EP1613484B1 - Laser-engravable flexographic printing element containing a conductive carbon black, and method for the production of flexographic printing forms - Google Patents

Laser-engravable flexographic printing element containing a conductive carbon black, and method for the production of flexographic printing forms Download PDF

Info

Publication number
EP1613484B1
EP1613484B1 EP04727267A EP04727267A EP1613484B1 EP 1613484 B1 EP1613484 B1 EP 1613484B1 EP 04727267 A EP04727267 A EP 04727267A EP 04727267 A EP04727267 A EP 04727267A EP 1613484 B1 EP1613484 B1 EP 1613484B1
Authority
EP
European Patent Office
Prior art keywords
layer
flexographic printing
laser
relief
printing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04727267A
Other languages
German (de)
French (fr)
Other versions
EP1613484A1 (en
Inventor
Margit Hiller
Thomas Telser
Uwe Stebani
Fritz Nimitz
Heinz Faulhaber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flint Group Germany GmbH
Original Assignee
Flint Group Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flint Group Germany GmbH filed Critical Flint Group Germany GmbH
Publication of EP1613484A1 publication Critical patent/EP1613484A1/en
Application granted granted Critical
Publication of EP1613484B1 publication Critical patent/EP1613484B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/02Engraving; Heads therefor
    • B41C1/04Engraving; Heads therefor using heads controlled by an electric information signal
    • B41C1/05Heat-generating engraving heads, e.g. laser beam, electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/12Printing plates or foils; Materials therefor non-metallic other than stone, e.g. printing plates or foils comprising inorganic materials in an organic matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/145Infrared
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/146Laser beam

Definitions

  • the invention relates to a laser-engravable flexographic printing element in which at least one relief-forming layer contains a conductivity black having a specific surface area of at least 150 m 2 / g and a DBP number of at least 150 ml / 100 g.
  • the invention further relates to a process for the production of flexographic printing plates, in which engraved by means of a laser system, a printing relief in said flexographic printing element.
  • a printing relief is engraved directly into a suitable relief-forming layer using a laser or a laser system.
  • the layer is decomposed at the points where it is hit by the laser beam and removed substantially in the form of dusts, gases, vapors or aerosols.
  • a development step as in the conventional method -thermic or by means of washing-out is not required.
  • the relief-forming layer which is engraved with the laser, also forms the later printing surface. All errors that occur during the engraving are therefore visible during printing.
  • the edges of the relief elements must be made particularly precise in order to obtain a clean print image. Frayed edges or beads of molten material around relief elements, so-called Enamel margins worsen the printed image considerably. Naturally, these factors are the more important the finer the desired relief elements are.
  • EP-B 640 043 such as EP-B 640 044 It has been proposed to "reinforce" laser-engravable flexographic printing elements and optionally to add laser radiation absorbing materials to improve the sensitivity. The use of carbon black is also suggested without specifying it in more detail.
  • Carbon black is not a defined chemical compound, but there are a very large number of different carbon blacks, which differ in terms of manufacturing process, particle size, specific surface area or surface properties, and which accordingly also have a wide variety of chemical and physical properties.
  • Carbon blacks are often characterized by the specific surface area, for example by the BET method, and the so-called “structure”.
  • structure the carbon black expert understands the linking of the primary particles to aggregates. The structure is often determined by dibutyl phthalate (DBP) adsorption. The higher the DBP absorption, the higher the structure.
  • DBP dibutyl phthalate
  • conductivity blacks A special class of carbon blacks are called conductivity blacks.
  • carbon blacks having a DBP absorption greater than 110 ml / 100 g and a relatively high specific surface area are referred to as conductivity blacks (Ferch et al., P. 82).
  • Conductivity blacks are usually used for the purpose of making nonconductive materials electrically conductive with the lowest possible addition amount.
  • EP-A 1 262 315 and EP-A 1 262 316 disclose a method and a laser system for the production of flexographic printing plates.
  • the laser system described operates with a plurality of laser beams, which may have different power and / or wavelength, and with which the superficially located areas of the printing form and lower areas can each be processed separately. Attention is drawn to the possibility of designing the surface of the flexographic printing element used differently than the underlying areas. However, the documents contain no suggestions of a particular chemical composition for the surface or the underlying areas.
  • the object of the invention was to provide a single-layer or multi-layer laser-engravable flexographic printing element, which also allows the engraving of fine relief elements with high precision without the appearance of melt edges. It should be particularly suitable for engraving with modern multi-beam laser systems.
  • the flexographic printing element further comprises at least one further relief-forming crosslinked elastomeric layer (B) between the support and layer (A), obtainable by crosslinking a layer comprising at least one elastomeric binder (b1) and components for crosslinking.
  • a process for the production of flexographic printing plates was found, in which one uses a flexographic printing element of the type mentioned above and engraved a relief with the aid of a laser system in the layer (A) and optionally layer (B), wherein the depth of the laser engraved with the relief elements at least 0.03 mm.
  • suitable dimensionally stable carriers for the flexographic printing elements according to the invention are plates, films and conical and cylindrical tubes (sleeves) Metals such as steel, aluminum, copper or nickel or of plastics such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polycarbonate, if appropriate also fabrics and nonwovens, such as glass fiber fabric and composite materials, for example of glass fibers and plastics.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polybutylene terephthalate polyamide
  • polycarbonate if appropriate also fabrics and nonwovens, such as glass fiber fabric and composite materials, for example of glass fibers and plastics.
  • the flexographic printing element further comprises at least one relief-forming, crosslinked, elastomeric layer (A).
  • the relief-forming layer can be applied directly on the support. However, other layers may optionally also be present between the support and the relief layer, for example adhesion layers and / or elastic underlayers and / or at least one further relief-forming, crosslinked, elastomeric layer (B).
  • the crosslinked elastomeric layer (A) is obtainable by crosslinking a layer comprising at least a binder (a1), a laser radiation absorbing substance (a2), and crosslinking components (a3).
  • the layer (A) itself thus comprises the binder (a1), the laser radiation absorbing substance (a2) and the network generated by the reaction of the components (a3), which may or may not include the binder.
  • Suitable binders (a1) for layer (A) are in particular elastomeric binders. However, it is also possible in principle to use non-elastomeric binders. The decisive factor is that the crosslinked layer (A) has elastomeric properties.
  • the recording layer may, for example, adopt elastomeric properties by the addition of plasticizers to a per se non-elastomeric binder, or it may be used crosslinkable oligomers which form an elastomeric network only by the reaction with each other.
  • Suitable elastomeric binders (a1) for layer (A) are, in particular, those polymers which contain polymerized 1,3-diene monomers, such as isoprene or butadiene. Depending on the nature of the incorporation of the monomers such binders have crosslinkable olefin groups as part of the main chain and / or as a side group. Examples include natural rubber, polybutadiene, polyisoprene, styrene-butadiene rubber, nitrile-butadiene rubber, butyl rubber, styrene-isoprene rubber, polynorbornene rubber or ethylene-propylene-diene rubber (EPDM).
  • EPDM ethylene-propylene-diene rubber
  • the binders (a1) may also be thermoplastic elastomeric block copolymers of alkenylaromatics and 1,3-dienes.
  • the block copolymers may be either linear block copolymers or radial block copolymers. Usually they are triblock copolymers of the ABA type, but they may also be AB-type diblock polymers, or those having a plurality of alternating elastomeric and thermoplastic blocks, eg AB-AB-A. It is also possible to use mixtures of two or more different block copolymers. Commercially available triblock copolymers often contain certain proportions of diblock copolymers. The diene units can be linked differently. They can also be completely or partially hydrogenated.
  • Both block copolymers of styrene-butadiene and of styrene-isoprene type can be used. They are available, for example under the name Kraton ® commercially. Furthermore possible to employ thermoplastic-elastomeric block copolymers having end blocks of styrene and a random styrene-butadiene middle block, which are available under the name Styroflex ®.
  • ethylene-propylene ethylene-acrylic ester, ethylene-vinyl acetate or acrylate rubbers can be used.
  • ethylene-acrylic ester ethylene-vinyl acetate or acrylate rubbers
  • hydrogenated rubbers or elastomeric polyurethanes as well as modified binders in which crosslinkable groups are introduced into the polymeric molecule by grafting reactions.
  • binder (a1) The type and amount of binder (a1) are selected by the skilled person depending on the desired properties of the printing relief of the flexographic printing element. As a rule, an amount of 40 to 95% by weight of the binder with respect to the amount of all constituents of layer (A) has proven successful. Of course, mixtures of different binders can be used.
  • the laser-absorbing substance (a2) according to the invention is a conductive carbon black having a specific surface area of at least 150 m 2 / g and a DBP number of at least 150 ml / 100 g.
  • the specific surface area is preferably at least 250 m 2 / g and particularly preferably at least 500 m 2 / g.
  • the DBP number is preferably at least 200 ml / 100 g and more preferably at least 250 ml / 100 g.
  • They may be acidic or basic carbon blacks.
  • the carbon blacks (a2) are basic carbon blacks.
  • mixtures of different binders can be used.
  • Suitable conductive carbon blacks having specific surface areas of up to about 1500 m 2 / g and DBP numbers of up to about 550 ml / 100 g are commercially available (for example under the name Ketjenblack ® EC300 J, Ketjenblack ® EC600 J Fa. Akzo ), Printex ® XE (Messrs. Degussa) or Black Pearls® 2000 (Messrs. Cabot).
  • the type and amount of carbon black (a2) are chosen by the person skilled in the art according to the desired properties of the printing relief of the flexographic printing element. The amount also depends on whether the layer (A) is present as the sole relief-forming layer, or whether at least one further relief-forming layer (A) and / or (B) is present. If the flexographic printing element according to the invention comprises only a single layer (A) as a relief-forming layer, an amount of from 0.5 to 20% by weight of the carbon black with respect to the amount of all components of layer (A) has generally proven successful. Preferred is an amount of 3% to 18%, and most preferably 5 to 15%.
  • the carbon black content in the top layer (A) may be greater, for example up to 35 % By weight, and in special cases even higher.
  • the thickness of such an uppermost layer (A) with a carbon black content greater than 20% by weight should as a rule not exceed 0.3 mm.
  • the type and amount of the components for crosslinking (a3) depend on the desired crosslinking technique and are selected accordingly by the person skilled in the art.
  • the crosslinking is preferably carried out thermochemically by heating the layer or by irradiation by means of electron radiation. Since the layer is colored more or less black due to the carbon black contained, photochemical crosslinking is possible only in exceptional cases, namely when the carbon black content is only very low and / or the layer is only very thin.
  • Thermal crosslinking can be carried out by adding polymerizable compounds or monomers to the layer.
  • the monomers have at least one polymerizable, olefinically unsaturated group.
  • Suitable monomers in a manner known in principle are esters or amides of acrylic acid or methacrylic acid with monofunctional or polyfunctional alcohols, amines, aminoalcohols or hydroxyethers and esters, styrene or substituted styrenes, esters of fumaric or maleic acid or allyl compounds.
  • the total amount of monomers possibly used is determined by the skilled person depending on the desired properties of the relief layer. As a rule, however, 30% by weight should not be exceeded with regard to the amount of all constituents of the layer.
  • thermal polymerization initiator can be used.
  • Commercially available thermal initiators for free-radical polymerization such as, for example, suitable peroxides, hydroperoxides or azo compounds, can be used as polymerization initiators.
  • suitable peroxides, hydroperoxides or azo compounds can be used as polymerization initiators.
  • crosslinking and typical vulcanizers can be used.
  • the thermal crosslinking may also be carried out by adding a thermosetting resin such as an epoxy resin as the crosslinking component to the layer.
  • the binder (a1) used has sufficiently crosslinkable groups, the addition of additional crosslinkable monomers or oligomers is not necessary, but the binder can be crosslinked directly by means of suitable crosslinkers. This is particularly possible with natural rubber or synthetic rubber, which can be crosslinked directly with conventional vulcanizers or peroxide crosslinkers.
  • Crosslinking by means of electron radiation can, on the one hand, be carried out in analogy to thermal crosslinking by crosslinking the layers comprising ethylenically unsaturated groups comprising monomers by means of electron radiation.
  • the addition of initiators is not required.
  • binders which have crosslinking groups by means of electron radiation can also be crosslinked directly, without the addition of further monomers.
  • Such groups include in particular olefinic groups, protic groups such as -OH, -NH 2 , -NHR, -COOH or -SO 3 H and groups which can form stabilized radicals and cations, eg -CR'R "-, -CH ( O-CO-CH 3 ) -, -CH (O-CH 3 ) -, -CH (NR'R ”) - or -CH (CO-O-CH 3 ). It is also possible to use compounds having protic groups.
  • Examples include di- or polyfunctional monomers in which terminal functional groups are connected to one another via a spacer, such as dialcohols such as, for example, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, diamines, for example 1, 6-hexanediamine, 1,8-hexanediamine, dicarboxylic acids such as 1,6-hexanedicarboxylic acid, terephthalic acid, maleic acid or fumaric acid.
  • dialcohols such as, for example, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol
  • diamines for example 1, 6-hexanediamine, 1,8-hexanediamine
  • dicarboxylic acids such as 1,6-hexanedicarboxylic acid, ter
  • Photochemical crosslinking may be accomplished by employing the olefinic monomers described above in combination with at least one suitable photoinitiator or photoinitiator system.
  • suitable photoinitiator or photoinitiator system include but not limited to, benzoin or benzoin derivatives, such as ⁇ -methylbenzoin or benzoin ethers, benzil derivatives, such as benzil ketals, Acylarylphosphinoxide, Acylarylphosphinklander, Mehrkernchinone suitable without the listing should be limited thereto.
  • layer (A) may optionally also comprise further components such as, for example, plasticizers, dyes, dispersing aids, adhesion additives, antistatic agents, abrasive particles or processing aids.
  • further components such as, for example, plasticizers, dyes, dispersing aids, adhesion additives, antistatic agents, abrasive particles or processing aids.
  • the amount of such additives serves to fine tune the properties and should generally not exceed 30% by weight relative to the amount of all the components of layer (A) of the recording element.
  • the flexographic printing element according to the invention may comprise only a single layer (A) as a relief-forming layer. It may also have two or more layers (A) on top of each other, which layers may have the same or different composition.
  • the flexographic printing element according to the invention may also have at least one further, relief-forming, crosslinked elastomeric layer (B) between the support and the layer (A). It may also be two or more layers (B) of the same or different composition.
  • Layer (B) is obtainable by crosslinking a layer comprising at least one binder (b1) and components for crosslinking (b3).
  • Suitable binders (b1) and components for crosslinking (b3) can be selected by the person skilled in the art from the same lists as listed for (a1) and (a3).
  • layer (B) may optionally also comprise further components such as, for example, plasticizers, dyes, dispersing aids, adhesion additives, antistatic agents, processing aids or abrasive particles.
  • the binder (b1) is a thermoplastic elastomeric binder. Since an absorber for laser radiation is not absolutely necessary for the layer (B), transparent layers can also be produced in the UV / VIS range. In this case, the layer can also be particularly photochemically crosslinked.
  • the layer (b) may optionally contain a laser radiation absorbing substance (b2). It is also possible to use mixtures of different absorbers for laser radiation. Suitable absorbers for laser radiation have a high absorption in the range of the laser wavelength. In particular, absorbers are suitable which have a high absorption in the near infrared and in the longer wavelength VIS range of the electromagnetic spectrum. Such absorbers are particularly suitable for absorbing the radiation of high-performance Nd-YAG lasers (1064 nm) and of IR diode lasers typically having wavelengths between 700 and 900 nm and between 1200 and 1600 nm.
  • Suitable absorbers for the laser radiation (b2) are dyes which absorb strongly in the infrared spectral range, for example phthalocyanines, naphthalocyanines, cyanines, quinones, metal complex dyes, for example dithiolenes or photochromic dyes.
  • suitable absorbers are inorganic pigments, in particular intensively colored inorganic pigments such as, for example, chromium oxides, iron oxides or iron oxide hydrates.
  • Particularly suitable as laser radiation absorbing substances are finely divided carbon blacks, the selection in (b2) is not limited to the above-mentioned conductivity soot. It is also possible to use carbon blacks with a lower specific surface area and lower DBP absorption. Examples of other suitable carbon blacks include Printex ® U, Printex ® A or Special Black 4 ® (Messrs. Degussa).
  • the laser-engravable flexographic printing element may optionally include further layers.
  • Such layers include elastomeric sub-layers of another formulation located between the support and the laser-engravable layer (s), which need not necessarily be laser engravable. With such sub-layers, the mechanical properties of the relief printing plates can be changed without affecting the properties of the actual printing relief layer.
  • adhesive layers that bond the backing to overlying layers or to different layers.
  • the laser-engravable flexographic printing element can be protected against mechanical damage by a, for example consisting of PET protective film, which is located on the topmost layer, and must be removed before engraving with lasers.
  • the protective film may be surface-treated in a suitable manner to facilitate peeling, for example by Siliconization, provided that the surface treatment does not adversely affect the relief top layer in its printing properties.
  • layer thickness of layer (A) and optionally layer (B) is suitably selected by the person skilled in the art, depending on the type and the intended use of the flexographic printing plate.
  • the thickness of layer (A) is usually 0.05 mm to 7 mm. If layer (A) is used as the only relief-forming layer, the thickness should not be less than 0.2 mm. In particular, a thickness of 0.3 to 7 mm, preferably 0.5 to 5 mm and particularly preferably 0.7 to 4 mm, has proven useful with a single-layer flexographic printing element.
  • a relatively thin layer (A) can also be used.
  • the total thickness of layer (A), layer (B) and optionally further layers together should as a rule be 0.3 to 7 mm, preferably 0.5 to 5 mm.
  • the flexographic printing element according to the invention has two layers (A) and (B), it has proven particularly useful that the top layer (A) has the same or a greater Shore A hardness than the bottom layer (B), without the invention being thereon should be limited. This can be achieved for example by the choice of the degree of crosslinking and / or by a suitable choice of the binder. It has proven particularly useful to use a natural or synthetic rubber as the binder (a1) for the layer (A) in such a two-layer flexographic printing element.
  • layer (B) it has proven useful to use as binder (b1) a thermolastic elastomeric binder, preferably a styrene-isoprene or styrene-butadiene-type block copolymer, more preferably styrene-butadiene-type block copolymer.
  • layer (B) has no additional absorber for laser radiation.
  • the flexographic printing element according to the invention can be produced for example by dissolving or dispersing all components in a suitable solvent and pouring onto a support.
  • a suitable solvent for example, a suitable solvent for a support.
  • several layers can be cast on one another in a manner known in principle.
  • the cover sheet can be applied to protect it from damage to the starting material. It is also possible, conversely, to pour on the cover film and finally laminate the carrier.
  • Thermoplastic elastomeric binder-containing layers can also be prepared in a manner known in principle by extrusion and calendering between a cover and a carrier film. This technique is particularly recommended when photochemical or electron beam radiation is to be crosslinked. In principle, it can also be used in thermal crosslinking. However, care must be taken to use a thermal initiator, which does not decompose at the temperature of extrusion and calendering and the layer does not polymerize prematurely.
  • the layer (A) may be cast on a peelable PET film.
  • Layer (B) can be prepared by extrusion and calendering between a Wennfolie- and a cover element, wherein as a cover element in analogy to that of EP-B 084 851 described procedure used with the layer (A) coated PET film. In this way, an intensive bond between the two layers is achieved. Subsequently, one can crosslink the whole composite by means of electron radiation. It is also possible to crosslink layer (A) already after casting, for example thermally. Layer (B) can be crosslinked after joining the composite, for example photochemically by irradiation through the carrier film.
  • the flexographic printing element according to the invention is preferably used for the production of flexographic printing plates by means of direct laser engraving.
  • a printing relief but also in other ways, for example, be engraved mechanically.
  • the relief layer absorbs laser radiation to such an extent that it is removed or at least detached at those locations where it is exposed to a laser beam of sufficient intensity.
  • the layer is thereby vaporized without premelting or thermally or oxidatively decomposed, so that its decomposition products in the form of hot gases, vapors, smoke or small particles are removed from the layer.
  • conductivity soot layer (A) Due to the content of conductivity soot layer (A) has a good absorption especially in the entire infrared spectral range between 750 nm and 12000 nm. Therefore, it can equally well be engraved by means of CO 2 lasers having a wavelength of 10.6 microns or using Nd-YAG lasers (1064 nm), IR diode lasers or solid state lasers.
  • the selection of the optimum laser depends on the structure of the layer, and in particular on whether an absorber for laser radiation (b2) is present or not.
  • the flexotypic binders used for layer (B) usually absorb sufficiently in the range between 9000 nm and 12000 nm, so that the engraving of the layer is possible with the aid of CO 2 lasers without having to add additional IR absorbers.
  • UV lasers such as excimer lasers.
  • Nd-YAG lasers and IR diode lasers the addition of a laser absorber is usually required.
  • the lasers can be operated either continuously or pulsed.
  • the depth of the elements to be engraved depends on the total thickness of the relief and the type of elements to be engraved and is determined by the person skilled in the art according to the desired properties of the printing form.
  • the depth of the engraved relief elements is at least 0.03 mm, preferably 0.05 mm - is called here the minimum depth between individual grid points.
  • Printing plates with too low relief depths are generally unsuitable for printing by means of flexographic printing technology because the negative elements are filled with printing ink.
  • Individual negative points should usually have greater depths; for those of 0.2 mm diameter, a depth of at least 0.07 to 0.08 mm is usually recommended.
  • For weggrav convinced surfaces is recommended a depth of more than 0.15 mm, preferably more than 0.3 mm. The latter is of course only possible with a correspondingly thick relief.
  • a laser system for engraving, a laser system can be used, which has only a single laser beam.
  • laser systems are used which have two or more laser beams.
  • the laser beams can all have the same wavelength or laser beams of different wavelengths can be used.
  • at least one of the beams is specially adapted for generating coarse structures, and at least one of the beams is specially adapted for writing fine structures. With such systems can be particularly elegant produce high-quality printing forms.
  • the beam for generating the fine structures having a lower power than the beams for producing coarse structures.
  • the combination of a beam with a power of 50 to 100 W in combination with two beams of 200 W each has proved to be particularly advantageous.
  • It can also be an Nd / YAG laser for writing fine structures, in combination with one or more powerful CO 2 lasers.
  • suitable multi-beam laser systems and suitable engraving methods are known in principle and, for example, in EP-A 1 262 315 and EP-A 1 262 316 disclosed.
  • the described apparatus has a rotatable drum on which the flexographic printing element is mounted and the drum is rotated.
  • the laser beams move slowly parallel to the drum axis from one end to the other end of the drum and are thereby modulated in a suitable manner. In this way, the entire surface of the flexographic printing element can be engraved gradually.
  • the relative movement between the drum and laser beams can be done by movement of the laser and / or the drum.
  • the edges of the relief elements and the uppermost layer section of the relief-forming layer are preferably engraved.
  • the more powerful beams are preferably used to deepen the structures produced and to dig larger non-printing depressions.
  • the details also depend on the motif to be engraved.
  • Such multi-beam systems can be used for engraving the flexographic printing elements according to the invention with only one layer (A).
  • they are used in combination with a multilayer flexographic printing element with a layer (A) and one or more layers (B).
  • the thickness of the upper layer (A) and the power of the lower-power laser beam and the other laser parameters are matched to one another in such a way that the lower-power beam substantially engraves layer (A), while the more powerful rays essentially layer (B) or also engrave (A) and (B) together.
  • a layer thickness of 0.05 mm to 0.3 mm, preferably 0.07 mm to 0.2 mm is sufficient for the top layer (A).
  • liquid cleaning agent for subsequent cleaning in order to be able to remove polymer fragments completely. This is particularly recommended, for example, when using the flexographic printing form food packaging which are subject to particularly stringent requirements with respect to volatile constituents.
  • the post-purification can be carried out very advantageously by means of water or an aqueous cleaning agent.
  • Aqueous cleaning agents consist essentially of water and optionally small amounts of alcohols and can aid in supporting the cleaning process, such as surfactants, emulsifiers, dispersants or bases. Mixtures commonly used to develop conventional water-developable flexographic printing plates can also be used.
  • mixtures of organic solvents may in principle also be used, in particular those mixtures which usually serve as washout agents for conventionally produced flexographic printing plates.
  • washout agents based on high boiling, dearomatized petroleum fractions such as EP-A 332,070 or also "water-in-oil" emulsions, such as from EP-A 463 016 disclosed.
  • the post-cleaning can be done for example by simply dipping or spraying the relief printing form or in addition by mechanical means, such as brushes or plushes are supported. It is also possible to use conventional flexo washers.
  • any deposits as well as the residues of the additional polymer layer are removed.
  • this layer prevents, or at least hampers, the fact that polymer droplets formed in the course of the laser engraving again firmly connect to the surface of the relief layer. Deposits can therefore be removed particularly easily. It is regularly recommended to carry out the post-wash step immediately after the laser engraving step.
  • flexographic printing elements of the composition according to the invention described above are produced.
  • the carbon black is metered by means of a flanged side extruder, so that a homogeneous metering and mixing of the carbon black is ensured in the polymer melt.
  • the thickness of layer (A) is 1.02 mm.
  • the carbon black-filled flexographic printing elements are stored for 4 days at room temperature and then with the aid of electron beams in accordance with the in WO 03/11596 crosslinked processes described.
  • 5 flexographic printing elements each with intermediate layers are packed in a cardboard box and crosslinked by irradiation with electron beams (electron energy 3.5 MeV) into 4 partial doses of 25 kGy each.
  • flexographic printing elements were produced by means of extrusion and calendering of the melt between an adhesion-lacquer-coated PET carrier film and a silicone-coated protective film.
  • the composition of the elastomeric layer was similar to that of Example 1, but various non-conductive types of carbon black were used.
  • Example 1 Analogously to Example 1, the soot-containing flexographic printing elements are crosslinked by irradiation with electron beams (electron energy 3.5 MeV) in 4 sub-doses of 25 kGy each. After peeling off the protective film, the test motif of Example 1 is engraved into the crosslinked flexographic printing element by means of a laser.
  • Table 1 The experimental conditions and results are summarized in Table 1.
  • Figures 1 and 2 show light micrographs of a 50 micron positive point of a flexographic printing plate according to Example 1 and according to Comparative Examples A, B and C.
  • Two-layer flexographic printing element consisting of one layer (A) and one layer (B)
  • a 100 ⁇ m thick, elastomeric layer (A) according to Example 1 was prepared by extrusion between 2 siliconized protective films. After crosslinking the layer by means of electron beams in analogy to Example 1, one of the siliconized films was peeled off in order to obtain a cover element.
  • the two-layer flexographic printing element was prepared in the usual manner by melt extrusion of the components of layer (B) and calendering between a transparent support film and a cover element, said composite of layer (A) and siliconized film was used as a cover element.
  • a layer composite of a photochemically crosslinkable, elastomeric layer (B) and a conductivity soot-containing upper layer (A) is produced.
  • the thickness of layer (B) was 0.92 mm.
  • Layer (B) was irradiated for 20 minutes with UV / A light for photochemical crosslinking through the transparent carrier film (nyloflex F III platesetter, 80-watt tubes). Subsequently, the siliconized cover sheet was peeled off.
  • the described flexographic printing element can alternatively be obtained by laminating the above-described composite of layer (A) and foil on a finished FAH plate.
  • the two-layer flexographic printing element from layers (A) and (B) is engraved with a two-beam laser device (100 W Nd-YAG, 250 W CO 2 ) with different resolutions (1270 dpi, 1778 dpi, 2540 dpi).
  • the fine elements in engraved layer (A) were engraved, the CO 2 laser was used for engraving the lower areas and, where appropriate, for excavating coarse areas.
  • the achievable resolution was 2540 dpi with sharp edge imaging of fine printing elements.
  • Two-layer flexographic printing element consisting of one layer (A) and one layer (B)
  • the photochemically crosslinkable layer (B) was the components of a nyloflex ® FAH printing plate (BASF Drucksysteme GmbH). According to the in EP-A 084 851 The two-layer flexographic printing element was prepared in the usual manner by melt extrusion of the components of layer (B) and calendering between a transparent support film and a cover element, said composite of layer (A) and siliconized film was used as a cover element. As a result, a layer composite of a photochemically crosslinkable, elastomeric layer (B) and a conductivity soot-containing upper layer (A) is produced. The thickness of layer (B) was 0.92 mm.
  • Layer (B) was irradiated with UV / A light (nyloflex F III platesetter, 80 watt tubes) for photochemical crosslinking through the transparent support film for 20 minutes. Subsequently, the siliconized cover sheet was peeled off.
  • the described flexographic printing element can alternatively be obtained by laminating the above-described composite of layer (A) and foil on a finished FAH plate.
  • the two-layer flexographic printing element from layers (A) and (B) is engraved with a two-beam laser device (100 W Nd-YAG, 250 W CO 2 ) with different resolutions (1270 dpi, 1778 dpi, 2540 dpi).
  • the fine elements in engraved layer (A) were engraved, the CO 2 laser was used for engraving the lower areas and, where appropriate, for excavating coarse areas.
  • the achievable resolution was 2540 dpi with sharp edge imaging of fine printing elements.
  • Example 2 For comparison, the two-layer flexographic printing element from Example 2 was engraved with only a 250 W CO 2 Einstrahllaser réelle.
  • the fine elements can be engraved with the combination of ND / YAG laser and CO 2 laser with a finer resolution than just with the CO 2 laser. Fine halftone dots are much sharper.
  • Example 3 For comparison, the two-layer flexographic printing element of Example 3 was engraved with only a 250 W CO 2 Einstrahllaser réelle.
  • the fine elements can be engraved with the combination of ND / YAG laser and CO 2 laser with a finer resolution than just with the CO 2 laser. Fine halftone dots are much sharper and the flanks of the elements show no eruptions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Wire Bonding (AREA)
  • Resistance Heating (AREA)

