EP1606869A1 - Transmitter head and a system for contactless energy transmission - Google Patents
Transmitter head and a system for contactless energy transmissionInfo
- Publication number
- EP1606869A1 EP1606869A1 EP04713037A EP04713037A EP1606869A1 EP 1606869 A1 EP1606869 A1 EP 1606869A1 EP 04713037 A EP04713037 A EP 04713037A EP 04713037 A EP04713037 A EP 04713037A EP 1606869 A1 EP1606869 A1 EP 1606869A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transmitter head
- head according
- arrangement
- ferrite core
- energy transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 22
- 238000004804 winding Methods 0.000 claims abstract description 30
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 21
- 239000004020 conductor Substances 0.000 claims description 37
- 238000001816 cooling Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 8
- 239000004033 plastic Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- 230000002500 effect on skin Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0013—Printed inductances with stacked layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F19/00—Fixed transformers or mutual inductances of the signal type
- H01F19/04—Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
- H01F19/08—Transformers having magnetic bias, e.g. for handling pulses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
- H01F2038/143—Inductive couplings for signals
Definitions
- the invention relates to a transmitter head and a system for contactless energy transmission.
- DE 100 53 373 A1 discloses a device for contactless energy transmission.
- a transmitter head is described which enables inductive energy transmission and has a number of turns.
- a system for non-contact energy transmission is known, the route consisting of a stationary center conductor and aluminum profile as a return line.
- the center conductor is surrounded by a U-shaped core of the transmitter head which is movable along the center conductor.
- a winding is provided on the U-shaped core.
- the transmitter head requires a large volume.
- WO 92/17929 is also a system for contactless energy transmission, the transmission path consisting of a forward and a return line in the form of
- the transducer head which has an E-shaped core and a winding arranged on the middle leg of the E-shaped core, also requires a large structural volume.
- the invention is therefore based on the object of developing a system for contactless energy transmission in such a way that a smaller construction volume is required in a cost-effective manner.
- the object is achieved in the transmitter head according to the features in claim 1 or 2 and in the system according to the features specified in claim 12.
- Essential features of the invention in the transmitter head are that the transmitter head for a system for contactless energy transmission comprises a carrier which is connected to at least one ferrite core, the ferrite core being at least partially E-shaped and the flat winding being arranged around one leg of the E. is.
- the transmitter head for an electrical energy transmission device is designed with a primary conductor arrangement made up of at least two primary conductors running parallel to one another and at least one electromagnetically coupled secondary winding arrangement, which is mechanically separated from the primary conductor arrangement and can be moved in the longitudinal direction thereof, the secondary winding arrangement having at least one secondary coil that acts as Flat winding is formed and which lies in a plane which is arranged parallel to the plane receiving the primary conductor arrangement, the transmitter head comprising a carrier which is connected to at least one ferrite core, the ferrite core being at least partially E-shaped and the flat winding around a leg of the E-shaped ferrite core is provided around.
- the advantage here is that the transmitter head is very flat, inexpensive and takes up a small amount of space.
- the efficiency in energy transmission is much higher, since the E-shaped design guides the field lines in such a way that fewer stray fields are created and the majority of the field lines generated by the primary lines are led through the ferrite core with the legs of the E.
- the primary conductors are designed as line conductors or the primary conductors are designed as flat conductors, the surface normal of which is perpendicular to the plane receiving the secondary winding arrangement.
- the secondary winding arrangement is arranged on the underside of the floor of a vehicle.
- the advantage here is that a rail system can be used as well as a railless system.
- the secondary winding arrangement is embedded in a casting compound.
- the advantage here is that a high degree of protection can be achieved.
- the primary conductor arrangement is arranged in a stationary manner in the area of a route close to the surface. The advantage here is that a high degree of efficiency in energy transmission can be achieved.
- Secondary conductor arrangement is at least partially formed from stranded material.
- the advantage here is that the skin effect can be reduced.
- the flat winding is designed as a conductor track on a single or multi-layer circuit board.
- the circuit board is also provided with electronic components.
- the advantage here is that the number of components can be reduced, in particular the number of means for electrical and / or mechanical connection can be reduced.
- the circuit board is connected to a housing part comprising a cooling device.
