EP1606490A1 - Dispositif de rechauffage et d'isolation thermique d'au moins une conduite sous-marine - Google Patents

Dispositif de rechauffage et d'isolation thermique d'au moins une conduite sous-marine

Info

Publication number
EP1606490A1
EP1606490A1 EP04720038A EP04720038A EP1606490A1 EP 1606490 A1 EP1606490 A1 EP 1606490A1 EP 04720038 A EP04720038 A EP 04720038A EP 04720038 A EP04720038 A EP 04720038A EP 1606490 A1 EP1606490 A1 EP 1606490A1
Authority
EP
European Patent Office
Prior art keywords
internal chamber
pipe
heat transfer
transfer fluid
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04720038A
Other languages
German (de)
English (en)
Other versions
EP1606490B1 (fr
Inventor
Giovanni Chiesa
Floriano Casola
François-Régis PIONETTI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saipem SA
Original Assignee
Saipem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saipem SA filed Critical Saipem SA
Publication of EP1606490A1 publication Critical patent/EP1606490A1/fr
Application granted granted Critical
Publication of EP1606490B1 publication Critical patent/EP1606490B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/122Gas lift

Definitions

  • the present invention relates to devices and a method of heating and thermally insulating at least one submarine pipe at great depth. It relates more particularly to the bottom-surface connecting pipes connecting the sea floor to supports floating on the surface.
  • the technical sector of the invention is the field of manufacturing and mounting insulation and heating systems outside and around the pipes in which circulate hot effiuents whose heat loss is to be limited.
  • This invention applies more particularly to the development of oil fields in the deep sea, that is to say oil installations installed in the open sea, in which the surface equipment is generally located on floating structures, the well heads being at the bottom of the sea.
  • the pipes concerned by the present invention being more particularly the risers called bottom-surface connection pipes rising towards the surface, but also the pipes connecting the well heads to said bottom-surface connection pipes.
  • the present invention also relates to a bottom-surface connection installation of at least one submarine pipe installed at great depth, of the hybrid tower type.
  • the main application of the invention is the thermal insulation and heating of submerged, submarine or underwater pipes or conduits, and more particularly at great depths, beyond 300 meters, and carrying hot petroleum products including one too much cooling would be problematic both in normal production and in case of production stoppage.
  • Deep sea developments are carried out by water depths currently reaching 1500 m. Future developments are envisaged by water depths up to 3000-4000 m and beyond.
  • Paraffins and asphaltenes remain attached to the wall and therefore require cleaning by scraping the interior of the pipe; on the other hand, hydrates are even more difficult, or even sometimes impossible to absorb.
  • the thermal insulation and the heating of such pipes therefore has the function of delaying the cooling of the petroleum effluents transported not only under the established production regime, so that their temperature is for example at least 40 ° C. on reaching the surface, for a production temperature at the inlet of the pipe from 70 ° C to 80 ° C, but also in the event of a decrease or even stoppage of production, in order to prevent the temperature of the effluents from falling below, for example of 30 ° C, in order to limit the above problems, or at least to allow them to be made reversible.
  • the pipe length In the case of the installation of single pipes or bundles of pipes (commonly called “bundles”), it is generally preferred to prefabricate said pipes ashore in unit lengths of 250 to 500 m, which are then pulled from the open sea. using a tug.
  • the pipe length In the case of a tower-type bottom-surface connection, the pipe length generally represents 50 to 95% of the water height, that is to say that it can reach 2400 m for a depth of 2500 m water.
  • the first unit length is pulled from the sea and then joined to the next, the tug maintaining the assembly in traction during the joining phase, which can last several hours, even several days.
  • the hydrostatic pressure is of the order of 200 bars, or 20 Mega Pascals, which implies that all the pipes and their coating of insulating material must be able to resist not only at these pressures without degradation during pressurizations and depressurizations of the pipe in which the hot fluid circulates, but also at temperature cycles which generate variations in the volume of the various components, and therefore positive or negative pressures which can lead to partial destruction or total envelope either by exceeding the admissible constraints, or by implosion of this external envelope (negative internal pressure variations).
  • thermal insulation systems which make it possible to achieve the required level of performance and to resist the pressure from the seabed which is of the order of 150 bars at 1500 m deep.
  • pipe-pipe comprising a pipe conveying the hot fluid installed in an external protective pipe, the space between the two pipes being either simply filled with an insulating material, confined or not vacuum, or simply vacuum.
  • insulating materials have been developed to provide high performance insulation, some of them being pressure resistant. These insulating materials simply surround the hot pipe and are generally confined within a flexible or rigid outer envelope, under pressure, the main function of which is to maintain a substantially constant geometry over time.
  • a problem posed according to the present invention is to be able to produce and install such bottom-surface connections for underwater pipes at great depths, such as beyond 1000 meters for example, and of the type comprising a vertical tower and the transported fluid must be maintained above a minimum temperature until it reaches the surface, minimizing the components subject to heat loss, avoiding the drawbacks created by the proper thermal or differential expansion of the various components of said tower, so as to withstand extreme stresses and phenomena cumulative fatigue over the life of the structure, which commonly exceeds 20 years.
  • Patent WO 00/40886 describes a thermal insulation material with solid-liquid phase change and latent heat of fusion, capable of restoring calories to the internal pipe, and confined around said internal pipe within a sealed envelope. and deformable, which makes it able to follow the expansion and contraction of the various components under the influence of all environmental parameters, including internal and external temperatures.
  • an insulating material with solid-liquid phase change and latent heat of fusion is used, the phase change of which takes place at a temperature T 0 greater than the temperature T j , from which the oil circulating inside the pipe becomes too viscous, in general the temperature j is between 20 ° and 60 ° C and lower than the temperature T 2 of the crude oil at the inlet of the pipe .
  • phase change material hereinafter called “PCM” (Phase Change Material)
  • PCM Phase Change Material
  • Phase Change Material makes it possible to conserve, in the event of production stoppage, the fluid normally circulating inside the interior pipe at a high temperature, so as to avoid the formation of paraffins or hydrates in petroleum.
  • Other phase change materials can be envisaged, such as hydrated salts or not, storing and restoring considerable energy during phase changes.
  • the crude oil no longer circulates and remains in position within the pipeline and the loss of calories to the external environment, generally at 4 ° C with a very large bottom, is carried out to the detriment of the PCM, the crude oil always remaining at a temperature greater than or substantially equal to that of said PCM.
  • the temperature of the PCM remains substantially constant and equal to T 0 , for example 36 ° C., and therefore, the internal pipe comprising crude oil remains at a temperature greater than or substantially equal to that (T 0 ) of the PCM, ie 36 ° C, thus preventing the formation of paraffins or hydrates in crude oil.
  • phase change materials described above generally exhibit a significant volume variation during their change of state, up to 20% in the case of paraffins.
  • the outer protective envelope must be able to accommodate these variations in volume without damage.
  • this insulating material with phase change is confined within a sealed and deformable envelope, which makes it capable of following the expansion and contraction of the various components under the influence of all environmental parameters, including internal and external temperatures.
  • the pipe is thus either confined within a flexible thermoplastic envelope, in particular made of polyethylene or polypropylene, for example circular, the increase or reduction of the internal volume, due to temperature variations, comparable to breathing is absorbed by the flexibility of the envelope made for example of a thermoplastic material having a large elastic limit.
  • a semi-rigid envelope preferably made of a resistant material such as steel or a composite material, such as a compound produced from a binder such as an epoxy resin and mineral or organic fibers such as glass or carbon fibers, but then the beam is given an ovoid or flattened shape, with or without counter-curvature, which gives it, at constant perimeter, a section smaller than the corresponding circle.
  • the "breathing" of the beam will lead, in the case of an increase and a reduction in the volume, respectively to a "return to the round" of the envelope, or to an accentuation of the flattening of said envelope .
  • the bundle-envelope assembly is designated by the term “flat bundle”, as opposed to a circular envelope.
  • the problem of the present invention is, more particularly, to provide an improved system of thermal insulation of an underwater pipe or of a bundle of pipes integrating an insulating material, in particular a PCM material, and whose behavior in phase restart is such that said restart can be achieved in a reduced time compared to the prior art.
  • An object of the present invention is therefore to provide a pipe insulation system making it possible to heat and maintain the temperature of the effluent flowing in an underwater pipe beyond a fixed value, so that after a stop extended, the duration of the restart phase is reduced and such that, for example, one can, if necessary, be satisfied with partially heating the pipe without having to wait for all of the PCM material, if any, to be completely liquefied.
  • the present invention provides a device for heating and thermal insulation of at least one underwater main pipe intended for the circulation of a hot effluent, comprising: - a coating of a thermal insulating material surrounding the or said main lines,
  • said insulating coating being covered with an external tight protective envelope, preferably of cylindrical shape, characterized in that it comprises: a) an internal chamber preferably of cylindrical shape and coaxial with said external envelope, such as:
  • said insulating coating surrounds said internal chamber and, preferably, fills the annular space between said external envelope and said internal chamber, and
  • Said main pipe is contained inside said internal chamber, preferably of cylindrical shape, and b) means capable of maintaining a heat transfer fluid at temperature and circulating it inside said internal chamber, said heat transfer fluid surrounding the main pipe contained inside said internal chamber.
  • said internal chamber is traversed by at least one internal gas injection pipe capable of allowing gas injection into said main pipe, said internal gas injection pipe being connected to said main pipe at one end in the longitudinal direction of said main pipe, inside said internal chamber, where appropriate at a lower end, and preferably said gas injection pipe extending outside this said internal chamber in the form of an external gas injection pipe connecting said internal gas injection pipe to a floating support.
  • the injection of gas at the bottom of a bottom-surface link of the riser type creates bubbles within the effluent in ascending progression, which reduces its density and thus promotes the rise of said effluent.
  • This technology called "gas lift”, that is to say elevation by gas injection is well known to those skilled in the art and will not be described in more detail here.
  • said internal chamber comprises means for circulating a heat transfer fluid comprising at least one internal pipe for supplying a heat transfer fluid extending inside said internal chamber from a first orifice located at a first end of the internal chamber, preferably near the second end of said internal chamber in the longitudinal direction, and a second outlet orifice for said heat transfer fluid, preferably at said first end of the internal chamber, said internal pipe for supplying a heat-transfer fluid being located next to said main pipe, between the latter and said external insulating material.
  • the coolant supply line runs through the internal chamber over almost its entire length, it can thus also contribute to heating the interior of the internal chamber.
  • said internal gas injection pipe is a pipe wound in a spiral around said internal pipe for supplying said heat transfer fluid inside said internal chamber, preferably a rigid pipe formed in a spiral.
  • This embodiment is particularly advantageous because it makes it possible to constitute a reserve of possible elongation of said internal gas injection pipe when said main pipe experiences variations in length following variations in temperatures of the hot effluent circulating at the inside.
  • this configuration of the internal gas injection pipe wound in a spiral around the internal supply pipe of the heat transfer fluid also makes it possible to heat the gas before injecting it into the main pipe and thus improve the "gas-lift" performance.
  • said internal pipe for supplying the coolant is extended by a flexible external pipe for supplying said coolant from said first orifice to a floating support, and said second orifice for leaving the coolant. is connected to a second flexible external pipe for the return of said heat transfer fluid to said floating support.
  • said heat transfer fluid can be heated by passing it through boilers or heat exchangers on board said floating support, in particular by recovering calories from, for example, gas turbines.
  • said internal pipe for supplying the coolant is connected to means for circulating and heating the coolant comprising a pump cooperating with said first orifice for supplying the coolant and with said second outlet orifice of the coolant at a said first end of the internal chamber, said pump making it possible to circulate the coolant successively inside said internal pipe for supplying the coolant, then inside the internal chamber and to bring it out of said internal chamber through said second orifice, then to make it recirculate in a loop in said internal chamber through said first orifice, an external pipe for circulation of the heat transfer fluid between said floating support and the body of the pump or said first orifice, making it possible to adjust the quantity of heat transfer fluid circulating in the cha mbre and in various pipes
  • the device according to the invention comprises a means for heating the heat transfer fluid inside said internal pipe for supplying the heat transfer fluid, preferably in the form of an electrical resistance.
  • the device according to the invention comprises at least one transverse end partition at at least one said first end, said transverse end partition supporting said main pipe as well as said circulation means and being traversed by said main pipe and, where appropriate, first and second orifices allowing the circulation of said heat transfer fluid inside and outside of said internal chamber through said orifices.
  • the device according to the invention comprises a first and second transverse end partitions, respectively at each of the two ends of the internal chamber, said first end partition comprising, where appropriate, said first and second orifices, and the two said transverse end partitions supporting said external casing and said internal chamber and ensuring their tight connection, while ensuring, at least at said first end, the confinement of the heat transfer fluid inside the internal chamber.
  • the device according to the invention comprises a second end partition comprising a large orifice with a diameter greater than that of the main pipe, through which orifice passes said main pipe, so that the fluid
  • the coolant is in contact with sea water at the lower end of the internal chamber.
  • This embodiment is suitable, more particularly, when the heat transfer fluid is a non-polluting fluid such as fresh water as explained in the detailed description below.
  • This embodiment indeed makes it possible to avoid difficulties which may result from differential expansions of the main pipe and of the internal chamber.
  • said second end partition comprises an orifice integrally surrounding a tubular sleeve inside which said main pipe can slide with reduced clearance, preferably in a sealed manner.
  • This embodiment is more particularly suitable if the heat transfer fluid is a polluting fluid.
  • said main pipe prefferably be coated with a second insulating coating at least at the level of said second end of the internal chamber, said heat transfer fluid circulating in said internal chamber outside of said second coating.
  • said second coating consists of a thermal insulating material, preferably a solid insulating material, more preferably foam. syntactic, said solid material directly surrounding said main pipe, more preferably said second insulating material entirely filling the space between said main pipe and a second coaxial pipe, acting as a sleeve, and inside which said pipe is inserted main.
  • said insulating coating around the internal chamber is an insulating material subject to migration and at least said external envelope and / or said internal chamber is or are made of a flexible solid material or semi-rigid able to follow the deformations of said insulating material and able to remain in contact with the latter when it deforms.
  • said insulating coating comprises an insulating material with phase change having a liquid / solid melting point (TO) preferably between 20 and 80 ° C., higher than that (T2) of the marine environment of said pipe. operation and lower than that (Tl) from which the effluents circulating inside the pipe have an increase in viscosity damaging for their circulation in said pipe.
  • TO liquid / solid melting point
  • the term "insulating material” means a material preferably having a thermal conductivity of less than 0.5 W xm "1 x K " 1 , more preferably between 0.05 and 0.2 W xm "1 x I 1 (Watt / meter / Kelvin) .
  • Said PCM insulating material is chosen in particular from materials consisting of at least 90% of chemical compounds chosen from alkanes, in particular comprising a hydrocarbon chain of at least 10 carbon atoms, or alternatively hydrated salts or not, glycols, bitumens, tars, waxes, and other fatty substances which are solid at room temperature, such as tallow, margarine or fatty alcohols and fatty acids, preferably the incompressible material consists of paraffin comprising a hydrocarbon chain of at least minus 14 carbon atoms.
  • phase change insulating material comprises chemical compounds from the alkane family, preferably a paraffin comprising a hydrocarbon chain of at least fourteen carbon atoms.
  • said paraffin is heptacosan of formula C 17 H 36 or, preferably, tetracosan of formula C 24 H 50 having a melting temperature about 50 ° C.
  • tetracosan of formula C 24 H 50 having a melting temperature about 50 ° C.
  • said insulating material consists of an insulating complex comprising a first compound consisting of a hydrocarbon compound such as paraffin or diesel, in admixture with a second compound consisting of a gelling and / or structuring compound, in particular by crosslinking, such as a second compound of the polyurethane, crosslinked polypropylene, crosslinked polyethylene or silicone type, preferably said first compound being in the form of a particle or microcapsule dispersed within a matrix of said second compound and mention may be made more particularly as first compounds chemical compounds of the alkane family, such as paraffins or waxes, bitumens, tars, fatty alcohols, glycols, more particularly still compounds whose melting point of materials is between the temperature T t of hot effluents flowing in one of the pipes and the temperature T 2 of the surrounding medium of the pipe in operation, that is to say in general a melting temperature of between 20 and 80 ° C.
  • first compounds consisting of a hydrocarbon compound such as paraffin or diesel
  • insulating materials are materials "subject to migration", that is to say, liquid, pasty or solid consistency materials, such as the consistency of a fat, a paraffin or a gel, which are likely to be deformed by the stresses resulting from differential pressures between two distinct points of the envelope and / or temperature variations within said insulating material.
  • the device according to the present invention comprises a said insulating coating which consists of a viscous solid material subject to migration as well as at least two watertight intermediate transverse partitions, each of said transverse partitions. intermediate consisting of a rigid closed structure traversed by said internal chamber and integral with the walls of said chamber and said external envelope, preferably said intermediate transverse partitions being spaced at regular intervals along the longitudinal axis of the internal chamber and envelope external coaxial, preferably still from a distance of 50 to 200 meters.
