EP1612299B1 - Method and apparatus for surface treatment of a component - Google Patents

Method and apparatus for surface treatment of a component Download PDF

Info

Publication number
EP1612299B1
EP1612299B1 EP04015424A EP04015424A EP1612299B1 EP 1612299 B1 EP1612299 B1 EP 1612299B1 EP 04015424 A EP04015424 A EP 04015424A EP 04015424 A EP04015424 A EP 04015424A EP 1612299 B1 EP1612299 B1 EP 1612299B1
Authority
EP
European Patent Office
Prior art keywords
voltage
process according
treatment
component
measurement voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04015424A
Other languages
German (de)
French (fr)
Other versions
EP1612299A1 (en
Inventor
Ursus Dr. Krüger
Daniel Körtvelyessy
Ralph Reiche
Jan Dr. Steinbach
Gabriele Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE502004006578T priority Critical patent/DE502004006578D1/en
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP04015424A priority patent/EP1612299B1/en
Priority to AT04015424T priority patent/ATE389739T1/en
Priority to US11/630,137 priority patent/US20080277288A1/en
Priority to EP05770315A priority patent/EP1761660A1/en
Priority to PCT/DE2005/001090 priority patent/WO2006002610A1/en
Priority to CNA2005100813633A priority patent/CN1721580A/en
Priority to US11/170,662 priority patent/US7794581B2/en
Publication of EP1612299A1 publication Critical patent/EP1612299A1/en
Application granted granted Critical
Publication of EP1612299B1 publication Critical patent/EP1612299B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F5/00Electrolytic stripping of metallic layers or coatings

Definitions

  • the invention relates to a method for the surface treatment of a component according to the preamble of claim 1 and to an apparatus for carrying out a method for the surface treatment of a component.
  • Operationally stressed components such as turbine blades of gas turbines are subjected to an electrolyte treatment, so that the component can then be worked up again.
  • the operationally stressed MCrAlX layers on the component are removed by immersing them in approximately 50 ° -80 ° C warm 20% hydrochloric acid. After a period of time derived from empirical values, the blades are removed from the acid bath, rinsed with water and then blasted abrasive. The process sequence electrolyte bath and blasting is repeated several times until the entire MCrAlX layer is dissolved or dissolved.
  • the repetition of the individual process steps is usually necessary, since the electrolyte only dissolves near-surface aluminum-containing phases of the MCrAlX layer. Deeper areas of the MCrAlX layer can therefore not be resolved in one step. On the surface remains a porous layer matrix, which is subsequently removed mechanically by means of irradiation, for example.
  • the time that the blades remain in the electrolyte does not reflect the actual time required for the individual blade to stop the dissolution process, but is defaults to a certain time.
  • the residence time in the electrolyte is determined based on general experience.
  • each component is subjected to different individual stresses, so that a fixed time specification leads to different or incomplete dissolution of the claimed surface of the component.
  • the components remain in the acid bath without any further progress of the stripping until the end of the predetermined period of time.
  • the EP 1 094 134 A1 as well as the US 2003/0062271 A1 disclose methods for electrochemically removing layers.
  • the US 4,539,087 discloses a method in which the current of an electrolytic process is measured, so that it can be decided on the basis of the current profile, when the process is to be discontinued.
  • the object is achieved by a method for surface treatment of a component according to claim 1.
  • Another object of the invention is to provide a device that allows an individual determination of the minimum treatment time required per individual component.
  • the object is achieved by a device for surface treatment of a component according to claim 27.
  • FIG. 1 shows an exemplary device 1 according to the invention, with which the inventive method can be performed.
  • the device 1 consists of a container 3, for example metallic, ceramic or plastic (Teflon polymer, etc.), in which a treatment agent 6, for example an acid 6 or an electrolyte 6 (with coating material) is arranged, for surface treatment such as stripping or coating at least one component 9 is used.
  • a treatment agent 6 for example an acid 6 or an electrolyte 6 (with coating material) is arranged, for surface treatment such as stripping or coating at least one component 9 is used.
  • an acid or an acid mixture is preferably present in the container 3.
  • the electrolyte 6 has the corresponding chemical elements for the coating.
  • a single component 9 is arranged here, for example, whose surface area is to be dissolved. This happens, for example, due to the acid attack on the surface of the component 9 which is subject to operating conditions, for example.
  • both components 9 each form an electrode (ie anode and cathode), wherein as a treatment agent 6, a nitrogen-containing treatment agent 6 should be used.
  • a first electric circuit can be closed by connecting the connecting means 15 to a further electrical pole, ie the electrode 12, which is arranged in the treatment agent 6 or to the container 3, so that a current I between the component 9 and the pole 3 12, which can also be measured.
  • the current flows through the component 9 through the claimed surface of the component 9 and through the treatment agent 6 to the electrode 12 (or to the container 3).
  • a plurality of components 9 for stripping can also be arranged in a container 3, wherein a current curve I (t) can be determined individually for each component 9, so that the components 9 possibly remain in the treatment agent 6 for different lengths of time.
  • FIG. 2 shows an exemplary voltage profile according to the invention.
  • a pulsed treatment voltage 30 with a pulse duration t 30 is applied, which is, for example, correspondingly large Components 9 (38 cm in length) such as gas turbine blades 120, 130 ( Fig. 7 . 9 ) Generates currents up to 100 A.
  • the pulse duration t 30 can always be the same or change with time t. Likewise, the amount of treatment voltage may change with time t.
  • a smaller, for example, pulsed measuring voltage 33 (1 mV to 50 mV) is superimposed on the larger treatment voltage 30 (for stripping) in the circuit 18, 15, 9, 6, 12) or the treatment voltage 30 becomes short (ie at least temporarily) by the height the measuring voltage 33 increases.
  • the pulse duration t 33 of the measurement voltage 33 may be smaller, equal to or greater than the pulse duration t 30 of the treatment voltage 30.
  • the measurement voltage 33 may be applied at the beginning, middle or end of the pulsed treatment voltage 33.
  • the smaller measuring voltage 33 produces much smaller currents that are easier to measure.
  • the separation of the signals of treatment voltage 30 and measurement voltage 33 is effected, for example, by an analysis of the current curve by means of mathematical signal separation methods, such as e.g. the Fourier analysis.
  • the treatment voltage 30 for stripping and the measuring voltage 33 for example, three electrodes (another electrode 12 'for a second circuit ( Fig. 1 ) with lines 15 'and current / voltage source 18' for a measuring voltage 33 may also be present according to the invention; the leads 15 'are then also used with the component 9 and, for example, with the electrode 12' (indicated by dashed lines) and not connected to the electrode 12), the stresses being superimposed on the large surface.
  • the metrological separation of the current signals for example, by two partially decoupled circuits (15 + 18 + 9 + 6 + 12, 15 '+ 18' + 9 + 6 + 12 or +12 ').
  • a DC measurement voltage 33 (indicated by dashed lines) can be used.
  • FIG. 3 shows a further exemplary inventive voltage profile of the method according to the invention.
  • a high pulsed treatment voltage 30 is used for stripping, which generates very high currents.
  • the measuring voltage 33 is also pulsed here, for example, and is applied during the pulse pauses 36 (t 36 ) of the treatment voltage pulses 30 (t 36 > t 33 ). This is done by the synchronization of the voltage pulses 30, 33.
  • FIG. 4 shows further exemplary voltage curves.
  • the treatment voltage 30 (corresponding to a pulse-like increase) can be increased by the height of the measuring voltage 33, wherein only one circuit is necessary, or the measuring voltage 33 '(indicated by dashed lines) is superimposed on the treatment voltage, for example by a second circuit.
  • a smaller DC measurement voltage 33 can be used, in particular in a second circuit 18 ', 15', 9, 6, 12 or 12 '.
  • a time characteristic of the current I (t) caused by the measuring voltage during electrolysis for stripping is FIG. 5 shown.
  • the current I (t) increases at the beginning with the time t and is initially substantially constant after a certain time.
  • the stripping has not yet been completed, ie the stripping rate is still high.
  • the current I decreases.
  • the decrease (range or point 27 in the curve I (t)) of the current I indicates that only a small amount of layer material is dissolved.
  • the dissolution process can therefore be stopped if, for example, a predetermined comparison value for the current intensity is reached or the current intensity decreases by a certain value (see difference measuring points 27, 22) or a trend line results in a decreasing profile for the current intensity.
  • the method can also be carried out in substeps.
  • an abrasive stripping is carried out, which removes residues of acid products and / or accelerates stripping, since after a certain period of residence of the component 9 in the treatment agent 6, for example, a brittle layer has formed which is better abrasive can be removed.
  • a washing (rinsing) of the component 9 can be carried out in a process intermediate step. Thereafter, the component 9 is again placed in the treatment agent 6.
  • the process steps treatment of the component 9 in the treatment agent 6, abrasive irradiation can be repeated as desired.
  • the delamination of the component or components 9 also runs without the presence of a treatment voltage, ie there is then no electrolytic stripping process.
  • FIG. 6 shows an experimentally mediated course of the measured or used currents and voltages.
  • a constant treatment voltage 30 of 1.2V being used as the electrolyte, for example, 5% HCl (hydrochloric acid) with 2% triethanolamine.
  • the treatment voltage 30 is represented by the rhombus and generates a current I of 10 to 11 A (not shown).
  • the pulsed measuring voltage 33 for determining the end point here is for example 50 mV and is applied by pulses with a pulse length of, for example, 0.5 s.
  • the ratio measuring voltage 33 to the treatment voltage 30 is therefore 1:24 and is, for example, 1:10 (or 1:20, 1:30 or more than 1:50, 1: 100).
  • the measuring voltage 33 is indicated by squares in the FIG. 6 shown.
  • the current I which is measured on the basis of the measuring voltage 33, is indicated by the triangles in FIG FIG. 6 shown.
  • a dividing line (indicated by dashed lines) shows the intrapolated and expected time course of the current. This curve corresponds to the one in FIG. 2 ,
  • the time course 24 of the current I (t) can also be determined from individual measuring points 21, which are determined at regular or irregular intervals.
  • FIG. 7 shows a perspective view of a blade 120, 130 which extends along a longitudinal axis 121.
  • the blade as an example of the component 9 may be a blade 120 or guide blade 130 of a turbomachine.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjoining thereto and an airfoil 406.
  • the blade at its blade tip 415 may have another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
  • Refurbishment means that, after use, components 120, 130 may have to be freed from protective layers by the method according to the invention (for example by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. Thereafter, a re-coating of the component 120, 130 takes place, for example, by the method according to the invention and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. When the blade 120, 130 is to be cooled, it is hollow and may still have film cooling holes (not shown). As protection against corrosion, the blade 120, 130, for example, corresponding mostly metallic coatings and as protection against heat usually still a ceramic coating.
  • the FIG. 8 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 102 arranged around the turbine shaft 103 in the circumferential direction open into a common combustion chamber space.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the turbine shaft 103 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M with an inner lining formed of heat shield elements 155 (further example for component 9).
  • Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material. Due to the high temperatures in the interior of the combustion chamber 110, a cooling system is additionally provided for the heat shield elements 155 or for their holding elements.
  • the materials of the combustion chamber wall and its coatings may be similar to the turbine blades.
  • FIG. 9 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108, and the exhaust case 109.
  • the annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example.
  • Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and blades 120 of the first turbine stage 112 seen in the flow direction of the working medium 113 are in addition to the Ring combustion chamber 106 lining heat shield bricks most thermally stressed. To withstand the prevailing temperatures, they can be cooled by means of a coolant.
  • substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • SX structure monocrystalline
  • DS structure only longitudinal grains
  • iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110. Such superalloys are, for example, from the EP 1204776 . EP 1306454 . EP 1319729 . WO 99/67435 or WO 00/44949 known.
  • blades 120, 130 may be anti-corrosion coatings (MCrA1X; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths) and heat through a thermal barrier coating.
  • the thermal barrier coating consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • suitable coating processes such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.
  • EB-PVD electron beam evaporation
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