- the cooling device has cooling fins and / or cooling fingers. The advantage here is that the heat can be passed on from the housing part to the cooling device.
- Essential features of the invention in the system for contactless energy transmission with a transmitter head are that two line conductors are laid in the floor at a mutual distance A, the distance of the transmitter head from the floor between 0.05 * A and 0 , 2 * A is.
- the advantage here is that large capacities can be transferred with a particularly small construction volume.
- circuit board 15 31 ferrite core
- FIG. 1a A transmitter head according to the invention is shown in FIG. 1a, an enlarged section of the left end region being shown in FIG. 1b. It is flat and requires a small volume.
- ferrite cores 2 are applied and connected to the carrier 1, in particular as an adhesive connection or as a releasable connection, such as a screw connection or the like.
- a multi-layer circuit board with layers (3, 4, 5) is provided on the ferrite cores 2, which have copper conductor tracks designed as flat windings and are thus designed on the circuit board.
- a single flat spiral winding is provided as the conductor track of a single-layer circuit board, although less electrical power can then be transmitted.
- a multilayer board (3, 4, 5) which has a spiral winding in several planes.
- the conduction of the current does not only run in a single spiral-shaped respective level, but the line alternates several times between the levels to reduce the skin effect.
- a change to a next level of the circuit board advantageously takes place, a short conductor track section is run through again there and then another switch is made.
- a quasi-twisted current conduction is created, which corresponds in principle to a stranded wire, that is to say a multiple bundle of mutually insulated power lines. The winding thus created is thus quasi-twisted.
- the circuit board 3 also carries electronic components 23 and has the necessary conductor tracks.
- the circuit board 3 and the ferrite cores 4 are connected to a housing part 21 which also has cooling fins 22 for heat dissipation.
- a housing part 21 which also has cooling fins 22 for heat dissipation.
- FIG. 3 Another exemplary embodiment according to the invention is shown in FIG.
- Plastic molded parts 32 lie on the ferrite core 31 and the strands 33 are embedded in their recesses. The strands are missing in FIG. 3a.
- a symbolic section through the plastic molded parts 32 is shown with the indication of two inserted strands 33.
- the plastic molded parts 32 facilitate the insertion of the strands 33.
- the ferrite core 31 is designed in an E-shape and the winding is carried out around the middle leg of the E.
- the three legs of the E are made very short, in particular as short as the height of the winding.
- FIG. 4 shows the part for the inductive energy transmission of the system.
- two line conductors 42 made of stranded wire are inserted in the base 41 and have a mutual spacing A of 140 mm.
- values from 100 mm to 200 mm are also advantageous.
- the flat transmitter head provided in a housing part 43 has a maximum distance B from the floor 41 of 15 mm, that is to say approximately one tenth of the distance A of the line conductors. Instead of a tenth, values between 7% and 12% are advantageous.
- the plastic molded parts 32 are designed as modules that can be arranged next to one another, the recesses of which are designed such that the
- Stranded wire can either be inserted in straight lines or in circular arc pieces. For this purpose, both the straight and the circular-shaped courses are deepened into the original
- Embossed plastic part in such a way that ridges remain which are partially interrupted to one another, i.e. not all connect directly to one another.