  • This rigid structure integral with the envelope prevents the displacement of said envelope opposite said partition and with respect to the latter and therefore freezes the geometry of the cross section of the envelope at the level of said partition.
  • waterproof and “closed” here means that said partition does not allow the material constituting said to pass through. insulating coating through said partition, and in particular, the junction between said pipe and the orifices through which said pipe crosses said intermediate transverse partition does not allow the passage of said material of the insulating coating.
  • Said watertight intermediate transverse partitions ensure the confinement of said insulating material (s) subject to migration constituting said insulating coating between said envelope and said partitions.
  • a "flat bundle” is sensitive to pressure variations due to gradients: overpressure at the bottom, depression at the top, and the towing phase is critical, since the length can reach several kilometers, the "bundle” is in fact never perfectly horizontally and this results in significant differential pressure variations during said towing and especially during the cabanage operation.
  • This device with watertight intermediate transverse partitions makes it possible to be able to manufacture at low cost a “bundle” on the ground, to be able to put in place a covering of insulating material of semi-fluid or pasty type, to tow it to the subsurface, to caban it in position. vertical to install it, while respecting the integrity of the assembly until it goes into production and throughout its lifetime, which generally exceeds 30 years.
  • This device with watertight intermediate transverse partitions also makes it possible to insulate at least one underwater pipe intended to be laid on the bottom, in particular at great depth, in particular in steep areas, from a waterproof “flat bundle” type envelope, capable of providing significant transverse flexibility to absorb variations in volume, while retaining sufficient longitudinal rigidity to allow handling, such as prefabrication on land, towing to the site, and conservation the mechanical integrity of said envelope during the entire life of the product, which reaches and exceeds 30 years.
  • said closed structure of said watertight intermediate transverse partition comprises a cylindrical part which has a cross section, the perimeter of which has the same fixed shape as that of said cross section of the envelope.
  • cross section means the section in a plane XX ', YY' perpendicular to the longitudinal axis ZZ 'of said envelope, said envelope being of tubular shape and having a central longitudinal axis ZZ', and preferably, the section transverse of said envelope defining a perimeter having two axes of symmetry
  • peripheral of the cross section means the line in the form of a closed curve which delimits the flat surface defined by said cross section.
  • the perimeter of the cross section of the external envelope at the level of the watertight partitions is of fixed shape and cannot therefore be deformed by contraction or by expansion of said envelope at this level.
  • said cross section of the external envelope is circular in shape, or in oval shape, or else in rectangular shape, preferably with rounded angles.
  • the spacing between two said successive intermediate transverse bulkheads along said longitudinal axis ZZ ′ of said envelope is from 50 to 200 meters, in particular from 100 to 150 meters.
  • the device comprises at least one, preferably a plurality of jig (s) shaping (s), consisting (s) of a rigid structure integral with said internal chamber and traversed by it and integral with said outer envelope at its periphery, disposed between two said successive intermediate transverse partitions, said shaping template having openings allowing the passage of the constituent material of said insulating material subject to migration through said conforming template.
  • jig jig
  • shaping consisting (s) of a rigid structure integral with said internal chamber and traversed by it and integral with said outer envelope at its periphery, disposed between two said successive intermediate transverse partitions, said shaping template having openings allowing the passage of the constituent material of said insulating material subject to migration through said conforming template.
  • said shaping template freezes the shape of the cross section of the external envelope and of the internal chamber at said shaping template, while minimizing thermal bridges.
  • said open structure of said shaping template comprises a cylindrical part which has a cross section whose perimeter is inscribed in a geometrical figure identical to the geometrical figure defined by the shape of the perimeter of the cross section of said watertight partition.
  • a device comprises a plurality of shaping templates arranged along said longitudinal axis ZZ ′ of the envelope, preferably at regular intervals, two successive shaping templates preferably being spaced apart further from 5 to 50 meters, preferably 5 to 20 meters.
  • the device according to the invention further comprises at least one centralizing template, preferably a plurality of centralizing templates, preferably arranged at regular intervals, between two said successive intermediate transverse bulkheads along of said longitudinal axis, each centralizing jig consisting of a rigid piece integral with the wall of the internal chamber or of said external envelope, having a shape which allows a limited displacement of said external envelope or respectively of said internal chamber, in contraction and in expansion, opposite said template centralizer, at least said outer casing or respectively said inner chamber being made of a flexible or semi-rigid material capable, if necessary, of remaining in contact with the insulating coating when the latter deforms.
  • each centralizing jig consisting of a rigid piece integral with the wall of the internal chamber or of said external envelope, having a shape which allows a limited displacement of said external envelope or respectively of said internal chamber, in contraction and in expansion, opposite said template centralizer, at least said outer casing or respectively said inner chamber being made of a flexible or semi-rigid material capable, if necessary,
  • said centralizing jig preferably consists of a rigid piece with an external or respectively internal cylindrical free surface, the perimeter of the cross section of which is set back with respect to said external envelope or respectively said internal chamber and limits the deformations of said outer casing or respectively said inner chamber by mechanical abutment thereof on said rigid part at least two opposite points of the perimeter of the cross section of said outer casing or respectively said inner chamber.
  • Said displacement of the external envelope or respectively said internal chamber, opposite a said centralizing jig may represent a variation of 0.1 to 10%, preferably 0.1 to 5%, of the distance between the two points opposite the perimeter of the cross section of said outer shell or
  • said rigid part constituting said centralizing jig having a part of the free external or respectively internal surface sufficiently set back relative to the surface of the external envelope or respectively of the internal chamber, and / or having perforations passing through it, so as to create a space which allows the transfer of material constituting said insulating coating through said centralizing template.
  • This centralizing template aims to ensure minimum coating with an insulating coating around said internal chamber in the event of deformation by contraction of the envelope and transfer of said flowable material between the two said watertight partitions.
  • said centralizing template has a cross section whose perimeter is inscribed inside a geometric figure which is substantially homothetic with respect to the geometric figure defined by the perimeter of the cross section of said sealed intermediate transverse partition.
  • the distance between two centralizing jigs along said longitudinal axis ZZ ′ is such that it makes it possible to ensure that a quantity of material constituting said insulating coating is maintained, sufficient to ensure the minimum coating necessary for insulation. thermal of said internal chamber, taking into account the contraction deformations supported by said external envelope and / or of said internal chamber.
  • the device according to the invention comprises a plurality of centralizing templates, and two successive centralizing templates are spaced along said longitudinal axis ZZ 'of the envelope by a distance of 2 to 5 meters.
  • said external envelope and said internal chamber are co-axial along a longitudinal axis ZZ 'and define a perimeter having at rest two axes of symmetry XX' and YY 'perpendicular to each other and to said longitudinal axis ZZ ', and at least one of the constitutive walls of said external envelope and / or internal chamber is made of a flexible or semi-rigid material (that is to say able to follow the deformations of the insulating material and able to remain in contact with the latter when it deforms), preferably, the other envelope being rigid and preferably still with a cross section of circular shape.
  • said internal chamber is made of rigid material and said external envelope of flexible or semi-rigid material.
  • the cross section of the external envelope and / or of the internal chamber is or are of circular shape or of oval shape, or even of rectangular shape, preferably with rounded angles.
  • the cross section of said external envelope or of said internal chamber is preferably of elongated shape in the same direction as this plane.
  • the external perimeter of the cross section of said external protective envelope or of said internal chamber is a closed curve whose ratio of the square and the length on the surface which it delimits is at least equal to 13, as described in WO 00/40886.
  • the external envelope or said internal chamber will then tend to deform towards a circular shape, which mathematically constitutes the shape having, at constant perimeter, the largest surface.
  • the shape of the envelope will then be selected as a function of the overall expansion of the volume of the outer insulating coating, under the effect of temperature variations.
  • a rectangular shape, a polygonal shape or even an oval shape allows expansion by bending of the wall while inducing a minimum of tensile stresses in the outer envelope. .
  • the cross section of the internal chamber preferably made of a rigid material
  • the cross section of the external envelope preferably made of a flexible or semi-rigid material
  • the cross section of the outer casing preferably made of a rigid material
  • the cross section of said internal chamber preferably made of a flexible or semi-rigid material, is oval or rectangular in shape with rounded angles.
  • said main pipe and, where appropriate, said internal pipe for supplying heat transfer fluid cooperate inside said internal chamber with centralizing elements which hold the said pipe or pipes substantially parallel to the axis ZZ 'of said internal chamber while allowing movement of said pipes due to differential expansions thereof along said axis ZZ '.
  • the present invention also relates to a device for reheating and thermal insulation of a bundle of underwater main pipes, characterized in that it comprises a device for thermal insulation and reheating according to the invention comprising at least two said main pipes arranged in parallel and inside said internal chamber.
  • the present invention also relates to a bottom-surface connection installation between an underwater pipe resting at the bottom of the sea, in particular at great depth, and a floating support 10, comprising: a) at least one vertical riser connected to its lower end to at least one said underwater pipe resting on the bottom of the sea, and at its upper end to at least one float, said vertical riser being included in a device for thermal insulation and reheating according to the invention, said riser vertical corresponding to said main pipe, and said internal chamber extending over a height of at least 1000 meters, and b) at least one connecting pipe, preferably a flexible pipe, ensuring the connection between a floating support and the upper end of said vertical riser, and c) where appropriate, said external flexible pipes for circulation of the heat transfer fluid between the floating support and said first and second d orifices of the first end of the internal chamber and, where appropriate, at least one said flexible external gas injection pipe.
  • connection between the lower end of the vertical riser and a so-called underwater pipe resting on the bottom of the sea is made by means of an anchoring system comprising a base placed on the bottom, said base maintaining and guiding the junction elements between the lower end of the vertical riser and the end of said pipe lying at the bottom of the sea, and said junction elements comprising a curved pipe element and a pipe connection element , preferably a single connection element, preferably still, a single automatic connector, and said vertical riser comprising in its lower end part a flexible joint allowing angular movements of the part of the vertical riser situated above said flexible joint, and said junction elements comprising said flexible joint or a portion of vertical riser located below said flexible joint.
  • an anchoring system comprising a base placed on the bottom, said base maintaining and guiding the junction elements between the lower end of the vertical riser and the end of said pipe lying at the bottom of the sea, and said junction elements comprising a curved pipe element and a pipe connection element , preferably a single connection element, preferably still,
  • vertical riser is used here to give an account of the theoretical position of the riser when it is at rest, it being understood that the axis of the riser can have angular movements relative to the vertical and move in a cone.
  • angle ⁇ whose apex corresponds to the point of attachment of the lower end of the riser to said base.
  • connection elements in particular of the automatic connector type, are known to those skilled in the art and include locking between a male part and a complementary female part, this locking being designed to be done very simply at the bottom of the sea at using a ROV, robot controlled from the surface, without requiring direct manual intervention by personnel.
  • the installation according to the present invention is advantageous because it has "a: relatively static geometry of said junction elements with respect to said base, and more particularly with respect to said movable support, said junction elements being rigidly held on said movable support
  • the lower part of the tower is thus perfectly stabilized and no longer supports any effort, in particular at the connection between the vertical riser and the pipe resting at the bottom of the sea, since the longitudinal translational movements of the mobile support creates flexibility at the end of the underwater pipe lying at the bottom of the sea, said flexibility being capable of absorbing by deformation the elongation or the retraction of the underwater pipe under the effect of temperature and pressure, thus avoiding creating considerable thrust forces within the underwater pipe, these forces being able to reach articul 100, even 200 tonnes or more, and transmit them to the foundation structure of the riser tower.
  • said vertical riser comprises in its lower end part a flexible joint, preferably reinforced, which allows angular movements ⁇ of the part of said vertical riser situated above said flexible joint, and said joining elements comprise said flexible joint or a portion of vertical riser located below said flexible joint.
  • a flexible joint allows a significant variation in the angle between the riser axis and its theoretical vertical position at rest, without generating significant stress in the pipe portions located on either side of said flexible joint: these flexible joints are known to those skilled in the art and can be constituted by a spherical ball joint with seal, or a laminated ball joint made of sandwiches of elastomer sheets and adhered sheet, capable of absorbing significant angular movements by deformation elastomers, while maintaining a perfect seal due to the absence of friction seal. Said angle OC is generally between 10 and 15 degrees.
  • said flexible joint is hollow to allow the fluid to pass, and its internal diameter is preferably preferably of the same diameter as the adjacent conduits which are connected thereto, in particular that of the vertical riser.
  • reinforced flexible joint is understood here to mean a joint capable of transferring to the mobile support the vertical forces created by the tension generated by the sub-surface float, and the horizontal forces created by the swell, and the current acting on the portion vertical riser, float and flexible connection to the floating support, as well as by the movements of said floating support.
  • junction elements comprise said flexible joint
  • said flexible joint is therefore fixedly fixed relative to said movable support.
  • Said flexible joint then corresponds to a terminal element of the junction elements ensuring the junction with said vertical riser.
  • the horizontal displacement of the base of the vertical riser which is at a substantially fixed point in altitude, does not generate significant effort in the articulated assembly consisting of said mobile support, said flexible joint, said riser and said connection to the surface support, under the effect of the displacements of said mobile support within said base platform, displacement which does not generally not more than 5 m.
  • coiled-tubing consisting in pushing a rigid tube of small diameter, generally 20 to 50mm, through the pipe.
  • Said rigid tube is stored wound by simple bending on a drum, then untwisted when it is unwound.
  • Said tube can measure several thousand meters in a single length.
  • the end of the tube located at the barrel of the storage drum is connected by through a rotating joint to a pumping device capable of injecting a liquid at high pressure and at high temperature.
  • the installation according to the invention therefore advantageously comprises a device in the form of a swan neck ensuring the connection between the upper end of said riser and a connecting pipe with the floating support, so that one can intervene inside said vertical riser from the upper part of the float through said swan-neck device, so as to access the interior of the riser and clean it by injection of liquid and / or by scraping the internal wall of said riser , then, if applicable, of the said submarine pipe lying at the bottom of the sea.
  • the installation according to the invention comprises a second external envelope with circular cross section containing at least one insulation and heating device according to the invention, said external envelope of said thermal insulation and heating device being made integral of said second external envelope, preferably by elastic ties and more preferably said second external envelope comprises means in the form of a spiral on its external periphery capable of preventing the formation of a vortex or tubular detachment under the effect of sea current.
  • This embodiment is particularly advantageous when the insulation and heating device according to the invention comprises a so-called external envelope with a non-circular cross section or when the installation comprises at least two said insulation and heating devices with two said outer envelopes side by side with circular or non-circular cross section.
  • the present invention also relates to a process for heating and thermal insulation of at least one main submarine pipe for bottom-surface connection intended to ensure the circulation of a hot effluent at the bottom of the sea or from the bottom of the sea to the surface, characterized in that a heating and thermal insulation device according to the invention is used, preferably in an installation according to the invention, and a said heat transfer fluid is circulated inside of said internal chamber.
  • said heat transfer fluid is chosen from sea water, fresh water, diesel, oil.
  • a heat transfer fluid is chosen with a density lower than that of water so that the latter contributes to bringing buoyancy to the insulation and reheating device according to the present invention. It may, in particular, be diesel with a density of the order of 0.85.
  • a heat transfer fluid of high specific heat such as sea water or fresh water, but we prefer the latter, because it remains less aggressive with respect to the metal walls of the internal chamber and when additives are added to avoid the proliferation of algae and other organisms, simply because of the difference in density with seawater, the interface between the two fluids existing at the bottom of the riser will be only slightly disturbed and said additives will remain for a long time in the fresh water in circulation.
  • the heating and thermal insulation process according to the invention is particularly advantageous when said main pipe is heated by said circulation of said heat transfer fluid during a phase of restarting production after a prolonged shutdown.
  • FIG. 1 is a side view of a bottom-surface link of the riser tower type connecting an underwater pipe 13 resting on the bottom of the sea 30 and a floating support 10 on the surface 31.
  • FIG. 1b is a view of the lower end of the device according to the invention cooperating with an anchoring base 19 at the bottom of the sea 30.
  • Figures 2, 3 and 4 are cross sections of a thermal insulation and reheating device according to the invention, the external envelope 3 of which is respectively in circular configuration (fig. 2), of rectangular type (fig. 3) and of oval type (FIG. 4), the internal chamber 4 comprising two pipes 1a, 1b of production, a pipe 7 1 for injecting gas and a pipe 6 j for reheating,