Abstract

In a laser-engravable flexographic printing element, the relief-forming layer comprises a conductivity carbon black having a specific surface area of at least 150 m<SUP>2</SUP>/g and a DBP number of at least 150 ml/100 g. Flexographic printing plates are produced by a process in which a printing relief is engraved into said flexographic printing element by means of a laser system.

Description

Die Erfindung betrifft ein lasergravierbares Flexodruckelement, bei dem mindestens eine reliefbildende Schicht einen Leitfähigkeitsruß mit einer spezifischen Oberfläche von mindestens 150 m2/g und einer DBP-Zahl von mindestens 150 ml/100g enthält. Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung von Flexodruckformen, bei dem man mittels eines Lasersystems ein Druckrelief in das genannte Flexodruckelement eingraviert.The invention relates to a laser-engravable flexographic printing element in which at least one relief-forming layer contains a conductivity black having a specific surface area of at least 150 m 2 / g and a DBP number of at least 150 ml / 100 g. The invention further relates to a process for the production of flexographic printing plates, in which engraved by means of a laser system, a printing relief in said flexographic printing element.

Bei der Laser-Direktgravur zur Herstellung von Flexodruckformen wird ein druckendes Relief unter Verwendung eines Lasers bzw. eines Lasersystems direkt in eine dazu geeignete reliefbildende Schicht eingraviert. Die Schicht wird an den Stellen, an denen sie vom Laserstrahl getroffen wird, zersetzt und im wesentlichen in Form von Stäuben, Gasen, Dämpfen oder Aerosolen entfernt. Ein Entwicklungsschritt wie beim konventionellen Verfahren -thermisch oder mittels Auswaschmitteln- ist nicht erforderlich.In direct laser engraving for the production of flexographic printing forms, a printing relief is engraved directly into a suitable relief-forming layer using a laser or a laser system. The layer is decomposed at the points where it is hit by the laser beam and removed substantially in the form of dusts, gases, vapors or aerosols. A development step as in the conventional method -thermic or by means of washing-out is not required.

Obwohl die Gravur von Gummidruckzylindern mittels Lasern bereits seit den 60er Jahren des letzten Jahrhunderts prinzipiell bekannt ist, hat die Lasergravur breiteres wirtschaftliches Interesse erst in den letzten Jahren mit dem Aufkommen von verbesserten Lasersystemen gewonnen. Zu den Verbesserungen bei den Lasersystemen zählen insbesondere bessere Fokussierbarkeit des Laserstrahls, höhere Leistung sowie computergesteuerte Strahlmodulation.Although the engraving of rubber cylinders by laser has been known in principle since the 1960s, laser engraving has gained wider economic interest only in recent years with the emergence of improved laser systems. The improvements in the laser systems include in particular better focusability of the laser beam, higher power and computer-controlled beam modulation.

Mit der Einführung von neuen, leistungsfähigeren Lasersystemen gewinnt aber auch die Frage nach besonders geeigneten Materialien für lasergravierbare Flexodruckplatten immer größere Bedeutung. Insbesondere bei der Gravur von hochauflösenden Druckformen bzw. sehr feinen Reliefelementen, treten nun Probleme auf, die in der Vergangenheit gar keine Rolle spielten, weil die Lasersysteme die Gravur sehr feiner Strukturen ohnehin nicht erlaubten. Verbesserte Lasersysteme führen zu somit neuen Anforderungen an das Material.With the introduction of new, more powerful laser systems, however, the question of particularly suitable materials for laser-engravable flexographic printing plates is becoming increasingly important. In particular, in the engraving of high-resolution printing plates or very fine relief elements, now occur problems that did not matter at all in the past, because the laser systems, the engraving of very fine structures anyway not allowed. Improved laser systems lead to new demands on the material.