- the transmitter head is in a vehicle or relatively movable with respect to the ground
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Coils Or Transformers For Communication (AREA)
- Current-Collector Devices For Electrically Propelled Vehicles (AREA)
- Near-Field Transmission Systems (AREA)
- Transformer Cooling (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10312284A DE10312284B4 (en) | 2003-03-19 | 2003-03-19 | Transducer head, system for contactless energy transmission and use of a transmitter head |
DE10312284 | 2003-03-19 | ||
PCT/EP2004/001660 WO2004084372A1 (en) | 2003-03-19 | 2004-02-20 | Transmitter head and a system for contactless energy transmission |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1606869A1 true EP1606869A1 (en) | 2005-12-21 |
EP1606869B1 EP1606869B1 (en) | 2008-07-16 |
Family
ID=33015920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04713037A Expired - Lifetime EP1606869B1 (en) | 2003-03-19 | 2004-02-20 | Transmitter head and a system for contactless energy transmission |
Country Status (6)
Country | Link |
---|---|
US (1) | US7492247B2 (en) |
EP (1) | EP1606869B1 (en) |
CN (1) | CN100431237C (en) |
AT (1) | ATE401688T1 (en) |
DE (2) | DE10312284B4 (en) |
WO (1) | WO2004084372A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2800110A4 (en) * | 2011-12-27 | 2015-06-03 | Panasonic Ip Man Co Ltd | Non-contact charging device |
Families Citing this family (154)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10360604B4 (en) | 2003-12-19 | 2020-06-18 | Sew-Eurodrive Gmbh & Co Kg | Consumer with means of its inductive supply and system |
DE10360599B4 (en) | 2003-12-19 | 2020-07-09 | Sew-Eurodrive Gmbh & Co Kg | System with drives on a rotatably mounted, movable part, i.e. turntable |
DE102005022649B3 (en) * | 2005-05-11 | 2006-08-24 | Sew-Eurodrive Gmbh & Co. Kg | Conductor system with linear conductor having sections connected by an elastic region |
US7825543B2 (en) * | 2005-07-12 | 2010-11-02 | Massachusetts Institute Of Technology | Wireless energy transfer |
AU2006269374C1 (en) | 2005-07-12 | 2010-03-25 | Massachusetts Institute Of Technology | Wireless non-radiative energy transfer |
DE102006030335B4 (en) | 2005-12-22 | 2023-01-19 | Sew-Eurodrive Gmbh & Co Kg | System with drives under a rotary table |
US9478133B2 (en) | 2006-03-31 | 2016-10-25 | Volkswagen Ag | Motor vehicle and navigation arrangement for a motor vehicle |
US20070233371A1 (en) | 2006-03-31 | 2007-10-04 | Arne Stoschek | Navigation system for a motor vehicle |
DE102007014712B4 (en) * | 2006-05-30 | 2012-12-06 | Sew-Eurodrive Gmbh & Co. Kg | investment |
DE102006025458B4 (en) * | 2006-05-30 | 2020-06-18 | Sew-Eurodrive Gmbh & Co Kg | Transmitter head and system for contactless energy transmission |
DE102006025461B4 (en) * | 2006-05-30 | 2020-01-02 | Sew-Eurodrive Gmbh & Co Kg | Transmitter head for a system for contactless energy transmission and system with a transmitter head |
DE102006025460B4 (en) * | 2006-05-30 | 2022-01-20 | Sew-Eurodrive Gmbh & Co Kg | Plant with a primary conductor system |
JP4855150B2 (en) * | 2006-06-09 | 2012-01-18 | 株式会社トプコン | Fundus observation apparatus, ophthalmic image processing apparatus, and ophthalmic image processing program |
DE102007033329B4 (en) * | 2006-08-04 | 2009-04-23 | Sew-Eurodrive Gmbh & Co. Kg | Method and device for laying line conductors, method for chamfering recesses, apparatus and method for producing multi-stage blind holes |
DE102006053681B4 (en) * | 2006-11-13 | 2022-02-17 | Sew-Eurodrive Gmbh & Co Kg | Consumer and system with contactless supply |
US7750783B2 (en) * | 2007-02-20 | 2010-07-06 | Seiko Epson Corporation | Electronic instrument including a coil unit |
US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
US8115448B2 (en) | 2007-06-01 | 2012-02-14 | Michael Sasha John | Systems and methods for wireless power |
US7973635B2 (en) * | 2007-09-28 | 2011-07-05 | Access Business Group International Llc | Printed circuit board coil |
DE102008013649B4 (en) | 2008-03-11 | 2010-04-15 | Sew-Eurodrive Gmbh & Co. Kg | Apparatus for contactless energy transmission and use of the device |
KR101478269B1 (en) * | 2008-05-14 | 2014-12-31 | 메사추세츠 인스티튜트 오브 테크놀로지 | Wireless energy transfer, including interference enhancement |