  • FIGS. 5 and 6 show sections of a thermal insulation and reheating device according to the invention, of the inverted type, that is to say with an outer casing 3 in circular configuration and an internal chamber 4 in type configuration oval (fig. 5) and rectangular (fig. 6).
  • FIG. 7 is a sectional side view of a thermal insulation and reheating device 1 according to the invention, comprising a production line 1a, a pipe 6 j for reheating by supplying the heat transfer fluid, passing through an internal chamber of reheating 4, the latter being surrounded by peripheral insulation with a thermal insulating coating 2, the lower part of the device, being in direct communication with sea water.
  • Figure 8 is a variant of Figure 7, in which there are shown devices 16 j for holding the pipes la and 6 t inside the internal reheating chamber 4 and devices 15, 16 and 17 for controlling deformations of the external envelope 3, and the lower part of the device comprises an additional insulation system 2 i directly around the pipe, the lower end of the device being completely partitioned 11 2 .
  • FIGS. 8A to C represent a cross-sectional view, of FIG. 8, at the level of the watertight partitions, centralizing jigs and conforming jigs.
  • Figure 9 is a sectional side view of the upper part of a device according to the invention, according to Figures 7 or 8 and comprising a pumping device 9 and heating 6 4 of the heat transfer fluid which is circulated in a loop inside the chamber 4 via the supply pipe 6 t of the heat transfer fluid.
  • Figure 10 is a horizontal cross section through a double insulation and heating device according to the invention, equipped at its periphery with a second circular outer casing 3
  • FIG. 11 is a side view of a device according to FIG. 10, of which said second circular envelope 3 is equipped with a propeller aimed at reducing the phenomena of turbulence under the effect of the current.
  • FIG. 1 a bottom-surface connection installation is shown between an underwater pipe 13 resting at the bottom of the sea, in particular at great depth, and a floating support 10 of FPSO type, comprising: a) a vertical riser la, lb connected at its lower end to at least one said underwater pipe 13 resting at the bottom of the sea, and at its upper end to at least one float 14, said vertical riser being included in a thermal insulation device and reheating 1 according to the invention, said vertical riser corresponding to said main pipe, and said internal chamber 4 extending over a height of at least 1000 meters, and b) a flexible connecting pipe 12, ensuring the connection between a floating support 10 and the upper end of said vertical riser l, and c) a double external flexible pipe 6 2 , 6 3 for the circulation respectively of supply and return of the heat transfer fluid 5 between the floating support 10 and said s first and second orifices 8 l5 8 2 of the first end 4 j of the internal chamber 4 and a said flexible external gas injection pipe 7 2 , and
  • connection between the lower end of the vertical riser 1a, 1b and a said submarine pipe 13 resting on the bottom of the sea is made by means of an anchoring system comprising a base 19 placed on the bottom, said base 19 ensuring the maintenance and guiding of the junction elements between the lower end of the vertical riser 1a, 1b and the end of said pipe lying at the bottom of the sea 13, and said junction elements comprising an element of curved pipe 20 and a pipe connection element 21, consisting of a single automatic connector, and said vertical riser la, lb comprising in its lower end part a flexible joint 22 allowing angular movements of the part of the vertical riser la, lb located above said flexible joint 22, and said joining elements comprising said flexible joint 22 or a portion of vertical riser situated below said flexible joint 22.
  • the various flexible pipes 6 2 , 6 3 , 7 2 " and 12 are suspended on the plating of the FPSO and are connected to the top of the installation, the latter being called hereinafter tower, ie at the level of an upper table ll 15 either at the level of a swan neck device 24.
  • All these flexible pipes adopt a chain configuration, the installation in fact comprising a swan neck device 24 ensuring the connection between the upper end of said riser vertical la, lb and a said connecting pipe 12 with the floating support 10, so that one can intervene inside said vertical riser from the upper part of said float 14 through said device in the form of a neck swan 24, so as to access the interior of said vertical riser 5 and clean it by injection of liquid and / or by scraping of the internal wall of said vertical riser 5, then, if necessary, of said underwater pipe 13 resting at the bottom of the sea.
  • Said flexible production pipe 12 is therefore connected to the swan neck 24 at the top of which is installed a high capacity float 14.
  • the swan neck 24 is connected to the float 14 by means of a flexible pipe, which makes it possible to carry out, from the surface, cleaning operations for the vertical pipe la using a vessel 10 d equipped with a "coiled-tubing" device known to those skilled in the art.
  • the production line passes through the entire insulation and heating device 1 according to the invention and ends in its lower part with a flexible flexible seal 22 whose internal diameter corresponds substantially to the diameter of the main pipe la.
  • the base 19 is anchored to the bottom of the sea 31 and connected via an elbow-shaped pipe 20 and an automatic connector 21, the underwater pipe 13 resting on the bottom of the sea 30
  • said flexible seal 22 allows angular movements of the insulation and heating device 1 under the effect of swell and current and, moreover, is capable of taking up the vertical tensioning forces created by the float. 14, as well as by the possible inherent buoyancy of the insulating components integrated into the insulation and heating device 1.
  • the upper table ll j is integral with the vertical production pipe la and crossed 8 5 by this, while supporting the external envelope 3 j and the tubular peripheral wall of the internal chamber 4.
  • the production pipe supports it all of the tension created by the float 14 and, moreover, supports the table upper ll j as well as the constituent elements of the insulation and reheating device 1 consisting of the external casing 3 5 and the internal chamber 4.
  • the heating and thermal insulation device 1 according to the invention comprising:
  • the means of thermal insulation and reheating consist of:
  • the flexible external pipe 6 2 which is connected to an internal pipe 6 t for circulation of the heat transfer fluid inside the chamber 4, at the level of the first orifice 8 j passing through the upper table ll j .
  • the internal pipe 6 j extends parallel to the main pipe la in the longitudinal direction ZZ ′ of the internal chamber 4, so that the heat transfer fluid opens into the internal chamber 4 at the end 6 5 of said pipe brought 6 d near the lower end 4 2 of the insulation and heating device 1.
  • the circulation of the heat transfer fluid 5 inside the chamber 4 is done by suction at the outlet orifice 8 2 at the top 4 j of the insulation and reheating device 1 according to two 0 alternative embodiments.
  • the second outlet orifice 8 2 of the heat transfer fluid is connected to a second flexible external pipe 6 3 for the return of said heat transfer fluid to the floating support 10, and this is at the level of the floating support 10 that there is a pumping and heating system for the fluid.
  • a pumping device 9 is installed on the upper table 11j so as to cooperate with said first orifice 8 j of the heat transfer fluid 5 and second orifice 8 2 for the outlet of the heat transfer fluid which allows circulating the heat transfer fluid in a loop inside the chamber 4.
  • the pump 9 which can be electric, hydraulic or pneumatic is contained inside a container 9 t resting on the upper table 11 j .
  • the suction port of the pump is connected to the outlet port 8 2 of the heat transfer fluid at the level of the table 11 j and the outlet port of the pump is connected to the supply port 8 t of the fluid inside the chamber 4 at the level of the upper table ll j .
  • the electrical resistance 6 4 plunges inside the pipe 6 j over a sufficient length so that the heat transfer fluid 5 can be heated to the suitable temperature before continuing its race down from the chamber 4.
  • the orifice 8 3 of the gas injection pipe 7 j has been offset to the left; with respect to the representation of FIGS. 7 and 8.
  • the electrical resistance 6 4 as well as the pump motor 9 are supplied by an electrical cable 6 6 in a chain configuration connecting the plating of the FPSO (not shown).
  • the external flexible pipe 6 2 for supplying heat-transfer fluid cooperates with the orifice 6 7 and makes it possible to fill the heat-transfer fluid with the chamber 5.
  • the pump 9 and the electrical resistance device 6 4 within the container 9 j can be maintained because the container 9 t is independent and is connected by means not shown at the upper table ll j . It is therefore possible to disconnect the container 9 j and lift it to an intervention vessel 10 j positioned vertically above the table ll j . After repair or replacement, the container 9 j is lowered, the electrical cables are reconnected, the isolation valves, not shown, are opened and the heat-transfer fluid 5 can again be recirculated and reheated as required.
  • This second alternative embodiment with a pump 9 installed at the top of the insulation device 1 is advantageous in the case where the calories necessary for heating the heat-transfer fluid 5 are produced by electric generators.
  • the first variant represented in FIGS. 7 and 8 is advantageous in the case where the calories are recovered in various existing installations on board the floating support and, in particular, at gas turbines, diesel generators or ovens for removing pollutants.
  • the upper table ll j is secured to the main pipe la at the reinforcement level 11 4 and supported by the latter.
  • the wall of the internal chamber 4 as well as the external envelope 3 are tightly secured to the upper table 11 j .
  • the internal supply pipe 6j of the heat transfer fluid is supported in a sealed manner by the upper table 11 j using reinforcement 11 5 , said supply pipe 6 j crosses the entire height of the internal chamber 4 to open out in a point 6 5 near the bottom 4 2 .
  • the heat transfer fluid 5 fills the entire space between the various pipes la, 6 j inside the internal chamber 4, space delimited at its top by the upper table ll j .
  • the internal gas injection pipe 7 j is secured in leaktight manner to the upper table 11 j using reinforcement 11 6 where it is kept in suspension.
  • the internal gas injection pipe 7 j is advantageously wound in a spiral around the supply pipe 6 j of the hot heat-transfer fluid, to finally be connected directly at 7 4 to the main production pipe to carry out the "gas- lift "(elevation by gas injection).
  • the gas is injected under a pressure slightly higher than the internal pressure prevailing in the main pipe la at the orifice 7 4 , for example 0.5 to 2 bars more, which produces bubbles 7 3 to crude oil, which have the effect of modifying the density and thus creating an accelerating effect on the fluid vein.
  • the hydrostatic pressure within the crude oil decreases, which generates an increase in the volume of the bubbles, thereby reducing the apparent density of the oil and accelerating the transfer process of the crude oil. from the bottom of the sea to the FPSO.
  • the spiral arrangement of the internal gas injection pipe l t has three particular advantages: - firstly, driving 7d gas injection is located closer to the pipe external supply 6 day of hot heat transfer fluid and therefore maintains the gas at an optimal temperature until injected at the base of the main production line,
  • said pipe 7 j being rigidly fixed 11 5 , in its upper part, at the level of the upper table ll 15 and in its lower part, at the level of the injection port 7 4 , the differential expansions between the main production line and the gas injection pipe 7 l5 are absorbed without damage by elastic deformation of the spiral formed by said pipe 7 j wound in a spiral around the pipe 6 j of heat transfer fluid, which allows the use of simple steel pipes.
  • coolant 5 is advantageously circulated in chamber 4, which has the immediate effect of fluidizing the crude oil contained in the injection pipe 1 ⁇ of gas wound in a spiral and in direct contact with the pipe of hot fluid 6 d , and maintain it at a high temperature, while gradually heating the crude oil contained in the main production line.
  • the insulating coating 2 is confined in the space between the upper table 11 j , the internal chamber 4, the external envelope 3, and the transverse partition 11 2 situated at the lower end 4 2 of the device insulation and heating 1.
  • This transverse end partition 11 2 at the lower end 4 2 of the device is open in its center by an orifice 8 4 so that, at the bottom of the device 1, the interior of chamber 4 is in direct contact with sea water.
  • the heat transfer fluid is sufficiently immiscible with sea water and of lower density, an interface zone is created between the hot heat transfer fluid and sea water.
  • the heat transfer fluid can be hot fresh water and the possible mixing of the waters does not have any major drawback except to locally lose a small part of the calories of the heat transfer fluid.
  • the additional insulation 2 t extending well above the deflector 6 8 , it is guaranteed, in addition to an excellent level of insulation, fully effective heating to the pipe la in its lower portion.
  • This embodiment in which the lower end 4 2 of the internal chamber 4 is opened by an orifice 8 4 of diameter greater than that of the main pipe la equipped with its complementary insulating coating 2 ls is advantageous because it allows elongation and retraction of the riser following the temperature variations without having to manage the mechanical difficulties of interface for the connection of the lower end of the main pipe la with the transverse bulkhead of the lower end 11 2 of the insulation device 1 according to the invention.
  • FIG. 8 an alternative embodiment is shown, in which the transverse partition at the lower end 11 2 cooperates with a tubular sleeve 11 3 surrounding the lower end of the main pipe 1a equipped with its complementary insulating coating 2 j of so as to confine, preferably in a sealed manner, the interior of the chamber 4.
  • the heat-transfer fluid is a polluting fluid such as diesel.
  • FIG 8 there is also shown an alternative embodiment with intermediate watertight bulkheads 15, centralizing jigs 16 and shaping jigs 17 in the space between the internal chamber 4 and the external envelope 3 in the case where the insulating coating 2 is a material subject to migration.
  • Intermediate watertight partitions 15, centralizing jigs 16 and conforming jigs 17 limit the expansion and contraction of the insulating material subject to migration, therefore the deformations of the external envelope 3 as explained above.
  • the watertight intermediate transverse partitions 15 as well as the end partitions 11 j , 11 2 are made up of a rigid closed structure integral, traversed by the wall of said internal chamber 4 and integral with the wall of the external envelope 3; they are preferably spaced at regular intervals of at least 200 meters in the direction ZZ '.
  • Each centralizing jig 16 consists of a rigid piece integral with the wall of the internal chamber 4 and has a shape which allows a limited displacement of the external envelope 3 both in contraction and in expansion.
  • This embodiment is suitable for an internal chamber whose wall is rigid, in particular of circular shape, and the external envelope 3 is made of a flexible or semi-rigid material capable of remaining in contact with the external surface of the insulating coating 2 when it deforms.
  • FIG. 8A an embodiment is shown where the perimeter of the cross section of the cylindrical external free surface of the rigid part constituting the centralizing template 16, is set back relative to that of the intermediate watertight partition 15 and limit the deformations of the outer casing 3 by mechanical abutment thereof on the rigid part 16 at at least two opposite points of the perimeter of the cross section of said outer casing 3.
  • the rigid part 16 has part of its cylindrical external free surface which is sufficiently set back from the surface of the external envelope 3 and / or has perforations passing through it so as to create a space which allows the transfer of insulating material 2 through the centralizing template or around the centralizing template 16.
  • the outer casing 3 when the outer casing 3 is made of rigid material and has a profile of circular horizontal cross section and it is the internal chamber 4 which is made of flexible or semi-rigid material, preferably with an oval or elongated horizontal cross-sectional profile of rectangular type, the rigid part constituting the centralizing jigs 16 is integral with the external envelope 3 and it is the cylindrical internal free surface of the rigid part 16 which is then set back relative to the wall of the internal chamber 4, so as to allow the expansion or contraction of the wall of the internal chamber 4 opposite the centralizing template 16.
  • shaping jigs 17 between two centralizing jigs 16 as shown in the lower compartment between the lower end partition 11 2 and the first sealed intermediate transverse partition 15 in FIG. 8.
  • This shaping jig 17 consists of 'a rigid structure integral with the walls of the outer casing 3 and the inner chamber 4.
  • the shaping template 17 has openings 17 ⁇ allowing the passage of the material subject to migration of said insulating material 2 through the conforming template 17 and then obtaining the technical effect described previously described in FR 2 821 915.
  • the horizontal cross section of the internal chambers 4 and external envelope 3, first of all the internal chambers 4 and external envelopes 3 may both be made of a material rigid and have a horizontal cross section of circular configuration.
  • This type of configuration may be suitable when the thermal insulating material 2 is a rigid material such as syntactic foam.
  • the thermal insulating material 2 is a material subject to migration, in particular of the gel type, and more particularly still a phase change compound such as a paraffin or else a combination of these various insulation and accumulation systems of energy
  • the outer casing 3 and / or the inner chamber 4 be made of a flexible or semi-rigid material capable of following the deformations of said insulating material. Different configurations can be envisaged.
  • FIG. 2 to 6 there is shown an isolation and heating device which comprises a bundle of pipes la, lb arranged parallel to the interior of the internal chamber 4 along its longitudinal direction ZZ '.
  • an insulation device 1 more particularly adapted to the insulating coating 2 of gel type or phase change material subject to large variations in volume due to temperature and / or change phenomena of phases.
  • These devices have the capacity to absorb large volume variations by "reset" to the shape of the external envelope shown in FIG. 3 with a horizontal cross section of rectangular type with rounded angles and in FIG. 4 with a horizontal cross section in oval configuration.
  • the external envelope 3 deforms in expansion towards a circular shape without generating significant stress in the external envelope 3 during increases in internal volume.
  • the outer casing can be made of semi-rigid material, steel or any other metal or even of composite material.
  • the wall of the internal chamber 4 can also be made of semi-rigid material, but it is preferably made of rigid type material.
  • FIGS. 5 and 6 show an inverted configuration of the horizontal cross section of the internal chambers 4 and external envelopes 3.
  • the shape which can be deformed under the effect of the expansion / contraction of the insulating material 2 is constituted by the wall of the internal chamber 4, the horizontal cross section of which has an elongated shape of rectangular type with rounded edge (FIG. 6) or oval (FIG. 5) and the external envelope 3 is then of circular configuration and can be made of a rigid material.
  • the wall of the chamber 4 tends to return to the round, while it flattens when the insulating material 2 expands.
  • FIG. 10 there is shown in horizontal section an installation comprising two insulation and heating devices 1 according to the invention, each having an outer casing 3 whose horizontal cross section has a rectangular profile with rounded angle. These two devices 1 are installed at the center of a second circular external envelope 3 j which acts as a screen. Second circular screen envelopes have also been described in the state of the art. Said second circular envelope 3 j minimizes the hydrodynamic coefficients proper to the assembly and therefore the forces due to the sea current.
  • This second circular envelope 3 j is made integral with the devices 1 by elastic pads 3 5 , made of elastomer or of thermoplastic material, or even by simple springs.
  • elastic pads 3 5 made of elastomer or of thermoplastic material, or even by simple springs.
  • ailerons 3 2 have been shown in the form of a spiral attached to the outside of the second circular envelope 3 j and whose function is to prevent the formation of a vortex or swirling drop under the effect of sea currents .
  • These arrangements are also known to those skilled in the art and other equivalent arrangements can be envisaged.
  • the invention has been described in detail for the case of a riser, but it remains in the spirit of the invention when applying the various provisions of the invention to underwater pipes resting on the bottom of the sea.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)