Bei der Laser-Direktgravur ist insbesondere zu beachten, dass die reliefbildende Schicht, die mit dem Laser graviert wird, auch die spätere Druckoberfläche bildet. Alle Fehler, die bei der Gravur auftreten, werden somit auch beim Drucken sichtbar. Bei der Laser-Direktgravur müssen daher insbesondere die Kanten der Reliefelemente besonders präzise ausgebildet werden, um auch ein sauberes Druckbild zu erhalten. Ausgefranste Ränder oder Wülste geschmolzenen Materials um Reliefelemente herum, sogenannte Schmelzränder, verschlechtern das Druckbild erheblich. Naturgemäß sind diese Faktoren umso bedeutsamer, je feiner die gewünschten Reliefelemente sind.In the case of direct laser engraving, it should be noted in particular that the relief-forming layer, which is engraved with the laser, also forms the later printing surface. All errors that occur during the engraving are therefore visible during printing. In the laser direct engraving, therefore, in particular the edges of the relief elements must be made particularly precise in order to obtain a clean print image. Frayed edges or beads of molten material around relief elements, so-called Enamel margins worsen the printed image considerably. Naturally, these factors are the more important the finer the desired relief elements are.

Von EP-B 640 043 sowie EP-B 640 044 ist vorgeschlagen worden, lasergravierbare Flexodruckelemente zu "verstärken" und gegebenenfalls zur Verbesserung der Empfindlichkeit Laserstrahlung absorbierende Materialien zuzugeben. Vorgeschlagen wird auch die Verwendung von Ruß, ohne dass dieser genauer spezifiziert wird.From EP-B 640 043 such as EP-B 640 044 It has been proposed to "reinforce" laser-engravable flexographic printing elements and optionally to add laser radiation absorbing materials to improve the sensitivity. The use of carbon black is also suggested without specifying it in more detail.

Bei Ruß handelt es sich nicht um eine definierte chemische Verbindung, sondern es existieren eine sehr große Anzahl verschiedenster Ruße, die sich im Hinblick auf Herstellverfahren, Partikelgröße, spezifische Oberfläche oder Oberflächeneigenschaften unterscheiden, und die dem entsprechend auch unterschiedlichste chemische und physikalische Eigenschaften aufweisen. Für nähere Einzelheiten wird beispielsweise auf H. Ferch, "Pigmentruße", Hrsg. U. Zorll, Vincentz Verlag, Hannover, 1995 verwiesen. Ruße werden häufig durch die spezifische Oberfläche, beispielsweise nach der BET-Methode bestimmt, sowie die so genannte "Struktur" charakterisiert. Unter "Struktur" versteht der Ruß-Fachmann die Verkettung der Primärteilchen zu Aggregaten. Die Struktur wird häufig mittels der Dibutylphthalat(DBP)-Adsorption bestimmt. Je höher die DBP-Absorption, desto höher die Struktur.Carbon black is not a defined chemical compound, but there are a very large number of different carbon blacks, which differ in terms of manufacturing process, particle size, specific surface area or surface properties, and which accordingly also have a wide variety of chemical and physical properties. For further details, reference is made, for example, to H. Ferch, "Pigmentruße", ed. U. Zorll, Vincentz Verlag, Hannover, 1995. Carbon blacks are often characterized by the specific surface area, for example by the BET method, and the so-called "structure". By "structure" the carbon black expert understands the linking of the primary particles to aggregates. The structure is often determined by dibutyl phthalate (DBP) adsorption. The higher the DBP absorption, the higher the structure.

Eine spezielle Klasse von Rußen bilden die sogenannten Leitfähigkeitsruße. Im allgemeinen werden Ruße mit einer DBP-Absorption von mehr als 110 ml / 100 g und relativ hoher spezifischer Oberfläche als Leitfähigkeitsruße bezeichnet (Ferch a.a.O., S. 82). Leitfähigkeitsruße werden üblicherweise zu dem Zweck eingesetzt, nicht leitende Werkstoffe bei möglichst geringer Zugabemenge elektrisch leitfähig zu machen.A special class of carbon blacks are called conductivity blacks. In general, carbon blacks having a DBP absorption greater than 110 ml / 100 g and a relatively high specific surface area are referred to as conductivity blacks (Ferch et al., P. 82). Conductivity blacks are usually used for the purpose of making nonconductive materials electrically conductive with the lowest possible addition amount.

Die Verwendung von Ruß in lasergravierbaren Flexodruckelementen ist auch von EP-A 1 080 883 , WO 02/16134 , WO 02/54154 oder WO 02/083418 beschrieben worden. In den genannten Schriften werden jedoch keine Leitfähigkeitsruße offenbart, sondern Ruße mit relativ kleiner spezifischer Oberfläche und kleiner DBP-Zahl.The use of carbon black in laser-engravable flexographic printing elements is also of EP-A 1 080 883 . WO 02/16134 . WO 02/54154 or WO 02/083418 been described. In the cited documents, however, no conductivity carbon blacks are disclosed, but carbon blacks with a relatively small specific surface area and small DBP number.

EP-A 1 262 315 und EP-A 1 262 316 offenbaren ein Verfahren sowie ein Lasersystem zur Herstellung von Flexodruckformen. Das beschriebene Lasersystem arbeitet mit mehreren Laserstrahlen, die unterschiedliche Leistung und/oder Wellenlänge aufweisen können, und mit denen die oberflächlich gelegenen Bereiche der Druckform sowie tiefer gelegene Bereiche jeweils separat bearbeitet werden können. Es wird auf die Möglichkeit hingewiesen, die Oberfläche des eingesetzten Flexodruckelementes anders zu gestalten als die darunter liegenden Bereiche. Die Dokumente enthalten aber keinerlei Vorschläge einer bestimmten chemischen Zusammensetzung für die Oberfläche bzw. die darunter liegenden Bereiche. EP-A 1 262 315 and EP-A 1 262 316 disclose a method and a laser system for the production of flexographic printing plates. The laser system described operates with a plurality of laser beams, which may have different power and / or wavelength, and with which the superficially located areas of the printing form and lower areas can each be processed separately. Attention is drawn to the possibility of designing the surface of the flexographic printing element used differently than the underlying areas. However, the documents contain no suggestions of a particular chemical composition for the surface or the underlying areas.

Aufgabe der Erfindung war es, ein einschichtiges oder mehrschichtiges lasergravierbares Flexodruckelement bereitzustellen, welches auch die Gravur feiner Reliefelemente mit hoher Präzision ohne das Auftreten von Schmelzrändern ermöglicht. Es sollte insbesondere zur Gravur mit modernen Mehrstrahl-Lasersystemen geeignet sein.The object of the invention was to provide a single-layer or multi-layer laser-engravable flexographic printing element, which also allows the engraving of fine relief elements with high precision without the appearance of melt edges. It should be particularly suitable for engraving with modern multi-beam laser systems.

Überraschenderweise wurde gefunden, dass diese Aufgabe durch den Einsatz von Leitfähigkeitsrußen der eingangs definierten Art gelöst werden kann. Die Flexodruckelemente können mit hoher Auflösung graviert werden, ohne dass Schmelzränder und andere negative Effekte beobachtet werden. Das Ergebnis war insbesondere deshalb überraschend, weil die genannten Ruße keineswegs diejenigen sind, die die höchste Empfindlichkeit gegenüber Laserstrahlung aufweisen.Surprisingly, it has been found that this object can be achieved by the use of conductivity soot of the type defined. The flexographic printing elements can be engraved with high resolution without observing melt edges and other negative effects. The result was particularly surprising because the mentioned carbon blacks are by no means the ones which have the highest sensitivity to laser radiation.

Dementsprechend wurden Flexodruckelemente zur Herstellung von Flexodruckformen mittels Lasergravur gefunden, die übereinander angeordnet mindestens

  • einen dimensionsstabilen Träger, sowie
  • mindestens eine reliefbildende, vernetzte, elastomere Schicht (A) mit einer Dicke von 0,05 bis 7 mm, erhältlich durch Vernetzen einer Schicht, welche mindestens ein elastomeres Bindemittel (a1), eine Laserstrahlung absorbierende Substanz (a2) sowie Komponenten zum Vemetzen (a3) umfasst, aufweisen,
wobei es sich bei der Laserstrahlung absorbierenden Substanz um einen Leitfähigkeitsruß mit einer spezifischen Oberfläche von mindestens 150 m2/g und einer DBP-Zahl von mindestens 150 ml/100g handelt.Accordingly, flexographic printing elements for the production of flexographic printing plates by laser engraving were found, which are arranged one above the other at least
  • a dimensionally stable carrier, as well
  • at least one relief-forming, crosslinked, elastomeric layer (A) having a thickness of 0.05 to 7 mm, obtainable by crosslinking a layer comprising at least one elastomeric binder (a1), a laser radiation absorbing substance (a2) and components for crosslinking (a3 ),
wherein the laser radiation absorbing substance is a conductivity black having a specific surface area of at least 150 m 2 / g and a DBP number of at least 150 ml / 100 g.

In einer besonderen. Ausführungsform weist das Flexodruckelement weiterhin mindestens eine weitere, reliefbildende, vernetzte elastomere Schicht (B) zwischen dem Träger und Schicht (A) auf, erhältlich durch Vernetzen einer Schicht, welche mindestens ein elastomeres Bindemittel (b1) sowie Komponenten zum Vernetzen umfasst.In a special. In another embodiment, the flexographic printing element further comprises at least one further relief-forming crosslinked elastomeric layer (B) between the support and layer (A), obtainable by crosslinking a layer comprising at least one elastomeric binder (b1) and components for crosslinking.

Weiterhin wurde ein Verfahren zur Herstellung von Flexodruckformen gefunden, bei dem man ein Flexodruckelement der oben genannten Art einsetzt und ein Druckrelief mit Hilfe eines Lasersystems in die Schicht (A) sowie gegebenenfalls Schicht (B) eingraviert, wobei die Tiefe der mit dem Laser einzugravierenden Reliefelemente mindestens 0,03 mm beträgt.Furthermore, a process for the production of flexographic printing plates was found, in which one uses a flexographic printing element of the type mentioned above and engraved a relief with the aid of a laser system in the layer (A) and optionally layer (B), wherein the depth of the laser engraved with the relief elements at least 0.03 mm.

Zu der Erfindung ist im Einzelnen das Folgende auszuführen:More specifically, the following is to be accomplished for the invention:

Beispiele geeigneter dimensionsstabiler Träger für das erfindungsgemäße Flexodruckelemente sind Platten, Folien sowie konische und zylindrische Röhren (Sleeves) aus Metallen wie Stahl, Aluminium, Kupfer oder Nickel oder aus Kunststoffen wie Polyethylenterephthalat (PET), Polyethylennaphthalat (PEN), Polybutylenterephthalat, Polyamid, Polycarbonat, gegebenenfalls auch Gewebe und Vliese, wie Glasfasergewebe sowie Verbundmaterialien, z.B. aus Glasfasern und Kunststoffen. Als dimensionsstabile Träger kommen vor allem dimensionsstabile Trägerfolien wie beispielsweise Polyesterfolien, insbesondere PET- oder PEN-Folien oder flexible metallische Träger, wie dünne Bleche oder Metallfolien aus Stahl, bevorzugt aus rostfreiem Stahl, magnetisierbarem Federstahl, Aluminium, Zink, Magnesium, Nickel, Chrom oder Kupfer in Betracht.Examples of suitable dimensionally stable carriers for the flexographic printing elements according to the invention are plates, films and conical and cylindrical tubes (sleeves) Metals such as steel, aluminum, copper or nickel or of plastics such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate, polyamide, polycarbonate, if appropriate also fabrics and nonwovens, such as glass fiber fabric and composite materials, for example of glass fibers and plastics. Dimensionally stable substrates are, above all, dimensionally stable carrier films such as polyester films, in particular PET or PEN films or flexible metallic substrates, such as thin sheets or metal foils of steel, preferably of stainless steel, magnetizable spring steel, aluminum, zinc, magnesium, nickel, chromium or Copper into consideration.

Das Flexodruckelement umfasst weiterhin mindestens eine reliefbildende, vernetzte, elastomere Schicht (A). Die reliefbildende Schicht kann unmittelbar auf dem Träger aufgebracht sein. Zwischen dem Träger und der Reliefschicht können sich optional aber auch noch andere Schichten befinden, wie beispielsweise Haftschichten und/oder elastische Unterschichten und/oder mindestens eine weitere reliefbildende, vernetzte, elastomere Schicht (B).The flexographic printing element further comprises at least one relief-forming, crosslinked, elastomeric layer (A). The relief-forming layer can be applied directly on the support. However, other layers may optionally also be present between the support and the relief layer, for example adhesion layers and / or elastic underlayers and / or at least one further relief-forming, crosslinked, elastomeric layer (B).

Die vernetzte, elastomere Schicht (A) ist erhältlich durch Vernetzen einer Schicht, welche mindestens ein Bindemittel (a1), eine Laserstrahlung absorbierende Substanz (a2) sowie Komponenten zum Vernetzen (a3) umfasst. Die Schicht (A) selbst umfasst folglich das Bindemittel (a1), die Laserstrahlung absorbierende Substanz (a2) sowie das durch die Reaktion der Komponenten (a3) erzeugte Netzwerk, welches das Bindemittel mit einschließen kann oder auch nicht.The crosslinked elastomeric layer (A) is obtainable by crosslinking a layer comprising at least a binder (a1), a laser radiation absorbing substance (a2), and crosslinking components (a3). The layer (A) itself thus comprises the binder (a1), the laser radiation absorbing substance (a2) and the network generated by the reaction of the components (a3), which may or may not include the binder.

Als Bindemittel (a1) für Schicht (A) eignen sich insbesondere elastomere Bindemittel. Es können aber auch prinzipiell nicht elastomere Bindemittel eingesetzt werden. Entscheidend ist ausschließlich, dass die vernetzte Schicht (A) elastomere Eigenschaften aufweist. Die Aufzeichnungsschicht kann beispielsweise durch den Zusatz von Weichmachern zu einem an sich nicht elastomeren Bindemittel elastomere Eigenschaften annehmen, oder es können vernetzbare Oligomere eingesetzt werden, die erst durch die Reaktion miteinander ein elastomeres Netzwerk bilden.Suitable binders (a1) for layer (A) are in particular elastomeric binders. However, it is also possible in principle to use non-elastomeric binders. The decisive factor is that the crosslinked layer (A) has elastomeric properties. The recording layer may, for example, adopt elastomeric properties by the addition of plasticizers to a per se non-elastomeric binder, or it may be used crosslinkable oligomers which form an elastomeric network only by the reaction with each other.

Als elastomere Bindemittel (a1) für Schicht (A) sind insbesondere solche Polymere geeignet, die 1,3-Dien-Monomere wie Isopren oder Butadien einpolymerisiert enthalten. Je nach Art des Einbaues der Monomeren weisen derartige Bindemittel vernetzbare Olefin-Gruppen als Bestandteil der Hauptkette und/oder als Seitengruppe auf. Als Beispiele seien Naturkautschuk, Polybutadien, Polyisopren, Styrol-Butadien-Kautschuk, Nitril-Butadien-Kautschuk, Butyl-Kautschuk, Styrol-Isopren-Kautschuk, Polynorbornen-Kautschuk oder Ethyien-Propylen-Dien-Kautschuk (EPDM) genannt.Suitable elastomeric binders (a1) for layer (A) are, in particular, those polymers which contain polymerized 1,3-diene monomers, such as isoprene or butadiene. Depending on the nature of the incorporation of the monomers such binders have crosslinkable olefin groups as part of the main chain and / or as a side group. Examples include natural rubber, polybutadiene, polyisoprene, styrene-butadiene rubber, nitrile-butadiene rubber, butyl rubber, styrene-isoprene rubber, polynorbornene rubber or ethylene-propylene-diene rubber (EPDM).

Bei den Bindemitteln (a1) kann es sich auch um thermoplastisch elastomere Blockcopolymere aus Alkenylaromaten und 1,3-Dienen handeln. Bei den Blockcopolymeren kann es sich sowohl um lineare Blockcopolymere oder auch um radiale Blockcopolymere handeln. Üblicherweise handelt es sich um Dreiblockcopolymere vom A-B-A-Typ, es kann sich aber auch um Zweiblockpolymere vom A-B-Typ handeln, oder um solche mit mehreren alternierenden elastomeren und thermoplastischen Blöcken, z.B. A-B-AB-A. Es können auch Gemische zweier oder mehrerer unterschiedlicher Blockcopolymerer eingesetzt werden. Handelsübliche Dreiblockcopolymere enthalten häufig gewisse Anteile an Zweiblockcopolymeren. Die Dien-Einheiten können unterschiedlich verknüpft sein. Sie können auch ganz oder teilweise hydriert sein. Es können sowohl Blockcopolymere vom Styrol-Butadien wie vom Styrol-Isopren-Typ eingesetzt werden. Sie sind beispielsweise unter dem Namen Kraton® im Handel erhältlich. Weiterhin einsetzbar sind auch thermoplastisch elastomere Blockcopolymere mit Endblöcken aus Styrol und einem statistischen Styrol-Butadien-Mittelblock, die unter dem Namen Styroflex® erhältlich sind.The binders (a1) may also be thermoplastic elastomeric block copolymers of alkenylaromatics and 1,3-dienes. The block copolymers may be either linear block copolymers or radial block copolymers. Usually they are triblock copolymers of the ABA type, but they may also be AB-type diblock polymers, or those having a plurality of alternating elastomeric and thermoplastic blocks, eg AB-AB-A. It is also possible to use mixtures of two or more different block copolymers. Commercially available triblock copolymers often contain certain proportions of diblock copolymers. The diene units can be linked differently. They can also be completely or partially hydrogenated. Both block copolymers of styrene-butadiene and of styrene-isoprene type can be used. They are available, for example under the name Kraton ® commercially. Furthermore possible to employ thermoplastic-elastomeric block copolymers having end blocks of styrene and a random styrene-butadiene middle block, which are available under the name Styroflex ®.