US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
US8471410B2 (en) | 2008-09-27 | 2013-06-25 | Witricity Corporation | Wireless energy transfer over distance using field shaping to improve the coupling factor |
US8466583B2 (en) | 2008-09-27 | 2013-06-18 | Witricity Corporation | Tunable wireless energy transfer for outdoor lighting applications |
US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
US9577436B2 (en) | 2008-09-27 | 2017-02-21 | Witricity Corporation | Wireless energy transfer for implantable devices |
US8692410B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Wireless energy transfer with frequency hopping |
US8772973B2 (en) * | 2008-09-27 | 2014-07-08 | Witricity Corporation | Integrated resonator-shield structures |
US8587155B2 (en) * | 2008-09-27 | 2013-11-19 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
US8476788B2 (en) | 2008-09-27 | 2013-07-02 | Witricity Corporation | Wireless energy transfer with high-Q resonators using field shaping to improve K |
US8598743B2 (en) | 2008-09-27 | 2013-12-03 | Witricity Corporation | Resonator arrays for wireless energy transfer |
US8587153B2 (en) | 2008-09-27 | 2013-11-19 | Witricity Corporation | Wireless energy transfer using high Q resonators for lighting applications |
US8410636B2 (en) | 2008-09-27 | 2013-04-02 | Witricity Corporation | Low AC resistance conductor designs |
US8643326B2 (en) | 2008-09-27 | 2014-02-04 | Witricity Corporation | Tunable wireless energy transfer systems |
US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
US8947186B2 (en) * | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US20100277121A1 (en) * | 2008-09-27 | 2010-11-04 | Hall Katherine L | Wireless energy transfer between a source and a vehicle |
US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
US8441154B2 (en) | 2008-09-27 | 2013-05-14 | Witricity Corporation | Multi-resonator wireless energy transfer for exterior lighting |
US8461722B2 (en) | 2008-09-27 | 2013-06-11 | Witricity Corporation | Wireless energy transfer using conducting surfaces to shape field and improve K |
US9184595B2 (en) * | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
US20110074346A1 (en) * | 2009-09-25 | 2011-03-31 | Hall Katherine L | Vehicle charger safety system and method |
US9318922B2 (en) | 2008-09-27 | 2016-04-19 | Witricity Corporation | Mechanically removable wireless power vehicle seat assembly |
US20110043049A1 (en) * | 2008-09-27 | 2011-02-24 | Aristeidis Karalis | Wireless energy transfer with high-q resonators using field shaping to improve k |
CA2738654C (en) * | 2008-09-27 | 2019-02-26 | Witricity Corporation | Wireless energy transfer systems |
US8461721B2 (en) * | 2008-09-27 | 2013-06-11 | Witricity Corporation | Wireless energy transfer using object positioning for low loss |
US8487480B1 (en) | 2008-09-27 | 2013-07-16 | Witricity Corporation | Wireless energy transfer resonator kit |
US8324759B2 (en) * | 2008-09-27 | 2012-12-04 | Witricity Corporation | Wireless energy transfer using magnetic materials to shape field and reduce loss |
US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
US8569914B2 (en) | 2008-09-27 | 2013-10-29 | Witricity Corporation | Wireless energy transfer using object positioning for improved k |
US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
US8304935B2 (en) * | 2008-09-27 | 2012-11-06 | Witricity Corporation | Wireless energy transfer using field shaping to reduce loss |
US8400017B2 (en) | 2008-09-27 | 2013-03-19 | Witricity Corporation | Wireless energy transfer for computer peripheral applications |
US8461720B2 (en) * | 2008-09-27 | 2013-06-11 | Witricity Corporation | Wireless energy transfer using conducting surfaces to shape fields and reduce loss |
US9601261B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
US8482158B2 (en) | 2008-09-27 | 2013-07-09 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
US8957549B2 (en) | 2008-09-27 | 2015-02-17 | Witricity Corporation | Tunable wireless energy transfer for in-vehicle applications |
US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
US8686598B2 (en) | 2008-09-27 | 2014-04-01 | Witricity Corporation | Wireless energy transfer for supplying power and heat to a device |