Abstract

La présente invention concerne un dispositif de réchauffage et d'isolation thermique d'au moins une conduite principale sous-marine (la) destinée à la circulation d'un effluent chaud, comportant: - un revêtement d'un matériau isolant thermique (2) entourant la ou lesdites conduites principales (la), recouvert d'une enveloppe externe de protection étanche (3), - une chambre interne (4) coaxiale à ladite enveloppe externe (3), ledit revêtement isolant entourant ladite chambre interne dans l'espace annulaire entre ladite enveloppe externe (3) et ladite chambre interne (4), - ladite conduite principale (la) étant contenue à l'intérieur d'une chambre interne (4), de préférence de forme cylindrique, et - des moyens (6,) aptes à maintenir un fluide caloporteur (5) en température et le faire circuler à l'intérieur de ladite chambre interne, ledit fluide caloporteur (5) entourant la conduite principale (la) contenue à l'intérieur de ladite chambre interne (4).

Description

Dispositif de réchauffage et d'isolation thermique d'au moins une conduite sous-marine
La présente invention concerne des dispositifs et un procédé de réchauffage et d'isolation thermique d'au moins une conduite sous-marine à grande profondeur. Elle concerne plus particulièrement les conduites de liaison fond-surface reliant le fond de la mer à des supports flottant en surface.
Le secteur technique de l'invention est le domaine de la fabrication et du montage de systèmes d'isolation et de réchauffage à l'extérieur et autour des conduites dans lesquelles circulent des effiuents chauds dont on veut limiter les déperditions de chaleur.
Cette invention s'applique plus particulièrement aux développements de champs pétroliers en mer profonde, c'est à dire des installations pétrolières installées en pleine mer, dans lesquelles les équipements de surface sont en général situés sur des structures flottantes, les têtes de puits étant au fond de la mer. Les conduites concernées par la présente invention étant plus particulièrement les risers appelés conduites de liaison fond-surface remontant vers la surface, mais aussi les conduites reliant les têtes de puits auxdites conduites de liaisons fond surface.
La présente invention concerne également une installation de liaison fond-surface d'au moins une conduite sous-marine installée à grande profondeur de type tour hybride.
L'application principale de l'invention est l'isolation thermique et le réchauffage de conduites ou canalisations immergées, sous-marines ou subaquatiques, et plus particulièrement à grande profondeur, au-delà de 300 mètres, et véhiculant des produits pétroliers chauds dont un trop grand refroidissement serait problématique aussi bien en régime de production normale qu'en cas d'arrêt de production. Les développements en mer profonde sont effectués par des profondeurs d'eau atteignant actuellement 1500 m. Les développements futurs sont envisagés par des profondeurs d'eau jusqu'à 3000-4000 m et au- delà.
Dans ce type d'applications, de nombreux problèmes se posent si la température des produits pétroliers diminue d'une valeur significative importante par rapport à leur température de production qui est souvent au-delà de 60 à 80°C alors que la température de l'eau environnante surtout à grande profondeur peut être largement inférieure à 10°C et atteindre 4°C. Si les produits pétroliers se refroidissent par exemple en dessous de 30° à 60°C pour une température initiale de 70 à 80°C on observe en général :
- une forte augmentation de la viscosité qui diminue alors le débit de la conduite,
- une précipitation de paraffine dissoute qui augmente alors la viscosité du produit et dont le dépôt peut diminuer le diamètre intérieur utile de la conduite,
- la floculation des asphaltènes induisant les mêmes problèmes,
- la formation soudaine, compacte et massive d'hydrates de gaz qui précipitent à forte pression et faible température, obstruant ainsi brusquement la conduite.
Paraffines et asphaltènes restent accrochés à la paroi et nécessitent alors un nettoyage par raclage de l'intérieur de la conduite ; en revanche, les hydrates sont encore plus difficiles, voire même parfois impossibles à résorber.
De plus, dans les colonnes montantes, le gaz mélangé au pétrole brut à l'eau a tendance à se détendre au fur et à mesure de sa remontée, car la pression hydrostatique baisse. Cette détente étant quasi-adiabatique, les calories sont prélevées sur le fluide polyphasique même, et il en résulte un abaissement significatif de la température interne, ce dernier pouvant atteindre 8 à 15°C sur une dénivellation de 1500m.
L'isolation thermique et le réchauffage de telles conduites a donc pour fonction de retarder le refroidissement des effluents pétroliers véhiculés non seulement en régime de production établi, pour que leur température soit par exemple d'au moins 40°C en arrivant en surface, pour une température de production à l'entrée de la conduite de 70°C à 80°C, mais également en cas de diminution ou même d'arrêt de la production, afin d'éviter que la température des effluents ne descende par exemple en dessous de 30°C, afin de limiter les problèmes ci-dessus, ou tout au moins, de permettre de les rendre réversibles.
Dans le cas de l'installation de conduites uniques ou de faisceaux de conduites (appelés communément « bundles »), on préfère en général préfabriquer lesdites conduites à terre en longueurs unitaires de 250 à 500 m, que l'on tire ensuite depuis le large à l'aide d'un remorqueur. Dans le cas d'une liaison fond-surface de type tour, la longueur de conduite représente en général de 50 à 95% de la hauteur d'eau, c'est à dire qu'elle peut atteindre 2400 m pour une profondeur d'eau de 2500 m. Lors de sa fabrication à terre, on tire depuis la mer la première longueur unitaire que l'on raboute à la suivante, le remorqueur maintenant l'ensemble en traction pendant la phase de raboutage, laquelle peut durer plusieurs heures, voire plusieurs jours. Lorsque l'intégralité de la conduite ou du faisceau de conduites a été mise à l'eau, l'ensemble est remorqué vers le site, en général en subsurface, sensiblement à l'horizontale, où il est alors « cabane », c'est à dire basculé en position verticale, pour atteindre la position verticale, puis il mis en place en position définitive.
On connaît un dispositif d'isolation d'au moins une conduite sous-marine qui peut être en effet seule ou assemblée avec d'autres conduites, constituant alors ce que l'on appelle des « bundles » ou « faisceaux » destinée à être posée sur le fond à grande profondeur, comportant un revêtement extérieur isolant entourant celle-ci et une enveloppe externe de protection. L'isolation de la ou des conduites ou du faisceau de conduite communément dénommé « bundle » est alors protégée par une enveloppe extérieure de protection qui a une double fonction :
- d'une part d'éviter les endommagements qui peuvent se produire lors de la fabrication ou lors du remorquage comme lors de la pose, surtout dans les zones de faible profondeur d'eau, ledit remorquage pouvant dans certains cas se faire sur des distances de plusieurs centaines de kilomètres. A cet effet, on utilise des matériaux assez résistants tels qu'en acier, en composé thermoplastique ou thermodurcissable ou encore en matériau composite ;
- d'autre part de créer un confinement étanche autour du système d'isolation. Ce confinement est nécessaire dans le cas de revêtements extérieurs isolants constitués de matériaux sujets à migration, voire comprenant des composés fluides.
En effet, par des fonds de 2000 m, la pression hydrostatique est de l'ordre de 200 bars, soit 20 Méga Pascals, ce qui implique que l'ensemble des conduites et de leur revêtement en matériau isolant doit être capable de résister non seulement à ces pressions sans dégradation lors des pressurisations et dépressurisations de la conduite dans laquelle circule le fluide chaud, mais encore aux cycles de température lesquels engendrent des variations de volume des différents composants, et donc de pressions positives ou négatives pouvant conduire à la destruction partielle ou totale de l'enveloppe soit par dépassement des contraintes admissibles, soit par implosion de cette enveloppe externe (variations de pression interne négatives).
Le pétrole brut cheminant sur de très grandes distances, plusieurs kilomètres, on cherche à leur fournir un niveau d'isolation extrême pour, d'une part minimiser l'augmentation de viscosité qui conduirait à une réduction de la production horaire des puits, et d'autre part d'éviter le blocage du flot par dépôt de paraffine, ou formation d'hydrates dès lors que la température descend aux alentours de 30-40°C. Ces derniers phénomènes sont d'autant plus critiques, particulièrement en Afrique de l'Ouest, que la température du fond de la mer est de l'ordre de 4°C et que les pétroles bruts sont de type paraffinique.
On connaît de nombreux systèmes d'isolation thermique qui permettent d'atteindre le niveau de performances requis et de résister à la pression du fond de la mer qui est de l'ordre de 150 bars à 1500 m de profondeur. On cite entre autres les concepts de type "pipe-in- pipe", comprenant une conduite véhiculant le fluide chaud installée dans une conduite de protection externe, l'espace entre les deux conduites étant, soit simplement rempli d'un calorifuge, confiné ou non sous vide, soit simplement tiré au vide. De nombreux autres matériaux isolants ont été développés pour assurer une isolation à hautes performances, certains d'entre eux étant résistants à la pression. Ces matériaux isolants entourent simplement la conduite chaude et sont en général confinés au sein d'une enveloppe extérieure souple ou rigide, en équipression et dont la fonction principale est de maintenir dans le temps une géométrie sensiblement constante.
Tous ces dispositifs véhiculant un fluide chaud au sein d'une conduite isolé présentent, à des degrés divers, des phénomènes de dilatation différentielle. En effet la conduite interne, en général en acier, se trouve à une température que l'on cherche à maintenir le plus élevé possible, par exemple 60 ou 80°C, alors que l'enveloppe externe, bien souvent elle aussi en acier, se trouve à la température de l'eau de mer, c'est à dire aux alentours de 4°C. Les efforts engendrés sur les éléments de liaison entre conduite interne et enveloppe externe sont considérables et peuvent atteindre plusieurs dizaines, voire plusieurs centaines de tonnes et l'élongation globale résultante est de l'ordre de 1 à 2 m dans le cas de conduites isolées de 1000 à 1200 m de longueur.
Dans les brevets WO 00/49263, WO 02/066786 et WO 02/103153 au nom de la demanderesse, on a décrit différentes installations du type tour hybride, comportant des conduites isolées.
Un problème posé selon la présente invention est de pouvoir réaliser et installer de telles liaisons fond-surface pour conduites sous-marines à grandes profondeurs, telles qu'au delà de 1 000 mètres par exemple, et de type comportant une tour verticale et dont le fluide transporté doit être maintenu au dessus d'une température minimale jusqu'à son arrivée en surface, en réduisant au minimum les composants sujets à déperdition thermique, en évitant les inconvénients créés par l'expansion thermique propre, ou différentielle, des divers composants de ladite tour, de manière à résister aux contraintes extrêmes et aux phénomènes de fatigue cumulée sur la durée de vie de l'ouvrage, qui dépasse couramment 20 années.
Le brevet WO 00/40886 décrit un matériau d'isolation thermique à changement de phase solide-liquide et chaleur latente de fusion, capable de restituer des calories à la conduite interne, et confiné autour de ladite conduite interne au sein d'une enveloppe étanche et déformable, ce qui la rend capable de suivre l'expansion et la contraction des divers composants sous l'influence de tous les paramètres d'environnement, dont les températures interne et externe.
Plus précisément dans WO 00/40886, on met en œuvre un matériau d'isolation à changement de phase solide-liquide et chaleur latente de fusion, et dont le changement de phase s'effectue à une température T0 supérieure à la température Tj , à partir de laquelle le pétrole circulant à l'intérieur de la conduite devient trop visqueux, en général la température j est comprise entre 20° et 60°C et inférieure à la température T2 du pétrole brut à l'entrée de la conduite.
Ce matériau à changement de phase, ci après dénommé "PCM" (Phase Change Material), permet de conserver, en cas d'arrêt de production, le fluide normalement en circulation à l'intérieur de la conduite intérieure à une température élevée, de manière à éviter la formation de paraffines ou d'hydrates dans le pétrole. D'autres matériaux à changement de phase sont envisageables, tels des sels hydratés ou non, stockant et restituant une énergie considérable lors des changement de phase.
Ainsi, lors des arrêts de production, le pétrole brut ne circule plus et reste en position au sein de la conduite et la déperdition de calories vers l'environnement extérieur, en général à 4°C par très grand fond, est effectuée au détriment du PCM, le pétrole brut restant toujours à une température supérieure ou sensiblement égale à celle dudit PCM.
Pendant toute la phase de solidification ou cristallisation du PCM, la température du PCM reste sensiblement constante et égale à T0 , par exemple 36°C, et donc, la conduite interne comportant du pétrole brut reste à une température supérieure ou sensiblement égale à celle (T0) du PCM, c'est à dire 36°C, empêchant ainsi la formation de paraffines ou d'hydrates dans le pétrole brut.
Les matériaux à changement de phase décrits précédemment présentent généralement une variation volumique importante lors de leur changement d'état, pouvant atteindre 20 % dans le cas des paraffines. L'enveloppe extérieure de protection doit pouvoir s'accommoder sans dommage de ces variations de volume.
C'est pourquoi, selon WO 00/40886, ce matériau isolant à changement de phase est confiné au sein d'une enveloppe étanche et déformable, ce qui la rend capable de suivre l'expansion et la contraction des divers composants sous l'influence de tous les paramètres d'environnement, dont les températures interne et externe. La conduite est ainsi soit confinée au sein d'une enveloppe souple thermoplastique, notamment en polyéthylène ou polypropylène, par exemple circulaire, l'accroissement ou la réduction du volume intérieur, dû aux variations de température, comparable à une respiration est absorbée par la souplesse de l'enveloppe constituée par exemple d'un matériau thermoplastique présentant une grande limite élastique. Pour résister aux contraintes mécaniques, on utilise de préférence une enveloppe semi-rigide constituée d'un matériau résistant tel l'acier ou un matériau composite, tel qu'un composé réalisé à partir d'un liant tel qu'une résine époxy et des fibres minérales ou organiques telles que des fibres de verre ou de carbone, mais alors on donne au faisceau une forme ovoïde ou aplatie, avec ou sans contre-courbure, ce qui lui confère, à périmètre constant, une section inférieure au cercle correspondant. Ainsi, la « respiration » du faisceau, conduira, dans le cas d'une augmentation et d'une réduction du volume, respectivement à une « remise au rond » de l'enveloppe, ou à une accentuation de l'aplatissement de ladite enveloppe. Dans ce cas, l'ensemble faisceau-enveloppe est désigné par le terme « bundle plat », par opposition à une enveloppe circulaire.
Le problème de la présente invention est, plus particulièrement, de fournir un système amélioré d'isolation thermique d'une conduite sous-marine ou d'un faisceau de conduites intégrant un matériau isolant, notamment un matériau PCM, et dont le comportement en phase de redémarrage soit tel que ledit redémarrage puisse être réalisé en un temps réduit par rapport à l'art antérieur.
En effet, en cas d'arrêt de plusieurs jours ou de plusieurs semaines, pendant la période active du PCM, on prend en général la précaution de purger la ligne en effectuant une circulation en boucle d'un produit de substitution, par exemple du gazole, de manière à garder l'ensemble en sécurité avant de laisser la conduite descendre en température jusqu'à 4°C. Et, lors du redémarrage, on utilise en général le même gazole pour effectuer le réchauffage de la conduite en le faisant circuler en boucle à partir du support flottant où on le réchauffe en le faisant passer dans des chaudières ou des échangeurs de chaleur, en récupérant des calories en provenance des turbines à gaz. Ainsi, lors du réchauffage, les calories vont migrer de l'intérieur de la conduite vers le milieu ambiant extérieur, en général à 4°C et, pendant toute de la phase de réchauffage, la majeure partie des calories véhiculées par le gazole en circulation vont être absorbées par le PCM pour sa reliquéfaction, ce qui peut 5 prendre plusieurs jours, voire plusieurs semaines si la conduite est très longue, ou si la production de calories au niveau du support flottant est insuffisante. Ce n'est qu'après cette phase de réchauffage avec circulation de gazole, que l'on peut reconnecter les têtes de puits et reprendre la production. En effet, si on redémarre prématurément la production, le matériau isolant PCM ne sera que partiellement liquide et la température interne sera inférieure ou 0 égale à T0 (température de changement de phase), donc basse, sur l'ensemble de la conduite sous-marine, et l'on observe alors les phénomènes suivants.
Au cours de la progression du pétrole sortant du puits à une température élevée, par exemple 75°C, vers le FPSO, il fournit des calories au PCM pour sa liquéfaction, et de ce fait, la température du pétrole baisse rapidement, car le PCM joue le rôle, non pas de système 5 d'isolation, mais le rôle inverse d'absorbeur de calories, conduisant à un refroidissement accéléré du pétrole brut. Ainsi, après un parcours de quelques kilomètres, voire de quelques
:•" centaines de mètres seulement, la température du pétrole descend à la valeur critique de T à laquelle des phénomènes redoutés de formation de bouchons d'hydrates ou de paraffine au sein du pétrole circulant dans la conduite peuvent se produire et alors conduire à un blocage 0 du flux de pétrole brut. Dans la zone proche des têtes de puits, le PCM se reliquéfie progressivement et le front de reliquéfaction complète progresse lentement vers le FPSO. Dans une zone plus éloignée, la température reste stable aux alentours de T0 et la liquéfaction ne peut se poursuivre que si le pétrole brut est toujours à une température supérieure à T0. Ainsi, dans le cas de lignes très longues, par exemple de 5 ou 6 km, dans une zone très éloignée de la source chaude, c'est à dire proche du FPSO, il n'y a pas suffisamment d'apport de calories et le PCM perd alors des calories vers le milieu ambiant à 4°C. Pour fournir ces calories il passe progressivement à l'état solide.
Pour des conduites très longues, il apparaît que, lors d'un redémarrage, le PCM dans la zone proche des têtes de puits peut être en phase de reliquéfaction, alors qu'à l'autre extrémité, proche du FPSO, le PCM est en phase de resolidification, car la déperdition de calories vers le milieu ambiant est supérieure à l'apport en calorie par le pétrole brut circulant dans la conduite. En fait le PCM est en attente d'un front chaud de pétrole brut qui le transformera à nouveau en phase liquide. Un but de la présente invention est donc de réaliser un système d'isolation de conduite permettant de réchauffer et maintenir en température l'effluent circulant dans une conduite sous-marine au-delà d'une valeur fixée, de sorte qu'après un arrêt prolongé, la durée de la phase de redémarrage soit réduite et tel que, par exemple, on puisse, le cas échéant, se contenter de réchauffer partiellement la conduite sans avoir à attendre que l'intégralité du matériau PCM, le cas échéant, soit complètement liquéfiée.
Pour ce faire, la présente invention fournit un dispositif de réchauffage et d'isolation thermique d'au moins une conduite principale sous-marine destinée à la circulation d'un effluent chaud, comportant : - un revêtement d'un matériau isolant thermique entourant la ou lesdites conduites principales,
- ledit revêtement isolant étant recouvert d'une enveloppe externe de protection étanche, de préférence de forme cylindrique, caractérisé en ce qu'il comprend : a) une chambre interne de préférence de forme cylindrique et coaxiale à ladite enveloppe externe, telle que :
- le dit revêtement isolant entoure ladite chambre interne et, de préférence, remplit l'espace annulaire entre ladite enveloppe externe et ladite chambre interne, et
- ladite conduite principale est contenue à l'intérieur de ladite chambre interne, de préférence de forme cylindrique, et b) des moyens aptes à maintenir un fluide caloporteur en température et le faire circuler à l'intérieur de ladite chambre interne, ledit fluide caloporteur entourant la conduite principale contenue à l'intérieur de ladite chambre interne.
Dans un mode de réalisation avantageux, ladite chambre interne est parcourue par au moins une conduite interne d'injection de gaz apte à permettre l'injection de gaz dans ladite conduite principale, ladite conduite interne d'injection de gaz étant raccordée à ladite conduite principale au niveau d'une extrémité dans la direction longitudinale de ladite conduite principale, à l'intérieur de ladite chambre interne, le cas échéant au niveau d'une extrémité inférieure, et, de préférence, ladite conduite d'injection de gaz s'étendant à l'extérieur de cette dite chambre interne sous forme d'une conduite externe d'injection de gaz reliant ladite conduite interne d'injection de gaz à un support flottant. L'injection de gaz en pied d'une liaison fond-surface de type riser, crée des bulles au sein de l'effluent en progression ascendante, ce qui réduit sa densité et favorise ainsi la remontée dudit effluent. Cette technologie appelée "gas-lift", c'est à dire élévation par injection de gaz, est bien connu de l'homme de l'art et ne sera pas décrite plus en détails ici.
Dans un mode de réalisation particulier, ladite chambre interne comprend des moyens de circulation d'un fluide caloporteur comprenant au moins une conduite interne d'amenée d'un fluide caloporteur s'étendant à l'intérieur de ladite chambre interne depuis un premier orifice situé au niveau d'une première extrémité de la chambre interne, de préférence jusqu'à proximité de la deuxième extrémité de ladite chambre interne dans la direction longitudinale, et un deuxième orifice de sortie dudit fluide caloporteur, de préférence au niveau de ladite première extrémité de la chambre interne, ladite conduite interne d'amenée d'un fluide caloporteur étant située à côté de ladite conduite principale, entre cette dernière et ledit matériau isolant externe..