Process for removing a coating containing a chromium and/or chromium oxide compound from a component comprises placing the coated component in a coating-removal bath to which is added an alkanol-amine compound as inhibitor and removing after a treatment time.

Description

Die Erfindung betrifft ein Verfahren zur Oberflächenbehandlung eines Bauteils nach dem Oberbegriff des Anspruchs 1 und eine Vorrichtung zur Durchführung eines Verfahrens zur Oberflächenbehandlung eines Bauteils.The invention relates to a method for the surface treatment of a component according to the preamble of claim 1 and to an apparatus for carrying out a method for the surface treatment of a component.

Betriebsbeanspruchte Bauteile, wie z.B. Turbinenschaufeln von Gasturbinen werden einer Elektrolytbehandlung unterzogen, so dass das Bauteil danach wieder aufgearbeitet werden kann.
Im Falle von Gasturbinenschaufeln werden die betriebsbeanspruchten MCrAlX-Schichten auf dem Bauteil abgelöst, indem sie in ca. 50° - 80°C warme 20%-tige Salzsäure getaucht werden. Nach einer aus Erfahrungswerten abgeleiteten Zeitdauer werden die Schaufeln aus dem Säurebad genommen, mit Wasser gespült und anschließend abrasiv gestrahlt. Die Prozessfolge Elektrolytbad und Strahlen wird dabei mehrfach wiederholt, bis die gesamte MCrAlX-Schicht ab- bzw. aufgelöst ist. Die Wiederholung der einzelnen Prozessschritte ist in der Regel notwendig, da durch den Elektrolyt ausschließlich oberflächennahe aluminiumhaltige Phasen der MCrAlX-Schicht aufgelöst werden. Tieferliegende Bereiche der MCrAlX-Schicht können daher nicht in einem Schritt aufgelöst werden. An der Oberfläche bleibt eine poröse Schichtmatrix zurück, welche nachfolgend mittels Bestrahlen beispielsweise mechanisch entfernt wird.
Die Zeitdauer, in der die Schaufeln in dem Elektrolyt verbleiben, spiegelt dabei nicht die tatsächliche für die individuelle Schaufel benötigte Zeit bis zum Stopp des Auflösungsprozesses wider, sondern wird standardmäßig auf eine bestimmte Zeit festgelegt. Die Verweildauer im Elektrolyt wird dabei aufgrund von allgemeinen Erfahrungswerten festgelegt.
Operationally stressed components, such as turbine blades of gas turbines are subjected to an electrolyte treatment, so that the component can then be worked up again.
In the case of gas turbine blades, the operationally stressed MCrAlX layers on the component are removed by immersing them in approximately 50 ° -80 ° C warm 20% hydrochloric acid. After a period of time derived from empirical values, the blades are removed from the acid bath, rinsed with water and then blasted abrasive. The process sequence electrolyte bath and blasting is repeated several times until the entire MCrAlX layer is dissolved or dissolved. The repetition of the individual process steps is usually necessary, since the electrolyte only dissolves near-surface aluminum-containing phases of the MCrAlX layer. Deeper areas of the MCrAlX layer can therefore not be resolved in one step. On the surface remains a porous layer matrix, which is subsequently removed mechanically by means of irradiation, for example.
The time that the blades remain in the electrolyte does not reflect the actual time required for the individual blade to stop the dissolution process, but is defaults to a certain time. The residence time in the electrolyte is determined based on general experience.