US8552592B2 (en) * | 2008-09-27 | 2013-10-08 | Witricity Corporation | Wireless energy transfer with feedback control for lighting applications |
US8723366B2 (en) * | 2008-09-27 | 2014-05-13 | Witricity Corporation | Wireless energy transfer resonator enclosures |
US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
US8669676B2 (en) | 2008-09-27 | 2014-03-11 | Witricity Corporation | Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor |
US8922066B2 (en) | 2008-09-27 | 2014-12-30 | Witricity Corporation | Wireless energy transfer with multi resonator arrays for vehicle applications |
US8692412B2 (en) * | 2008-09-27 | 2014-04-08 | Witricity Corporation | Temperature compensation in a wireless transfer system |
US8497601B2 (en) | 2008-09-27 | 2013-07-30 | Witricity Corporation | Wireless energy transfer converters |
US8629578B2 (en) | 2008-09-27 | 2014-01-14 | Witricity Corporation | Wireless energy transfer systems |
EP2345100B1 (en) | 2008-10-01 | 2018-12-05 | Massachusetts Institute of Technology | Efficient near-field wireless energy transfer using adiabatic system variations |
US11476566B2 (en) | 2009-03-09 | 2022-10-18 | Nucurrent, Inc. | Multi-layer-multi-turn structure for high efficiency wireless communication |
US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
DE102011076135A1 (en) | 2011-05-19 | 2012-11-22 | Endress + Hauser Gmbh + Co. Kg | Method and device for communication by means of a transformer |
US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
JP6148234B2 (en) | 2011-08-04 | 2017-06-14 | ワイトリシティ コーポレーションWitricity Corporation | Tunable wireless power architecture |
DE102011110652A1 (en) | 2011-08-19 | 2013-02-21 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Method and device for producing flat coils |
JP6185472B2 (en) | 2011-09-09 | 2017-08-23 | ワイトリシティ コーポレーションWitricity Corporation | Foreign object detection in wireless energy transmission systems |
US20130062966A1 (en) | 2011-09-12 | 2013-03-14 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
WO2013067484A1 (en) | 2011-11-04 | 2013-05-10 | Witricity Corporation | Wireless energy transfer modeling tool |
JP2015508987A (en) | 2012-01-26 | 2015-03-23 | ワイトリシティ コーポレーションWitricity Corporation | Wireless energy transmission with reduced field |
US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
JP6397417B2 (en) | 2012-10-19 | 2018-09-26 | ワイトリシティ コーポレーションWitricity Corporation | Foreign object detection in wireless energy transmission systems |
US9842684B2 (en) | 2012-11-16 | 2017-12-12 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
DE102013101152B4 (en) | 2013-02-05 | 2024-08-01 | Enrx Ipt Gmbh | Coil unit and its use and device for inductive transmission of electrical energy |
JP6377336B2 (en) * | 2013-03-06 | 2018-08-22 | 株式会社東芝 | Inductor and manufacturing method thereof |
WO2014155946A1 (en) * | 2013-03-27 | 2014-10-02 | パナソニック株式会社 | Non-contact charging apparatus |
GB2512855A (en) * | 2013-04-09 | 2014-10-15 | Bombardier Transp Gmbh | Receiving device for receiving a magnetic field and for producing electric energy by magnetic induction |
GB2512859A (en) * | 2013-04-09 | 2014-10-15 | Bombardier Transp Gmbh | Structure of a receiving device for receiving a magnetic field and for producing electric energy by magnetic induction |
GB2512862A (en) | 2013-04-09 | 2014-10-15 | Bombardier Transp Gmbh | Receiving device with coil of electric line for receiving a magnetic field and for producing electric energy by magnetic induction |
EP3039770B1 (en) | 2013-08-14 | 2020-01-22 | WiTricity Corporation | Impedance tuning |
DE102013018273B3 (en) * | 2013-10-31 | 2015-05-13 | Sew-Eurodrive Gmbh & Co Kg | Secondary part of a system for inductive energy transmission to an electric vehicle and vehicle |
US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
US9952266B2 (en) | 2014-02-14 | 2018-04-24 | Witricity Corporation | Object detection for wireless energy transfer systems |
AU2015234606B2 (en) * | 2014-03-24 | 2018-06-21 | Mine Site Technologies Pty Ltd | An inductor, a related method of manufacture, a transmitter including said inductor, and a related proximity detection system |
US9892849B2 (en) | 2014-04-17 | 2018-02-13 | Witricity Corporation | Wireless power transfer systems with shield openings |
US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