Für die Schicht (A) können aber auch prinzipiell Ethylen-Propylen-, Ethylen-Acrylester-, Ethylen-Vinylacetat oder Acrylat-Kautschuke eingesetzt werden. Weiterhin geeignet sind auch hydrierte Kautschuke oder elastomere Polyurethane, sowie modifizierte Bindemittel, bei denen vernetzbare Gruppen durch Pfropfungsreaktionen in das polymere Molekül eingeführt werden.For the layer (A) but in principle ethylene-propylene, ethylene-acrylic ester, ethylene-vinyl acetate or acrylate rubbers can be used. Also suitable are hydrogenated rubbers or elastomeric polyurethanes, as well as modified binders in which crosslinkable groups are introduced into the polymeric molecule by grafting reactions.

Die Art und die Menge des Bindemittels (a1) werden vom Fachmann je nach den gewünschten Eigenschaften des druckenden Reliefs des Flexodruckelementes gewählt. Im Regelfalle hat sich eine Menge von 40 bis 95 Gew. % des Bindemittels bezüglich der Menge aller Bestandteile von Schicht (A) bewährt. Es können selbstverständlich auch Gemische verschiedener Bindemittel eingesetzt werden.The type and amount of binder (a1) are selected by the skilled person depending on the desired properties of the printing relief of the flexographic printing element. As a rule, an amount of 40 to 95% by weight of the binder with respect to the amount of all constituents of layer (A) has proven successful. Of course, mixtures of different binders can be used.

Bei der Laserstrahlung absorbierenden Substanz (a2) handelt es sich erfindungsgemäß um einen Leitfähigkeitsruß mit einer spezifischen Oberfläche von mindestens 150 m2/g und einer DBP-Zahl von mindestens 150 ml/100g.The laser-absorbing substance (a2) according to the invention is a conductive carbon black having a specific surface area of at least 150 m 2 / g and a DBP number of at least 150 ml / 100 g.

Bevorzugt beträgt die spezifische Oberfläche mindestens 250 m2/g und besonders bevorzugt mindestens 500 m2/g. Die DBP-Zahl beträgt bevorzugt mindestens 200 ml/100 g und besonders bevorzugt mindestens 250 ml / 100 g. Es kann sich um saure oder um basische Ruße handeln. Bevorzugt handelt es sich bei den Rußen (a2) um basische Ruße. Es können selbstverständlich auch Gemische verschiedener Bindemittel eingesetzt werden.The specific surface area is preferably at least 250 m 2 / g and particularly preferably at least 500 m 2 / g. The DBP number is preferably at least 200 ml / 100 g and more preferably at least 250 ml / 100 g. They may be acidic or basic carbon blacks. Preferably, the carbon blacks (a2) are basic carbon blacks. Of course, mixtures of different binders can be used.

Geeignete Leitfähigkeitsruße mit spezifischen Oberflächen von bis zu ca. 1500 m2/g sowie DBP-Zahlen von bis zu ca. 550 ml /100 g sind kommerziell erhältlich, beispielsweise unter den Namen Ketjenblack® EC300 J, Ketjenblack® EC600 J (Fa. Akzo), Printex® XE (Fa. Degussa) oder Black Pearls® 2000 (Fa. Cabot).Suitable conductive carbon blacks having specific surface areas of up to about 1500 m 2 / g and DBP numbers of up to about 550 ml / 100 g are commercially available (for example under the name Ketjenblack ® EC300 J, Ketjenblack ® EC600 J Fa. Akzo ), Printex ® XE (Messrs. Degussa) or Black Pearls® 2000 (Messrs. Cabot).

Die Art und die Menge des Rußes (a2) werden vom Fachmann je nach den gewünschten Eigenschaften des druckenden Reliefs des Flexodruckelementes gewählt. Die Menge hängt auch davon ab, ob die Schicht (A) als einzige reliefbildende Schicht vorhanden ist, oder ob noch mindestens eine weitere reliefbildende Schicht (A) und/oder (B) vorhanden ist. Falls das erfindungsgemäße Flexodruckelement nur eine einzige Schicht (A) als reliefbildender Schicht umfasst, hat sich im Regelfalle eine Menge von 0,5 bis 20 Gew. % des Rußes bezüglich der Menge aller Bestandteile von Schicht (A) bewährt. Bevorzugt ist eine Menge von 3 % bis 18 %, und ganz besonders bevorzugt sind 5 bis 15 %. Falls es sich um ein mehrschichtiges Flexodruckelement handelt, welches neben einer Schicht (A) auch noch weitere Schichten (A) und/oder (B) umfasst, dann kann der Rußgehalt in der obersten Schicht (A) auch größer sein, beispielsweise bis zu 35 Gew. %, und in besonderen Fällen sogar noch höher. Die Dicke einer solchen obersten Schicht (A) mit einem Rußgehalt größer 20 Gew. % sollte im Regelfalle 0,3 mm nicht überschreiten.The type and amount of carbon black (a2) are chosen by the person skilled in the art according to the desired properties of the printing relief of the flexographic printing element. The amount also depends on whether the layer (A) is present as the sole relief-forming layer, or whether at least one further relief-forming layer (A) and / or (B) is present. If the flexographic printing element according to the invention comprises only a single layer (A) as a relief-forming layer, an amount of from 0.5 to 20% by weight of the carbon black with respect to the amount of all components of layer (A) has generally proven successful. Preferred is an amount of 3% to 18%, and most preferably 5 to 15%. If it is a multilayer flexographic printing element, which in addition to a layer (A) also includes other layers (A) and / or (B), then the carbon black content in the top layer (A) may be greater, for example up to 35 % By weight, and in special cases even higher. The thickness of such an uppermost layer (A) with a carbon black content greater than 20% by weight should as a rule not exceed 0.3 mm.

Art und Menge der Komponenten zum Vernetzen (a3) richten sich nach der gewünschten Vernetzungstechnik und werden vom Fachmann entsprechend ausgewählt. Bevorzugt wird die Vernetzung thermochemisch durch Erwärmen der Schicht oder durch Bestrahlung mittels Elektronenstrahlung vorgenommen. Da die Schicht aufgrund des enthaltenen Rußes mehr oder weniger schwarz gefärbt ist, ist fotochemische Vernetzung nur in Ausnahmefällen möglich, nämlich wenn der Ruß-Gehalt nur sehr gering und/oder die Schicht nur sehr dünn ist.The type and amount of the components for crosslinking (a3) depend on the desired crosslinking technique and are selected accordingly by the person skilled in the art. The crosslinking is preferably carried out thermochemically by heating the layer or by irradiation by means of electron radiation. Since the layer is colored more or less black due to the carbon black contained, photochemical crosslinking is possible only in exceptional cases, namely when the carbon black content is only very low and / or the layer is only very thin.

Thermische Vernetzung kann vorgenommen werden, indem man der Schicht polymerisierbare Verbindungen beziehungsweise Monomere zugibt. Die Monomere weisen mindestens eine polymerisierbare, olefinisch ungesättigte Gruppe auf. Als Monomere eignen sich in prinzipiell bekannter Art und Weise Ester oder Amide der Acrylsäure oder Methacrylsäure mit mono- oder polyfunktionellen Alkoholen, Aminen, Aminoalkoholen oder Hydroxyethern und -estern, Styrol oder substituierte Styrole, Ester der Fumar- oder Maleinsäure oder Allylverbindungen. Die Gesamtmenge eventuell eingesetzter Monomerer wird vom Fachmann je nach den gewünschten Eigenschaften der Reliefschicht festgelegt. Im Regelfalle sollten aber 30 Gew. % bezüglich der Menge aller Bestandteile der Schicht nicht überschritten werden.Thermal crosslinking can be carried out by adding polymerizable compounds or monomers to the layer. The monomers have at least one polymerizable, olefinically unsaturated group. Suitable monomers in a manner known in principle are esters or amides of acrylic acid or methacrylic acid with monofunctional or polyfunctional alcohols, amines, aminoalcohols or hydroxyethers and esters, styrene or substituted styrenes, esters of fumaric or maleic acid or allyl compounds. The total amount of monomers possibly used is determined by the skilled person depending on the desired properties of the relief layer. As a rule, however, 30% by weight should not be exceeded with regard to the amount of all constituents of the layer.

Weiterhin kann ein thermischer Polymerisationsinitiator eingesetzt werden. Als Polymerisationsinitiatoren können prinzipiell handelsübliche thermische Initiatoren für die radikalische Polymerisation eingesetzt werden, wie beispielsweise geeignete Peroxide, Hydroperoxide oder Azoverbindungen. Zum Vernetzen können auch typische Vulkanisatoren eingesetzt werden.Furthermore, a thermal polymerization initiator can be used. Commercially available thermal initiators for free-radical polymerization, such as, for example, suitable peroxides, hydroperoxides or azo compounds, can be used as polymerization initiators. For crosslinking and typical vulcanizers can be used.

Die thermische Vernetzung kann auch durchgeführt werden, indem man der Schicht ein thermisch härtendes Harz wie beispielsweise ein Epoxyharz als vernetzende Komponente zusetzt.The thermal crosslinking may also be carried out by adding a thermosetting resin such as an epoxy resin as the crosslinking component to the layer.

Verfügt das eingesetzte Bindemittel (a1) in ausreichendem Maße über vernetzbare Gruppen, so ist die Zugabe von zusätzlichen vernetzbaren Monomeren oder Oligomeren nicht erforderlich, sondern das Bindemittel kann direkt mittels geeigneter Vernetzer vernetzt werden. Dies ist insbesondere bei Naturkautschuk oder Synthesekautschuk möglich, der direkt mit üblichen Vulkanisatoren oder Peroxid-Vernetzern vernetzt werden kann.If the binder (a1) used has sufficiently crosslinkable groups, the addition of additional crosslinkable monomers or oligomers is not necessary, but the binder can be crosslinked directly by means of suitable crosslinkers. This is particularly possible with natural rubber or synthetic rubber, which can be crosslinked directly with conventional vulcanizers or peroxide crosslinkers.

Vernetzung mittels Elektronenstrahlung kann einerseits in Analogie zur thermischen Vernetzung durchgeführt werden, indem die ethylenisch ungesättigte Gruppen umfassende Monomere enthaltenden Schichten mittels Elektronenstrahlung vernetzt werden. Der Zusatz von Initiatoren ist dabei nicht erforderlich. Durch Elektronenstrahlung können Bindemittel, die mittels Elektronenstrahlung vernetzende Gruppen aufweisen, auch direkt, ohne den Zusatz weiterer Monomerer vernetzt werden. Derartige Gruppen umfassen insbesondere olefinische Gruppen, protische Gruppen wie beispielsweise -OH, -NH2, -NHR, -COOH oder -SO3H sowie Gruppen, die stabilisierte Radikale und Kationen bilden können, z.B. -CR'R"-, -CH(O-CO-CH3)-, -CH(O-CH3)-, -CH(NR'R")- oder -CH(CO-O-CH3). Es können auch zusätzlich protische Gruppen aufweisende Verbindungen eingesetzt werden. Beispiele umfassen di- oder polyfunktionelle Monomere, bei denen endständige funktionelle Gruppen über einen Spacer miteinander verbunden sind, wie Dialkohole wie beispielweise 1,4 Butandiol, 1,6-Hexandiol, 1,8 Octandiol, 1,9 Nonandiol, Diamine wie beispielsweise 1,6-Hexandiamin, 1,8-Hexandiamin, Dicarbonsäuren wie beispielsweise 1,6-Hexandicarbonsäure, Terephthalsäure, Maleinsäure oder Fumarsäure.Crosslinking by means of electron radiation can, on the one hand, be carried out in analogy to thermal crosslinking by crosslinking the layers comprising ethylenically unsaturated groups comprising monomers by means of electron radiation. The addition of initiators is not required. By means of electron radiation, binders which have crosslinking groups by means of electron radiation can also be crosslinked directly, without the addition of further monomers. Such groups include in particular olefinic groups, protic groups such as -OH, -NH 2 , -NHR, -COOH or -SO 3 H and groups which can form stabilized radicals and cations, eg -CR'R "-, -CH ( O-CO-CH 3 ) -, -CH (O-CH 3 ) -, -CH (NR'R ") - or -CH (CO-O-CH 3 ). It is also possible to use compounds having protic groups. Examples include di- or polyfunctional monomers in which terminal functional groups are connected to one another via a spacer, such as dialcohols such as, for example, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, diamines, for example 1, 6-hexanediamine, 1,8-hexanediamine, dicarboxylic acids such as 1,6-hexanedicarboxylic acid, terephthalic acid, maleic acid or fumaric acid.

Fotochemische Vernetzung kann durch Einsatz der oben beschriebenen olefinischen Monomere in Kombination mit mindestens einem geeigneten Fotoinitiator oder einem Fotoinitiatorsystem erfolgen. Als Initiatoren für die Fotopolymerisation sind in bekannter Art und Weise Benzoin oder Benzoinderivate, wie α-Methylbenzoin oder Benzoinether, Benzilderivate, wie z.B. Benzilketale, Acylarylphosphinoxide, Acylarylphosphinsäureester, Mehrkernchinone geeignet, ohne dass die Aufzählung darauf beschränkt sein soll.Photochemical crosslinking may be accomplished by employing the olefinic monomers described above in combination with at least one suitable photoinitiator or photoinitiator system. As initiators for the photopolymerization in a known manner benzoin or benzoin derivatives, such as α-methylbenzoin or benzoin ethers, benzil derivatives, such as benzil ketals, Acylarylphosphinoxide, Acylarylphosphinsäureester, Mehrkernchinone suitable without the listing should be limited thereto.

Schicht (A) kann optional selbstverständlich noch weitere Komponenten wie beispielsweise Weichmacher, Farbstoffe, Dispergierhilfsmittel, Haftadditive, Antistatika, abrasive Partikel oder Verarbeitungshilfsmittel umfassen. Die Menge derartiger Zusätze dient der Feineinstellung der Eigenschaften und sollte im Regelfalle 30 Gew.-% bezüglich der Menge aller Komponenten von Schicht (A) des Aufzeichnungselementes nicht überschreiten.Of course, layer (A) may optionally also comprise further components such as, for example, plasticizers, dyes, dispersing aids, adhesion additives, antistatic agents, abrasive particles or processing aids. The amount of such additives serves to fine tune the properties and should generally not exceed 30% by weight relative to the amount of all the components of layer (A) of the recording element.

Das erfindungsgemäße Flexodruckelement kann nur eine einzige Schicht (A) als reliefbildende Schicht umfassen. Es kann auch zwei oder mehrere Schichten (A) übereinander aufweisen, wobei diese Schichten die gleiche oder verschiedene Zusammensetzung aufweisen können.The flexographic printing element according to the invention may comprise only a single layer (A) as a relief-forming layer. It may also have two or more layers (A) on top of each other, which layers may have the same or different composition.

Das erfindungsgemäße Flexodruckelement kann optional auch mindestens eine weitere, reliefbildende, vernetzte elastomere Schicht (B) zwischen dem Träger und Schicht (A) aufweisen. Es kann sich dabei auch um zwei oder mehrere Schichten (B) gleicher oder verschiedener Zusammensetzung handeln.Optionally, the flexographic printing element according to the invention may also have at least one further, relief-forming, crosslinked elastomeric layer (B) between the support and the layer (A). It may also be two or more layers (B) of the same or different composition.

Schicht (B) ist erhältlich durch Vernetzen einer Schicht, welche mindestens ein Bindemittel (b1) sowie Komponenten zum Vemetzen (b3) umfasst. Geeignete Bindemittel (b1) sowie Komponenten zum Vemetzen (b3) können vom Fachmann aus den gleichen Listen wie bei (a1) und (a3) aufgeführt ausgewählt werden. Schicht (B) kann optional selbstverständlich noch weitere Komponenten wie beispielsweise Weichmacher, Farbstoffe, Dispergierhilfsmittel, Haftadditive, Antistatika, Verarbeitungshilfsmittel oder abrasive Partikel umfassen.Layer (B) is obtainable by crosslinking a layer comprising at least one binder (b1) and components for crosslinking (b3). Suitable binders (b1) and components for crosslinking (b3) can be selected by the person skilled in the art from the same lists as listed for (a1) and (a3). Of course, layer (B) may optionally also comprise further components such as, for example, plasticizers, dyes, dispersing aids, adhesion additives, antistatic agents, processing aids or abrasive particles.

