) * 2008-09-01 2014-10-22 栗田工業株式会社 Liquid heater and liquid heating method
US9930898B2 (en) * 2009-07-29 2018-04-03 Tokitae Llc Pasteurization system and method
US9599407B2 (en) * 2009-07-29 2017-03-21 Tokitae Llc System and structure for heating or sterilizing a liquid stream
US8425965B2 (en) * 2009-07-29 2013-04-23 Tokitae Llc Method for heating or sterilizing a liquid stream
US9518786B2 (en) 2010-02-24 2016-12-13 Energy Technologies Institute Llp Heat storage system
GB201003105D0 (en) * 2010-02-24 2010-04-14 Isentropic Ltd Improved heat storage system
JP5788867B2 (en) * 2010-03-19 2015-10-07 住友重機械工業株式会社 Regenerator, GM refrigerator and pulse tube refrigerator
US20120180988A1 (en) * 2011-01-19 2012-07-19 Air Liquide Process & Construction, Inc. Moving thermal bed to time shift liquifaction and vaporization
JP5599739B2 (en) 2011-02-15 2014-10-01 住友重機械工業株式会社 Regenerator type refrigerator
GB201104867D0 (en) * 2011-03-23 2011-05-04 Isentropic Ltd Improved thermal storage system
EP2578978A1 (en) * 2011-10-07 2013-04-10 Ed. Züblin AG Heat storage and method of its operation
CN103075907B (en) * 2013-02-02 2015-04-22 中国科学院工程热物理研究所 Packed bed type high pressure heat/cold storage device
GB201306146D0 (en) * 2013-04-05 2013-05-22 Isentropic Ltd Apparatus and method for storing energy
DE202016106860U1 (en) * 2016-12-08 2018-03-09 Pressure Wave Systems Gmbh Regenerator for cryocooler with helium as working gas
CN107218832B (en) * 2017-07-18 2023-06-27 西安中原机械有限公司 Sand and stone heat storage method with carbon heat conduction surface layer and device thereof
FR3074276B1 (en) * 2017-11-28 2019-10-18 IFP Energies Nouvelles SYSTEM AND METHOD FOR HEAT STORAGE AND RESTITUTION WITH FLANGE
CN108444154A (en) * 2018-04-09 2018-08-24 杨厚成 A kind of regenerator of built-in spherical fillers
CN110305678A (en) * 2019-06-04 2019-10-08 珠海格力电器股份有限公司 A kind of cracking technology, pyrolysis furnace and rubber material cracking apparatus
CN110849025B (en) * 2019-10-11 2021-03-02 珠海格力电器股份有限公司 Magnetic medium with high heat exchange rate and cold accumulator
DE102022107240A1 (en) * 2022-03-28 2023-09-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Heat storage arrangement and method for storing and/or transferring heat

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1022404A (en) * 1963-12-05 1966-03-16 British Oxygen Co Ltd Thermal regenerator packing
US3218815A (en) * 1964-06-17 1965-11-23 Little Inc A Cryogenic refrigeration apparatus operating on an expansible fluid and embodying a regenerator
US3678992A (en) * 1970-08-06 1972-07-25 Philips Corp Thermal regenerator
GB1367618A (en) * 1971-10-21 1974-09-18 Philips Corp Heat exchanger
US4359872A (en) * 1981-09-15 1982-11-23 North American Philips Corporation Low temperature regenerators for cryogenic coolers
US4385499A (en) * 1982-03-16 1983-05-31 Kryovacs Scientific Corporation Miniature cryogenic cooling system with split-phase dual compressor and phase-shifting device
US4809771A (en) * 1987-04-24 1989-03-07 The United States Of America As Represented By The Secretary Of The Air Force Lih thermal storage capsule/heat exchanger
US5186765A (en) * 1989-07-31 1993-02-16 Kabushiki Kaisha Toshiba Cold accumulating material and method of manufacturing the same
DE19614022C1 (en) * 1996-04-09 1997-08-28 Ymos Ag Thermoplastically processable polymer compound and process for its preparation and use of the polymer compound for the production of molded parts
WO1998018880A1 (en) * 1996-10-30 1998-05-07 Kabushiki Kaisha Toshiba Cold accumulation material for ultra-low temperature, refrigerating machine using the material, and heat shield material
DE19924184A1 (en) 1999-05-27 2000-11-30 Christoph Heiden Arrangement for using specific heat of helium gas in regenerators for low temperature gas refrigeration machines uses one of two types of helium gas regenerators with refrigeration machine
DE10039320C2 (en) * 2000-08-07 2003-12-24 Inst Fuegetechnik Und Werkstof Process for the production of hollow spheres

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004094927A1 *

Also Published As

Publication number Publication date
WO2004094927A1 (en) 2004-11-04
JP2006524307A (en) 2006-10-26
KR20050113675A (en) 2005-12-02
CN1777782A (en) 2006-05-24
US20060201163A1 (en) 2006-09-14
DE10318510A1 (en) 2004-11-11
TW200506296A (en) 2005-02-16

Similar Documents

Publication Publication Date Title
EP1616137A1 (en) Heat-storing medium
DE10033410C1 (en) Kreislaufkryostat
DE60101820T2 (en) Magnetic cooling system with pre-cooling using a multi-component coolant
Go et al. Strengthening in deformation-processed Cu-20% Fe composites
DE3314472C2 (en)
EP0865595B1 (en) Low-temperature refrigerator with cold head, and use thereof
Funk et al. Getting magnetocaloric materials into good shape: Cold-working of La (Fe, Co, Si) 13 by powder-in-tube-processing
DE10211538A1 (en) Production of superconducting wires or strips by deforming or heat treating a composite comprising a tube containing a powdered superconducting magnesium boride or its powdered pre-product and a normal conducting powder
DE102010011500A1 (en) Regenerative cooling device
DE60319458T2 (en) Production process for superconducting wires based on hollow MgB2 filaments
DE102011078608A1 (en) cryostat
EP3284798A1 (en) Cryogenic regenerator material, regenerative cryocooler, and system including regenerative cryocooler
EP3199608A1 (en) Rare-earth cold storage material particles, refrigerator using same, superconducting magnet, inspection device, and cryopump
EP0339298A1 (en) Method of making a regenerator for a cryogenic refrigeration machine, and regenerator made according to this method
DE102006046041A1 (en) Heat transfer system used as a cooling/heating system comprises a magnetizable body having an open-pore foam made from a material with a magneto-calorific effect
DE1501715A1 (en) Device for the liquefaction of gases
DD265570A1 (en) MATRIX MATERIAL FOR REGENERATORS AND METHOD FOR PRODUCING A FINE-BRAZED BLEACHING TAPE
DE4432340C1 (en) Method for producing an evaporator for a compressor cooling unit
DE2163270C2 (en) Power supply for electrical equipment with conductors cooled to low temperatures
DE1952441C3 (en) Superconductor
DE102011013577A1 (en) Device for storing hydrogen and magnetic energy and a method for their operation
DE4227388C2 (en) Cryostat with mechanically flexible thermal contact
WO2014083061A1 (en) Heat exchanger
Geballe et al. High-pressure synthesis and thermodynamic stability of PdH 1±ε up to 8 GPa
DE3936914C2 (en) Multi-stage gas refrigerator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060620