Jedoch ist jedes Bauteil individuell verschieden stark beansprucht, so dass eine feste zeitliche Vorgabe zu unterschiedlicher oder nicht vollständiger Auflösung der beanspruchten Oberfläche des Bauteils führt. Vielfach verbleiben die Bauteile auch ohne weiteren Fortschritt der Entschichtung bis zum Ablauf der vorgegebenen Zeitspanne in dem Säurebad.However, each component is subjected to different individual stresses, so that a fixed time specification leads to different or incomplete dissolution of the claimed surface of the component. In many cases, the components remain in the acid bath without any further progress of the stripping until the end of the predetermined period of time.

Die EP 1 094 134 A1 sowie die US 2003/0062271 A1 offenbaren Verfahren zum elektrochemischen Entfernen von Schichten.The EP 1 094 134 A1 as well as the US 2003/0062271 A1 disclose methods for electrochemically removing layers.

Die US 4,539,087 offenbart eine Methode, bei der der Strom eines elektrolytischen Prozesses gemessen wird, so dass anhand des Stromverlaufs entschieden werden kann, wann der Prozess abzubrechen ist.The US 4,539,087 discloses a method in which the current of an electrolytic process is measured, so that it can be decided on the basis of the current profile, when the process is to be discontinued.

Es ist daher Aufgabe der Erfindung ein Verfahren aufzuzeigen dass eine individuelle Festlegung der minimal notwendigen Behandlungsdauer pro individuellem Bauteil (Typ, Beschichtungsdicke, Zustand nach Betriebsbeanspruchung, usw.) ermöglicht.It is therefore an object of the invention to provide a method that allows an individual specification of the minimum treatment time required per individual component (type, coating thickness, state after operating stress, etc.).

Die Aufgabe wird gelöst durch ein Verfahren zur Oberflächenbehandlung eines Bauteils gemäß Anspruch 1.The object is achieved by a method for surface treatment of a component according to claim 1.

Weitere Aufgabe der Erfindung ist es, eine Vorrichtung aufzuzeigen, die es erlaubt eine individuelle Festlegung der minimal notwendigen Behandlungsdauern pro individuellem Bauteil zu ermöglichen.Another object of the invention is to provide a device that allows an individual determination of the minimum treatment time required per individual component.

Die Aufgabe wird gelöst durch eine Vorrichtung zur Oberflächenbehandlung eines Bauteils gemäß Anspruchs 27.The object is achieved by a device for surface treatment of a component according to claim 27.

In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig in vorteilhafter Weise miteinander kombiniert werden können.In the dependent claims further advantageous measures are listed, which can be combined with each other in an advantageous manner.

Es zeigen

Figur 1
eine Vorrichtung, um das erfindungsgemäße Verfahren durchzuführen,
Figur 2, 3, 4
einen zeitlichen Spannungsverlauf,
Figur 5, 6
zeitliche Verläufe von Spannungen und Strom, die sich bei der Durchführung des erfindungsgemäßen Verfahrens ergeben,
Figur 7
eine Turbinenschaufel,
Figur 8
eine Brennkammer und
Figur 9
eine Gasturbine.
Show it
FIG. 1
an apparatus for carrying out the method according to the invention,
FIGS. 2, 3, 4
a temporal voltage curve,
FIG. 5, 6
temporal courses of voltages and current, which result in the implementation of the method according to the invention,
FIG. 7
a turbine blade,
FIG. 8
a combustion chamber and
FIG. 9
a gas turbine.

Figur 1 zeigt eine beispielhafte erfindungsgemäße Vorrichtung 1, mit der das erfindungsgemäße Verfahren durchgeführt werden kann. FIG. 1 shows an exemplary device 1 according to the invention, with which the inventive method can be performed.

Die Vorrichtung 1 besteht aus einem Behälter 3, beispielsweise metallisch, keramisch oder aus Kunststoff (Teflon Polymer, etc.), in dem ein Behandlungsmittel 6, beispielsweise eine Säure 6 oder ein Elektrolyt 6 (mit Beschichtungsmaterial) angeordnet ist, das zur Oberflächenbehandlung wie Entschichten oder Beschichten zumindest eines Bauteils 9 dient.
Beim Entschichten ist in dem Behälter 3 vorzugsweise eine Säure oder ein Säuregemisch vorhanden.
Hingegen weist beim Beschichten der Elektrolyt 6 die entsprechenden chemischen Elemente für die Beschichtung auf.
In dem Behandlungsmittel 6 beispielsweise ist hier beispielsweise ein einziges Bauteil 9 angeordnet, dessen Oberflächenbereich aufgelöst werden soll. Dies geschieht beispielsweise durch den Säureangriff auf die beispielsweise betriebsbeanspruchte Oberfläche des Bauteils 9.
The device 1 consists of a container 3, for example metallic, ceramic or plastic (Teflon polymer, etc.), in which a treatment agent 6, for example an acid 6 or an electrolyte 6 (with coating material) is arranged, for surface treatment such as stripping or coating at least one component 9 is used.
During stripping, an acid or an acid mixture is preferably present in the container 3.
By contrast, during coating, the electrolyte 6 has the corresponding chemical elements for the coating.
In the treatment agent 6, for example, a single component 9 is arranged here, for example, whose surface area is to be dissolved. This happens, for example, due to the acid attack on the surface of the component 9 which is subject to operating conditions, for example.

Wenn zwei oder mehrere Bauteile 9 entschichtet werden sollen, bilden beispielsweise beide Bauteile 9 jeweils eine Elektrode (also Anode und Kathode), wobei als Behandlungsmittel 6 ein stickstoffhaltiges Behandlungsmittel 6 verwendet werden sollte.If two or more components 9 are to be stripped, for example, both components 9 each form an electrode (ie anode and cathode), wherein as a treatment agent 6, a nitrogen-containing treatment agent 6 should be used.

Erfindungsgemäß ist zumindest eine Spannungs-/Stromquelle 18 vorhanden, die elektrisch über elektrische Verbindungsmittel 15 mit dem Bauteil 9 und einer weiteren Elektrode 12 verbunden ist. Ein erster Stromkreis kann dadurch geschlossen werden, dass die Verbindungsmittel 15 mit einem weiteren elektrischen Pol, d.h. der Elektrode 12, die in dem Behandlungsmittel 6 angeordnet ist oder mit dem Behälter 3 verbunden werden, so dass ein Strom I zwischen Bauteil 9 und dem Pol 3, 12 fließen kann, der auch gemessen werden kann. Der Strom fließt über das Bauteil 9 durch die beanspruchte Oberfläche des Bauteils 9 und durch das Behandlungsmittel 6 hin zu der Elektrode 12 (bzw. zum Behälter 3).
In einem Behälter 3 können auch mehrere Bauteile 9 zur Entschichtung angeordnet werden, wobei für jedes Bauteil 9 individuell eine Stromkurve I(t) ermittelt werden kann, so dass die Bauteile 9 ggf. unterschiedlich lang in dem Behandlungsmittel 6 verbleiben.
According to the invention, there is at least one voltage / current source 18, which is electrically connected to the component 9 and another electrode 12 via electrical connection means 15. A first electric circuit can be closed by connecting the connecting means 15 to a further electrical pole, ie the electrode 12, which is arranged in the treatment agent 6 or to the container 3, so that a current I between the component 9 and the pole 3 12, which can also be measured. The current flows through the component 9 through the claimed surface of the component 9 and through the treatment agent 6 to the electrode 12 (or to the container 3).
A plurality of components 9 for stripping can also be arranged in a container 3, wherein a current curve I (t) can be determined individually for each component 9, so that the components 9 possibly remain in the treatment agent 6 for different lengths of time.