In einer besonders bevorzugten Ausführungsform von (B) handelt es sich bei dem Bindemittel (b1) um ein thermoplastisch elastomeres Bindemittel. Da für die Schicht (B) ein Absorber für Laserstrahlung nicht zwingend erforderlich, können auch im UV/VIS-Bereich lichtdurchlässige Schichten hergestellt werden. In diesem Falle kann die Schicht auch besonders elegant fotochemisch vernetzt werden.In a particularly preferred embodiment of (B), the binder (b1) is a thermoplastic elastomeric binder. Since an absorber for laser radiation is not absolutely necessary for the layer (B), transparent layers can also be produced in the UV / VIS range. In this case, the layer can also be particularly photochemically crosslinked.

Die Schicht (b) kann gleichwohl optional eine Laserstrahlung absorbierende Substanz (b2) enthalten. Es können auch Gemische verschiedener Absorber für Laserstrahlung eingesetzt werden. Geeignete Absorber für Laserstrahlung weisen eine hohe Absorption im Bereich der Laserwellenlänge auf. Insbesondere sind Absorber geeignet, die eine hohe Absorption im nahen infrarot sowie im längerwelligen VIS-Bereich des elektromagnetischen Spektrums aufweisen. Derartige Absorber eignen sich besonders zur Absorption der Strahlung von leistungsstarken Nd-YAG-Lasern (1064 nm) sowie von IR-Diodenlasern, die typischerweise Wellenlängen zwischen 700 und 900 nm sowie zwischen 1200 und 1600 nm aufweisen.However, the layer (b) may optionally contain a laser radiation absorbing substance (b2). It is also possible to use mixtures of different absorbers for laser radiation. Suitable absorbers for laser radiation have a high absorption in the range of the laser wavelength. In particular, absorbers are suitable which have a high absorption in the near infrared and in the longer wavelength VIS range of the electromagnetic spectrum. Such absorbers are particularly suitable for absorbing the radiation of high-performance Nd-YAG lasers (1064 nm) and of IR diode lasers typically having wavelengths between 700 and 900 nm and between 1200 and 1600 nm.

Beispiele für geeignete Absorber für die Laserstrahlung (b2) sind im infraroten Spektralbereich stark absorbierende Farbstoffe wie beispielsweise Phthalocyanine, Naphthalocyanine, Cyanine, Chinone, Metall-Komplex-Farbstoffe wie beispielsweise Dithiolene oder photochrome Farbstoffe.Examples of suitable absorbers for the laser radiation (b2) are dyes which absorb strongly in the infrared spectral range, for example phthalocyanines, naphthalocyanines, cyanines, quinones, metal complex dyes, for example dithiolenes or photochromic dyes.

Weiterhin geeignete Absorber sind anorganische Pigmente, insbesondere intensiv gefärbte anorganische Pigmente wie beispielsweise Chromoxide, Eisenoxide oder Eisenoxidhydrate.Further suitable absorbers are inorganic pigments, in particular intensively colored inorganic pigments such as, for example, chromium oxides, iron oxides or iron oxide hydrates.

Besonders geeignet als Laserstrahlung absorbierende Substanzen sind feinteilige Rußsorten, wobei die Auswahl bei (b2) nicht auf die oben genannten Leitfähigkeitsruße beschränkt ist. Es können auch Ruße mit einer geringeren spezifischen Oberfläche und geringerer DBP-Absorption eingesetzt werden. Beispiele weiterer geeigneter Ruße umfassen Printex® U, Printex® A oder Spezialschwarz® 4 (Fa. Degussa).Particularly suitable as laser radiation absorbing substances are finely divided carbon blacks, the selection in (b2) is not limited to the above-mentioned conductivity soot. It is also possible to use carbon blacks with a lower specific surface area and lower DBP absorption. Examples of other suitable carbon blacks include Printex ® U, Printex ® A or Special Black 4 ® (Messrs. Degussa).

Das lasergravierbare Flexodruckelement kann optional noch weitere Schichten umfassen.The laser-engravable flexographic printing element may optionally include further layers.

Beispiele derartiger Schichten umfassen elastomere Unterschichten aus einer anderen Formulierung, die sich zwischen dem Träger und der bzw. den lasergravierbaren Schicht(en) befindet und die nicht notwendigerweise lasergravierbar sein muss. Mit derartigen Unterschichten können die mechanischen Eigenschaften der Reliefdruckplatten verändert werden, ohne die Eigenschaften der eigentlichen druckenden Reliefschicht zu beeinflussen.Examples of such layers include elastomeric sub-layers of another formulation located between the support and the laser-engravable layer (s), which need not necessarily be laser engravable. With such sub-layers, the mechanical properties of the relief printing plates can be changed without affecting the properties of the actual printing relief layer.

Dem gleichen Zweck dienen so genannte elastische Unterbauten, die sich unter dem dimensionsstabilen Träger des lasergravierbaren Flexodruckelementes befinden, also auf der von der lasergravierbaren Reliefschicht abgewandten Seite des Trägers.The so-called elastic substructures, which are located under the dimensionally stable carrier of the laser-engravable flexographic printing element, ie on the side of the carrier facing away from the laser-engravable relief layer, serve the same purpose.

Weitere Beispiele umfassen Haftschichten, die den Träger mit darüber liegenden Schichten oder verschiedene Schichten untereinander verbinden.Other examples include adhesive layers that bond the backing to overlying layers or to different layers.

Des Weiteren kann das lasergravierbare Flexodruckelement gegen mechanische Beschädigung durch eine, beispielsweise aus PET bestehende Schutzfolie geschützt werden, die sich auf der jeweils obersten Schicht befindet, und die vor dem Gravieren mit Lasern entfernt werden muss. Die Schutzfolie kann zur Erleichterung des Abziehens auf geeignete Art und Weise oberflächenbehandelt werden, beispielsweise durch Silikonisierung, vorausgesetzt, durch die Oberflächenbehandlung wird die Reliefoberschicht in ihren Druckeigenschaften nicht negativ beeinflusst.Furthermore, the laser-engravable flexographic printing element can be protected against mechanical damage by a, for example consisting of PET protective film, which is located on the topmost layer, and must be removed before engraving with lasers. The protective film may be surface-treated in a suitable manner to facilitate peeling, for example by Siliconization, provided that the surface treatment does not adversely affect the relief top layer in its printing properties.

Die Schichtdicke von Schicht (A) sowie optional Schicht (B) wird vom Fachmann je nach der Art sowie dem gewünschten Verwendungszweck der Flexodruckform geeignet gewählt.The layer thickness of layer (A) and optionally layer (B) is suitably selected by the person skilled in the art, depending on the type and the intended use of the flexographic printing plate.

Die Dicke von Schicht (A) beträgt üblicherweise 0,05 mm bis 7 mm. Wird Schicht (A) als einzige reliefbildende Schicht eingesetzt, so sollte die Dicke nicht weniger als 0,2 mm betragen. Bewährt hat sich bei einem einschichtigen Flexodruckelement insbesondere eine Dicke von 0,3 bis 7 mm, bevorzugt sind 0,5 bis 5 mm und besonders bevorzugt 0,7 bis 4 mm.The thickness of layer (A) is usually 0.05 mm to 7 mm. If layer (A) is used as the only relief-forming layer, the thickness should not be less than 0.2 mm. In particular, a thickness of 0.3 to 7 mm, preferably 0.5 to 5 mm and particularly preferably 0.7 to 4 mm, has proven useful with a single-layer flexographic printing element.

Wird die Schicht (A) als Oberschicht in Kombination mit einer zweiten reliefbildenden Schicht (B) eingesetzt, so kann auch eine relativ dünne Schicht (A) eingesetzt werden. Bewährt hat sich in diesem Falle insbesondere eine Dicke von 0,05 bis 0,3 mm, bevorzugt 0,07 bis 0,2 mm und beispielsweise eine Dicke von ca. 0,1 mm. Die Gesamtdicke von Schicht (A), Schicht (B) sowie gegebenenfalls weiteren Schichten zusammen sollte im Regelfalle 0,3 bis 7 mm, bevorzugt 0,5 bis 5 mm betragen.If the layer (A) is used as a top layer in combination with a second relief-forming layer (B), a relatively thin layer (A) can also be used. Has proven useful in this case, in particular a thickness of 0.05 to 0.3 mm, preferably 0.07 to 0.2 mm and, for example, a thickness of about 0.1 mm. The total thickness of layer (A), layer (B) and optionally further layers together should as a rule be 0.3 to 7 mm, preferably 0.5 to 5 mm.

Sofern das erfindungsgemäße Flexodruckelement über zwei Schichten (A) und (B) verfügt, hat es sich besonders bewährt, dass die Oberschicht (A) die gleiche oder eine größere Shore A-Härte aufweist als die Unterschicht (B), ohne dass die Erfindung darauf beschränkt sein soll. Dies kann beispielsweise durch die Wahl des jeweiligen Vernetzungsgrades erreicht werden und/oder durch eine geeignete Wahl der Bindemittel. Besonders bewährt hat es sich, in einem derartigen zweischichtigen Flexodruckelement, als Bindemittel (a1) für die Schicht (A) einen Natur- oder Synthesekautschuk einzusetzen. Für Schicht (B) hat es sich bewährt, als Bindemittel (b1) ein thermolastisch elastomeres Bindemittel einzusetzen, bevorzugt ein Blockcopolymeres vom Styrol-Isopren- oder vom Styrol-Butadien-Typ, besonders bevorzugt vom Styrol-Butadien-Typ. In der bevorzugten Ausführungsform eines zwei oder mehrschichtigen Flexodruckelementes weist die Schicht (B) keinen zusätzlichen Absorber für Laserstrahlung auf.If the flexographic printing element according to the invention has two layers (A) and (B), it has proven particularly useful that the top layer (A) has the same or a greater Shore A hardness than the bottom layer (B), without the invention being thereon should be limited. This can be achieved for example by the choice of the degree of crosslinking and / or by a suitable choice of the binder. It has proven particularly useful to use a natural or synthetic rubber as the binder (a1) for the layer (A) in such a two-layer flexographic printing element. For layer (B), it has proven useful to use as binder (b1) a thermolastic elastomeric binder, preferably a styrene-isoprene or styrene-butadiene-type block copolymer, more preferably styrene-butadiene-type block copolymer. In the preferred embodiment of a two or more layered flexographic printing element, layer (B) has no additional absorber for laser radiation.

Das erfindungsgemäße Flexodruckelement kann beispielsweise durch Lösen bzw. Dispergieren aller Komponenten in einem geeigneten Lösemittel und Aufgießen auf einen Träger hergestellt werden. Bei mehrschichtigen Elementen können in prinzipiell bekannter Art und Weise mehrere Schichten aufeinander gegossen werden. Nach dem Gießen kann -wenn gewünscht- die Deckfolie zum Schutz vor Beschädigungen des Ausgangsmaterials aufgebracht werden. Es ist auch umgekehrt möglich, auf die Deckfolie zu gießen und zum Schluss den Träger aufzukaschieren.The flexographic printing element according to the invention can be produced for example by dissolving or dispersing all components in a suitable solvent and pouring onto a support. In the case of multilayer elements, several layers can be cast on one another in a manner known in principle. After casting, if desired, the cover sheet can be applied to protect it from damage to the starting material. It is also possible, conversely, to pour on the cover film and finally laminate the carrier.

Es hat sich regelmäßig bewährt, zunächst den Leitfähigkeitsruß mit dem Bindemittel oder einem Teil des Bindemittels intensiv vorzumischen, beispielsweise in einem Kneter, und erst zu dieser Mischung die weiteren Komponenten zuzugeben. Hierdurch wird eine sehr homogene Verteilung des Leitfähigkeitsrußes in der Schicht (A) erreicht. Die Vernetzung kann anschließend in prinzipiell bekannter Art und Weise je nach der gewählten Vernetzungstechnik durch Bestrahlen mit Elektronenstrahlen oder mit aktinischem Licht oder durch Erwärmen erfolgen.It has been proven on a regular basis, first vorzumichen the conductivity soot with the binder or a part of the binder intensively, for example in a kneader, and only add to this mixture, the other components. As a result, a very homogeneous distribution of the conductivity soot in the layer (A) is achieved. The crosslinking can then take place in a manner known in principle, depending on the selected crosslinking technique, by irradiation with electron beams or with actinic light or by heating.

Thermoplastisch elastomere Bindemittel enthaltende Schichten können auch in prinzipiell bekannter Art und Weise mittels Extrusion und Kalandrierung zwischen eine Deck- und eine Trägerfolie hergestellt werden. Diese Technik ist insbesondere dann empfehlenswert, wenn fotochemisch oder per Elektronenstrahlung vernetzt werden soll. Sie ist grundsätzlich auch bei thermischer Vernetzung einsetzbar. Hierbei muss allerdings darauf geachtet werden, einen thermischen Initiator einzusetzen, der bei der Temperatur von Extrusion und Kalandrierung noch nicht zerfällt und die Schicht noch nicht vorzeitig polymerisiert.Thermoplastic elastomeric binder-containing layers can also be prepared in a manner known in principle by extrusion and calendering between a cover and a carrier film. This technique is particularly recommended when photochemical or electron beam radiation is to be crosslinked. In principle, it can also be used in thermal crosslinking. However, care must be taken to use a thermal initiator, which does not decompose at the temperature of extrusion and calendering and the layer does not polymerize prematurely.

Es können selbstverständlich auch Kombinationen verschiedner Herstelltechniken eingesetzt werden. Beispielsweise kann die Schicht (A) auf eine abziehbare PET-Folie gegossen werden. Schicht (B) kann mittels Extrusion und Kalandrieren zwischen eine Trägerfolie- und ein Deckelement hergestellt werden, wobei man als Deckelement in Analogie zu der von EP-B 084 851 beschrieben Vorgehensweise die mit Schicht (A) beschichtete PET-Folie einsetzt. Auf diese Art und Weise wird ein intensiv haftender Verbund zwischen den beiden Schichten erreicht. Anschließend kann man den ganzen Verbund mittels Elektronenstrahlung vernetzen. Man kann auch Schicht (A) bereits nach dem Gießen vernetzen, beispielsweise thermisch. Schicht (B) kann nach dem Zusammenfügen des Verbundes vernetzt werden, beispielsweise fotochemisch durch Bestrahlen durch die Trägerfolie hindurch.Of course, it is also possible to use combinations of different production techniques. For example, the layer (A) may be cast on a peelable PET film. Layer (B) can be prepared by extrusion and calendering between a Trägerfolie- and a cover element, wherein as a cover element in analogy to that of EP-B 084 851 described procedure used with the layer (A) coated PET film. In this way, an intensive bond between the two layers is achieved. Subsequently, one can crosslink the whole composite by means of electron radiation. It is also possible to crosslink layer (A) already after casting, for example thermally. Layer (B) can be crosslinked after joining the composite, for example photochemically by irradiation through the carrier film.

Das erfindungsgemäße Flexodruckelement wird bevorzugt zur Herstellung von Flexodruckformen mittels Laser-Direktgravur eingesetzt. Selbstverständlich kann ein Druckrelief aber auch auf andere Art und Weise, beispielsweise mechanisch eingraviert werden.The flexographic printing element according to the invention is preferably used for the production of flexographic printing plates by means of direct laser engraving. Of course, a printing relief but also in other ways, for example, be engraved mechanically.

Bei der Laser-Direktgravur absorbiert die Reliefschicht Laserstrahlung in einem solchen Ausmaße, so dass sie an solchen Stellen, an denen sie einem Laserstrahl ausreichender Intensität ausgesetzt ist, entfernt oder zumindest abgelöst wird. Vorzugsweise wird die Schicht dabei ohne vorher zu schmelzen verdampft oder thermisch oder oxidativ zersetzt, so dass ihre Zersetzungsprodukte in Form von heißen Gasen, Dämpfen, Rauch oder kleinen Partikeln von der Schicht entfernt werden.In direct laser engraving, the relief layer absorbs laser radiation to such an extent that it is removed or at least detached at those locations where it is exposed to a laser beam of sufficient intensity. Preferably, the layer is thereby vaporized without premelting or thermally or oxidatively decomposed, so that its decomposition products in the form of hot gases, vapors, smoke or small particles are removed from the layer.