Du fait que la conduite d'amenée du fluide caloporteur parcourt la chambre interne sur la quasi-totalité de sa longueur, elle peut ainsi contribuer aussi au chauffage de l'intérieur de la chambre interne. Avantageusement, on- peut disposer sur ladite conduite d'amenée du fluide caloporteur, des orifices situés à des niveaux intermédiaires, de manière à ce qu'une partie du fluide caloporteur chaud soit transférée directement vers la chambre interne audit niveau intermédiaire.
Dans ce cas, avantageusement, ladite conduite interne d'injection de gaz est une conduite enroulée en spirale autour de ladite conduite interne d'amenée dudit fluide caloporteur à l'intérieur de ladite chambre interne, de préférence une conduite rigide formée en spirale.
Ce mode de réalisation est particulièrement avantageux car il permet de constituer une réserve d'élongation possible de ladite conduite interne d'injection de gaz lorsque ladite conduite principale connaît des variations de longueur suite aux variations de températures de l'effluent chaud circulant à l'intérieur.
En outre, cette configuration de la conduite interne d'injection de gaz enroulée en spirale autour de la conduite interne d'amenée du fluide caloporteur, permet aussi de réchauffer le gaz avant de l'injecter dans la conduite principale et d'améliorer ainsi les performances du "gas-lift". Dans une première variante de réalisation, ladite conduite interne d'amenée du fluide caloporteur est prolongée par une conduite externe flexible d'alimentation en dit fluide caloporteur depuis ledit premier orifice jusqu'à un support flottant, et ledit second orifice de sortie du fluide caloporteur est raccordé à une deuxième conduite externe flexible de retour dudit fluide caloporteur vers ledit support flottant.
Dans cette première variante de réalisation, ledit fluide caloporteur peut être réchauffé en le faisant passer dans des chaudières ou des échangeurs de chaleur à bord dudit support flottant, notamment en récupérant des calories en provenance, par exemple, de turbines à gaz.
Dans une seconde variante de réalisation, ladite conduite interne d'amenée du fluide caloporteur est reliée à des moyens de circulation et de réchauffage du fluide caloporteur comprenant une pompe coopérant avec ledit premier orifice d'amenée du fluide caloporteur et avec ledit deuxième orifice de sortie du fluide caloporteur au niveau d'une dite première extrémité de la chambre interne, ladite pompe permettant de faire circuler le fluide caloporteur successivement à l'intérieur de ladite conduite interne d'amenée du fluide caloporteur, puis à l'intérieur de la chambre interne et de le faire ressortir dé ladite chambre interne par ledit deuxième orifice, puis de le faire recirculer en boucle dans ladite chambre interne à travers ledit premier orifice, une conduite externe de circulation du fluide caloporteur entre ledit support flottant et le corps de la pompe ou ledit premier orifice, permettant d'ajuster la quantité de fluide caloporteur en circulation dans la chambre et dans les diverses conduites
De préférence, dans cette seconde variante de réalisation le dispositif selon l'invention comprend un moyen de chauffage du fluide caloporteur à l'intérieur de ladite conduite interne d'amenée du fluide caloporteur, de préférence sous forme d'une résistance électrique.
Ce moyen de chauffage permet de réchauffer le fluide caloporteur de manière très efficace, car la résistance électrique constitue un élément très simple et facile à alimenter depuis le support flottant par un câble de faibles dimensions, dans la mesure où l'on utilise un voltage élevé. De plus, la quantité d'énergie transférée au fluide caloporteur peut être simplement ajustée en faisant varier la tension ou l'intensité, ou les deux. Dans un mode préféré de réalisation, le dispositif selon l'invention comprend au moins une cloison d'extrémité transversale à au moins une dite première extrémité, ladite cloison transversale d'extrémité supportant ladite conduite principale ainsi que lesdits moyens de circulation et étant traversée par ladite conduite principale et, le cas échéant, des premier et second orifices permettant la circulation dudit fluide caloporteur à l'intérieur et à l'extérieur de ladite chambre interne à travers lesdits orifices.
Dans un mode plus particulier de réalisation, le dispositif selon l'invention comprend une première et deuxième cloisons transversales d'extrémité, respectivement à chacune des deux extrémités de la chambre interne, ladite première cloison d'extrémité comprenant, le cas échéant, lesdits premier et second orifices, et les deux dites cloisons transversales d'extrémité supportant ladite enveloppe externe et ladite chambre interne et assurant leur liaison étanche, tout en assurant, au moins au niveau de ladite première extrémité, le confinement du fluide caloporteur à l'intérieur de la chambre interne.
De préférence, le dispositif selon l'invention comprend une deuxième cloison d'extrémité comprenant un grand orifice de diamètre supérieur à celui de la conduite principale, à travers lequel orifice passe ladite conduite principale, de sorte que le fluide
• ' caloporteur est en contact avec l'eau de mer à l'extrémité inférieure de la chambre interne. Ce mode de réalisation convient, plus particulièrement, lorsque le fluide caloporteur est un fluide non polluant tel que de l'eau douce comme explicité dans la description détaillée ci-après. Ce mode de réalisation permet en effet d'éviter des difficultés pouvant résultant des dilatations différentielles de la conduite principale et de la chambre interne.
Dans un autre mode de réalisation, ladite deuxième cloison d'extrémité comprend un orifice entourant de façon solidaire un manchon tubulaire à l'intérieur duquel ladite conduite principale peut coulisser à jeu réduit, de préférence de manière étanche. Ce mode de réalisation convient plus particulièrement si le fluide caloporteur est un fluide polluant.
Dans tous les cas, il est avantageux que ladite conduite principale soit revêtue d'un second revêtement isolant au moins au niveau de ladite deuxième extrémité de la chambre interne, ledit fluide caloporteur circulant dans ladite chambre interne à l'extérieur dudit second revêtement.
Plus particulièrement, ledit second revêtement est constitué par un matériau isolant thermique, de préférence un matériau isolant solide, de préférence encore de la mousse syntactique, ledit matériau solide entourant directement ladite conduite principale, de préférence encore ledit second matériau isolant remplissant entièrement l'espace entre ladite conduite principale et une seconde conduite coaxiale, jouant le rôle de manchon, et à l'intérieur de laquelle est insérée ladite conduite principale.
Dans un mode particulièrement avantageux de réalisation de la présente invention, ledit revêtement isolant autour de la chambre interne est un matériau isolant sujet à migration et au moins ladite enveloppe externe et/ou ladite chambre interne est ou sont constituées d'un matériau solide souple ou semi-rigide apte à suivre les déformations dudit matériau isolant et apte à rester en contact avec celui-ci lorsqu'il se déforme.
Comme mentionné précédemment, ledit revêtement isolant comprend un matériau isolant à changement de phase présentant une température de fusion liquide/ solide (TO) de préférence compris entre 20 et 80°C, supérieure à celle (T2) du milieu environnant marin de ladite conduite en opération et inférieure à celle (Tl) à partir de laquelle les effluents circulant à l'intérieur de la conduite présentent une augmentation de viscosité dommageable pour leur circulation dans ladite conduite.
' On entend ici par « matériau isolant » un matériau présentant de préférence une conductivité thermique inférieure à 0.5 W x m"1 x K"1, de préférence encore entre 0.05 et 0.2 W x m"1 x I 1 (Watt/mètre/Kelvin).
Ledit matériau isolant PCM est choisi notamment parmi les matériaux constitués d'au moins 90 % de composés chimiques choisis parmi les alcanes, notamment comprenant une chaîne hydrocarbonée d'au moins 10 atomes de carbone, ou encore les sels hydratés ou pas, les glycols, les bitumes, les goudrons, les cires, et autres corps gras solides à température ambiante, tels que le suif, la margarine ou les alcools gras et acides gras, de préférence, le matériau incompressible est constitué de paraffine comprenant une chaîne hydrocarbonée d'au moins 14 atomes de carbone.
Plus particulièrement, ledit matériau isolant à changement de phase comprend des composés chimiques de la famille des alcanes, de préférence une paraffine comprenant une chaîne hydrocarbonée d'au moins quatorze atomes de carbone.
Plus particulièrement encore, ladite paraffine est de l'heptacosane de formule C17H36 ou, de préférence, du tétracosane de formule C24H50 présentant une température de fusion d'environ 50°C. On peut aussi utiliser une coupe paraffinique industrielle centrée sur l'heptacosane ou le tétracosane.
Dans un mode de réalisation; ledit matériau isolant est constitué d'un complexe isolant comprenant un premier composé consistant en un composé hydrocarboné comme la paraffine ou le gazole, en mélange avec un second composé consistant en un composé gélifiant et/ ou à effet structurant, notamment par réticulation, tel qu'un second composé du type polyuréthane, polypropylène réticulé, polyéthylène réticulé ou silicone, de préférence ledit premier composé se présentant sous forme de particule ou micro-capsule dispersée au sein d'une matrice dudit second composé et on peut citer plus particulièrement comme premiers composés les composés chimiques de la famille des alcanes, tels que des paraffines ou des cires, des bitumes, des goudrons, des alcools gras, des glycols, plus particulièrement encore des composés dont la température de fusion des matériaux est comprise entre la température Tt des effluents chauds circulant dans une des conduites et la température T2 du milieu environnant de la conduite en opération, soit en fait en général une température de fusion comprise entre 20 et 80°C.
Ces différents matériaux isolants sont des matériaux "sujets à migration", c'est à dire, des matériaux liquides, pâteux ou de consistance solide, telle que la consistance d'une graisse, d'une paraffine ou d'un gel, qui sont susceptibles d'être déformés par les contraintes résultant de pressions différentielles entre deux points distincts de l'enveloppe et/ ou de variations de température au sein dudit matériau isolant.
C'est pourquoi, selon un mode préféré de réalisation, le dispositif selon la présente invention comprend un dit revêtement isolant qui est constitué d'un matériau solide visqueux sujet à migration ainsi qu'au moins deux cloisons transversales intermédiaires étanches, chacune desdites cloisons transversales intermédiaires étant constituée d'une structure rigide fermée traversée par ladite chambre interne et solidaire des parois de ladite chambre et de ladite enveloppe externe, de préférence lesdites cloisons transversales intermédiaires étant espacées à intervalles réguliers le long de l'axe longitudinal des chambre interne et enveloppe externe coaxiales, de préférence encore d'une distance de 50 à 200 mètres.
Cette structure rigide solidaire de l'enveloppe empêche le déplacement de ladite enveloppe en regard de ladite cloison et par rapport à celle-ci et fige donc la géométrie de la section transversale de l'enveloppe au niveau de ladite cloison. On entend ici par « étanche » et « fermé » que ladite cloison ne permet pas le passage de la matière constituant ledit revêtement isolant à travers ladite cloison, et qu'en particulier, la jonction entre ladite conduite et les orifices à travers lesquels ladite conduite traverse ladite cloison transversale intermédiaire ne permet pas le passage de ladite matière du revêtement isolant.
Lesdites cloisons transversales intermédiaires étanches assurent le confinement du ou desdits matériau(x) isolant(s) sujet(s) à migration constituant ledit revêtement isolant entre ladite enveloppe et lesdites cloisons.
Dans le cas d'une liaison fond-surface, par exemple la portion verticale d'une tour ou encore la section en chaînette reliant le sommet de la tour au support de surface, ou encore des conduites reposant sur une forte déclivité du fond de la mer, la pression extérieure varie le long de la conduite et décroît au fur et à mesure que l'on remonte vers la surface. Dans le cas de matériaux isolants pâteux ou fluides, ce dernier présentant une densité inférieure à celle de l'eau, de mer, en général une densité de 0.8 à 0.85, la pression différentielle entre l'extérieur et l'intérieur variera le long de la dite conduite, augmentant au fur et mesure que l'on monte vers la surface. Ainsi, il s'ensuit des déformations accentuées dans les parties présentant le maximum de pression différentielle, induisant ainsi d'importants transferts de fluide parallèlement à l'axe longitudinal, de ladite conduite. En outre, les transferts sont amplifiés par les phénomènes de « respiration » dus aux variations de température tels que décrits ci-dessus.
Un « bundle plat » est sensible aux variations de pression dues aux déclivités : surpression en bas, dépression en haut, et la phase de remorquage est critique, car la longueur pouvant atteindre plusieurs kilomètres, le « bundle » n'est en fait jamais parfaitement à l'horizontal et il en résulte des variations de pression différentielle importantes lors dudit remorquage et surtout lors de l'opération de cabanage.
Quand le « bundle » est en position verticale ou au fond de la mer sur une déclivité importante, le différentiel de pression créé par la faible densité du matériau isolant, associé à la variation de volume créée par l'expansion thermique du matériau isolant, engendre des mouvements du matériau isolant que doit pouvoir supporter l'enveloppe extérieure. On cherche à éviter les mouvements de particules parallèlement à l'axe du bundle, c'est à dire les migrations de matériau isolant entre deux zones distantes du « bundle », car ils risquent de détruire la structure proprement dite du matériau isolant. Ce dispositif à cloisons transversales intermédiaires étanches permet de pouvoir fabriquer au meilleur coût un « bundle » à terre, de pouvoir mettre en place un revêtement en matériau isolant de type semi-fluide ou pâteux, de le remorquer en subsurface, de le cabaner en position verticale pour l'installer, tout en respectant l'intégrité de l'ensemble jusqu'à sa mise en production et pendant toute sa durée de vie, qui dépasse en général 30 années.
Ce dispositif à cloisons transversales intermédiaires étanches permet aussi de réaliser une isolation d'au moins une conduite sous-marine destinée à être posée sur le fond, en particulier à grande profondeur, en particulier dans des zones à forte déclivité, à partir d'une enveloppe de type « bundle plat » étanche, capable de fournir une souplesse transversale importante pour absorber les variations de volume, tout en conservant une rigidité longitudinale suffisante pour autoriser les manutentions, telles la préfabrication à terre, le remorquage vers le site, et la conservation de l'intégrité mécanique de ladite enveloppe pendant toute la durée de vie du produit, laquelle atteint et dépasse 30 ans.
Dans un mode de réalisation particulier, ladite structure fermée de ladite cloison transversale intermédiaire étanche comprend une pièce cylindrique qui présente une section transversale, dont le périmètre présente la même forme fixe que celui de ladite section transversale de l'enveloppe.
On entend par « section transversale » la section dans un plan XX', YY' perpendiculaire à l'axe longitudinal ZZ' de ladite enveloppe, ladite enveloppe étant de forme tubulaire et présentant un axe longitudinal central ZZ', et de préférence, la section transversale de ladite enveloppe définissant un périmètre présentant deux axes de symétrie
XX' et YY' perpendiculaires entre eux, et audit axe longitudinal ZZ'.
On entend dans la présente description par « périmètre de la section transversale », la ligne en forme de courbe fermée qui délimite la surface plane définie par ladite section transversale.
Le périmètre de la section transversale de l'enveloppe externe au niveau des cloisons étanches est de forme fixe et ne peut donc pas se déformer par contraction ou par expansion de ladite enveloppe à ce niveau. Selon différentes variantes de réalisation, ladite section transversale de l'enveloppe externe est de forme circulaire, ou de forme ovale, ou encore de forme rectangulaire, de préférence avec des angles arrondis.
Lesdites cloisons transversales intermédiaires étanches créent des ponts thermiques. On recherche donc à les espacer le plus possible pour réduire les ponts thermiques.
Dans un mode particulier de réalisation, l'espacement entre deux dites cloisons transversales intermédiaires étanches successives selon ledit axe longitudinal ZZ' de ladite enveloppe est de 50 à 200 mètres, notamment de 100 à 150 mètres.
Pour réduire le nombre de cloisons transversales intermédiaires étanches, selon une caractéristique préférentielle, le dispositif comprend au moins un, de préférence une pluralité de gabarit(s) conformateur(s), constitué(s) d'une structure rigide solidaire de ladite chambre interne et traversée par celle-ci et solidaire de ladite enveloppe externe à sa périphérie, disposé(s) entre deux dites cloisons transversales intermédiaires étanches successives, ledit gabarit conformateur présentant des ouvertures permettant le passage de la matière constitutive dudit matériau isolant sujet à migration à travers ledit gabarit conformateur.
Comme ladite cloison transversale intermédiaire étanche, ledit gabarit conformateur fige la forme de la section transversale de l'enveloppe externe et de la chambre interne au niveau dudit gabarit conformateur, tout en minimisant les ponts thermiques.
Plus particulièrement ladite structure ouverte dudit gabarit conformateur comprend une pièce cylindrique qui présente une section transversale dont le périmètre s'inscrit dans une figure géométrique identique à la figure géométrique définie par la forme du périmètre de la section transversale de ladite cloison étanche.
De préférence, un dispositif selon l'invention comporte une pluralité de gabarits conformateurs disposés le long dudit axe longitudinal ZZ' de l'enveloppe de préférence à intervalles réguliers, deux gabarits conformateurs successifs étant espacés de préférence encore de 5 à 50 mètres, de préférence 5 à 20 mètres.
Dans un mode préféré de réalisation, le dispositif selon l'invention comprend en outre au moins un gabarit centraliseur, de préférence une pluralité de gabarits centraliseurs, disposé(s) de préférence à intervalles réguliers, entre deux dites cloisons transversales intermédiaires étanches successives le long dudit axe longitudinal, chaque gabarit centraliseur étant constitué d'une pièce rigide solidaire de la paroi de la chambre interne ou de ladite enveloppe externe, présentant une forme qui autorise un déplacement limité de ladite enveloppe externe ou respectivement de ladite chambre interne, en contraction et en expansion, en regard dudit gabarit centraliseur, au moins ladite enveloppe externe ou respectivement ladite chambre interne étant constituée d'un matériau souple ou semi-rigide apte, le cas échéant, à rester en contact du revêtement isolant lorsque celle-ci se déforme.
Plus particulièrement, ledit gabarit centraliseur est de préférence constitué d'une pièce rigide à surface libre externe ou respectivement interne cylindrique dont le périmètre de la section transversale est en retrait par rapport à ladite enveloppe externe ou respectivement ladite chambre interne et limite les déformations de ladite enveloppe externe ou respectivement ladite chambre interne par butée mécanique de celle-ci sur ladite pièce rigide en au moins deux points opposés du périmètre de la section transversale de ladite enveloppe externe ou respectivement ladite chambre interne. Ledit déplacement de l'enveloppe externe ou respectivement ladite chambre interne, en regard d'un dit gabarit centraliseur peut représenter une variation de 0,1 à 10 %, de préférence de 0,1 à 5 %, de la distance entre les deux points opposés du périmètre de la section transversale de ladite enveloppe externe ou
respectivement ladite chambre interne. Ainsi, ladite pièce rigide constituant ledit gabarit centraliseur présentant une partie de la surface libre externe ou respectivement interne suffisamment en retrait par rapport à la surface de l'enveloppe externe ou respectivement de la chambre interne, et/ ou présentant des perforations le traversant, de manière à créer un espace qui permette le transfert de matière constitutive dudit revêtement isolant à travers ledit gabarit centraliseur.
Ce gabarit centraliseur vise à assurer un enrobage minimum en revêtement isolant autour de ladite chambre interne en cas de déformation par contraction de l'enveloppe et transfert de ladite matière fluable entre les deux dites cloisons étanches.
Plus particulièrement, ledit gabarit centraliseur présente une section transversale dont le périmètre s'inscrit à l'intérieur d'une figure géométrique qui est sensiblement homothétique par rapport à la figure géométrique définie par le périmètre de la section transversale de ladite cloison transversale intermédiaire étanche.
La distance entre deux gabarits centraliseurs le long dudit axe longitudinal ZZ' est telle qu'elle permet d'assurer de maintenir une quantité de matière constituant ledit revêtement isolant, suffisante pour assurer l'enrobage minimum nécessaire à l'isolation thermique de ladite chambre interne, compte tenu des déformations en contraction supportées par ladite enveloppe externe et/ ou de ladite chambre interne.
Avantageusement, le dispositif selon l'invention comporte une pluralité de gabarits centraliseurs, et deux gabarits centraliseurs successifs sont espacés le long dudit axe longitudinal ZZ' de l'enveloppe d'une distance de 2 à 5 mètres.
Ces différentes cloisons transversales intermédiaires étanches, gabarit centraliseur et gabarit conformateur, ont été décrites dans FR 2 821 915 selon une configuration différente car directement solidaire de la conduite sous-marine véhiculant les effluents.
Comme mentionné précédemment, avantageusement, ladite enveloppe externe et ladite chambre interne sont co-axiales le long d'un axe longitudinal ZZ' et définissent un périmètre présentant au repos deux axes de symétrie XX' et YY' perpendiculaires entre eux et audit axe longitudinal ZZ', et au moins l'une des parois constitutives desdites enveloppe externe et/ou chambre interne est constituée d'un matériau souple ou semi-rigide (c'est-à-dire apte à suivre les déformations du matériau isolant et apte à rester en contact avec celui-ci lorsqu'il se déforme), de préférence, l'autre enveloppe étant rigide et de préférence encore à section transversale de forme circulaire.