Ein weiterer zweiter Stromkreis mit Leitungen 15' und Strom-/Spannungsquelle 18' beispielsweise für eine Messspannung 33 (Fig. 2) kann erfindungsgemäß auch noch vorhanden sein, so dass dort ebenfalls ein Strom fließt, der auch gemessen werden kann.
Die Leitungen 15' sind dann ebenfalls mit dem Bauteil 9 und der Elektrode 12 verbunden.
Another second circuit with lines 15 'and current / voltage source 18', for example for a measuring voltage 33 (FIG. Fig. 2 ) may also be present according to the invention, so that there also flows a current that can also be measured.
The lines 15 'are then also connected to the component 9 and the electrode 12.

Die Figur 2 zeigt einen beispielhaften erfindungsgemäßen Spannungsverlauf.The FIG. 2 shows an exemplary voltage profile according to the invention.

Für die Entschichtung eines großen Bauteils 9 wird eine gepulste Behandlungsspannung 30 mit einer Pulsdauer t30 angelegt, die beispielsweise bei entsprechend großen Bauteilen 9 (38 cm Länge) wie Gasturbinenschaufeln 120, 130 (Fig. 7, 9) Ströme bis zu 100 A erzeugt.
Die Pulsdauer t30 kann immer gleich groß sein oder mit der Zeit t sich verändern. Ebenso kann sich die Höhe der Behandlungsspannung mit der Zeit t ändern.
For the stripping of a large component 9, a pulsed treatment voltage 30 with a pulse duration t 30 is applied, which is, for example, correspondingly large Components 9 (38 cm in length) such as gas turbine blades 120, 130 ( Fig. 7 . 9 ) Generates currents up to 100 A.
The pulse duration t 30 can always be the same or change with time t. Likewise, the amount of treatment voltage may change with time t.

Diese Ströme sind aber zu groß, als dass aus dem Übergangsverhalten des Stromverlaufs genauere Informationen (Abkühlungszeiten sind beispielsweise zu lang) über den Fortschritt der Oberflächenbehandlung erhalten werden können.However, these currents are too large for more accurate information (cooling times, for example, too long) to be obtained from the transition behavior of the current profile via the progress of the surface treatment.

Daher wird erfindungsgemäß eine kleinere beispielsweise gepulste Messspannung 33 (1mV bis 50mV) der größeren Behandlungsspannung 30 (zur Entschichtung) in dem Stromkreis 18, 15, 9, 6, 12) überlagert oder die Behandlungsspannung 30 wird kurzzeitig (also zumindest zeitweise) um die Höhe der Messspannung 33 erhöht.Therefore, according to the invention, a smaller, for example, pulsed measuring voltage 33 (1 mV to 50 mV) is superimposed on the larger treatment voltage 30 (for stripping) in the circuit 18, 15, 9, 6, 12) or the treatment voltage 30 becomes short (ie at least temporarily) by the height the measuring voltage 33 increases.

Die Pulsdauer t33 der Messspannung 33 kann kleiner, gleich oder größer als die Pulsdauer t30 der Behandlungsspannung 30 sein.The pulse duration t 33 of the measurement voltage 33 may be smaller, equal to or greater than the pulse duration t 30 of the treatment voltage 30.

Wenn die Pulsdauer t33 der Messspannung 33 kleiner ist als die Pulsdauer t30 der Behandlungsspannung 30 kann die Messspannung 33 am Anfang, mitten oder am Ende der gepulsten Behandlungsspannung 33 angelegt werden.When the pulse duration t 33 of the measurement voltage 33 is smaller than the pulse duration t 30 of the treatment voltage 30, the measurement voltage 33 may be applied at the beginning, middle or end of the pulsed treatment voltage 33.

Die kleinere Messspannung 33 erzeugt sehr viel kleinere Ströme, die besser messbar sind.The smaller measuring voltage 33 produces much smaller currents that are easier to measure.

Die Trennung der Signale von Behandlungsspannung 30 und Messspannung 33 erfolgt beispielsweise durch eine Analyse der Stromkurve mittels mathematischer Signaltrennungsverfahren wie z.B. der Fourieranalyse.The separation of the signals of treatment voltage 30 and measurement voltage 33 is effected, for example, by an analysis of the current curve by means of mathematical signal separation methods, such as e.g. the Fourier analysis.

Entsprechend der Behandlungsspannung 30 zur Entschichtung und der Messspannung 33 können beispielsweise drei Elektroden (eine weitere Elektrode 12' für einen zweiten Stromkreis (Fig. 1) mit Leitungen 15' und Strom-/Spannungsquelle 18' für eine Messspannung 33 kann erfindungsgemäß auch noch vorhanden sein; die Leitungen 15' sind dann ebenfalls mit dem Bauteil 9 und bspw. mit der Elektrode 12' (gestrichelt angedeutet) und nicht mit der Elektrode 12 verbunden), verwendet werden, wobei sich die Spannungen auf der großen Oberfläche überlagern. Die messtechnische Trennung der Stromsignale erfolgt beispielsweise durch zwei teilweise entkoppelte Stromkreise (15 + 18 + 9 + 6 + 12; 15' + 18' + 9 + 6 + 12 bzw. +12').According to the treatment voltage 30 for stripping and the measuring voltage 33, for example, three electrodes (another electrode 12 'for a second circuit ( Fig. 1 ) with lines 15 'and current / voltage source 18' for a measuring voltage 33 may also be present according to the invention; the leads 15 'are then also used with the component 9 and, for example, with the electrode 12' (indicated by dashed lines) and not connected to the electrode 12), the stresses being superimposed on the large surface. The metrological separation of the current signals, for example, by two partially decoupled circuits (15 + 18 + 9 + 6 + 12, 15 '+ 18' + 9 + 6 + 12 or +12 ').

Der Beitrag der kleineren Messspannung 33 zur elektrolytischen Entschichtung ist gering bzw. zu vernachlässigen.The contribution of the smaller measuring voltage 33 to the electrolytic stripping is low or negligible.

Ebenso kann bei gepulster Behandlungsspannung 30 eine Gleichstrom-Messspannung 33'' (gestrichelt angedeutet) verwendet werden.Likewise, with pulsed treatment voltage 30, a DC measurement voltage 33 "(indicated by dashed lines) can be used.

Figur 3 zeigt einen weiteren beispielhaften erfindungsgemäßen Spannungsverlauf des erfindungsgemäßen Verfahrens. FIG. 3 shows a further exemplary inventive voltage profile of the method according to the invention.