Aufgrund des Gehaltes an Leitfähigkeitsruß weist Schicht (A) eine gute Absorption insbesondere im gesamten infraroten Spektralbereich zwischen 750 nm und 12000 nm auf. Sie kann daher gleichermaßen gut mittels CO2-Lasern mit einer Wellenlänge von 10,6 µm oder mittels Nd-YAG-Lasern (1064 nm), IR-Diodenlaser oder Festkörperlasern graviert werden.Due to the content of conductivity soot layer (A) has a good absorption especially in the entire infrared spectral range between 750 nm and 12000 nm. Therefore, it can equally well be engraved by means of CO 2 lasers having a wavelength of 10.6 microns or using Nd-YAG lasers (1064 nm), IR diode lasers or solid state lasers.

Bei Schicht (B) richtet sich die Auswahl des optimalen Lasers nach dem Aufbau der Schicht, und hierbei insbesondere danach, ob ein Absorber für Laserstrahlung (b2) vorhanden ist oder nicht. Die für Schicht (B) eingesetzten flexotypischen Bindemittel absorbieren im Bereich zwischen 9000 nm und 12 000 nm üblicherweise in ausreichendem Maße, so dass die Gravur der Schicht mit Hilfe von CO2-Lasern möglich ist, ohne dass zusätzliche IR-Absorber zugegeben werden müßten. Das Gleiche gilt für UV-Laser, wie bspw. Excimer-Laser. Bei Verwendung von Nd-YAG-Lasern und IR-Dioden-Lasern ist der Zusatz eines Laserabsorbers im Regelfalle erforderlich. Die Laser können entweder kontinuierlich oder gepulst betrieben werden.For layer (B), the selection of the optimum laser depends on the structure of the layer, and in particular on whether an absorber for laser radiation (b2) is present or not. The flexotypic binders used for layer (B) usually absorb sufficiently in the range between 9000 nm and 12000 nm, so that the engraving of the layer is possible with the aid of CO 2 lasers without having to add additional IR absorbers. The same applies to UV lasers, such as excimer lasers. When using Nd-YAG lasers and IR diode lasers, the addition of a laser absorber is usually required. The lasers can be operated either continuously or pulsed.

Die Tiefe der einzugravierenden Elemente richtet sich nach der Gesamtdicke des Reliefs und der Art der einzugravierenden Elemente und wird vom Fachmann je nach den gewünschten Eigenschaften der Druckform bestimmt. Die Tiefe der einzugravierenden Reliefelemente beträgt zumindest 0,03 mm, bevorzugt 0,05 mm - genannt ist hier die Mindesttiefe zwischen einzelnen Rasterpunkten. Druckplatten mit zu geringen Relieftiefen sind für das Drucken mittels Flexodrucktechnik im Regelfalle ungeeignet, weil die Negativelemente mit Druckfarbe vollaufen. Einzelne Negativpunkte sollten üblicherweise größere Tiefen aufweisen; für solche von 0,2 mm Durchmesser ist üblicherweise eine Tiefe von mindestens 0,07 bis 0,08 mm empfehlenswert. Bei weggravierten Flächen empfiehlt sich eine Tiefe von mehr als 0,15 mm, bevorzugt mehr als 0,3 mm. Letzteres ist natürlich nur bei einem entsprechend dickem Relief möglich.The depth of the elements to be engraved depends on the total thickness of the relief and the type of elements to be engraved and is determined by the person skilled in the art according to the desired properties of the printing form. The depth of the engraved relief elements is at least 0.03 mm, preferably 0.05 mm - is called here the minimum depth between individual grid points. Printing plates with too low relief depths are generally unsuitable for printing by means of flexographic printing technology because the negative elements are filled with printing ink. Individual negative points should usually have greater depths; for those of 0.2 mm diameter, a depth of at least 0.07 to 0.08 mm is usually recommended. For weggravierten surfaces is recommended a depth of more than 0.15 mm, preferably more than 0.3 mm. The latter is of course only possible with a correspondingly thick relief.

Zur Gravur kann ein Lasersystem eingesetzt werden, welches nur über einen einzigen Laserstrahl verfügt. Bevorzugt werden aber Lasersysteme eingesetzt, die zwei oder mehrere Laserstrahlen aufweisen. Die Laserstrahlen können alle die gleiche Wellenlänge aufweisen oder es können Laserstrahlen unterschiedlicher Wellenlänge eingesetzt werden. Weiterhin bevorzugt ist mindestens einer der Strahlen speziell zum Erzeugen von Grobstrukturen angepasst und mindestens einer der Strahlen speziell zum Schreiben von Feinstrukturen angepasst. Mit derartigen Systemen lassen sich besonders elegant qualitativ hochwertige Druckformen erzeugen.For engraving, a laser system can be used, which has only a single laser beam. Preferably, however, laser systems are used which have two or more laser beams. The laser beams can all have the same wavelength or laser beams of different wavelengths can be used. Further preferably, at least one of the beams is specially adapted for generating coarse structures, and at least one of the beams is specially adapted for writing fine structures. With such systems can be particularly elegant produce high-quality printing forms.

Beispielsweise kann es sich bei den Lasern ausschließlich um CO2-Laser handeln, wobei der Strahl zur Erzeugung der Feinstrukturen eine geringere Leistung aufweist als die Strahlen zur Erzeugung von Grobstrukturen. So hat sich beispielsweise die Kombination eines Strahles mit einer Leistung von 50 bis 100 W in Kombination mit zwei Strahlen von je 200 W als besonders vorteilhaft erwiesen. Es kann sich auch um einen Nd/YAG-Laser zum Schreiben von feinen Strukturen, in Kombination mit einem oder mehreren leistungsstarken CO2-Lasern handeln. Zur Lasergravur besonders geeignete Mehrstrahl-Lasersysterne sowie geeignete Gravurverfahren sind prinzipiell bekannt und beispielsweise in EP-A 1 262 315 und EP-A 1 262 316 offenbart. Die beschriebene Apparatur weist eine rotierbare Trommel auf, auf die das Flexodruckelement montiert und die Trommel in Rotation versetzt wird. Die Laserstrahlen bewegen sich langsam parallel zur Trommelachse von einem Ende zum anderen Ende der Trommel und werden dabei auf geeignete Art und Weise moduliert. Auf diese Art und Weise kann die gesamte Fläche des Flexodruckelementes nach und nach graviert werden. Die Relativbewegung zwischen Trommel und Laserstrahlen kann durch Bewegung des Lasers und/oder der Trommel erfolgen.For example, it may be in the Laser exclusively CO 2 laser, the beam for generating the fine structures having a lower power than the beams for producing coarse structures. Thus, for example, the combination of a beam with a power of 50 to 100 W in combination with two beams of 200 W each has proved to be particularly advantageous. It can also be an Nd / YAG laser for writing fine structures, in combination with one or more powerful CO 2 lasers. For laser engraving particularly suitable multi-beam laser systems and suitable engraving methods are known in principle and, for example, in EP-A 1 262 315 and EP-A 1 262 316 disclosed. The described apparatus has a rotatable drum on which the flexographic printing element is mounted and the drum is rotated. The laser beams move slowly parallel to the drum axis from one end to the other end of the drum and are thereby modulated in a suitable manner. In this way, the entire surface of the flexographic printing element can be engraved gradually. The relative movement between the drum and laser beams can be done by movement of the laser and / or the drum.

Mit dem Strahl zur Erzeugung von Feinstrukturen werden bevorzugt nur die Ränder der Reliefelemente sowie der oberste Schichtabschnitt der reliefbildenden Schicht graviert. Die leistungsstärkeren Strahlen dienen bevorzugt zum Vertiefen der erzeugten Strukturen sowie zum Ausheben größerer nichtdruckender Vertiefungen. Die Einzelheiten richten sich selbstverständlich auch nach dem zu gravierenden Motiv.With the beam for producing fine structures, only the edges of the relief elements and the uppermost layer section of the relief-forming layer are preferably engraved. The more powerful beams are preferably used to deepen the structures produced and to dig larger non-printing depressions. Of course, the details also depend on the motif to be engraved.

Derartige Mehrstrahlsysteme können zum Gravieren der erfindungsgemäßen Flexodruckelementen mit nur einer Schicht (A) eingesetzt werden. Von besonderem Vorteile werden sie in Kombination mit einem mehrschichtigen Flexodruckelement mit einer Schicht (A) sowie einer oder mehrerer Schichten (B) eingesetzt. Besonders vorteilhaft werden in diesem Falle die Dicke der Oberschicht (A) sowie die Leistung des leistungsschwächeren Laserstrahles und die sonstigen Laserparameter so aufeinander abgestimmt, dass der leistungsschwächere Strahl im wesentlichen Schicht (A) graviert, während die leistungsstärkeren Strahlen im wesentlichen Schicht (B) oder auch (A) und (B) zusammen gravieren. Im Regelfalle ist eine Schichtdicke von 0,05 mm bis 0,3 mm, bevorzugt 0,07 mm bis 0,2 mm für die Oberschicht (A) ausreichend.Such multi-beam systems can be used for engraving the flexographic printing elements according to the invention with only one layer (A). Of particular advantage they are used in combination with a multilayer flexographic printing element with a layer (A) and one or more layers (B). In this case, the thickness of the upper layer (A) and the power of the lower-power laser beam and the other laser parameters are matched to one another in such a way that the lower-power beam substantially engraves layer (A), while the more powerful rays essentially layer (B) or also engrave (A) and (B) together. As a rule, a layer thickness of 0.05 mm to 0.3 mm, preferably 0.07 mm to 0.2 mm is sufficient for the top layer (A).

Vorteilhaft kann die erhaltene Flexodruckform im Anschluss an die Lasergravur in einem weiteren Verfahrensschritt nachgereinigt werden. In manchen Fällen kann dies durch einfaches Abblasen mit Druckluft oder Abbürsten geschehen.Advantageously, the resulting flexographic printing plate can be cleaned after the laser engraving in a further process step. In some cases, this can be done by simply blowing off with compressed air or brushing.

Es ist aber bevorzugt, zum Nachreinigen ein flüssiges Reinigungsmittel einzusetzen um auch Polymerbruchstücke vollständig entfernen zu können. Dies ist beispielsweise dann besonders zu empfehlen, wenn mit der Flexodruckform Lebensmittelverpackungen bedruckt werden sollen, bei denen besonders strenge Anforderungen im Hinblick auf flüchtige Bestandteile gelten.However, it is preferred to use a liquid cleaning agent for subsequent cleaning in order to be able to remove polymer fragments completely. This is particularly recommended, for example, when using the flexographic printing form food packaging which are subject to particularly stringent requirements with respect to volatile constituents.

Ganz besonders vorteilhaft kann die Nachreinigung mittels Wasser oder einem wässrigen Reinigungsmittel erfolgen. Wässrige Reinigungsmittel bestehen im wesentlichen aus Wasser sowie optional geringen Mengen von Alkoholen und können zur Unterstützung des Reinigungsvorganges Hilfsmittel, wie beispielsweise Tenside, Emulgatoren, Dispergierhilfsmittel oder Basen enthalten. Es können auch Mischungen verwendet werden, die üblicherweise zum Entwickeln konventioneller, wasserentwickelbarer Flexodruckplatten eingesetzt werden.The post-purification can be carried out very advantageously by means of water or an aqueous cleaning agent. Aqueous cleaning agents consist essentially of water and optionally small amounts of alcohols and can aid in supporting the cleaning process, such as surfactants, emulsifiers, dispersants or bases. Mixtures commonly used to develop conventional water-developable flexographic printing plates can also be used.

Zum Nachreinigen können prinzipiell auch Mischungen organischer Lösemittel eingesetzt werden, insbesondere solche Mischungen, die üblicherweise als Auswaschmittel für konventionell hergestellte Flexodruckformen dienen. Beispiele umfassen Auswaschmittel auf Basis hochsiedender, entaromatisierter Erdölfraktionen, wie beispielsweise von EP-A 332 070 offenbart oder auch "Wasser-in-ÖI"-Emulsionen, wie von EP-A 463 016 offenbart.For post-cleaning, mixtures of organic solvents may in principle also be used, in particular those mixtures which usually serve as washout agents for conventionally produced flexographic printing plates. Examples include washout agents based on high boiling, dearomatized petroleum fractions, such as EP-A 332,070 or also "water-in-oil" emulsions, such as from EP-A 463 016 disclosed.

Die Nachreinigung kann beispielsweise durch einfaches Eintauchen oder Abspritzen der Reliefdruckform erfolgen oder aber auch zusätzlich durch mechanische Mittel, wie beispielsweise durch Bürsten oder Plüsche unterstützt werden. Es können auch übliche Flexowascher verwendet werden.The post-cleaning can be done for example by simply dipping or spraying the relief printing form or in addition by mechanical means, such as brushes or plushes are supported. It is also possible to use conventional flexo washers.

Beim Nachwaschschritt werden eventuelle Ablagerungen sowie die Reste der zusätzlichen Polymerschicht entfernt. Vorteilhaft verhindert diese Schicht, oder erschwert es zumindest, dass sich im Zuge der Lasergravur gebildete Polymertröpfchen wieder fest mit der Oberfläche der Reliefschicht verbinden. Ablagerungen können daher besonders leicht entfernt werden. Es ist regelmäßig empfehlenswert, den Nachwaschschritt unmittelbar im Anschluss an den Schritt der Lasergravur durchzuführen.During the post-washing step, any deposits as well as the residues of the additional polymer layer are removed. Advantageously, this layer prevents, or at least hampers, the fact that polymer droplets formed in the course of the laser engraving again firmly connect to the surface of the relief layer. Deposits can therefore be removed particularly easily. It is regularly recommended to carry out the post-wash step immediately after the laser engraving step.

Durch die Verwendung von Leitfähigkeitsrußen in den erfindungsgemäßen Flexodruckelementen werden qualitativ sehr hochwertige Flexodruckformen erhalten. Der Leitfähigkeitsruß ist zwar nicht ganz so empfindlich wie konventionelle Ruße, aber es lassen sich Flexodruckformen erhalten, deren Reliefelelemente sehr scharfe Kanten aufweisen und das Auftreten von Schmelzrändern nahezu vollständig unterdrückt wird.By the use of conductivity carbon blacks in the flexographic printing elements according to the invention, very high quality flexographic printing plates are obtained. While the conductivity carbon black is not as sensitive as conventional carbon blacks, flexographic printing forms can be obtained whose relief elements have very sharp edges and the appearance of melt edges is almost completely suppressed.

Die folgenden Beispiele sollen die Erfindung näher veranschaulichen:The following examples are intended to illustrate the invention in more detail:

Beispiel 1:Example 1: Einschichtiges Flexodruckelement mit LeitfähigkeitsrußSingle-layer flexographic printing element with conductivity black

Für die elastomere, reliefbildende Schicht (A) werden die folgenden Ausgarigmaterialien eingesetzt: SBS-Öl-Compound bestehend aus: 67 Teilen SBS-Dreiblockcopolymer (30 % Styrol, Mw = 170.000 g/mol) 53 % 33 Teilen paraffinisches Mineralöl SB-Diblockcopolymer (9 % Styrol, Mw = 230.000 g/mol) 9 % Polybutadienöl-Weichmacher 18% 1,6-Hexandioldiacrylat 9 % Kerobit TBK (thermischer Stabilisator) 1 % Ketjenblack EC 300 J (Leitfähigkeitsruß, BET = 800 m2/g, DBP-Adsorption = 310-345 ml/100 g) 10 % Summe 100 % For the elastomeric relief-forming layer (A), the following doughing materials are used: SBS oil compound consisting of: 67 parts of SBS triblock copolymer (30% styrene, M w = 170,000 g / mol) 53% 33 parts paraffinic mineral oil SB diblock copolymer (9% styrene, M w = 230,000 g / mol) 9% Polybutadiene plasticizer 18% 1,6-hexanediol diacrylate 9% Kerobit TBK (thermal stabilizer) 1 % Ketjenblack EC 300 J (conductivity black, BET = 800 m 2 / g, DBP adsorption = 310-345 ml / 100 g) 10% total 100%

Durch Extrusion (ZSK 53-Zweischneckenextruder, Werner & Pfleiderer) und anschließendes Kalandrieren der Schmelze zwischen eine haftlackbeschichtete PET-Trägerfolie (125 µm) und eine silikonbeschichtete Schutzfolie werden Flexodruckelemente der oben beschriebenen erfindungsgemäßen Zusammensetzung hergestellt. Der Ruß wird mit Hilfe eines angeflanschten Seitenextruders dosiert, so dass eine homogene Dosierung und Einmischung des Rußes in die Polymerschmelze gewährleistet ist. Die Dicke von Schicht (A) beträgt 1.02 mm.By means of extrusion (ZSK 53 twin-screw extruder, Werner & Pfleiderer) and subsequent calendering of the melt between an adhesion-lacquer-coated PET carrier film (125 μm) and a silicone-coated protective film, flexographic printing elements of the composition according to the invention described above are produced. The carbon black is metered by means of a flanged side extruder, so that a homogeneous metering and mixing of the carbon black is ensured in the polymer melt. The thickness of layer (A) is 1.02 mm.