Selon une première variante de réalisation, ladite chambre interne est réalisée en matériau rigide et ladite enveloppe externe en matériau souple ou semi-rigide.
Selon différentes variantes de réalisation, la section transversale de l'enveloppe externe et/ou de la chambre interne est ou sont de forme circulaire ou de forme ovale, ou encore de forme rectangulaire, de préférence avec des angles arrondis.
Dans le cas où le dispositif comporte au moins deux conduites disposées suivant un même plan, la section transversale de ladite enveloppe externe ou de ladite chambre interne est de préférence de forme allongée dans la même direction que ce plan.
Plus particulièrement, le périmètre externe de la section transversale de ladite enveloppe externe de protection ou de ladite chambre interne est une courbe fermée dont le rapport du carré et de la longueur sur la surface qu'elle délimite est au moins égal à 13, comme décrit dans WO 00/40886. Lors des variations de volume interne, l'enveloppe externe ou ladite chambre interne aura alors tendance à se déformer vers une forme circulaire, laquelle constitue mathématiquement la forme présentant, à périmètre constant, la surface la plus importante.
Dans le cas d'un profil circulaire, une augmentation de volume engendre des contraintes dans la paroi, lesquelles sont liées à l'augmentation de pression résultante de cette augmentation de volume.
En revanche, si on aplatit la forme de la section transversale, meilleure est la capacité de l'enveloppe ou de ladite chambre interne à absorber les expansions dues à la dilatation des différents composants sous l'effet de la température, sans créer de surpression significative, car l'enveloppe a la possibilité de se remettre au rond.
Dans le cas de profil de forme ovale, une variation de pression interne impliquera une combinaison de contraintes de flexion et de contraintes de traction pure, car la courbure variable de l'ovale se comporte alors comme une voûte architecturale avec cependant la différence que dans le cas de notre enveloppe, les contraintes sont des contraintes de traction et non des contraintes de compression. Ainsi, une forme ovale ou approchée d'une ovale sera envisageable pour de faibles capacités d'expansion, et il conviendra de considérer alors des ovales avec un rapport de longueur du grand axe pmax sur celle du petit axe pmin aussi élevé que possible par exemple au moins 2/1 ou 3/1.
On sélectionnera alors la forme de l'enveloppe en fonction de l'expansion globale du volume du revêtement extérieur isolant, sous l'effet de variations de température. Ainsi, pour un système d'isolation utilisant principalement des matériaux sujets à expansion, une forme rectangulaire, une forme polygonale ou encore une forme ovale permet une expansion par flexion de la paroi tout en induisant un minimum de contraintes de traction dans l'enveloppe extérieure.
Dans un premier mode de réalisation, la section transversale de la chambre interne, de préférence constituée d'un matériau rigide, est de forme circulaire et la section transversale de l'enveloppe externe, de préférence constituée d'un matériau souple ou semi-rigide, est de forme ovale ou de forme rectangulaire avec des angles arrondis.
Dans un autre mode de réalisation, la section transversale de l'enveloppe externe, de préférence constituée d'un matériau rigide, est de forme circulaire et la section transversale de ladite chambre interne, de préférence constituée d'un matériau souple ou semi-rigide, est de forme ovale ou de forme rectangulaire avec des angles arrondis.
Avantageusement encore, ladite conduite principale et, le cas échéant, ladite conduite interne d'amenée de fluide caloporteur coopèrent à l'intérieur de ladite chambre interne avec des éléments centraliseurs qui maintiennent le ou lesdites conduites sensiblement parallèles à l'axe ZZ' de ladite chambre interne tout en autorisant le mouvement desdites conduites dû aux dilatations différentielles de celles-ci selon ledit axe ZZ'.
La présente invention a également pour objet un dispositif de réchauffage et d'isolation thermique d'un faisceau de conduites principales sous-marines, caractérisé en ce qu'il comprend un dispositif d'isolation thermique et réchauffage selon l'invention comprenant au moins deux dites conduites principales disposées en parallèle et à l'intérieur de ladite chambre interne.
La présente invention a également pour objet une installation de liaison fond-surface entre une conduite sous-marine reposant au fond de la mer, notamment à grande profondeur, et un support flottant 10, comprenant : a) au moins un riser vertical relié à son extrémité inférieure à au moins une dite conduite sous-marine reposant au fond de la mer, et à son extrémité supérieure à au moins un flotteur, ledit riser vertical étant inclus dans un dispositif d'isolation thermique et réchauffage selon l'invention, ledit riser vertical correspondant à ladite conduite principale, et ladite chambre interne s'étendant sur une hauteur d'au moins 1000 mètres, et b) au moins une conduite de liaison, de préférence une conduite flexible, assurant la liaison entre un support flottant et l'extrémité supérieure dudit riser vertical, et c) le cas échéant, desdites conduites flexibles externes de circulation du fluide caloporteur entre le support flottant et lesdits premier et second orifices de la première extrémité de la chambre interne et, le cas échéant, au moins une dite conduite externe flexible d'injection de gaz.
De préférence, la liaison entre l'extrémité inférieure du riser vertical et une dite conduite sous-marine reposant au fond de la mer, se fait par l'intermédiaire d'un système d'ancrage comprenant une embase posée sur le fond, ladite embase assurant le maintien et le guidage des éléments de jonction entre l'extrémité inférieure du riser vertical et l'extrémité de ladite conduite reposant au fond de la mer, et lesdits éléments de jonction comprenant un élément de conduite courbe et un élément de raccordement de conduite, de préférence un unique élément de raccordement, de préférence encore, un unique connecteur automatique, et ledit riser vertical comprenant dans sa partie terminale inférieure un joint flexible permettant des mouvements angulaires de la partie du riser vertical située au dessus dudit joint flexible, et lesdits éléments de jonction comprenant ledit joint flexible ou une portion de riser vertical située au dessous dudit joint flexible.
On utilise ici le terme "riser vertical" pour, rendre compte de la position théorique du riser lorsque celui-ci est au repos étant entendu que l'axe du riser peut connaître des mouvements angulaires par rapport à la verticale et se mouvoir dans un cône d'angle α dont le sommet correspond au point de fixation de l'extrémité inférieure du riser sur ladite embase.
Lesdits éléments de raccordement, notamment du type connecteurs automatiques, sont connus de l'homme de l'art et comprennent le verrouillage entre une partie mâle et une partie femelle complémentaire, ce verrouillage étant conçu pour se faire très simplement au fond de la mer à l'aide d'un ROV, robot commandé depuis la surface, sans nécessiter une intervention directe manuelle de personnel.
L'installation selon la présente invention est avantageuse car elle présente" une: géométrie relativement statique desdits éléments de jonction par rapport à ladite embase, et plus particulièrement par rapport audit support mobile, lesdits éléments de jonction étant maintenus de façon rigide sur ledit support mobile. La partie basse de la tour se trouve ainsi parfaitement stabilisée et ne supporte plus aucun effort, notamment au niveau du raccordement entre le riser vertical et la conduite reposant au fond de la mer, puisque les mouvements de translation longitudinale du support mobile crée une flexibilité à l'extrémité de la conduite sous-marine reposant au fond de la mer, ladite flexibilité étant capable d'absorber par déformation l'allongement ou la rétractation de la conduite sous-marine sous l'effet de la température et de la pression, évitant ainsi de créer des efforts de poussée considérables au sein de la conduite sous-marine, ces efforts pouvant atteindre 100, voire 200 tonnes ou plus, et de les transmettre à la structure fondation de la tour riser.
Dans un mode préféré de réalisation, ledit riser vertical comprend dans sa partie terminale inférieure un joint flexible, de préférence renforcé, lequel permet des mouvements angulaires α de la partie dudit riser vertical située au dessus dudit joint flexible, et lesdits éléments de jonction comprennent ledit joint flexible ou une portion de riser vertical située au dessous dudit joint flexible. Un joint flexible autorise une variation importante de l'angle entre l'axe du riser et sa position théorique verticale au repos, sans engendrer de contrainte significative dans les portions de conduite situées de part et d'autre dudit joint flexible : ces joints flexibles sont connus de l'homme de l'art et peuvent être constitués par une rotule sphérique avec joint d'étanchéité, ou une rotule lamifiée constituée de sandwichs de feuilles d'élastomère et de tôle adhérisée, capable d'absorber des mouvements angulaires importants par déformation des élastomères, tout en conservant une étanchéité parfaite en raison de l'absence de joint de frottement. Ledit angle OC est en général compris entre 10 et 15 degrés.
Dans tous les cas, ledit joint flexible est creux pour laisser passer le fluide, et son diamètre intérieur est, de préférence sensiblement de même diamètre que les conduites adjacentes qui y sont raccordées, notamment celle du riser vertical.
On entend ici par "joint flexible renforcé", un joint capable de transférer au support mobile les efforts verticaux créés par la tension engendrée par le flotteur de sub-surface, et les efforts horizontaux créés par la houle, et le courant agissant sur la portion verticale du riser, du flotteur et de la liaison flexible vers le support flottant, ainsi que par les déplacements dudit support flottant.
Lorsque lesdits éléments de jonction comprennent le dit joint flexible, ledit joint flexible est donc maintenu fixement par rapport audit support mobile. Ledit joint flexible correspond alors à un élément terminal des éléments de jonction assurant la jonction avec ledit riser vertical.
De par la présence dudit joint flexible, et de la liaison flexible vers le support flottant située en tête de riser vertical, le déplacement horizontal de la base du riser vertical qui se trouve à un point sensiblement fixe en altitude, n'engendre pas d'effort significatif dans l'ensemble articulé constitué dudit support mobile, dudit joint flexible, dudit riser et de ladite liaison vers le support de surface, sous l'effet des déplacements dudit support mobile au sein de ladite plate-forme embase, déplacement qui n'excèdent en général pas 5 m.
On connaît la méthode d'intervention à l'intérieur des canalisations, dite "coiled- tubing", consistant à pousser un tube rigide de petit diamètre, en général 20 à 50mm, à travers la conduite. Ledit tube rigide est stocké enroulé par simple cintrage sur un tambour, puis détordu lorsqu'on le débobine. Ledit tube peut mesurer plusieurs milliers de mètres en une seule longueur. L'extrémité du tube située au fût du tambour de stockage est reliée par l'intermédiaire d'un joint tournant à un dispositif de pompage capable d'injecter un liquide à haute pression et à haute température . Ainsi, en poussant le tube fin à travers la conduite, en maintenant le pompage et la contre-pression, cette conduite est nettoyée grâce à l'injection d'un produit chaud capable de dissoudre les bouchons . Cette méthode d'intervention est couramment utilisée lors des interventions sur puits verticaux ou sur des conduites obstruées par des formations de paraffine ou d'hydrates, phénomènes courants et redoutés dans toutes les installations de production de pétrole brut. Le procédé de "coiled-tubing" est dénommé ci-après par "nettoyage par tubage continu" ou NTC.
L'installation selon l'invention comprend donc avantageusement un dispositif en forme de col de cygne assurant la liaison entre l'extrémité supérieure dudit riser et une conduite de liaison avec le support flottant, de sorte que l'on peut intervenir à l'intérieur dudit riser vertical à partir de la partie supérieure du flotteur à travers ledit dispositif en forme de col de cygne, de façon à accéder à l'intérieur du riser et le nettoyer par injection de liquide et/ou par raclage de la paroi interne dudit riser, puis, le cas échéant, de ladite conduite sous- marine reposant au fond de la mer.
Avantageusement encore, l'installation selon l'invention comprend une seconde enveloppe externe à section transversale circulaire contenant au moins un dispositif d'isolation et de réchauffage selon l'invention, ladite enveloppe externe dudit dispositif d'isolation thermique et de réchauffage étant rendue solidaire de ladite seconde enveloppe externe, de préférence par des liens élastiques et de préférence encore ladite seconde enveloppe externe comprend des moyens en forme de spirale sur sa périphérie extérieure aptes à empêcher la formation de vortex ou de décrochement tubulaire sous l'effet de courant marin.
Ce mode de réalisation est particulièrement avantageux lorsque le dispositif d'isolation et de réchauffage selon l'invention comprend une dite enveloppe externe à section transversale non circulaire ou lorsque l'installation comprend au moins deux dits dispositifs d'isolation et de réchauffage avec deux dites enveloppes externes côte à côte à section transversale circulaire ou non circulaire.
La présente invention a également pour objet un procédé de réchauffage et d'isolation thermique d'au moins une conduite principale sous-marine de liaison fond-surface destinée à assurer la circulation d'un effluent chaud au fond de la mer ou depuis le fond de la mer jusqu'à la surface, caractérisé en ce qu'on utilise un dispositif de réchauffage et d'isolation thermique selon l'invention, de préférence dans une installation selon l'invention, et on fait circuler un dit fluide caloporteur à l'intérieur de ladite chambre interne.
Dans un mode particulier de réalisation, ledit fluide caloporteur est choisi parmi de l'eau de mer, de l'eau douce, du gazole, de l'huile.
De préférence, on choisit un fluide caloporteur de densité inférieure à celle de l'eau de manière à ce que celui-ci contribue à apporter de la fiottabilité au dispositif d'isolation et de réchauffage selon la présente invention. Il peut s'agir, notamment de gazole de densité de l'ordre de 0,85.
II est avantageux de mettre en œuvre un fluide caloporteur de forte chaleur massique telle que l'eau de mer ou l'eau douce, mais on préférera cette dernière, car elle reste moins agressive vis à vis des parois métalliques de la chambre interne et lorsque l'on rajoute des additifs pour éviter la prolifération des algues et autres organismes, du simple fait de la différence de densité avec l'eau de mer, l'interface entre les deux fluides existant au bas de la colonne montante ne sera que peu perturbée et lesdits additifs resteront pour une longue durée au sein de l'eau douce en circulation.
Le procédé de réchauffage et isolation thermique selon l'invention est particulièrement avantageux lorsque l'on réchauffe ladite conduite principale par dite circulation dudit fluide caloporteur lors d'une phase de redémarrage de la production après un arrêt prolongé.
D'autres caractéristiques et avantages de la présente invention ressortiront mieux à la lecture de la description qui va suivre, faite de manière illustrative et non limitative, en référence aux dessins annexés sur lesquels :
La figure 1 est une vue de côté d'une liaison fond-surface de type tour riser reliant une conduite sous-marine 13 reposant sur le fond de la mer 30 et un support flottant 10 en surface 31.
La figure la est une vue en coupe d'une double conduite de circulation du fluide caloporteur. La figure lb est une vue de l'extrémité inférieure du dispositif selon l'invention coopérant avec une embase d'ancrage 19 au fond de la mer 30.
Les figures 2, 3 et 4 sont des sections transversales d'un dispositif d'isolation thermique et réchauffage selon l'invention dont l'enveloppe externe 3 est respectivement en configuration circulaire (fig. 2), de type rectangulaire (fig. 3) et de type ovale (fig. 4), la chambre interne 4 comportant deux conduites la, lb de production, une conduite 71 d'injection de gaz et une conduite 6j de réchauffage,
Les figures 5 et 6 représentent des sections d'un dispositif d'isolation thermique et réchauffage selon l'invention, de type inversé c'est-à-dire avec une enveloppe externe 3 en configuration circulaire et une chambre interne 4 en configuration de type ovale (fig. 5) et rectangulaire (fig. 6).
La figure 7 est une coupe en vue de côté d'un dispositif d'isolation thermique et réchauffage 1 selon l'invention, comportant une conduite la de production, une conduite 6j de réchauffage par amenée du fluide caloporteur, traversant une chambre interne de réchauffage 4, celle-ci étant entourée d'une isolation périphérique avec un revêtement isolant thermique 2, la partie basse du dispositif, étant en communication directe avec l'eau de mer.
La figure 8 est une variante de la figure 7, dans laquelle on a représenté des dispositifs 16j de maintien des conduites la et 6t à l'intérieur de la chambre interne de réchauffage 4 et des dispositifs 15, 16 et 17 permettant le contrôle des déformations de l'enveloppe externe 3, et dont la partie basse du dispositif comporte un système d'isolation supplémentaire 2i directement autour de la conduite, l'extrémité inférieure du dispositif étant complètement cloisonnée 112.
Les figures 8A à C représentent une vue en section transversale, de la figure 8, au niveau des cloisons étanches, gabarits centraliseurs et gabarits conformateurs.
La figure 9 est une coupe en vue de côté de la partie haute d'un dispositif selon l'invention, selon les figures 7 ou 8 et comportant un dispositif de pompage 9 et de réchauffage 64 du fluide caloporteur que l'on fait circuler en boucle à l'intérieur de la chambre 4 par l'intermédiaire de la conduite d'amenée 6t du fluide caloporteur. La figure 10 est une coupe en section transversale horizontale d'un double dispositif d'isolation et de réchauffage selon l'invention, équipé à sa périphérie d'une seconde enveloppe externe circulaire 3
La figure 11 est une vue de côté d'un dispositif selon la figure 10 dont ladite seconde enveloppe circulaire 3 est équipée d'une hélice visant à réduire les phénomènes de turbulence sous l'effet du courant.
Sur la figure 1, on a représenté une installation de liaison fond-surface entre une conduite sous-marine 13 reposant au fond de la mer, notamment à grande profondeur, et un support flottant 10 de type FPSO, comprenant : a) un riser vertical la, lb relié à son extrémité inférieure à au moins une dite conduite sous-marine 13 reposant au fond de la mer, et à son extrémité supérieure à au moins un flotteur 14, ledit riser vertical étant inclus dans un dispositif d'isolation thermique et de réchauffage 1 selon l'invention, ledit riser vertical correspondant à ladite conduite principale, et ladite chambre interne 4 s'étendant sur une hauteur d'au moins 1000 mètres, et b) une conduite de liaison 12 flexible, assurant la liaison entre un support flottant 10 et l'extrémité supérieure dudit riser vertical l, et c) une double conduite flexible externe 62, 63 de circulation respectivement d'amenée et de retour du fluide caloporteur 5 entre le support flottant 10 et lesdits premier et second orifices 8l5 82 de la première extrémité 4j de la chambre interne 4 et une dite conduite externe flexible d'injection de gaz 72, et
d) la liaison entre l'extrémité inférieure du riser vertical la, lb et une dite conduite sous-marine 13 reposant au fond de la mer, se fait par l'intermédiaire d'un système d'ancrage comprenant une embase 19 posée sur le fond, ladite embase 19 assurant le maintien et le guidage des éléments de jonction entre l'extrémité inférieure du riser vertical la, lb et l'extrémité de ladite conduite reposant au fond de la mer 13, et lesdits éléments de jonction comprenant un élément de conduite courbe 20 et un élément de raccordement de conduite 21, consistant en un unique connecteur automatique, et ledit riser vertical la, lb comprenant dans sa partie terminale inférieure un joint flexible 22 permettant des mouvements angulaires de la partie du riser vertical la, lb située au dessus dudit joint flexible 22, et lesdits éléments de jonction comprenant ledit joint flexible 22 ou une portion de riser vertical située au dessous dudit joint flexible 22. Les différentes conduites flexibles 62, 63, 72 " et 12 sont suspendues sur le bordé du FPSO et sont connectées au sommet de l'installation, celle-ci étant appelée ci-après tour, soit au niveau d'une table supérieure lll5 soit au niveau d'un dispositif de col de cygne 24. Toutes ces conduites flexibles adoptent une configuration de chaînette. L'installation comprend en effet un dispositif en forme de col de cygne 24 assurant la liaison entre l'extrémité supérieure dudit riser vertical la, lb et une dite conduite de liaison 12 avec le support flottant 10, de sorte que l'on peut intervenir à l'intérieur dudit riser vertical à partir de la partie supérieure dudit flotteur 14 à travers ledit dispositif en forme de col de cygne 24, de façon à accéder à l'intérieur dudit riser vertical 5 et le nettoyer par injection de liquide et/ ou par raclage de la paroi interne dudit riser vertical 5, puis, le cas échéant, de ladite conduite sous-marine 13 reposant au fond de la mer.
Ladite conduite flexible 12 de production est donc reliée au col de cygne 24 au sommet duquel est installé un flotteur 14 de forte capacité. Le col de cygne 24 est relié au flotteur 14 par l'intermédiaire d'une conduite flexible, ce qui permet d'effectuer, depuis la surface, des interventions de nettoyage de la conduite verticale la à l'aide d'un navire 10j équipé d'un dispositif de "coiled-tubing" connu de l'homme de l'art. La conduite de production la traverse l'intégralité du dispositif d'isolation et de réchauffage 1 selon l'invention et se termine dans sa partie basse par un joint flexible 22 étanche dont le diamètre interne correspond sensiblement au diamètre de la conduite principale la. L'embase 19 est ancré sur le fond de la mer 31 et connectée par l'intermédiaire d'une conduite en forme de coude 20 et d'un connecteur automatique 21, la conduite sous-marine 13 reposant sur le fond de la mer 30. Comme explicité précédemment, ledit joint flexible 22 autorise les mouvements angulaires du dispositif d'isolation et de réchauffage 1 sous l'effet de la houle et du courant et, de plus, est capable de reprendre les efforts verticaux de tensionnement crées par le flotteur 14, ainsi que par l'éventuelle fiottabilité propre des composants isolants intégrés au dispositif d'isolation et de réchauffage 1.