Hier wird ebenfalls eine hohe gepulste Behandlungsspannung 30 zur Entschichtung verwendet, die sehr hohe Ströme erzeugt.Here, too, a high pulsed treatment voltage 30 is used for stripping, which generates very high currents.

Die Messspannung 33 ist hier beispielsweise ebenfalls gepulst und wird während den Pulspausen 36 (t36) der Behandlungsspannungspulse 30 angelegt (t36 > t33). Dies erfolgt durch die Synchronisierung der Spannungspulse 30, 33.The measuring voltage 33 is also pulsed here, for example, and is applied during the pulse pauses 36 (t 36 ) of the treatment voltage pulses 30 (t 36 > t 33 ). This is done by the synchronization of the voltage pulses 30, 33.

Figur 4 zeigt weitere beispielhafte Spannungsverläufe. FIG. 4 shows further exemplary voltage curves.

Hier wird eine konstante hohe Behandlungsspannung 30 (Gleichspannung) an das Bauteil 9 zur elektrolytischen Entschichtung angelegt, wobei die Messspannung 33 wiederum gepulst wird und der Behandlungsspannung 30 überlagert ist.Here is a constant high treatment voltage 30 (DC voltage) to the component 9 for electrolytic Stripping applied, the measuring voltage 33 is pulsed again and the treatment voltage 30 is superimposed.

Dabei kann die Behandlungsspannung 30 kurz (entspricht pulsartiger Erhöhung) um die Höhe der Messspannung 33 erhöht werden, wobei nur ein Stromkreis notwendig ist, oder die Messspannung 33' (gestrichelt angedeutet) wird der Behandlungsspannung überlagert, bspw. durch einen zweiten Stromkreis.In this case, the treatment voltage 30 (corresponding to a pulse-like increase) can be increased by the height of the measuring voltage 33, wherein only one circuit is necessary, or the measuring voltage 33 '(indicated by dashed lines) is superimposed on the treatment voltage, for example by a second circuit.

Ebenso kann eine kleinere Gleichstrom-Messspannung 33'' verwendet werden, insbesondere in einem zweiten Stromkreis 18', 15', 9, 6, 12 bzw. 12'.
Die Pulsdauern t33, t30 können gleich oder verschieden sein (t30 = t33, t33 < t30, t33 > t30, t30 = t33 und t36 > t30, usw.).
Likewise, a smaller DC measurement voltage 33 "can be used, in particular in a second circuit 18 ', 15', 9, 6, 12 or 12 '.
The pulse durations t 33 , t 30 may be the same or different (t 30 = t 33 , t 33 <t 30 , t 33 > t 30 , t 30 = t 33 and t 36 > t 30 , etc.).

Ein zeitlicher Verlauf des durch die Messspannung hervorgerufenen Stroms I(t) während der Elektrolyse zur Entschichtung ist in Figur 5 dargestellt.
Der Strom I(t) steigt am Anfang mit der Zeit t an und ist nach einem gewissen Zeitpunkt zunächst im wesentlichen konstant. Die Entschichtung ist noch nicht vollständig erfolgt, d.h. die Entschichtungsrate ist noch hoch.
Nach einer gewissen Zeit t sinkt der Strom I. Das Absinken (Bereich oder Punkt 27 in der Kurve I(t)) des Stroms I zeigt an, dass nur noch wenig Schichtmaterial aufgelöst wird. Der Auflöseprozess kann daher gestoppt werden, wenn beispielsweise ein vorgegebener Vergleichswert für die Stromstärke erreicht ist oder die Stromstärke um einen gewissen Wert abnimmt (siehe Unterschied Messpunkte 27, 22) bzw. eine Trendlinie einen abfallenden Verlauf für die Stromstärke ergibt.
Analog gilt dies für die Beschichtungsprozesse, wenn der Elektrolyt 6 verbraucht ist oder aus der Fläche unter der Kurve I(t) die Beschichtungsdicke ermittelt wird.
A time characteristic of the current I (t) caused by the measuring voltage during electrolysis for stripping is FIG. 5 shown.
The current I (t) increases at the beginning with the time t and is initially substantially constant after a certain time. The stripping has not yet been completed, ie the stripping rate is still high.
After a certain time t, the current I decreases. The decrease (range or point 27 in the curve I (t)) of the current I indicates that only a small amount of layer material is dissolved. The dissolution process can therefore be stopped if, for example, a predetermined comparison value for the current intensity is reached or the current intensity decreases by a certain value (see difference measuring points 27, 22) or a trend line results in a decreasing profile for the current intensity.
This applies analogously to the coating processes when the electrolyte 6 is consumed or the coating thickness is determined from the area under the curve I (t).

Das Verfahren kann auch in Teilschritten durchgeführt werden. Dabei wird jeweils in einem Verfahrenszwischenschritt eine abrasive Entschichtung durchgeführt, die Rückstände von Säureprodukten entfernt und/oder zur Beschleunigung der Entschichtung führt, da sich nach einem gewissen zeitlichen Aufenthalt des Bauteils 9 in dem Behandlungsmittel 6 beispielsweise eine spröde Schicht gebildet hat, die sich abrasiv besser entfernen lässt.The method can also be carried out in substeps. Here, in each case an intermediate process step, an abrasive stripping is carried out, which removes residues of acid products and / or accelerates stripping, since after a certain period of residence of the component 9 in the treatment agent 6, for example, a brittle layer has formed which is better abrasive can be removed.

Ebenso kann eine Wässerung (Spülung) des Bauteils 9 in einem Verfahrenszwischenschritt durchgeführt werden.
Danach wird das Bauteil 9 erneut in dem Behandlungsmittel 6 angeordnet.
Die Verfahrensschritte Behandlung des Bauteils 9 im Behandlungsmittel 6, abrasive Bestrahlung können beliebig wiederholt werden.
Die Entschichtung des oder der Bauteile 9 läuft auch ohne das Vorhandensein einer Behandlungsspannung, d.h. es liegt dann kein elektrolytischer Entschichtungsprozess vor.
Likewise, a washing (rinsing) of the component 9 can be carried out in a process intermediate step.
Thereafter, the component 9 is again placed in the treatment agent 6.
The process steps treatment of the component 9 in the treatment agent 6, abrasive irradiation can be repeated as desired.
The delamination of the component or components 9 also runs without the presence of a treatment voltage, ie there is then no electrolytic stripping process.

Die Figur 6 zeigt einen experimentell vermittelten Verlauf der gemessenen bzw. verwendeten Ströme und Spannungen.The FIG. 6 shows an experimentally mediated course of the measured or used currents and voltages.

An eine Turbinenschaufel (Länge ≈ 18 cm, Oberfläche ≈ 150 cm2) wird eine konstante Behandlungsspannung 30 von 1,2V angelegt, wobei als Elektrolyt beispielsweise 5% HCl (Salzsäure) mit 2% Triethanolamin verwendet wird. Die Behandlungsspannung 30 ist durch die Raute dargestellt und erzeugt einen Strom I von 10 bis 11 A (nicht dargestellt).To a turbine blade (length ≈ 18 cm, surface ≈ 150 cm 2 ) is applied a constant treatment voltage 30 of 1.2V, being used as the electrolyte, for example, 5% HCl (hydrochloric acid) with 2% triethanolamine. The treatment voltage 30 is represented by the rhombus and generates a current I of 10 to 11 A (not shown).