Nach der Herstellung werden die rußgefüllten Flexodruckelemente 4 Tage bei Raumtemperatur gelagert und anschließend mit Hilfe von Elektronenstrahlen gemäß dem in WO 03/11596 beschriebenen Verfahren vernetzt. Hierzu werden jeweils 5 Flexodruckelemente mit Zwischenlagen in einen Karton verpackt und durch Bestrahlung mit Elektronenstrahlen (Elektronenenergie 3,5 MeV) in 4 Teildosen von je 25 kGy vernetzt.After production, the carbon black-filled flexographic printing elements are stored for 4 days at room temperature and then with the aid of electron beams in accordance with the in WO 03/11596 crosslinked processes described. For this purpose, 5 flexographic printing elements each with intermediate layers are packed in a cardboard box and crosslinked by irradiation with electron beams (electron energy 3.5 MeV) into 4 partial doses of 25 kGy each.

Nach dem Abziehen der Schutzfolie wird in das vernetzte, rußgefüllte Flexodruckelement mittels eines Lasersystems mit drei CO2-Laserstrahlen (STK BDE 4131, Schablonentechnik Kufstein, 1. Strahl 100 Watt, 2. und 3. Strahl 250 Watt) ein Testmotiv mit einer Auflösung von 1270 dpi eingraviert. Das Testmotiv enthält zur Beurteilung der Gravurqualität verschiedene, typische Elemente wie Rasterfelder, Vollflächen, nichtdruckende Bereiche, feine positive und negative Punkte und Linien. Nach dem Gravieren wird die Oberfläche manuell unter Verwendung einer Bürste mit einem Wasser-Tensid-Gemisch gereingt und getrocknet. Die Versuchsbedingungen und Ergebnisse sind in Tabelle 1 zusammengefasst.After peeling off the protective film is in the crosslinked, carbon black-filled flexographic printing element by means of a laser system with three CO 2 laser beams (STK BDE 4131, stencil technique Kufstein, 1st beam 100 Watt, 2 and 3, beam 250 Watt) a test pattern with a resolution of Engraved 1270 dpi. The test motif contains various typical elements such as grids, solid areas, non-printing areas to evaluate the quality of the engraving Areas, fine positive and negative points and lines. After engraving, the surface is manually cleaned and dried using a brush with a water-surfactant mixture. The experimental conditions and results are summarized in Table 1.

Vergleichsbeispiele A, B und C:Comparative Examples A, B and C: Einschichtige Flexodruckelemente mit nicht leitfähigen RußtypenSingle-layer flexographic printing elements with non-conductive carbon black types

Analog Beispiel 1 wurden Flexodruckelemente mittels Extrusion und Kalandrieren der Schmelze zwischen eine haftlackbeschichtete PET-Trägerfolie und eine silikonbeschichtete Schutzfolie hergestellt. Die Zusammensetzung der elastomeren Schicht entsprach derjenigen von Beispiel 1, jedoch wurden verschiedene, nicht leitfähige Rußtypen eingesetzt. Der jeweils verwendete Ruß kann der nachfolgenden Tabelle entnommen werden: Vergleichsbeispiel A Printex® U (Gasruß, BET = 100 m2/g, DBP-Adsorption = 115 ml/100 g) Vergleichsbeispiel B Printex® A (Furnaceruß, BET = 45 m2/g, DBP-Adsorption =118 ml/100 g) Vergleichsbeispiel C Spezialschwarz® 4 (Gasruß, BET = 180 m2/g, DBP-Adsorption = 88 ml/100 g) Analogously to Example 1, flexographic printing elements were produced by means of extrusion and calendering of the melt between an adhesion-lacquer-coated PET carrier film and a silicone-coated protective film. The composition of the elastomeric layer was similar to that of Example 1, but various non-conductive types of carbon black were used. The particular carbon black used can be found in the following table: Comparative Example A Printex® U (gas black, BET = 100 m 2 / g, DBP adsorption = 115 ml / 100 g) Comparative Example B Printex® A (furnace carbon, BET = 45 m 2 / g, DBP adsorption = 118 ml / 100 g) Comparative Example C Special black 4 (gas black, BET = 180 m 2 / g, DBP adsorption = 88 ml / 100 g)

Analog Beispiel 1 werden die rußhaltigen Flexodruckelemente durch Bestrahlung mit Elektronenstrahlen (Elektronenenergie 3,5 MeV) in 4 Teildosen von je 25 kGy vernetzt. Nach dem Abziehen der Schutzfolie wird mittels Laser das Testmotiv von Beispiel 1 in das vernetzte Flexodruckelement graviert. Die Versuchsbedingungen und Ergebnisse sind in Tabelle 1 zusammengefasst. Tabelle 1: Beispiel 1 A B C Ruß-Produktnarne Ketjenblack EC 300 J Printex U Printex A Spezialschwarz 4 Rußmenge [%] 10 10 10 10 DBP [ml/100g] 310-345 115 118 88 BET [m2/g] 800 100 45 180 mittlere Primärteilchengröße [nm] - 25 41 25 Rußtyp hochleitfähig Gasruß Fumaceruß Gasruß pH 8 bis 10 4,5 9 3 Vernetzungsbedingungen Elektronenbestrahlung [kGy} 100 100 100 100 Lasergravurparameter Laser STK BDE 4131 STK BDE 4131 STK BDE 4131 STK BDE 4131 Einstellung Laser 1 38 38 38 38 Einstellung Laser 2 80 80 80 80 Einstellung Laser 3 80 80 80 80 Drehzahl m/sec 7 7 7 7 Lasergravurergebnis Gravurtiefe [µm] 555 565 585 545 Negativpunkt [400µm] Durchmesser [µm] 432 461 460 446 Negativpunkt [400µm] Tiefe [µm] 249 290 250 275 Negativpunkt [200µm] Durchmesser [µm] 228 254 258 248 Negativpunkt [200µm] Tiefe [µm] 113 110 108 108 Analogously to Example 1, the soot-containing flexographic printing elements are crosslinked by irradiation with electron beams (electron energy 3.5 MeV) in 4 sub-doses of 25 kGy each. After peeling off the protective film, the test motif of Example 1 is engraved into the crosslinked flexographic printing element by means of a laser. The experimental conditions and results are summarized in Table 1. Table 1: example 1 A B C Carbon black product Arne Ketjenblack EC 300 J Printex U Printex A Special black 4 soot [%] 10 10 10 10 DBP [Ml / 100g] 310-345 115 118 88 BET [m 2 / g] 800 100 45 180 average primary particle size [Nm] - 25 41 25 type of carbon black highly conductive gas black Fumaceruß gas black pH 8 to 10 4.5 9 3 crosslinking conditions electron irradiation [KGy} 100 100 100 100 Laser engraving parameters laser STK BDE 4131 STK BDE 4131 STK BDE 4131 STK BDE 4131 Setting laser 1 38 38 38 38 Setting laser 2 80 80 80 80 Setting laser 3 80 80 80 80 rotation speed m / sec 7 7 7 7 Laser engraving result engraving depth [.Mu.m] 555 565 585 545 Negative point [400μm] diameter [.Mu.m] 432 461 460 446 Negative point [400μm] depth [.Mu.m] 249 290 250 275 Negative point [200μm] diameter [.Mu.m] 228 254 258 248 Negative point [200μm] depth [.Mu.m] 113 110 108 108

Versuchsbedingungen und Ergebnisse von Beispiel 1 und derExperiment conditions and results of Example 1 and the Vergleichsbeispiele A, B und CComparative Examples A, B and C.

Die Gravurergebnisse verdeutlichen, dass die Verwendung von Leitfähigkeitsruß anstelle von nicht leitfähigen Rußen zu einer verbesserten Auflösung führt. Dies zeigt sich insbesondere daran, dass Negativelemente bei vergleichbaren Gravurtiefen einen geringeren Durchmesser aufweisen. Die Ursache hierfür ist das weniger stark Schmelzen der Ränder.The engraving results illustrate that the use of conductivity black instead of non-conductive blacks results in improved resolution. This is particularly evident from the fact that negative elements have a smaller diameter at comparable engraving depths. The reason for this is the less melting of the edges.

Weiterhin entstehen keine ausgeprägten Ablagerungen und Ausbrüche, wodurch auch feine Elemente kantenscharf drucken.Furthermore, no pronounced deposits and eruptions occur, as a result of which even fine elements print with sharp edges.

Die Glattheit der Oberfläche ist besonders gut erkennbar an feinen Positivelementen. Abbildungen 1 und 2 zeigen lichtmikroskopische Aufnahmen eines 50 µm-Positivpunkts einer Flexodruckplatte gemäß Beispiel 1 sowie gemäß Vergleichbeispielen A, B und C.The smoothness of the surface is particularly evident on fine positive elements. Figures 1 and 2 show light micrographs of a 50 micron positive point of a flexographic printing plate according to Example 1 and according to Comparative Examples A, B and C.

Die Abbildungen belegen klar, dass durch die Verwendung von Leitfähigkeitsruß (Beispiel 1) wird im Gegensatz zu anderen Rußen (Vergleichbeispiele A, B und C) eine wesentlich glattere Oberfläche, sowie eine geringere oberflächliche Verschmutzung und weniger Ausbrüche an druckenden Elementen erhalten werden.The figures clearly show that the use of conductivity carbon black (Example 1), in contrast to other carbon blacks (Comparative Examples A, B and C), results in a much smoother surface, less surface contamination and fewer bursts of printing elements.

Beispiel 2:Example 2: Zweischichtiges Flexodruckelement aus einer Schicht (A) und einer Schicht (B)Two-layer flexographic printing element consisting of one layer (A) and one layer (B)

Es wurde zunächst eine 100 µm dicke, elastomere Schicht (A) gemäß Beispiel 1 mittels Extrusion zwischen 2 silikonisierte Schutzfolien hergestellt. Nach dem Vernetzen der Schicht mittels Elektronenstrahlen analog Beispiel 1 wurde eine der silikoniserten Folien abgezogen, um ein Deckelement zu erhalten.First, a 100 μm thick, elastomeric layer (A) according to Example 1 was prepared by extrusion between 2 siliconized protective films. After crosslinking the layer by means of electron beams in analogy to Example 1, one of the siliconized films was peeled off in order to obtain a cover element.

Bei den Komponenten für die fotochemisch vernetzbare Schicht (B) handelte es sich um die Komponenten einer nyloflex® FAH-Druckplatte (BASF Drucksysteme GmbH).Among the components of the photochemically crosslinkable layer (B) it was the components of a nyloflex ® FAH printing plate (BASF Drucksysteme GmbH).

Gemäß dem in EP-A 084 851 beschriebenen Verfahren wurde das zweischichtige Flexodruckelement auf übliche Art und Weise durch Schmelzextrusion der Komponenten von Schicht (B) und Kalandrieren zwischen eine transparente Trägerfolie und ein Deckelement hergestellt, wobei der besagte Verbund aus Schicht (A) und silikoniserter Folie als Deckelement eingesetzt wurde. Dadurch wird ein Schichtverbund aus einer fotochemisch vernetzbaren, elastomeren Schicht (B) und einer Leitfähigkeitsruß enthaltenden Oberschicht (A) erzeugt. Die Dicke von Schicht (B) betrug 0,92 mm.According to the in EP-A 084 851 The two-layer flexographic printing element was prepared in the usual manner by melt extrusion of the components of layer (B) and calendering between a transparent support film and a cover element, said composite of layer (A) and siliconized film was used as a cover element. As a result, a layer composite of a photochemically crosslinkable, elastomeric layer (B) and a conductivity soot-containing upper layer (A) is produced. The thickness of layer (B) was 0.92 mm.

Schicht (B) wurde zum fotochemischen Vemetzen durch die transparente Trägerfolie 20 min mit UV/A-Licht bestrahlt (nyloflex F III-Belichter, 80-Watt-Röhren). Anschließend wurde die silikonisierte Deckfolie abgezogen.Layer (B) was irradiated for 20 minutes with UV / A light for photochemical crosslinking through the transparent carrier film (nyloflex F III platesetter, 80-watt tubes). Subsequently, the siliconized cover sheet was peeled off.

Das beschriebene Flexodruckelement kann alternativ erhalten werden, indem man den oben beschriebenen Verbund aus Schicht (A) und Folie auf eine fertige FAH-Platte aufkaschiert.The described flexographic printing element can alternatively be obtained by laminating the above-described composite of layer (A) and foil on a finished FAH plate.

Das zweischichtige Flexodruckelement aus den Schichten (A) und (B) wird mit einem Zweistrahllasergerät (100 W Nd-YAG, 250 W CO2) mit unterschiedlichen Auflösungen graviert (1270 dpi, 1778 dpi, 2540 dpi).The two-layer flexographic printing element from layers (A) and (B) is engraved with a two-beam laser device (100 W Nd-YAG, 250 W CO 2 ) with different resolutions (1270 dpi, 1778 dpi, 2540 dpi).

Mittels des Nd-YAG-Lasers wurden die feinen Elemente in vernetzte Schicht (A) graviert, der CO2-Laser diente zum Gravieren der tiefer gelegenen Bereiche sowie gegebenenfalls zum Ausheben von Grobbereichen. Die erreichbare Auflösung betrug 2540 dpi bei gleichzeitig kantenscharfer Abbildung feiner druckender Elemente.By means of the Nd-YAG laser, the fine elements in engraved layer (A) were engraved, the CO 2 laser was used for engraving the lower areas and, where appropriate, for excavating coarse areas. The achievable resolution was 2540 dpi with sharp edge imaging of fine printing elements.

Beispiel 3:Example 3: Zweischichtiges Flexodruckelement aus einer Schicht (A) und einer Schicht (B)Two-layer flexographic printing element consisting of one layer (A) and one layer (B)

Zunächst wird eine vulkanisierbare Naturkautschuk-Ruß-Mischung der folgenden Zusammensetzung auf einem Walzenstuhl hergestellt: Naturkautschuk (Norrub 340P) 84 % Thermischer Stabilisator (Vulkanox 4010 NA/LG) 1 % Stearinsäure 1 % Zinkoxid (Zinkoxid RS P5) 2 % Schwefelvernetzungssystem 3 % Ketjenblack EC 300 J
(Leitfähigkeitsruß, BET = 800 m2/g, DBP-Adsorption = 310-345 ml/100 g)
9%
Summe 100 %
First, a vulcanizable natural rubber-carbon black mixture of the following composition is prepared on a roll mill: Natural rubber (Norrub 340P) 84% Thermal stabilizer (Vulkanox 4010 NA / LG) 1 % stearic acid 1 % Zinc oxide (zinc oxide RS P5) 2% Sulfur crosslinking system 3% Ketjenblack EC 300 J
(Conductivity carbon black, BET = 800 m 2 / g, DBP adsorption = 310-345 ml / 100 g)
9%
total 100%

Durch 20-minütiges Pressen der Schicht zwischen zwei silikonisierten Schutzfolien bei 150°C wird eine 100 µm dicke, vernetzte elastomere Schicht (A) erhalten. Vor der weiteren Verarbeitung wird eine Schutzfolie abgezogen.By pressing the layer between two siliconized protective films at 150 ° C. for 20 minutes, a 100 μm thick, crosslinked elastomeric layer (A) is obtained. Before further processing, a protective film is peeled off.

Bei den Komponenten für die fotochemisch vernetzbare Schicht (B) handelte es sich um die Komponenten einer nyloflex® FAH-Druckplatte (BASF Drucksysteme GmbH). Gemäß dem in EP-A 084 851 beschriebenen Verfahren wurde das zweischichtige Flexodruckelement auf übliche Art und Weise durch Schmelzextrusion der Komponenten von Schicht (B) und Kalandrieren zwischen eine transparente Trägerfolie und ein Deckelement hergestellt, wobei der besagte Verbund aus Schicht (A) und silikoniserter Folie als Deckelement eingesetzt wurde. Dadurch wird ein Schichtverbund aus einer fotochemisch vernetzbaren, elastomeren Schicht (B) und einer Leitfähigkeitsruß enthaltenden Oberschicht (A) erzeugt. Die Dicke von Schicht (B) betrug 0,92 mm.Among the components of the photochemically crosslinkable layer (B) it was the components of a nyloflex ® FAH printing plate (BASF Drucksysteme GmbH). According to the in EP-A 084 851 The two-layer flexographic printing element was prepared in the usual manner by melt extrusion of the components of layer (B) and calendering between a transparent support film and a cover element, said composite of layer (A) and siliconized film was used as a cover element. As a result, a layer composite of a photochemically crosslinkable, elastomeric layer (B) and a conductivity soot-containing upper layer (A) is produced. The thickness of layer (B) was 0.92 mm.

Schicht (B) wurde zum fotochemischen Vernetzen durch die transparente Trägerfolie 20 min mit UV/A-Licht bestrahlt (nyloflex F III-Belichter, 80-Watt-Röhren). Anschließend wurde die silikonisierte Deckfolie abgezogen.Layer (B) was irradiated with UV / A light (nyloflex F III platesetter, 80 watt tubes) for photochemical crosslinking through the transparent support film for 20 minutes. Subsequently, the siliconized cover sheet was peeled off.