EP3140680B1 (en) | 2014-05-07 | 2021-04-21 | WiTricity Corporation | Foreign object detection in wireless energy transfer systems |
WO2015196123A2 (en) | 2014-06-20 | 2015-12-23 | Witricity Corporation | Wireless power transfer systems for surfaces |
US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
US9842688B2 (en) | 2014-07-08 | 2017-12-12 | Witricity Corporation | Resonator balancing in wireless power transfer systems |
US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
DE102015218317A1 (en) | 2015-09-24 | 2017-03-30 | Bayerische Motoren Werke Aktiengesellschaft | Induction coil unit with a fiber-reinforced ferrite core |
US10248899B2 (en) | 2015-10-06 | 2019-04-02 | Witricity Corporation | RFID tag and transponder detection in wireless energy transfer systems |
EP3362804B1 (en) | 2015-10-14 | 2024-01-17 | WiTricity Corporation | Phase and amplitude detection in wireless energy transfer systems |
WO2017070227A1 (en) | 2015-10-19 | 2017-04-27 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
CN108781002B (en) | 2015-10-22 | 2021-07-06 | 韦特里西提公司 | Dynamic tuning in wireless energy transfer systems |
US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
CN109075613B (en) | 2016-02-02 | 2022-05-31 | 韦特里西提公司 | Controlling a wireless power transfer system |
JP6888017B2 (en) | 2016-02-08 | 2021-06-16 | ワイトリシティ コーポレーションWitricity Corporation | PWM capacitor control |
US20190372394A1 (en) * | 2016-11-15 | 2019-12-05 | Fuji Corporation | Non-contact power supply connection unit, non-contact power supply device, and operating machine |
DE102016223534A1 (en) | 2016-11-28 | 2018-05-30 | SUMIDA Components & Modules GmbH | Inductive component and Sekundärresonatoreinrichtung for mounting on an electric motor vehicle |
DE102017101582A1 (en) * | 2017-01-26 | 2018-07-26 | Bombardier Primove Gmbh | Receiving device and method of manufacture |
JP6702440B2 (en) * | 2017-01-30 | 2020-06-03 | 日産自動車株式会社 | Contactless power supply coil unit |
US11177680B2 (en) * | 2017-04-04 | 2021-11-16 | Intel Corporation | Field shaper for a wireless power transmitter |
DE102018003871A1 (en) | 2017-06-01 | 2018-12-06 | Sew-Eurodrive Gmbh & Co Kg | Coil with coil core and winding and system for the inductive transmission of electrical energy from a stationarily arranged first coil to a arranged on the underside of a vehicle second coil |
US11031818B2 (en) | 2017-06-29 | 2021-06-08 | Witricity Corporation | Protection and control of wireless power systems |
DE102017217642A1 (en) * | 2017-10-05 | 2019-04-11 | Bayerische Motoren Werke Aktiengesellschaft | Coil with protection range for inductive charging |
EP3692555B1 (en) * | 2017-10-06 | 2021-04-21 | Sew-Eurodrive GmbH & Co. KG | System for non-contact transmission of electrical energy to a mobile part |
KR102126773B1 (en) * | 2018-05-15 | 2020-06-25 | 주식회사 위츠 | Heat radiating sheet for wireless charging and electronic device having the same |
US11239709B2 (en) | 2020-04-30 | 2022-02-01 | Nucurrent, Inc. | Operating frequency based power level altering in extended range wireless power transmitters |
US11476722B2 (en) | 2020-04-30 | 2022-10-18 | Nucurrent, Inc. | Precision power level control for extended range wireless power transfer |
US11482890B2 (en) | 2020-04-30 | 2022-10-25 | Nucurrent, Inc. | Surface mountable wireless power transmitter for transmission at extended range |
WO2021222843A1 (en) * | 2020-04-30 | 2021-11-04 | Nucurrent, Inc. | Wireless power transmitters and associated base stations for transmitting power at extended separation distances |
US11310934B2 (en) | 2020-04-30 | 2022-04-19 | Nucurrent, Inc. | Multi-channel cooling for extended distance wireless power transmitter |
US11417461B2 (en) | 2020-10-29 | 2022-08-16 | Google Llc | Techniques and apparatuses to reduce inductive charging power loss |
US11476711B2 (en) | 2020-12-23 | 2022-10-18 | Nucurrent, Inc. | Wireless power transmitters and associated base stations for through-structure charging |
US11637459B2 (en) | 2020-12-23 | 2023-04-25 | Nucurrent, Inc. | Wireless power transmitters for transmitting power at extended separation distances utilizing T-Core shielding |
US11757311B2 (en) | 2020-12-23 | 2023-09-12 | Nucurrent, Inc. | Wireless power transmitters and associated base stations for transmitting power at extended separation distances |