La double conduite de circulation du fluide caloporteur 62, 63 et la conduite d'amenée du gaz 72, entre le support flottant 10 et le sommet du dispositif d'isolation 1, coopèrent avec des orifices 8l3 82 et respectivement 83 prévus dans la cloison transversale d'extrémité supérieure lll5 encore appelée ci-après table supérieure llj , au sommet 4j du dispositif d'isolation et de réchauffage 1 selon l'invention. Comme représenté sur les figures 7 à 9, la table supérieure llj est solidaire de la conduite verticale de production la et traversée 85 par celle-ci, tout en supportant l'enveloppe externe 3j et la paroi périphérique tubulaire de la chambre interne 4. Ainsi la conduite de production la supporte l'intégralité de la tension créée par le flotteur 14 et, de plus, supporte la table supérieure llj ainsi que les éléments constitutifs du dispositif d'isolation et de réchauffage 1 consistant dans l'enveloppe externe 3 5 et la chambre interne 4.
Sur les figurés 7 à 9, on a représenté le dispositif de réchauffage et d'isolation thermique 1 selon l'invention, comprenant :
- la conduite principale sous-marine la ou riser vertical la destiné à la circulation de pétrole chaud,
10 - une chambre interne 4 de forme cylindrique à section circulaire à l'intérieur de laquelle est contenu ledit riser vertical la,
- une dite enveloppe externe 3, également de forme cylindrique et coaxiale à ladite chambre interne 4.
Les moyens d'isolation thermique et de réchauffage sont constitués par :
1.5 - un revêtement isolant thermique 2 remplissant l'espace entre la chambre interne 4 et l'enveloppe externe 3, et
- un fluide caloporteur 5 circulant à l'intérieur de la chambre interne 4 depuis son extrémité inférieure 42 jusqu'à son extrémité supérieure 4j au niveau dudit deuxième orifice 82 traversant la table supérieure llj. 0 Le fluide caloporteur est amené au sommet du dispositif d'isolation et de réchauffage
1 selon l'invention par la conduite externe flexible 62, laquelle est connectée à une conduite interne 6t de circulation du fluide caloporteur à l'intérieur de la chambre 4, au niveau du premier orifice 8j traversant la table supérieure llj.
La conduite interne 6j s'étend parallèlement à la conduite principale la dans la 5 direction longitudinale ZZ' de la chambre interne 4, de sorte que le fluide caloporteur débouche dans la chambre interne 4 à l'extrémité 65 de ladite conduite d'amenée 6j à proximité de l'extrémité inférieure 42 du dispositif d'isolation et de réchauffage 1. La circulation du fluide caloporteur 5 à l'intérieur de la chambre 4 se fait par aspiration au niveau de l'orifice de sortie 82 au sommet 4j du dispositif d'isolation et de réchauffage 1 selon deux 0 variantes de réalisation. Selon une première variante représentée sur les figures 7 et 8, le second orifice de sortie 82 du fluide caloporteur est raccordé à une deuxième conduite externe flexible 63 de retour dudit fluide caloporteur vers le support flottant 10, et c'est au niveau du support flottant 10 que se trouve un système de pompage et chauffage du fluide. Selon une deuxième variante de réalisation représentée sur la figure 9, un dispositif de pompage 9 est installé sur la table supérieure llj de manière à coopérer avec lesdits premier orifice 8j du fluide caloporteur 5 et deuxième orifice 82 de sortie du fluide caloporteur qui permet de faire circuler en boucle le fluide caloporteur à l'intérieur de la chambre 4.
Comme représenté sur la figure 9, la pompe 9 qui peut être électrique, hydraulique ou pneumatique est contenue à l'intérieur d'un conteneur 9t reposant sur la table supérieure llj. L'orifice d'aspiration de la pompe est relié à l'orifice de sortie 82 du fluide caloporteur au niveau de la table llj et l'orifice de sortie de la pompe est relié à l'orifice d'alimentation 8t du fluide à l'intérieur de la chambre 4 au niveau de la table supérieure llj. La résistance électrique 64 plonge à l'intérieur de la conduite 6j sur une longueur suffisante pour que le fluide caloporteur 5 puisse être réchauffé à la température convenable avant de poursuivre sa course vers le bas de la chambre 4. Pour la clarté du dessin, l'orifice 83 de la conduite d'injection de gaz 7j a été déporté sur la gauche; par rapport à la représentation des figures 7 et 8. La résistance électrique 64 ainsi que le moteur de la pompe 9 sont alimentés par un câble électrique 66 en configuration de chaînette reliant le bordé du FPSO (non représenté). La conduite flexible externe 62 d'alimentation en fluide caloporteur coopère avec l'orifice 67 et permet d'effectuer le remplissage en fluide caloporteur de la chambre 5. La pompe 9 et le dispositif de résistance électrique 64 au sein du conteneur 9j peuvent être entretenus car le conteneur 9t est indépendant et vient se connecter par des moyens non représentés au niveau de la table supérieure llj. On peut donc effectuer la déconnexion du conteneur 9j et son levage jusqu'à un navire d'intervention 10j positionné à la verticale de la table llj. Après réparation ou remplacement, le conteneur 9j est redescendu, les câbles électriques sont reconnectés, les vannes d'isolation, non représentées, sont ouvertes et le fluide caloporteur 5 peut être, de nouveau, remis en circulation et réchauffé selon les besoins.
Cette seconde variante de réalisation avec une pompe 9 installée au sommet du dispositif d'isolation 1 est avantageux dans le cas où les calories nécessaires au réchauffage du fluide caloporteur 5 sont produites par des génératrices électriques. Au contraire, la première variante représentée sur les figures 7 et 8 est avantageuse dans le cas où les calories sont récupérées dans diverses installations existantes à bord du support flottant et, en particulier, au niveau des turbines à gaz, des groupes diesels ou des fours d'élimination de produits polluants.
Sur les figures 7 et 8, on montre que la table supérieure llj est solidarisée à la conduite principale la au niveau de renfort 114 et supportée par cette dernière. La paroi de la chambre interne 4 ainsi que l'enveloppe externe 3 sont solidaires de manière étanche de la table supérieure llj. La conduite d'amenée interne 6j du fluide caloporteur est supportée de manière étanche par la table supérieure llj à l'aide de renfort 115, ladite conduite d'amenée 6j traverse toute la hauteur de la chambre interne 4 pour déboucher en un point 65 proche du fond 42. Ainsi le fluide caloporteur 5 remplit tout l'espace compris entre les diverses conduites la, 6j à l'intérieur de la chambre interne 4, espace délimité à son sommet par la table supérieure llj. Puis le fluide ressort par le second orifice 82 pour rejoindre, via une liaison externe flexible 63, le support flottant 10 où le fluide caloporteur est réchauffé puis pompé à nouveau vers l'orifice d'alimentation 8j à travers la conduite externe flexible d'alimentation 62, de manière à assurer une circulation continue et maintenir l'ensemble des composants à une température empêchant les blocages des conduites par formation de paraffine ou d'hydrate. La conduite d'injection de gaz interne 7j est solidarisée de manière étanche à la table supérieure llj à l'aide de renfort 116 où elle est maintenue en suspension. La conduite interne d'injection de gaz 7j est avantageusement enroulée en spirale autour de la conduite d'amenée 6j du fluide caloporteur chaud, pour enfin être raccordée directement en 74 à la conduite principale la de production pour effectuer le "gas-lift" (élévation par injection de gaz).
En configuration de production, le gaz est injecté sous une pression légèrement supérieure à la pression interne régnant dans la conduite principale la au niveau de l'orifice 74, par exemple 0.5 à 2 bars de plus, ce qui produit des bulles 73 au sein du pétrole brut, qui ont pour effet d'en modifier la densité et ainsi de créer un effet accélérateur sur la veine fluide. Au fur et à mesure que les bulles 73 s'élèvent, la pression hydrostatique au sein du pétrole brut ciiminue, ce qui engendre une augmentation du volume des bulles, réduisant ainsi la densité apparente du pétrole et accélérant le processus de transfert du pétrole brut du fond de la mer vers le FPSO.
La disposition en spirale de la conduite interne d'injection de gaz lt présente trois avantages particuliers : - d'une part, la conduite d'injection de gaz 7j se trouve au plus près de la conduite externe d'amenée 6j du fluide caloporteur chaud et maintient donc le gaz à une température optimale jusqu'à ce qu'il soit injecté à la base de la conduite principale la de production,
- d'autre part, ladite conduite 7j étant fixée rigidement 115, dans sa partie supérieure, au niveau de la table supérieure lll5 et dans sa partie inférieure, au niveau de l'orifice 74 d'injection, les dilatations différentielles entre la conduite principale la de production et la conduite d'injection de gaz 7l5 sont absorbées sans dommages par déformation élastique de la spirale que forme ladite conduite 7j enroulée en spirale autour de la conduite 6j de fluide caloporteur, ce qui autorise l'emploi de simples conduites en acier. - enfin, en cas d'arrêt de l'installation, le riser la est rempli de pétrole brut, lequel envahit aussi la conduite d'injection de gaz 7j_ sur une certaine hauteur, en raison de l'absence de clapet anti-retour au niveau de l'orifice d'injection 74; en effet, on évite d'installer de tels clapets anti-retour car ils nécessitent de l'entretient et risquent de causer des pannes intempestives au cas où ils ne rempliraient plus leur tâche, par exemple en fuyant ou en se bloquant en position ouverte ou fermée. Ainsi, lors de redémarrages, on fait avantageusement circuler du fluide caloporteur 5 dans la chambre 4, ce qui a pour effet immédiat de fluidifier le brut contenu dans la conduite d'injection 1\ de gaz enroulée en spirale et en contact direct avec la conduite d'amenée de fluide chaud 6j , et de le maintenir à une température élevée, tout en réchauffant petit à petit le pétrole brut contenu dans la conduite principale la de production. En maintenant une pression de gaz suffisamment élevée, dès que le pétrole dans le riser la est suffisamment fluide, la conduite d'injection 1\ de gaz se purge rapidement et le "gas-lift" entre en action sans délai, permettant ainsi un redémarrage optimal de l'installation.
Sur la figure 7, le revêtement isolant 2 est confiné dans l'espace compris entre la table supérieure llj , la chambre interne 4, l'enveloppe externe 3, et la cloison transversale 112 située à l'extrémité inférieure 42 du dispositif d'isolation et de réchauffement 1. Cette cloison d'extrémité transversale 112 à l'extrémité inférieure 42 du dispositif est ouverte en son centre par un orifice 84 de sorte que, dans le bas du dispositif 1, l'intérieur de la chambre 4 est en contact direct avec l'eau de mer. Dans la mesure où le fluide caloporteur est suffisamment non miscible avec l'eau de mer et de densité inférieure, il se crée une zone d'interface entre le fluide caloporteur chaud et l'eau de mer. Le fluide caloporteur peut être de l'eau douce chaude et le mélange éventuel des eaux ne présente pas d'inconvénient majeur si ce n'est de perdre localement une faible partie des calories du fluide caloporteur. En outre, pour améliorer l'isolation du riser 1, on dispose avantageusement une isolation supplémentaire 2t, par exemple de la mousse syntactique ou encore une section de pipe in pipe s'étendant, par exemple, sur une hauteur de 30 à 40 mètres, centrée sur la zone interface entre fluide caloporteur et eau de mer, dans la direction longitudinale ZZ'. Ainsi, en disposant l'extrémité inférieure 65 de la conduite d'amenée 6j du fluide caloporteur à, par exemple, 20 mètres du point bas 42 de la chambre interne 4 et en équipant avantageusement encore l'extrémité 65 de la conduite d'amenée 6j du fluide caloporteur , d'un déflecteur 66, on maintient l'interface eau chaude-eau froide largement au dessus du point bas 42 de la chambre interne 4 et on minimise les déperditions calorifiques inutiles. De plus l'isolation complémentaire 2t s'étendant bien au-dessus du déflecteur 68, on garantit, en plus d'un excellent niveau d'isolation, un réchauffage pleinement efficace à la conduite la dans sa portion basse. Ce mode de réalisation, dans lequel l'extrémité inférieure 42 de la chambre interne 4 est ouverte par un orifice 84 de diamètre supérieur à celui de la conduite principale la équipée de son revêtement isolant complémentaire 2ls est avantageux car il autorise les élongation et rétractation du riser la suite aux variations de température sans avoir à gérer les difficultés mécaniques d'interface pour la liaison de l'extrémité inférieure de la conduite principale la avec la cloison transversale d'extrémité inférieure 112 du dispositif d'isolation 1 selon l'invention.
Sur la figure 8, on a représenté une variante de réalisation, dans laquelle la cloison transversale d'extrémité inférieure 112 coopère avec un manchon tubulaire 113 entourant l'extrémité inférieure de la conduite principale la équipée de son revêtement isolant complémentaire 2j de manière à confiner, de préférence de manière étanche, l'intérieur de la chambre 4. Ainsi on rrrinirnise les échanges avec l'extérieur, ce qui est préférable lorsque le fluide caloporteur est un fluide polluant comme le gazole. En outre, le gazole est intéressant car, de par sa faible densité (d=0,85), le gazole peut contribuer à apporter de la flottabilité au dispositif d'isolation et de réchauffage 1 dans son ensemble. La surface externe des moyens d'isolation 2X entourant la conduite principale la à son extrémité inférieure coulisse à jeu réduit à l'intérieur du manchon tubulaire 113 , et, pour éHminer les risque de fuite, on installe avantageusement des joints d'étanchéité, non représentés, à au moins l'une des deux extrémités de ce manchon tubulaire 113, celui-ci étant solidaire de la cloison d'extrémité inférieure 112
Sur la figure 8, sont représentés à l'intérieur de la chambre interne 4, des éléments centraliseurs 16t qui permettent de maintenir les conduites la et 6t sensiblement parallèlement dans la direction longitudinale ZZ' de la chambre, tout en autorisant les mouvements dus aux dilatations différentielles selon ledit axe ZZ'.
D'autre part, sur la figure 8, on a également représenté une variante de réalisation avec des cloisons étanches intermédiaires 15, des gabarits centraliseurs 16 et des gabarits conformateurs 17 dans l'espace entre la chambre interne 4 et l'enveloppe externe 3 dans le cas où le revêtement isolant 2 est un matériau sujet à migration. Des cloisons étanches intermédiaires 15, des gabarits centraliseurs 16 et des gabarits conformateurs 17 limitent l'expansion et la contraction du matériau isolant sujet à migration, donc les déformations de l'enveloppe externe 3 comme explicité précédemment. Les cloisons transversales intermédiaires étanches 15 ainsi que les cloisons d'extrémité llj, 112 sont constituées d'une structure rigide fermée solidaire, traversée par la paroi de ladite chambre interne 4 et solidaire de la paroi de l'enveloppe externe 3; elles sont espacées de préférence à intervalles réguliers d'au moins 200 mètres dans la direction ZZ'. Dans l'espace entre deux cloisons transversales étanches llj, 112, on dispose au moins un gabarit centraliseur 16. Chaque gabarit centraliseur 16 est constitué d'une pièce rigide solidaire de la paroi de la chambre interne 4 et présente une forme qui autorise un déplacement limité de l'enveloppe externe 3 aussi bien en contraction qu'en expansion. Ce mode de réalisation convient pour une chambre interne dont la paroi est rigide, notamment de forme circulaire, et l'enveloppe externe 3 est constituée d'un matériau souple ou semi-rigide apte à rester en contact avec la surface extérieur du revêtement isolant 2 lorsque celle-ci se déforme. Sur la figure 8A, on a représenté un mode de réalisation où le périmètre de la section transversale de la surface libre externe cylindrique de la pièce rigide constituant le gabarit centraliseur 16, est en retrait par rapport à celui de la cloison étanche intermédiaire 15 et limite les déformations de l'enveloppe externe 3 par butée mécanique de celle-ci sur la pièce rigide 16 en au moins deux points opposés du périmètre de la section transversale de ladite enveloppe externe 3. Comme décrit dans FR 2 821 915, la pièce rigide 16 présente une partie de sa surface libre externe cylindrique suffisamment en retrait par rapport à la surface de l'enveloppe externe 3 et/ ou présente des perforations la traversant de manière à créer un espace qui permette le transfert de matière isolante 2 à travers le gabarit centraliseur ou autour du gabarit centraliseur 16.
Dans une variante de réalisation non représentée, lorsque l'enveloppe externe 3 est réalisé en matériau rigide et présente un profil de section transversale horizontale circulaire et que c'est la chambre interne 4 qui est réalisée en matériau souple ou semi-rigide, de préférence à profil de section horizontale transversale ovale ou allongée de type rectangulaire, la pièce rigide constitutive des gabarits centraliseurs 16 est solidaire de l'enveloppe externe 3 et c'est la surface libre interne cylindrique de la pièce rigide 16 qui est alors en retrait par rapport à la paroi de la chambre interne 4, de manière à permettre l'expansion ou la contraction de la paroi de la chambre interne 4 en regard du gabarit centraliseur 16.
II est également avantageux de prévoir des gabarits conformateurs 17 entre deux gabarits centraliseurs 16 comme représenté dans le compartiment inférieur entre la cloison d'extrémité inférieure 112 et la première cloison transversale intermédiaire étanche 15 dans la figure 8. Ce gabarit conformateur 17 est constitué d'une structure rigide solidaire des parois de l'enveloppe externe 3 et de la chambre interne 4. Sur la figure 8C, le gabarit conformateur 17 présente des ouvertures 17α permettant le passage de la matière sujette à migration dudit matériau isolant 2 à travers le gabarit conformateur 17 puis d'obtenir l'effet technique exposé précédemment décrit dans FR 2 821 915.
Sur les figures 2 à 6, on a représenté différents types de configuration géométrique la section transversale horizontale des chambres internes 4 et enveloppe externe 3, tout d'abord les chambres internes 4 et enveloppes externes 3 peuvent être constituées toutes les deux d'un matériau rigide et présenter une section transversale horizontale de configuration circulaire. Ce type de configuration peut convenir lorsque le matériau isolant thermique 2 est un matériau rigide tel que de la mousse syntactique.
Toutefois, lorsque le matériau isolant thermique 2 est un matériau sujet à migration, notamment du type gel, et plus particulièrement encore un composé à changement de phases tel que une paraffine ou encore une combinaison de ces divers systèmes d'isolation et d'accumulation d'énergie, il est préférable que l'enveloppe externe 3 et/ou la chambre interne 4 soient constituées d'un matériau souple ou semi-rigide apte à suivre les déformations dudit matériau isolant. Différentes configurations peuvent être envisagées.
On notera que sur les figures 2 à 6, on a représenté un dispositif d'isolation et de réchauffage qui comprend un faisceau de conduites la, lb disposées parallèlement à l'intérieur de la chambre interne 4 le long de sa direction longitudinale ZZ'.
Sur les figures 3 et 4, on a représenté un dispositif d'isolation 1 plus particulièrement adapté au revêtement isolant 2 de type gel ou matériau à changement de phase sujet à de fortes variations de volume dues à la température et/ ou aux phénomènes de changement de phases. Ces dispositifs ont la capacité d'absorber les variations de volume importantes par "remise au rond" de la forme de l'enveloppe externe représentée sur la figure 3 avec une section transversale horizontale de type rectangulaire à angles arrondis et sur la figure 4 avec une section transversale horizontale en configuration ovale. L'enveloppe externe 3 se déforme en expansion vers une forme circulaire sans engendrer de contrainte significative dans l'enveloppe externe 3 lors des augmentations de volume interne. Dans cette version, l'enveloppe externe peut être réalisée en matériau semi-rigide, en acier ou tout autre métal ou encore en matériau composite. Dans ces réalisations de la figure 3, la paroi de la chambre interne 4 peut, elle-aussi, être réalisée en matériau semi-rigide mais on la réalise de préférence en matériau rigide de type.
Sur les figures 5 et 6, on a représenté une configuration inversée de la section transversale horizontale des chambres internes 4 et enveloppes externes 3. La forme déformable sous l'effet de l'expansion/contraction du matériau isolant 2 est constituée par la paroi de la chambre interne 4 dont la section transversale horizontale présente une forme allongée de type rectangulaire à bord arrondi (figure 6) ou ovale (figure 5) et l'enveloppe externe 3 étant alors de configuration circulaire et pouvant être constituée d'un matériau rigide. Ainsi, lors de la rétractation du matériau isolant 2, la paroi de la chambre 4 a tendance à se remettre au rond, tandis qu'elle s'aplatit lorsque le matériau isolant 2 s'expanse.
Sur la figure 10, on a représenté en coupe horizontale une installation comprenant deux dispositifs d'isolation et de réchauffage 1 selon l'invention, présentant chacun une enveloppe externe 3 dont la section transversale horizontale présente un profil rectangulaire à angle arrondi. Ces deux dispositifs 1 sont installés au centre d'une seconde enveloppe externe circulaire 3j jouant le rôle d'écran. Des secondes enveloppes circulaires écrans ont également été décrites dans l'état de la technique. Ladite seconde enveloppe circulaire 3j minimise les coefficients hydrodynamiques propres de l'ensemble et donc les efforts dus au courant marin. Cette seconde enveloppe circulaire 3j est rendue solidaire des dispositifs 1 par des plots élastiques 35, en élastomère ou en matériau thermoplastique, ou encore par de simples ressorts. Sur la figure 11, on a représenté des ailerons 32 en forme de spirale rapportées à l'extérieur de la seconde enveloppe circulaire 3j et dont la fonction est d'empêcher la formation de vortex ou décrochement tourbillonnaire sous l'effet de courants marins. Ces dispositions sont également connues de l'homme de l'art et d'autres dispositions équivalentes peuvent être envisagées. L'invention a été décrite dans ses détails pour le cas d'une colonne montante, mais on reste dans l'esprit de l'invention dès lors que l'on applique les diverses dispositions de l'invention à des conduites sous-marines reposant sur le fond de la mer.