Das beschriebene Flexodruckelement kann alternativ erhalten werden, indem man den oben beschriebenen Verbund aus Schicht (A) und Folie auf eine fertige FAH-Platte aufkaschiert.The described flexographic printing element can alternatively be obtained by laminating the above-described composite of layer (A) and foil on a finished FAH plate.

Das zweischichtige Flexodruckelement aus den Schichten (A) und (B) wird mit einem Zweistrahllasergerät (100 W Nd-YAG, 250 W CO2) mit unterschiedlichen Auflösungen graviert (1270 dpi, 1778 dpi, 2540 dpi).The two-layer flexographic printing element from layers (A) and (B) is engraved with a two-beam laser device (100 W Nd-YAG, 250 W CO 2 ) with different resolutions (1270 dpi, 1778 dpi, 2540 dpi).

Mittels des Nd-YAG-Lasers wurden die feinen Elemente in vernetzte Schicht (A) graviert, der CO2-Laser diente zum Gravieren der tiefer gelegenen Bereiche sowie gegebenenfalls zum Ausheben von Grobbereichen. Die erreichbare Auflösung betrug 2540 dpi bei gleichzeitig kantenscharfer Abbildung feiner druckender Elemente.By means of the Nd-YAG laser, the fine elements in engraved layer (A) were engraved, the CO 2 laser was used for engraving the lower areas and, where appropriate, for excavating coarse areas. The achievable resolution was 2540 dpi with sharp edge imaging of fine printing elements.

Vergleichsbeispiel D:Comparative Example D:

Zum Vergleich wurde das zweischichtige Flexodruckelement aus Beispiel 2 nur mit einem 250 W-CO2-Einstrahllasergerät graviert.For comparison, the two-layer flexographic printing element from Example 2 was engraved with only a 250 W CO 2 Einstrahllasergerät.

Die erreichbare Auflösung zur Abbildung von Rastern beträgt max. 1270 dpi. Feine Reliefelemente weisen gröber strukturierte Flanken auf als in Beispiel 2.The achievable resolution for mapping grids is max. 1270 dpi. Fine relief elements have coarsely structured flanks than in Example 2.

Die feinen Elemente lassen sich mit der Kombination aus ND/YAG-Laser und CO2-Laser mit feinerer Auflösung gravieren, als nur mit dem CO2-Laser. Feine Rasterpunkte sind deutlich spitzer.The fine elements can be engraved with the combination of ND / YAG laser and CO 2 laser with a finer resolution than just with the CO 2 laser. Fine halftone dots are much sharper.

Vergleichsbeispiel E:Comparative Example E:

Zum Vergleich wurde das zweischichtige Flexodruckelement aus Beispiel 3 nur mit einem 250 W-CO2-Einstrahllasergerät graviert.For comparison, the two-layer flexographic printing element of Example 3 was engraved with only a 250 W CO 2 Einstrahllasergerät.

Die erreichbare Auflösung zur Abbildung von Rastern beträgt max. 1270 dpi. Feine Reliefelemente weisen gröber strukturierte Flanken auf als in Beispiel 3.The achievable resolution for mapping grids is max. 1270 dpi. Fine relief elements have coarsely structured flanks than in Example 3.

Die feinen Elemente lassen sich mit der Kombination aus ND/YAG-Laser und CO2-Laser mit feinerer Auflösung gravieren, als nur mit dem CO2-Laser. Feine Rasterpunkte sind deutlich spitzer und die Flanken der Elemente weisen keine Ausbrüche aufThe fine elements can be engraved with the combination of ND / YAG laser and CO 2 laser with a finer resolution than just with the CO 2 laser. Fine halftone dots are much sharper and the flanks of the elements show no eruptions

Claims (9)

  1. A flexographic printing element for the production of flexographic printing plates by means of laser engraving, at least comprising, arranged one on top of the other,
    • a dimensionally stable substrate and
    • at least one relief-forming, crosslinked, elastomeric layer (A) having a thickness of from 0.05 to 7 mm, obtainable by crosslinking a layer which comprises at least one binder (a1), a substance (a2) absorbing laser radiation and components for crosslinking (a3),
    wherein the substance absorbing laser radiation is a conductivity carbon black having a specific surface area of at least 150 m2/g and a DBP number of at least 150 ml/100g.
  2. A flexographic printing element as claimed in claim 1, wherein the substance is a conductivity carbon black having a specific surface area of at least 500 m2/g and a DBP number of at least 250 ml/100 g.
  3. A flexographic printing element as claimed in claim 1 or 2, which comprises at least one further, relief-forming, crosslinked elastomeric layer (B) between the substrate and the layer (A), obtainable by crosslinking a layer which comprises at least one binder (b1) and components for crosslinking (b3).
  4. A flexographic printing element as claimed in claim 3, wherein the binder (b1) is a thermoplastic elastomeric binder.
  5. A flexographic printing element as claimed in claim 3 or 4, wherein layer (B) furthermore comprises a substance (b2) absorbing laser radiation.
  6. A flexographic printing element as claimed in any of claims 3 to 5, wherein the binder (a1) in layer (A) is a natural or synthetic rubber.
  7. A process for the production of flexographic printing plates, wherein a flexographic printing element as claimed in any of claims 1 to 6 is used, and a printing relief is engraved with the aid of a laser system into the layer (A) and, if required, layer (B), the depth of the relief elements to be engraved by means of the laser being at least 0.03 mm.
  8. A process as claimed in claim 7, wherein the laser system is a laser system having two or more laser beams.
  9. A process as claimed in claim 8, wherein at least one of the laser beams is used for producing coarse structures and at least one for producing fine structures.
EP04727267A 2003-04-17 2004-04-14 Laser-engravable flexographic printing element containing a conductive carbon black, and method for the production of flexographic printing forms Expired - Lifetime EP1613484B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10318039A DE10318039A1 (en) 2003-04-17 2003-04-17 Laser-engravable flexographic printing element containing a carbon black and method for producing flexographic printing plates
PCT/EP2004/003954 WO2004091927A1 (en) 2003-04-17 2004-04-14 Laser-engravable flexographic printing element containing a conductive carbon black, and method for the production of flexographic printing forms

Publications (2)

Publication Number Publication Date
EP1613484A1 EP1613484A1 (en) 2006-01-11
EP1613484B1 true EP1613484B1 (en) 2008-05-21

Family

ID=33103524

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04727267A Expired - Lifetime EP1613484B1 (en) 2003-04-17 2004-04-14 Laser-engravable flexographic printing element containing a conductive carbon black, and method for the production of flexographic printing forms

Country Status (6)

Country Link
US (1) US7223524B2 (en)
EP (1) EP1613484B1 (en)
JP (1) JP2006523552A (en)
AT (1) ATE396057T1 (en)
DE (2) DE10318039A1 (en)
WO (1) WO2004091927A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875321B2 (en) * 2002-12-11 2011-01-25 Agfa Graphics Nv Preparation of flexographic printing plates using ink jet recording
JP2005221842A (en) * 2004-02-06 2005-08-18 Lintec Corp Member for mask film, method for manufacturing mask film using the same, and method for manufacturing photosensitive resin printing plate
US7837823B2 (en) * 2005-03-01 2010-11-23 Sinclair Systems International, Llc Multi-layer, light markable media and method and apparatus for using same
CN102556458B (en) 2005-08-29 2015-06-17 辛克莱系统国际公司 Multi-layer, light markable media and method and apparatus for using same
US7419766B2 (en) * 2006-02-13 2008-09-02 Eastman Kodak Company Flexographic printing plate precursor and imaging method
JP4942404B2 (en) * 2006-06-21 2012-05-30 旭化成イーマテリアルズ株式会社 Method for producing sheet-like or cylindrical printing substrate
JP5241252B2 (en) * 2008-01-29 2013-07-17 富士フイルム株式会社 Resin composition for laser engraving, relief printing plate precursor for laser engraving, relief printing plate and method for producing relief printing plate
JP5322575B2 (en) * 2008-03-28 2013-10-23 富士フイルム株式会社 Resin composition for laser engraving, image forming material, relief printing plate precursor for laser engraving, relief printing plate, and method for producing relief printing plate
JP5404111B2 (en) * 2008-07-18 2014-01-29 富士フイルム株式会社 Resin composition for laser engraving, image forming material, relief printing plate precursor for laser engraving, relief printing plate, and method for producing relief printing plate
JP5658435B2 (en) * 2009-03-31 2015-01-28 リンテック株式会社 Mask film member, mask film manufacturing method using the same, and photosensitive resin printing plate manufacturing method
DE102009003817A1 (en) * 2009-04-23 2010-10-28 Contitech Elastomer-Beschichtungen Gmbh Multilayer sheet-shaped or pressure-plate for flexographic and high-pressure printing with a laser engraving
DE102009051444B4 (en) * 2009-10-30 2015-12-10 Weros Technology Gmbh Printing process and printing machine
JP5393438B2 (en) * 2009-12-25 2014-01-22 富士フイルム株式会社 Thermally crosslinkable resin composition for laser engraving, relief printing plate precursor for laser engraving and production method thereof, relief printing plate and plate making method thereof
JP2011152719A (en) * 2010-01-27 2011-08-11 Fujifilm Corp Method for manufacturing relief printing plate
US20110236705A1 (en) * 2010-03-29 2011-09-29 Ophira Melamed Flexographic printing precursors and methods of making
US8408130B2 (en) * 2010-08-25 2013-04-02 Eastman Kodak Company Method of making flexographic printing members
JP2012196900A (en) * 2011-03-22 2012-10-18 Fujifilm Corp Resin composition for laser engraving, relief printing plate original plate for laser engraving and method for manufacturing the same, and relief printing plate, and method for plate making of the same
US9156299B2 (en) 2011-06-30 2015-10-13 Eastman Kodak Company Laser-imageable flexographic printing precursors and methods of imaging
US8900507B2 (en) 2011-06-30 2014-12-02 Eastman Kodak Company Laser-imageable flexographic printing precursors and methods of imaging
US9027476B2 (en) 2011-09-27 2015-05-12 Eastman Kodak Company Laser-engraveable flexographic printing precursors and methods of imaging
US8563087B2 (en) * 2011-09-27 2013-10-22 Eastman Kodak Company Method of making laser-engraveable flexographic printing precursors
US20130101834A1 (en) 2011-10-20 2013-04-25 Dana Barshishat Laser-imageable flexographic printing precursors and methods of imaging
US9156241B2 (en) 2011-12-12 2015-10-13 Eastman Kodak Company Laser-imageable flexographic printing precursors and methods of relief imaging
US9266316B2 (en) 2012-01-18 2016-02-23 Eastman Kodak Company Dual-layer laser-imageable flexographic printing precursors
US9114601B2 (en) 2012-03-01 2015-08-25 Kyle P. Baldwin Clean flexographic printing plate and method of making the same
US9180654B2 (en) 2012-04-26 2015-11-10 Eastman Kodak Company Reactive fluoropolymer and laser-engraveable compositions and preparatory methods
US20130288006A1 (en) * 2012-04-26 2013-10-31 Anna C. Greene Laser-engraveable elements and method of use
US9522523B2 (en) 2012-04-30 2016-12-20 Eastman Kodak Company Laser-imageable flexographic printing precursors and methods of imaging
KR101827178B1 (en) 2013-06-12 2018-03-22 가부시키가이샤 킨요샤 Flexographic printing plate material
EP3009270A4 (en) * 2013-06-12 2017-05-10 Kinyosha Co. Ltd. Flexographic printing plate material
JP2015047744A (en) * 2013-08-30 2015-03-16 富士フイルム株式会社 Resin composition for laser engraving, manufacturing method of relief printing plate original plate for laser engraving, relief printing plate original plate, platemaking method of relief printing plate and relief printing plate
JP6469106B2 (en) * 2014-06-11 2019-02-13 富士フイルム株式会社 Flexographic printing plate precursor and flexographic printing plate for laser engraving

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427759A (en) 1982-01-21 1984-01-24 E. I. Du Pont De Nemours And Company Process for preparing an overcoated photopolymer printing plate
DE3807929A1 (en) 1988-03-10 1989-09-28 Basf Ag METHOD FOR THE PRODUCTION OF RELEASE STANDARDS
DE3908764C2 (en) 1989-03-17 1994-08-11 Basf Ag Developer for the production of photopolymerized flexographic relief printing plates
US5804353A (en) 1992-05-11 1998-09-08 E. I. Dupont De Nemours And Company Lasers engravable multilayer flexographic printing element
DE19859623A1 (en) * 1998-12-23 2000-08-24 Basf Drucksysteme Gmbh Photopolymerizable printing plates with top layer for the production of relief printing plates
DE19942216C2 (en) 1999-09-03 2003-04-24 Basf Drucksysteme Gmbh Silicone rubber and iron-containing, inorganic solids and / or soot-containing recording material for the production of relief printing plates by means of laser engraving, process for the production of relief printing plates and the relief printing plate produced therewith
JP2001188339A (en) * 1999-12-28 2001-07-10 Fuji Photo Film Co Ltd Original plate of dampening waterless planographic printing plate
DE10024456A1 (en) * 2000-05-18 2001-11-29 Heidelberger Druckmasch Ag Transferring information onto printing plate involves simultaneous illumination of different areas of printing plate with laser beam and ultraviolet light
JP2002131894A (en) * 2000-10-27 2002-05-09 Fuji Photo Film Co Ltd Plate making method for planographic printing plate without dampening water
DE10061116A1 (en) 2000-12-07 2002-06-13 Basf Drucksysteme Gmbh Photosensitive flexographic printing element with at least two IR-ablative layers
JP2002287335A (en) * 2001-03-28 2002-10-03 Fuji Photo Film Co Ltd Method for forming planographic printing plate
ATE282526T1 (en) 2001-05-25 2004-12-15 Stork Prints Austria Gmbh METHOD AND DEVICE FOR PRODUCING A PRINTING FORM
DE10136477A1 (en) 2001-07-27 2003-02-06 Basf Drucksysteme Gmbh Crosslinking of relief layers to give laser-engravable flexographic printing forms is effected using electron radiation at above 40kGy total dose, especially stagewise
JP4054210B2 (en) * 2002-04-15 2008-02-27 富士フイルム株式会社 How to make lithographic printing plate precursors without fountain solution
JP2004341344A (en) * 2003-05-16 2004-12-02 Fuji Photo Film Co Ltd Waterless lithographic printing original plate

Also Published As

Publication number Publication date
US20050115920A1 (en) 2005-06-02
WO2004091927A1 (en) 2004-10-28
DE10318039A1 (en) 2004-11-04
ATE396057T1 (en) 2008-06-15
JP2006523552A (en) 2006-10-19
EP1613484A1 (en) 2006-01-11
US7223524B2 (en) 2007-05-29
DE502004007228D1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
EP1613484B1 (en) Laser-engravable flexographic printing element containing a conductive carbon black, and method for the production of flexographic printing forms
EP1080883B1 (en) Recording material containing silicone rubber and iron oxide for producing relief printing plates by laser engraving
DE69301729T2 (en) METHOD FOR PRODUCING A MULTI-LAYER FLEXO PRINTING PLATE
EP1315617B1 (en) Method for producing flexographic printing plates by means of laser engraving
EP1423280B1 (en) Method for producing flexo printing forms by means of laser-direct engraving
EP1451014B1 (en) Laser engravable flexo printing elements for the production of flexo printing forms containing blends of hydrophilic polymers and hydrophobic elastomers
DE69301240T2 (en) METHOD FOR PRODUCING A SINGLE-LAYER FLEXO PRINTING PLATE
EP1311393B1 (en) Method for producing laser-engravable flexographic printing elements on flexible metallic supports
EP1343632B1 (en) Method for producing flexographic printing forms by means of laser gravure
DE60311810T2 (en) LENS-SENSITIVE RESIN COMPOSITION FOR PRINTING PLATE THAT CAN BE ENGRAVED BY LASER
EP1527373B1 (en) Method for producing flexo printing forms by means of laser direct engraving
EP1381511B1 (en) Laser engravable flexographic printing elements comprising relief-forming elastomeric layers that contain syndiotactic 1,2-polybutadiene
EP1213615A2 (en) Photosensitive flexographic printing element having at least two infrared ablatable layers
EP1414647B1 (en) Method for the production of flexographic printing forms by means of electron beam cross-linking and laser engraving
EP1578605A1 (en) Method for producing flexoprinting forms by means of laser engraving using photopolymer flexoprinting elements and photopolymerisable flexoprinting element
WO2002076738A1 (en) Method for producing relief printing plates by means of laser engraving

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FLINT GROUP GERMANY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004007228

Country of ref document: DE

Date of ref document: 20080703

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080901

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081021

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080821

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080821

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

BERE Be: lapsed

Owner name: FLINT GROUP GERMANY G.M.B.H.

Effective date: 20090430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080521

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190419

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190423

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190628

Year of fee payment: 16

Ref country code: GB

Payment date: 20190424

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004007228

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200414