US11387674B1 (en) | 2020-12-23 | 2022-07-12 | Nucurrent, Inc. | Wireless power transmitters for transmitting power at extended separation distances utilizing concave shielding |
US11387684B1 (en) | 2020-12-23 | 2022-07-12 | Nucurrent, Inc. | Wireless power transmitters and associated base stations for transmitting power at extended separation distances |
US20220247217A1 (en) * | 2021-02-02 | 2022-08-04 | Nucurrent, Inc. | Wireless Power Transmitters And Associated Base Stations For Transmitting Power Over Varying Horizontal Position |
US11532956B2 (en) | 2021-04-30 | 2022-12-20 | Nucurrent, Inc. | Power capability detection with verification load in power level control systems for wireless power transmission |
US11942799B2 (en) | 2021-04-30 | 2024-03-26 | Nucurrent, Inc. | False notification suppression in wireless power transfer system |
US11482891B1 (en) | 2021-04-20 | 2022-10-25 | Nucurrent, Inc. | Timing verification in precision power level control systems for wireless power transmission |
US11791667B2 (en) | 2021-04-30 | 2023-10-17 | Nucurrent, Inc. | Power capability detection for wireless power transmission based on receiver power request |
US11539247B2 (en) | 2021-04-30 | 2022-12-27 | Nucurrent, Inc. | Power capability detection in precision power level control systems for wireless power transmission |
US11637448B1 (en) | 2021-10-12 | 2023-04-25 | Nucurrent, Inc. | Wireless power transmitter with removable magnetic connector panel for vehicular use |
US11967830B2 (en) | 2021-10-12 | 2024-04-23 | Nucurrent, Inc. | Wireless power transmitters for transmitting power at extended separation distances with magnetic connectors |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH053123A (en) * | 1990-09-28 | 1993-01-08 | Toshiba Lighting & Technol Corp | Thin coil |
US5293308A (en) * | 1991-03-26 | 1994-03-08 | Auckland Uniservices Limited | Inductive power distribution system |
DE4446779C2 (en) * | 1994-12-24 | 1996-12-19 | Daimler Benz Ag | Arrangement for the contactless inductive transmission of electrical power |
DE19545220A1 (en) * | 1995-12-05 | 1997-06-12 | Bosch Gmbh Robert | Arrangement for the contactless transmission of signals between mutually linearly movable vehicle parts |
DE19649682C2 (en) * | 1996-11-29 | 2003-03-13 | Schleifring Und Appbau Gmbh | Device for broadband signal or energy transmission between mutually movable units |
DE29824187U1 (en) * | 1997-07-10 | 2000-10-19 | Melcher Ag, Uster | Multilayer planar inductance |
DE19735624C1 (en) * | 1997-08-18 | 1998-12-10 | Daimler Benz Ag | Method of inductive transfer of electrical power to several moving loads |
DE19746919A1 (en) * | 1997-10-24 | 1999-05-06 | Daimler Chrysler Ag | Electrical transmission device |
US6466454B1 (en) * | 1999-05-18 | 2002-10-15 | Ascom Energy Systems Ag | Component transformer |
US6198374B1 (en) * | 1999-04-01 | 2001-03-06 | Midcom, Inc. | Multi-layer transformer apparatus and method |
AU7369701A (en) * | 2000-06-08 | 2001-12-17 | Herman Allison | Lighting assembly |
FR2814585B1 (en) * | 2000-09-26 | 2002-12-20 | Ge Med Sys Global Tech Co Llc | WINDING FOR HIGH VOLTAGE TANSFORMER |
DE10053373B4 (en) * | 2000-10-27 | 2019-10-02 | Sew-Eurodrive Gmbh & Co Kg | Method and device for contactless energy transmission |
ITTO20001128A1 (en) * | 2000-12-04 | 2002-06-04 | Fiat Ricerche | PLANAR INDUCTOR WITH FERROMAGNETIC CORE AND RELATED MANUFACTURING METHOD. |
DE10112892B4 (en) * | 2001-03-15 | 2007-12-13 | Paul Vahle Gmbh & Co. Kg | Device for transmitting data within a system for non-contact inductive energy transmission |
-
2003
- 2003-03-19 DE DE10312284A patent/DE10312284B4/en not_active Revoked
-
2004
- 2004-02-20 WO PCT/EP2004/001660 patent/WO2004084372A1/en active IP Right Grant
- 2004-02-20 EP EP04713037A patent/EP1606869B1/en not_active Expired - Lifetime
- 2004-02-20 AT AT04713037T patent/ATE401688T1/en not_active IP Right Cessation
- 2004-02-20 CN CNB2004800073859A patent/CN100431237C/en not_active Expired - Lifetime
- 2004-02-20 DE DE502004007613T patent/DE502004007613D1/en not_active Expired - Lifetime
- 2004-02-20 US US10/550,085 patent/US7492247B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2004084372A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2800110A4 (en) * | 2011-12-27 | 2015-06-03 | Panasonic Ip Man Co Ltd | Non-contact charging device |