Die gepulste Messspannung 33 zur Bestimmung des Endpunkts beträgt hier beispielsweise 50 mV und wird durch Pulse mit einer Pulslänge von beispielsweise 0,5s angelegt. Das Verhältnis Messspannung 33 zur Behandlungsspannung 30 liegt also bei 1:24 und ist alternativ beispielsweise 1:10 (oder 1:20, 1:30 oder größer 1:50, 1:100).The pulsed measuring voltage 33 for determining the end point here is for example 50 mV and is applied by pulses with a pulse length of, for example, 0.5 s. The ratio measuring voltage 33 to the treatment voltage 30 is therefore 1:24 and is, for example, 1:10 (or 1:20, 1:30 or more than 1:50, 1: 100).

Die Messspannung 33 wird durch Quadrate in der Figur 6 dargestellt. Der Strom I, der aufgrund der Messspannung 33 gemessen wird, ist durch die Dreiecke in der Figur 6 dargestellt. Eine Trennlinie (gestrichelt angedeutet) zeigt den intrapolierten und erwarteten zeitlichen Verlauf des Stroms. Diese Kurve entspricht der in Figur 2.The measuring voltage 33 is indicated by squares in the FIG. 6 shown. The current I, which is measured on the basis of the measuring voltage 33, is indicated by the triangles in FIG FIG. 6 shown. A dividing line (indicated by dashed lines) shows the intrapolated and expected time course of the current. This curve corresponds to the one in FIG. 2 ,

Der zeitliche Verlauf 24 des Stroms I(t) kann auch aus einzelnen Messpunkten 21 ermittelt werden, die in regelmäßigen oder unregelmäßigen Abständen bestimmt werden.The time course 24 of the current I (t) can also be determined from individual measuring points 21, which are determined at regular or irregular intervals.

Die so entschichteten Bauteile der folgenden Figurenbeschreibungen können erneut, wie in den folgenden Figurenbeschreibungen erläutert, beschichtet werden.The components of the following description of figures which have been stripped off in this way can be coated again as explained in the following description of the figures.

Figur 7 zeigt in perspektivischer Ansicht eine Schaufel 120, 130, die sich entlang einer Längsachse 121 erstreckt. FIG. 7 shows a perspective view of a blade 120, 130 which extends along a longitudinal axis 121.

Die Schaufel als Beispiel für das Bauteil 9 kann eine Laufschaufel 120 oder Leitschaufel 130 einer Strömungsmaschine sein. Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.The blade as an example of the component 9 may be a blade 120 or guide blade 130 of a turbomachine. The turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.

Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 auf.
Als Leitschaufel 130 kann die Schaufel an ihrer Schaufelspitze 415 eine weitere Plattform aufweisen (nicht dargestellt).
The blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjoining thereto and an airfoil 406.
As a guide blade 130, the blade at its blade tip 415 may have another platform (not shown).

Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt).
Der Schaufelfuß 183 ist bspw. als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.
Die Schaufel 120, 130 weist für ein Medium, das an dem Schaufelblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf.
In the mounting region 400, a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
The blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
The blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.

Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 bspw. massive metallische Werkstoffe verwendet.
Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
In conventional blades 120, 130, massive metallic materials are used in all regions 400, 403, 406 of the blade 120, 130, for example.
The blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.

Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.
Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.
Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.
Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
The production of such monocrystalline workpieces, for example, by directed solidification from the melt. These are casting methods in which the liquid metallic alloy solidifies into a monocrystalline structure, ie a single-crystal workpiece, or directionally.
Here, dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole Workpiece consists of a single crystal. In these processes, one must avoid the transition to globulitic (polycrystalline) solidification, since non-directional growth necessarily produces transverse and longitudinal grain boundaries, which negate the good properties of the directionally solidified or monocrystalline component.

Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures).The term generally refers to directionally solidified microstructures, which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.

Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 A1 bekannt.Such methods are known from U.S. Patent 6,024,792 and the EP 0 892 090 A1 known.

Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschichten durch das erfindungsgemäße Verfahren befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wiederbeschichtung des Bauteils 120, 130 beispielsweise durch das erfindungsgemäße Verfahren und ein erneuter Einsatz des Bauteils 120, 130.Refurbishment means that, after use, components 120, 130 may have to be freed from protective layers by the method according to the invention (for example by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. Thereafter, a re-coating of the component 120, 130 takes place, for example, by the method according to the invention and a renewed use of the component 120, 130.

Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher (nicht dargestellt) auf. Als Schutz gegen Korrosion weist die Schaufel 120, 130 bspw. entsprechende meistens metallische Beschichtungen auf und als Schutz gegen Wärme meistens noch eine keramische Beschichtung.The blade 120, 130 may be hollow or solid. When the blade 120, 130 is to be cooled, it is hollow and may still have film cooling holes (not shown). As protection against corrosion, the blade 120, 130, for example, corresponding mostly metallic coatings and as protection against heat usually still a ceramic coating.

Die Figur 8 zeigt eine Brennkammer 110 einer Gasturbine.
Die Brennkammer 110 ist beispielsweise als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um die Turbinenwelle 103 herum angeordneten Brennern 102 in einen gemeinsamen Brennkammerraum münden. Dazu ist die Brennkammer 110 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Turbinenwelle 103 herum positioniert ist.
The FIG. 8 shows a combustion chamber 110 of a gas turbine.
The combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 102 arranged around the turbine shaft 103 in the circumferential direction open into a common combustion chamber space. For this purpose, the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the turbine shaft 103 around.

Zur Erzielung eines vergleichsweise hohen Wirkungsgrades ist die Brennkammer 110 für eine vergleichsweise hohe Temperatur des Arbeitsmediums M von etwa 1000°C bis 1600°C ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise lange Betriebsdauer zu ermöglichen, ist die Brennkammerwand 153 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 155 (weiteres Beispiel für Bauteil 9) gebildeten Innenauskleidung versehen. Jedes Hitzeschildelement 155 ist arbeitsmediumsseitig mit einer besonders hitzebeständigen Schutzschicht ausgestattet oder aus hochtemperaturbeständigem Material gefertigt. Aufgrund der hohen Temperaturen im Inneren der Brennkammer 110 ist zudem für die Hitzeschildelemente 155 bzw. für deren Halteelemente ein Kühlsystem vorgesehen.To achieve a comparatively high efficiency, the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C. In order to enable a comparatively long service life for these operating parameters, which are unfavorable for the materials, the combustion chamber wall 153 is provided on its side facing the working medium M with an inner lining formed of heat shield elements 155 (further example for component 9). Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material. Due to the high temperatures in the interior of the combustion chamber 110, a cooling system is additionally provided for the heat shield elements 155 or for their holding elements.

Die Materialien der Brennkammerwand und deren Beschichtungen können ähnlich der Turbinenschaufeln sein.The materials of the combustion chamber wall and its coatings may be similar to the turbine blades.

Die Figur 9 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt.
Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 auf, der auch als Turbinenläufer bezeichnet wird.
Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer 106, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
Die Ringbrennkammer 106 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinandergeschaltete Turbinenstufen 112 die Turbine 108.
Jede Turbinenstufe 112 ist bspw. aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
The FIG. 9 shows by way of example a gas turbine 100 in a longitudinal partial section.
The gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
Along the rotor 103 follow one another an intake housing 104, a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108, and the exhaust case 109.
The annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example. There, for example, four turbine stages 112 connected in series form the turbine 108.
Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.

Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 bspw. mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.
An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).
The guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
Coupled to the rotor 103 is a generator or work machine (not shown).

Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.During operation of the gas turbine 100, air 105 is sucked in and compressed by the compressor 105 through the intake housing 104. The compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel. The mixture is then burned to form the working fluid 113 in the combustion chamber 110. From there, the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120. On the rotor blades 120, the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.

Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 106 auskleidenden Hitzeschildsteinen am meisten thermisch belastet.
Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.
Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin (SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur).
Als Material für die Bauteile, insbesondere für die Turbinenschaufel 120, 130 und Bauteile der Brennkammer 110 werden bspw. eisen-, nickel- oder kobaltbasierte Superlegierungen verwendet.
Solche Superlegierungen sind bspw. aus der EP 1204776 , EP 1306454 , EP 1319729 , WO 99/67435 oder WO 00/44949 bekannt.
The components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100. The guide vanes 130 and blades 120 of the first turbine stage 112 seen in the flow direction of the working medium 113 are in addition to the Ring combustion chamber 106 lining heat shield bricks most thermally stressed.
To withstand the prevailing temperatures, they can be cooled by means of a coolant.
Likewise, substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
As the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110, for example, iron-, nickel- or cobalt-based superalloys are used.
Such superalloys are, for example, from the EP 1204776 . EP 1306454 . EP 1319729 . WO 99/67435 or WO 00/44949 known.

Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrA1X; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden) und Wärme durch eine Wärmedämmschicht aufweisen.
Die Wärmedämmschicht besteht beispielsweise ZrO2, Y2O4-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
Likewise, blades 120, 130 may be anti-corrosion coatings (MCrA1X; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon and / or at least one element of the rare earths) and heat through a thermal barrier coating.
The thermal barrier coating consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
By means of suitable coating processes, such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.

Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht dargestellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt.The vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot. The vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Claims (28)

  1. Process for the surface treatment of at least one component (9),
    in which the at least one component (9) is arranged in a treatment agent (6),
    a treatment voltage (30) for surface treatment being applied to the at least one component (9) and one further pole (3, 12), and in which
    a measurement voltage (33) that is lower than the treatment voltage (30), is applied to the at least one component (9) and the at least one further pole (12, 12'),
    so that as a result of the applied measurement voltage (33) a time-dependent current (I(t)) flows,
    the time profile of which current represents the state of the surface treatment and is used to reach a decision on when to terminate or interrupt the surface treatment.
  2. Process according to claim 1,
    characterized in that
    the treatment voltage (30) used is a DC voltage.
  3. Process according to claim 1,
    characterized in that
    the treatment voltage (30) is pulsed.
  4. Process according to claim 1, 2 or 3,
    characterized in that
    the measurement voltage (33) used is a DC voltage.
  5. Process according to claim 1, 2 or 3,
    characterized in that
    the measurement voltage (33) is pulsed.
  6. Process according to claim 5,
    characterized in that
    the pulsed measurement voltage (33) at least at times is applied together with the pulsed treatment voltage (30).
  7. Process according to claim 5,
    characterized in that
    the pulsed measurement voltage (33) is applied during an interpulse period (36) of the pulsed treatment voltage (30).
  8. Process according to claim 5, 6 or 7,
    characterized in that
    a pulse duration (t33) of the measurement voltage (33) is shorter than the pulse duration (t30) of the treatment voltage (30).
  9. Process according to claim 5, 6 or 7,
    characterized in that
    a pulse duration (t33) of the measurement voltage (33) is equal to the pulse duration (t30) of the treatment voltage (30).
  10. Process according to claim 1,
    characterized in that
    the measurement voltage (33) has a ratio of at least 1:10 with respect to the treatment voltage (30).
  11. Process according to claim 1,
    characterized in that
    the measurement voltage (33) has a ratio of 1:10 with respect to the treatment voltage (30).
  12. Process according to claim 1,
    characterized in that
    the measurement voltage (33) has a ratio of 1:20 with respect to the treatment voltage (30).
  13. Process according to claim 1,
    characterized in that
    the measurement voltage (33) has a ratio of 1:30 with respect to the treatment voltage (30).
  14. Process according to claim 1,
    characterized in that
    the measurement voltage (33) has a ratio of 1:40 or more with respect to the treatment voltage (30).
  15. Process according to claim 1,
    characterized
    in that the component (9) has a coating to be removed, and
    in that the surface treatment is used to remove the coating from the at least one component (9).
  16. Process according to claim 1,
    characterized in that
    the surface treatment is used to coat the at least one component (9).
  17. Process according to claim 1,
    characterized in that
    an electrode (12, 12'), in particular a further component (9), is used as a further pole in the treatment agent (6).
  18. Process according to claim 1 or 15,
    characterized in that
    the treatment agent (6) used is an acid.
  19. Process according to claim 1, 15 or 18,
    characterized in that
    the current (I(t)) initially rises with time (t) and then remains relatively constant.
  20. Process according to claim 1, 15, 18 or 19,
    characterized in that
    a drop in the current (I(t)) over the course of time, in particular to a predetermined comparison value, marks an end point of the removal of the coating.
  21. Process according to claim 1,
    characterized in that
    the surface treatment is carried out in substeps,
    with abrasive coating removal taking place in an intermediate step, and
    the at least one component (9) then once again being treated in the treatment agent (6).
  22. Process according to claim 1 or 21,
    characterized in that
    the at least one component (9) is rinsed in at least one intermediate step.
  23. Process according to claim 1, 19, 20, 21 or 22,
    characterized in that
    a single component (9) is treated.
  24. Process according to claim 1, 19, 20 or 21,
    characterized in that
    at least two components (9) are treated,
    for each of which (9) an individual time profile (I(t)) is determined.
  25. Process according to claim 1,
    characterized in that
    a common circuit (12, 18, 15, 9, 6) is used for the treatment voltage (30) and the measurement voltage (33).
  26. Process according to claim 1,
    characterized in that
    a first circuit (12, 18, 15, 9, 6) is used for the treatment voltage (30) and a second circuit (12, 12', 18', 15', 9, 6) is used for the measurement voltage (33).
  27. Apparatus (1) for the surface treatment of at least one component (9),
    which apparatus at least includes
    a component (9) to be treated, as an electrical pole,
    a further pole (3, 12)
    a treatment agent (6),
    in which the at least one component (9) and the further pole (3, 12) are arranged,
    electrical connection means (15),
    which connect the at least one component (9) and the further pole (3, 12) to an electric voltage source (18),
    characterized in that
    there are further electrical supply conductors (15'), which connect the at least one component (9) and the further pole (3, 12) to a further electric voltage source (18').
  28. Apparatus according to claim 27,
    characterized in that
    a further pole (12') is used to form the second circuit.
EP04015424A 2004-06-30 2004-06-30 Method and apparatus for surface treatment of a component Expired - Lifetime EP1612299B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP04015424A EP1612299B1 (en) 2004-06-30 2004-06-30 Method and apparatus for surface treatment of a component
AT04015424T ATE389739T1 (en) 2004-06-30 2004-06-30 METHOD AND DEVICE FOR SURFACE TREATMENT OF A COMPONENT
DE502004006578T DE502004006578D1 (en) 2004-06-30 2004-06-30 Method and device for surface treatment of a component
EP05770315A EP1761660A1 (en) 2004-06-30 2005-06-13 Method for removing a coating from a component
US11/630,137 US20080277288A1 (en) 2004-06-30 2005-06-13 Method For Removing A Coating From A Component
PCT/DE2005/001090 WO2006002610A1 (en) 2004-06-30 2005-06-13 Method for removing a coating from a component
CNA2005100813633A CN1721580A (en) 2004-06-30 2005-06-28 Method and apparatus for surface treatment of a component
US11/170,662 US7794581B2 (en) 2004-06-30 2005-06-29 Process for the surface treatment of a component, and apparatus for the surface treatment of a component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04015424A EP1612299B1 (en) 2004-06-30 2004-06-30 Method and apparatus for surface treatment of a component

Publications (2)

Publication Number Publication Date
EP1612299A1 EP1612299A1 (en) 2006-01-04
EP1612299B1 true EP1612299B1 (en) 2008-03-19

Family

ID=34925563

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04015424A Expired - Lifetime EP1612299B1 (en) 2004-06-30 2004-06-30 Method and apparatus for surface treatment of a component

Country Status (5)

Country Link
US (1) US7794581B2 (en)
EP (1) EP1612299B1 (en)
CN (1) CN1721580A (en)
AT (1) ATE389739T1 (en)
DE (1) DE502004006578D1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1473387A1 (en) * 2003-05-02 2004-11-03 Siemens Aktiengesellschaft Method for stripping a coating from a part
DE102010046372A1 (en) * 2010-09-24 2012-03-29 Oerlikon Trading Ag, Trübbach Method for stripping workpieces
CN103088398B (en) * 2011-10-31 2016-05-11 通用电气公司 Multi-channel electrochemical removes metallic coating system and control circuit thereof
US9163322B2 (en) * 2013-07-01 2015-10-20 General Electric Company Method and apparatus for refurbishing turbine components
CN104593830A (en) * 2013-11-01 2015-05-06 无锡华臻新能源科技有限公司 Electrochemical additive manufacturing method with measuring feedback, and apparatus thereof
CN105033372B (en) * 2015-09-01 2017-09-01 太原科技大学 Rotating tool electrolytic passivation device
CN111715605B (en) * 2019-03-22 2022-02-08 潍坊华光光电子有限公司 Cleaning device and cleaning method for optical coating clamp

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU186150B (en) * 1982-10-29 1985-06-28 Latszereszeti Eszkoezoek Gyara Process for the removal electrolitically of nickel, chrome ot gold layers from the surface of copper or cupric alloys and equipemnt for carrying out the process
GB8517606D0 (en) * 1985-07-12 1985-08-21 Bekaert Sa Nv Cleaning by electrochemical pickling
EP0861927A1 (en) 1997-02-24 1998-09-02 Sulzer Innotec Ag Method for manufacturing single crystal structures
EP0892090B1 (en) 1997-02-24 2008-04-23 Sulzer Innotec Ag Method for manufacturing single crystal structures
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
DE50006694D1 (en) 1999-07-29 2004-07-08 Siemens Ag HIGH-TEMPERATURE-RESISTANT COMPONENT AND METHOD FOR PRODUCING THE HIGH-TEMPERATURE-RESISTANT COMPONENT
JP4513145B2 (en) * 1999-09-07 2010-07-28 ソニー株式会社 Semiconductor device manufacturing method and polishing method
US6352636B1 (en) * 1999-10-18 2002-03-05 General Electric Company Electrochemical system and process for stripping metallic coatings
JP2002046024A (en) * 2000-08-04 2002-02-12 Sony Corp Electrolytic polishing device, electrolytic polishing method, and wafer to be polished
US7134934B2 (en) * 2000-08-30 2006-11-14 Micron Technology, Inc. Methods and apparatus for electrically detecting characteristics of a microelectronic substrate and/or polishing medium
US6599416B2 (en) 2001-09-28 2003-07-29 General Electric Company Method and apparatus for selectively removing coatings from substrates
DE50104022D1 (en) 2001-10-24 2004-11-11 Siemens Ag Protective layer containing rhenium to protect a component against corrosion and oxidation at high temperatures
JP3807295B2 (en) * 2001-11-30 2006-08-09 ソニー株式会社 Polishing method
DE50112339D1 (en) 2001-12-13 2007-05-24 Siemens Ag High-temperature resistant component made of monocrystalline or polycrystalline nickel-based superalloy
DE10259365A1 (en) 2002-04-08 2003-10-30 Siemens Ag Device and method for removing surface areas of a component
US7112270B2 (en) * 2002-09-16 2006-09-26 Applied Materials, Inc. Algorithm for real-time process control of electro-polishing
EP1473387A1 (en) * 2003-05-02 2004-11-03 Siemens Aktiengesellschaft Method for stripping a coating from a part
US20050098445A1 (en) * 2003-11-10 2005-05-12 General Electric Company Electrochemical machining method, tool assembly, and monitoring method
US20050167266A1 (en) * 2004-02-02 2005-08-04 Cabot Microelectronics Corporation ECMP system

Also Published As

Publication number Publication date
US20060084190A1 (en) 2006-04-20
US7794581B2 (en) 2010-09-14
EP1612299A1 (en) 2006-01-04
CN1721580A (en) 2006-01-18
DE502004006578D1 (en) 2008-04-30
ATE389739T1 (en) 2008-04-15

Similar Documents

Publication Publication Date Title
EP1870497A1 (en) Method for the electrochemical stripping of a metallic coating from an element
EP1722901B1 (en) Method for plasma cleaning of a component
EP1998922B1 (en) Method for electrical discharge machining of electrically non-conductive material
WO2007110280A1 (en) Electrode arrangement for electrical discharge machining an electrically non-conductive material
EP1864742A1 (en) Method of electric discharge machining for electrically insulating material
EP1779955A1 (en) FIC-process for cleaning embedded oxides in cracks typically found in Nickel-based superalloy containing at least 10 % Chromium
EP1612299B1 (en) Method and apparatus for surface treatment of a component
EP1809436A1 (en) Method for electrolytically treating a component and component equipped with a through-hole
EP1837114A1 (en) Dielectric fluid for electric discharge machining a non electrically conductive material
EP2021147A1 (en) Method for spark-erosive treatment of electrically nonconductive materials
WO2008034739A1 (en) Method for electrochemically coating or stripping the coating from components
EP1797985A1 (en) Method and device for welding
EP1839801A1 (en) Repairing method to restore components
EP1695783A1 (en) Method for determining the position of an electrochemically drilled passage hole.
WO2009052841A1 (en) Method of electric discharge machining by means of separately supplying the dielectric and apparatus therefor
EP1808251B1 (en) Method of dressing an erosion electrode and of electroerosive machining
WO2007113065A1 (en) Method for the electrical discharge machining of an electrically non-conductive material
EP1658924A1 (en) Part with a filled recess
WO2006051019A1 (en) Method for the electrolytic treatment of a part, and part comprising a through hole
WO2006051018A2 (en) Method for finishing a through hole
EP1676938A1 (en) Method of manufacturing a component part of a turbine and a component of a turbine
EP1860210A1 (en) Method for electrolytic treatment of a workpiece
WO2009089840A1 (en) Method and device for controlled edm machining
WO2008068070A1 (en) Method for coating a component provided with openings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004006578

Country of ref document: DE

Date of ref document: 20080430

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080630

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080619

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

BERE Be: lapsed

Owner name: IEMENS A.G.

Effective date: 20080630

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

26N No opposition filed

Effective date: 20081222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100625

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100914

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100820

Year of fee payment: 7

Ref country code: GB

Payment date: 20100617

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004006578

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090109