Also Published As
Publication number | Publication date |
---|---|
US20060209487A1 (en) | 2006-09-21 |
EP1606869B1 (en) | 2008-07-16 |
US7492247B2 (en) | 2009-02-17 |
DE10312284B4 (en) | 2005-12-22 |
ATE401688T1 (en) | 2008-08-15 |
CN1762082A (en) | 2006-04-19 |
WO2004084372A1 (en) | 2004-09-30 |
CN100431237C (en) | 2008-11-05 |
DE502004007613D1 (en) | 2008-08-28 |
DE10312284A1 (en) | 2004-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1606869B1 (en) | Transmitter head and a system for contactless energy transmission | |
WO2020001682A1 (en) | Actively cooled coil | |
DE10139707A1 (en) | circuit board | |
DE102018104972B4 (en) | Printed circuit board element with an integrated electronic switching element, power converter and method for producing a printed circuit board element | |
EP0293617B1 (en) | High-frequency power transmitter | |
DE102012003364A1 (en) | Planar transformer | |
DE102019103770A1 (en) | Device for converting electrical energy into heat and electrical heating device with such a device | |
DE102014220978A1 (en) | Coil arrangement for inductive energy transmission, inductive energy transmission device and method for producing a coil arrangement for inductive energy transmission | |
DE102018220415A1 (en) | Transformer, DC converter and electric motor vehicle | |
DE102014110346A1 (en) | Compact structure of a power supply device that can minimize electromagnetic noise | |
WO2008128912A1 (en) | Electronic component | |
DE102014114205A1 (en) | Planar miniature transformer | |
WO2008128913A1 (en) | Electronic component | |
DE19945013C1 (en) | Planar transformer | |
EP3756201B1 (en) | Low-voltage supply transformer for protective low-voltage applications | |
DE102018115647A1 (en) | Coil with punched turns | |
DE102020212653A1 (en) | Power conversion device | |
WO2019048192A1 (en) | Planar transformer apparatus and method for producing a planar transformer apparatus | |
DE102018218782A1 (en) | PCB transformer | |
DE112022005461T5 (en) | Power supply device | |
DE102021005773A1 (en) | System for the inductive transmission of electrical power to a mobile part arranged to be movable along a primary conductor | |
DE102022107568A1 (en) | Inductive charging device for a vehicle charging system | |
DE102022120690A1 (en) | Inductive charging device for a vehicle charging system | |
WO2023186750A1 (en) | Inductive charging device for a vehicle charging system | |
DE102021005774A1 (en) | Printed circuit board, in particular printed circuit board that can be used as a primary conductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051019 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20060803 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: PODBIELSKI, LEOBALD Inventor name: BECKER, GUENTER Inventor name: NUERGE, MARTIN Inventor name: SCHMIDT, JOSEF |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 502004007613 Country of ref document: DE Date of ref document: 20080828 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081216 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080716 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081016 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080716 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080716 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080716 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080716 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080716 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080716 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080716 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080716 |
|
26N | No opposition filed |
Effective date: 20090417 |
|
BERE | Be: lapsed |
Owner name: SEW-EURODRIVE G.M.B.H. & CO. KG Effective date: 20090228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080716 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20221230 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230110 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230228 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502004007613 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20240219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240219 |