Claims

REVENDICATIONS
1. Dispositif de réchauffage et d'isolation thermique (1) d'au moins une conduite principale sous-marine (la, lb) de liaison fond-surface destinée à la circulation d'un effluent chaud, comportant : - un revêtement d'un matériau isolant thermique (2) entourant la ou lesdites conduites principales (la, lb) ,
- ledit revêtement isolant (2) étant recouvert d'une enveloppe externe de protection étanche (3), de préférence de forme cylindrique, caractérisé en ce qu'il comprend : a) une chambre interne (4) de préférence de forme cylindrique et coaxiale (ZZ') à ladite enveloppe externe (3), telle que :
- le dit revêtement isolant entoure ladite chambre interne et, de préférence, remplit l'espace annulaire entre ladite enveloppe externe (3) et ladite chambre interne (4), et - ladite conduite principale (la, lb) est contenue à l'intérieur de ladite chambre interne (4), de préférence de forme cylindrique, et b) des moyens (6l3 9) aptes à maintenir un fluide caloporteur (5) en température et le faire circuler à l'intérieur de ladite chambre interne, ledit fluide caloporteur (5) entourant la conduite principale (la, lb) contenue à l'intérieur d'une dite chambre interne (4).
2. Dispositif selon la revendication 1, caractérisé en ce que ladite chambre interne (4) est parcourue par au moins une conduite interne d'injection de gaz (7j) apte à permettre l'injection de gaz dans ladite conduite principale (la, lb), ladite conduite interne d'injection de gaz (7j) étant raccordée (74) à ladite conduite principale (la, lb) au niveau d'une extrémité (4^) dans la direction longitudinale (ZZ') de ladite conduite principale (la, lb) à l'intérieur de ladite chambre interne (4) et, de préférence, ladite conduite d'injection de gaz (7j) s'étendant à l'extérieur de ladite chambre interne (4) sous forme d'une conduite externe d'injection de gaz (7^) reliant ladite conduite interne d'injection de gaz (7j) à un support flottant (10).
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce qu'il comprend des moyens de circulation d'un fluide caloporteur (5) comprenant au moins une conduite interne d'amenée (6j) d'un fluide caloporteur s'étendant à l'intérieur de ladite chambre interne (4) depuis un premier orifice (8j) situé au niveau d'une première extrémité (4j) de la chambre interne (4), de préférence jusqu'à proximité de la deuxième extrémité (4^ de ladite chambre interne (4) dans la direction longitudinale (ZZ'), et un deuxième orifice (82) de sortie dudit fluide caloporteur, de préférence au niveau de ladite première extrémité (4j) de la chambre interne (4), ladite conduite interne d'amenée (6a) d'un fluide caloporteur étant située à côté de ladite conduite principale, entre cette dernière et ledit matériau isolant externe..
4. Dispositif selon l'une des revendications 2 ou 3, caractérisé en ce que ladite conduite interne d'injection de gaz (7j) est une conduite enroulée en spirale autour de ladite conduite interne d'amenée (6j) dudit fluide caloporteur à l'intérieur de ladite chambre interne (4).
5. Dispositif selon la revendication 3 ou 4, caractérisé en ce que ladite conduite interne d'amenée (6j) du fluide caloporteur est prolongée par une conduite externe flexible (63) d'alimentation en dit fluide caloporteur depuis ledit premier orifice (8j) jusqu'à un support flottant (10), et ledit second orifice de sortie 8^) du fluide caloporteur est raccordé à une deuxième conduite externe flexible (63) de retour dudit fluide caloporteur vers ledit support flottant (10).
6. Dispositif selon la revendication 3 ou 4, caractérisé en ce que ladite conduite interne d'amenée (6j) du fluide caloporteur est reliée à des moyens de circulation du fluide caloporteur comprenant une pompe (9) coopérant avec ledit premier orifice (8j) d'amenée du fluide caloporteur et ledit deuxième orifice 8^) de sortie du fluide caloporteur au niveau d'une dite première extrémité (4j) de la chambre interne (4), ladite pompe (9) permettant de faire circuler le fluide caloporteur successivement à l'intérieur de ladite conduite interne d'amenée (6j) du fluide caloporteur, puis à l'intérieur de la chambre interne (4), puis de le faire ressortir de ladite chambre interne (4) par ledit deuxième orifice 8^) et, enfin, de le faire recirculer en boucle dans ladite chambre interne (4) à travers ledit premier orifice (8j), une conduite externe flexible 6^) de circulation du fluide caloporteur assurant la liaison entre ledit support flottant et le corps de la pompe (9) ou ledit premier orifice (8j).
7. Dispositif selon la revendication 6, caractérisé en ce qu'il comprend un moyen de chauffage (64) du fluide caloporteur à l'intérieur de ladite conduite interne d'amenée (6j) du fluide caloporteur, de préférence sous forme d'une résistance électrique.
8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce qu'il comprend au moins une cloison d'extrémité transversale (llj) à au moins une dite première extrémité (4j), ladite cloison transversale d'extrémité (llj) supportant ladite conduite principale (la, lb) ainsi que lesdits moyens de circulation (6l5 9), et étant traversée (85) par ladite conduite principale (la, lb) et, le cas échéant, des premier et second orifices (8j, 8^) permettant la circulation dudit fluide caloporteur (5) à l'intérieur et à l'extérieur de ladite chambre interne (4) à travers lesdits orifices (8l3 83).
9. Dispositif selon la revendication 8, caractérisé en ce qu'il comprend une première et deuxième cloisons transversales d'extrémité (111; ll^, respectivement à chacune des deux extrémités (4l5 4^ de la chambre interne (4), ladite première cloison d'extrémité (llj) comprenant, le cas échéant, lesdits premier et second orifices (8j, 8^), et les deux dites cloisons transversales d'extrémité (111; ll^ supportant ladite enveloppe externe (3) et ladite chambre interne (4) et assurant leur liaison étanche, tout en assurant, au moins au niveau de ladite première extrémité (4j), le confinement du fluide caloporteur (5) à l'intérieur de la chambre interne (4).
10. Dispositif selon la revendication 9, caractérisé en ce que ladite deuxième cloison d'extrémité (ll^ comprend un grand orifice (84) de diamètre supérieur à celui de la conduite principale, à travers lequel orifice, passe ladite conduite principale (la), de sorte que le fluide caloporteur (5) est en contact avec l'eau de mer à l'extrémité inférieure (4^) de la chambre interne (4).
11. Dispositif selon la revendication 9, caractérisé en ce que ladite deuxième cloison d'extrémité (11^ comprend un orifice (84) entourant de façon solidaire un manchon tubulaire (113) à l'intérieur duquel ladite conduite principale (la) peut coulisser à jeu réduit, de préférence de manière étanche.
12. Dispositif selon l'une des revendications 1 à 11, caractérisé en ce que ladite conduite principale (la) est revêtue d'un second revêtement isolant (2j), au moins au niveau de ladite deuxième extrémité (4^ de la chambre interne (4), ledit fluide caloporteur circulant dans ladite chambre interne (4) à l'extérieur dudit second revêtement 2^.
13. Dispositif selon la revendication 12, caractérisé en ce que ledit second revêtement (2t) est constitué par un matériau isolant thermique, de préférence un matériau un matériau isolant solide, de préférence encore de la mousse syntactique, ledit matériau solide entourant directement ladite conduite principale (la), de préférence encore ledit second matériau isolant remplissant entièrement l'espace entre ladite conduite principale (la) et une seconde conduite coaxiale à l'intérieur de laquelle est insérée ladite conduite principale.
14. Dispositif selon l'une des revendications 1 à 13, caractérisé en ce que ledit revêtement isolant (2) comprend un matériau isolant sujet à migration et au moins ladite enveloppe externe (3) et/ou ladite chambre interne (4) est ou sont constituées d'un matériau solide souple ou semi-rigide apte à suivre les déformations du matériau isolant (2) et apte à rester en contact avec celui-ci lorsqu'il se déforme. • •
15. Dispositif selon l'une des revendications 1 à 14, caractérisé en ce que ledit matériau isolant (2) est un matériau à changement de phase présentant une température de fusion liquide/solide (T0) de préférence compris entre 20 et 80°C, supérieure à celle (T2) du milieu environnant marin de la conduite en opération et inférieure à celle (Tl) à partir de laquelle les effluents circulant à l'intérieur de la conduite présentent une augmentation de viscosité dommageable pour leur circulation dans ladite conduite principale (la, lb).
16. Dispositif selon la revendication 15, caractérisé en ce que ledit matériau isolant (2) à changement de phase comprend des composés chimiques de la famille des alcanes, de préférence une paraffine comprenant une chaîne hydrocarbonée d'au moins quatorze atomes de carbone, de préférence encore du tétracosane de formule C24HS0 présentant une température de fusion d'environ 50°C.
17. Dispositif selon l 'une des revendications 1 à 16, caractérisé en ce que ledit matériau isolant (2) comprend un complexe isolant comprenant un premier composé, consistant en un composé hydrocarboné comme la paraffine ou le gazole, en mélange avec un second composé consistant en un composé gélifiant et/ou à effet structurant, notamment par réticulation, tel qu'un second composé du type polyuréthane, polypropylène réticulé, polyéthylène réticulé ou silicone, de préférence ledit premier composé se présentant sous forme de particules ou micro-capsules dispersées au sein d'une matrice dudit second composé, et ledit premier composé étant choisi, de préférence, parmi les alcanes tels que des paraffines, des cires de bitumes, des goudrons, des alcools gras ou des glycols, de préférence encore ledit premier composé étant un composé à changement de phase.
18. Dispositif selon l'une des revendications 1 à 17, caractérisé en ce qu'il comprend un dit revêtement isolant (2) comprenant un dit matériau solide visqueux sujet à migration et qu'il comprend au moins deux cloisons transversales intermédiaires étanches (15), chacune desdites cloisons transversales intermédiaires (15) étant constituée d'une structure rigide fermée traversée par ladite chambre interne (4) et solidaires des parois de ladite chambre interne (4) et de ladite enveloppe externe (3), de préférence lesdites cloisons transversales intermédiaires (15) étant espacées à intervaËes réguliers le long de l'axe longitudinal (ZZ') desdites chambre interne (4) et enveloppe externe (3) coaxiales, de préférence encore d'une distance de 50 à 200 mètres.
19. Dispositif selon la revendication 18, caractérisé en ce qu'il comprend au moins un gabarit centraliseur (16), de préférence une pluralité de gabarits centraliseurs (16), disposé(s) de préférence à intervalles réguliers, entre deux dites cloisons transversales intermédiaires étanches (15) successives le long dudit axe longitudinal (ZZ'), chaque gabarit centraliseur (16) étant constitué d'une pièce rigide solidaire de la paroi de la chambre interne (4) ou de ladite enveloppe externe (3), présentant une forme qui autorise un déplacement limité de ladite enveloppe externe (3) ou respectivement de ladite chambre interne (4), en contraction et en expansion, en regard dudit gabarit centraliseur (16), au moins ladite enveloppe externe (3) ou respectivement ladite chambre interne (4) étant constituée d'un matériau souple ou semi-rigide apte, le cas échéant, à rester en contact du revêtement isolant lorsque celle-ci se déforme.
20. Dispositif selon l'une des revendications 18 ou 19, caractérisé en ce qu'il comprend au moins un, de préférence une pluralité, de gabarit(s) conformateur(s) (17) constitué(s) d'une structure rigide solidaire de ladite chambre interne et traversée par celle- ci et solidaire de ladite enveloppe externe (3) à sa périphérie, disposé(s) entre deux dites cloisons transversales intermédiaires étanches (15) successives, ledit gabarit conformateur présentant des ouvertures permettant le passage de la matière constitutive dudit matériau isolant sujet à migration (2) à travers ledit gabarit conformateur (17).
21. Dispositif selon l'une des revendications 1 à 17, caractérisé en ce que ladite enveloppe externe (3) et ladite chambre interne (4) sont co-axiales le long d'un axe longitudinal (ZZ') et définissent un périmètre présentant au repos deux axes de symétrie (XX') et (YY') perpendiculaires entre eux et audit axe longitudinal (ZZ'), et au moins l'une des parois constitutives desdites enveloppe externe (3) et/ ou chambre interne (4) est constituée d'un matériau souple ou semi-rigide, de préférence l'autre paroi étant constituée d'un matériau rigide, de préférence encore à section transversale de forme circulaire.
22. Dispositif selon la revendication 21, caractérisé en ce que la section transversale de l'enveloppe externe (3), de préférence constituée d'un matériau rigide, est de forme circulaire et la section transversale de ladite chambre interne (4), de préférence constituée d'un matériau souple ou semi-rigide, est de forme ovale ou de forme rectangulaire avec des angles arrondis.
23. Dispositif selon la revendication 21, caractérisé en ce que la section transversale de la chambre interne (4), de préférence constituée d'un matériau rigide, est de forme circulaire et la section transversale de l'enveloppe externe (3), de préférence constituée d'un matériau souple ou semi-rigide, est de forme ovale ou de forme rectangulaire avec des angles arrondis.
24. Dispositif selon l'une des revendications 1 à 23, caractérisé en ce que ladite conduite principale (la) et, le cas échéant, ladite conduite interne d'amenée (6j) de fluide caloporteur coopèrent à l'intérieur de ladite chambre interne (4) avec des éléments centraliseurs (16j) qui maintiennent le ou lesdites conduites (la, 6j) sensiblement parallèles à l'axe (ZZ') de ladite chambre interne (4) tout en autorisant le mouvement desdites conduites (la, 6j) dû aux dilatations différentielles de celles-ci.
25. Dispositif de réchauffage et d'isolation thermique (1) d'un faisceau de conduites principales sous-marines (la, lb), caractérisé en ce qu'il comprend un dispositif selon l'une des revendications 1 à 24 comprenant au moins deux dites conduites principales (la, lb) disposées en parallèle et à l'intérieur de ladite chambre interne (4).
26. Installation de liaison fond-surface entre une conduite sous-marine (13) reposant au fond de la mer, notamment à grande profondeur, et un support flottant (10), comprenant : a) au moins un riser vertical (la, lb) relié à son extrémité inférieure à au moins une dite conduite sous-marine (13) reposant au fond de la mer, et à son extrémité supérieure à au moins un flotteur (14) ledit riser vertical étant inclus dans un dispositif (1) selon l'une des revendications 1 à 25, ledit riser vertical correspondant à ladite conduite principale, et ladite chambre interne (4) s'étendant sur une hauteur d'au moins 1000 mètres, et b) au moins une conduite de liaison (12), de préférence une conduite flexible, assurant la liaison entre un support flottant (10) et l'extrémité supérieure dudit riser vertical (4), et c) le cas échéant, desdites conduites flexibles externes (62, 63) de circulation du fluide caloporteur (5) entre le support flottant (10) et lesdits premier et second orifices (8l5 83) de la première extrémité (4j) de la chambre interne (4) et, le cas échéant, au moins une dite conduite externe flexible d'injection de gaz (7^.
27. Installation selon la revendication 26, caractérisée en ce qu'elle comprend une seconde enveloppe externe (3t) à section transversale circulaire contenant au moins un dispositif d'isolation et de réchauffage (1) selon l'une des revendications 1 à 25, ladite enveloppe externe (3) dudit dispositif d'isolation thermique et de réchauffage (1) étant rendue solidaire de ladite seconde enveloppe externe (3j), de préférence par des liens élastiques (35) et de préférence encore ladite seconde enveloppe externe (3j) comprend des moyens (3^ en forme de spirale sur sa périphérie extérieure aptes à empêcher la formation de vortex ou de décrochement tubulaire sous l'effet de courant marin.
28. Procédé de réchauffage et d'isolation thermique d'au moins une conduite principale sous-marine (la, lb) de liaison fond-surface destinée à assurer la circulation d'un effluent chaud au fond de la mer ou depuis le fond de la mer jusqu'à la surface, caractérisé en ce qu'on utilise un dispositif de réchauffage et d'isolation thermique (1) selon l'une des revendications 1 à 25, de préférence dans une installation selon l'une des revendications 26 ou 27, et on fait circuler un dit fluide caloporteur (5) à l'intérieur d'une dite chambre interne (4).
29. Procédé selon la revendication 28, caractérisé en ce que ledit fluide caloporteur est choisi parmi de l'eau de mer, de l'eau douce, du gazole et de l'huile.
30. Procédé selon l'une des revendications 28 ou 29, caractérisé en ce que on réchauffe ladite conduite principale par dite circulation dudit fluide caloporteur lors d'une phase de redémarrage de la production après un arrêt prolongé.
EP04720038A 2003-03-18 2004-03-12 Dispositif de rechauffage et d'isolation thermique d'au moins une conduite sous-marine Expired - Lifetime EP1606490B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0303274 2003-03-18
FR0303274A FR2852677B1 (fr) 2003-03-18 2003-03-18 Dispositif de rechauffage et d'isolation thermique d'au moins une conduite sous-marine
PCT/FR2004/000619 WO2004085794A1 (fr) 2003-03-18 2004-03-12 Dispositif de rechauffage et d’isolation thermique d’au moins une conduite sous-marine

Publications (2)

Publication Number Publication Date
EP1606490A1 true EP1606490A1 (fr) 2005-12-21
EP1606490B1 EP1606490B1 (fr) 2006-07-19

Family

ID=32922240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04720038A Expired - Lifetime EP1606490B1 (fr) 2003-03-18 2004-03-12 Dispositif de rechauffage et d'isolation thermique d'au moins une conduite sous-marine

Country Status (7)

Country Link
US (1) US7367398B2 (fr)
EP (1) EP1606490B1 (fr)
AT (1) ATE333567T1 (fr)
BR (1) BRPI0408419B1 (fr)
DE (1) DE602004001582D1 (fr)
FR (1) FR2852677B1 (fr)
WO (1) WO2004085794A1 (fr)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2841632B1 (fr) * 2002-07-01 2004-09-17 Bouygues Offshore "dispositif d'isolation thermique d'au moins une conduite sous-marine comprenant un materiau isolant a changement de phase confine dans des poches"
GB0409361D0 (en) * 2004-04-27 2004-06-02 Stolt Offshore Sa Marine riser tower
GB0704670D0 (en) * 2006-11-08 2007-04-18 Acergy France Sa Hybrid tower and methods of installing same
CN101600566B (zh) * 2006-11-29 2012-11-14 3M创新有限公司 包含微球的绝缘材料
US8714206B2 (en) * 2007-12-21 2014-05-06 Shawcor Ltd. Styrenic insulation for pipe
US7669659B1 (en) * 2008-01-29 2010-03-02 Lugo Mario R System for preventing hydrate formation in chemical injection piping for subsea hydrocarbon production
FR2930587A1 (fr) * 2008-04-24 2009-10-30 Saipem S A Sa Installation de liaison fond-surface d'une conduite rigide avec une conduite flexible a flottabilite positive et une piece de transition d'inertie
GB0810355D0 (en) 2008-06-06 2008-07-09 Acergy France Sa Methods and apparatus for hydrocarbon recovery
US8397765B2 (en) * 2008-07-25 2013-03-19 Shawcor Ltd. High temperature resistant insulation for pipe
US20100051279A1 (en) * 2008-09-02 2010-03-04 Baugh Paula B Method of prevention of hydrates
WO2010072001A1 (fr) * 2008-12-22 2010-07-01 Shawcor Ltd. Isolations styréniques enroulables pour tuyau
EP2248648B1 (fr) * 2009-05-05 2016-03-30 Brugg Rohr AG, Holding Procédé et dispositif de fabrication d'une conduite isolée thermiquement
FR2948144B1 (fr) * 2009-07-16 2011-06-24 Technip France Dispositif de suspension de conduite petroliere et methode d'installation
GB0920640D0 (en) * 2009-11-25 2010-01-13 Subsea 7 Ltd Riser configuration
FR2960279B1 (fr) * 2010-05-20 2013-04-05 Inst Francais Du Petrole Faisceau de conduites petrolieres a performance thermique amelioree
FR2960208B1 (fr) * 2010-05-20 2012-08-10 Saipem Sa Installation de liaison fond-surface comprenant une structure de guidage de conduite flexible
WO2011161472A1 (fr) * 2010-06-26 2011-12-29 Trellborg Offshore Uk Limited Système passif de gestion thermique pour pipelines à liquides
US8960302B2 (en) * 2010-10-12 2015-02-24 Bp Corporation North America, Inc. Marine subsea free-standing riser systems and methods
BRPI1101090B1 (pt) 2011-03-21 2021-02-23 Ipb-gr Indústria Mecânica Ltda isolamento térmico de tubos de uma coluna de tubos de produção submarina de petróleo, segmento tubular e sistema para isolameto térmico de juntas de união de tubos de produção submarina de petróleo
BR112013026983B1 (pt) * 2011-04-18 2020-07-21 Magma Global Limited sistema de tubo ascendente híbrido e método para comunicar fluido entre um local submarino e uma embarcação na superfície ou próxima da superfície
US9334695B2 (en) 2011-04-18 2016-05-10 Magma Global Limited Hybrid riser system
GB201110569D0 (en) 2011-06-22 2011-08-03 Wellstream Int Ltd Method and apparatus for maintaining a minimum temperature in a fluid
DE102011052868A1 (de) * 2011-08-19 2013-02-21 Rehau Ag + Co. Latentwärmespeichervorrichtung
FR2988424B1 (fr) * 2012-03-21 2014-04-25 Saipem Sa Installation de liaisons fond-surface de type tour hybride multi-risers comprenant des conduites flexibles a flottabilite positive
NO335610B1 (no) * 2013-03-27 2015-01-12 Vetco Gray Scandinavia As Innretning for termisk isolering av ett eller flere elementer i en undersjøisk installasjon fra omgivende kaldt havvann
CN103291226A (zh) * 2013-06-04 2013-09-11 无锡金顶石油管材配件制造有限公司 一种多线槽石油管结构
CN103291227A (zh) * 2013-06-04 2013-09-11 无锡金顶石油管材配件制造有限公司 一种耐高温防氧化保温石油管
US8833440B1 (en) * 2013-11-14 2014-09-16 Douglas Ray Dicksinson High-temperature heat, steam and hot-fluid viscous hydrocarbon production and pumping tool
GB2525609B (en) * 2014-04-28 2017-04-19 Acergy France SAS Riser system with gas-lift facility
FI127880B (en) * 2015-09-08 2019-04-30 Uponor Innovation Ab Long-distance pre-insulated pipe unit and local heat distribution system
US10982508B2 (en) 2016-10-25 2021-04-20 Stress Engineering Services, Inc. Pipeline insulated remediation system and installation method
CN106703813A (zh) * 2016-12-20 2017-05-24 武汉理工大学 一种气泡减阻式的海洋采矿立管
EP3649042B1 (fr) * 2017-07-03 2021-06-23 Subsea 7 Norway AS Déchargement d'hydrocarbures à partir de champs sous-marins
CN109812640A (zh) * 2019-03-14 2019-05-28 江苏宏博机械制造有限公司 避免严寒冻裂型石油管道装置
CN111287706B (zh) * 2020-02-14 2022-03-01 中国海洋石油集团有限公司 一种深水油气田水下设施及其水合物解堵方法
BR112023018387A2 (pt) * 2021-03-10 2023-12-05 Tenaris Connections Bv Método para instalar um revestimento em um poço, meio de armazenamento não transitório legível por computador e sistema
GB2615544A (en) * 2022-02-10 2023-08-16 Baker Hughes Energy Tech Uk Limited Subsea heat bank with PCM heat storing member

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2707095A (en) * 1950-05-08 1955-04-26 R W Mfg Co Underground heat exchanger
DE2019081A1 (de) * 1970-04-21 1971-11-11 Kabel Metallwerke Ghh Thermisch isoliertes Leitungsrohr
US3768547A (en) * 1971-02-04 1973-10-30 Dow Chemical Co Arrangement to control heat flow between a member and its environment
US3765489A (en) * 1972-02-14 1973-10-16 Union Oil Co Method and apparatus for continuously injecting a fluid into a producing well
FR2228188B1 (fr) * 1973-02-06 1975-08-22 Commissariat Energie Atomique
US4076476A (en) * 1976-11-22 1978-02-28 Ideal Toy Corporation Dough mold press
US4408657A (en) * 1981-01-19 1983-10-11 Pugh Paul F Method for transporting low temperature heat long distances
US6058979A (en) * 1997-07-23 2000-05-09 Cuming Corporation Subsea pipeline insulation
US6000438A (en) * 1998-02-13 1999-12-14 Mcdermott Technology, Inc. Phase change insulation for subsea flowlines
FR2788831B1 (fr) * 1999-01-26 2001-04-13 Bouygues Offshore Dispositif d'isolation thermique d'au moins une conduite sous marine a grande profondeur
AU3049700A (en) * 1998-12-31 2000-07-24 Bouygues Offshore Heat insulating device and method for insulating at least a submarine pipeline at great depth
FR2790054B1 (fr) * 1999-02-19 2001-05-25 Bouygues Offshore Procede et dispositif de liaison fond-surface par conduite sous marine installee a grande profondeur
US6419018B1 (en) * 2000-03-17 2002-07-16 Halliburton Energy Services, Inc. Subterranean well completion apparatus with flow assurance system and associated methods
US7100694B2 (en) * 2001-01-08 2006-09-05 Stolt Offshore S.A. Marine riser tower
FR2821143B1 (fr) * 2001-02-19 2003-05-02 Bouygues Offshore Installation de liaison fond-surface d'une conduite sous-marine installee a grande profondeur du type tour-hybride
FR2821917B1 (fr) * 2001-03-09 2004-04-02 Bouygues Offshore Dispositif d'isolation thermique d'au moins une conduite sous-marine comprenant des cloisons etanches
FR2826051B1 (fr) * 2001-06-15 2003-09-19 Bouygues Offshore Installation de liaison fond-surface d'une conduite sous-marine reliee a un riser par au moins un element de conduite flexible maintenu par une embase

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004085794A1 *

Also Published As

Publication number Publication date
WO2004085794A1 (fr) 2004-10-07
US7367398B2 (en) 2008-05-06
ATE333567T1 (de) 2006-08-15
BRPI0408419B1 (pt) 2015-07-28
FR2852677B1 (fr) 2006-01-06
US20060131027A1 (en) 2006-06-22
BRPI0408419A (pt) 2006-03-21
FR2852677A1 (fr) 2004-09-24
DE602004001582D1 (de) 2006-08-31
EP1606490B1 (fr) 2006-07-19

Similar Documents

Publication Publication Date Title
EP1606490B1 (fr) Dispositif de rechauffage et d'isolation thermique d'au moins une conduite sous-marine
EP1518071B1 (fr) Dispositif d isolation thermique d au moins une conduite sous-marine comprenant un materiau a changement de phase confine dans des poches
EP1395731B1 (fr) Installation de liaison d'une conduite sous-marine reliee a un riser
EP1058800B1 (fr) Dispositif et procede thermique d'isolation d'au moins une conduite sous-marine a grande profondeur
EP1362161A1 (fr) Installation de liaison fond-surface d'une conduite sous-marine installee a grande profondeur
EP1917416B1 (fr) Installation comprenant au moins deux liaisons fond-surface d au moins deux conduites sous-marines reposant au fond de la mer.
EP2844820B1 (fr) Installation de liaisons fond-surface de type tour hybride multi-risers comprenant des conduites flexibles a flottabilite positive
EP1501999A1 (fr) Installation de liaison fond-surface d'une conduite sous-marine reliee a un riser par un element de conduite soude maintenu par une embase
FR2975748A1 (fr) Dispositif sous-marin de transport d'hydrocarbures et de regulation de leur temperature
EP1366320B1 (fr) Dispositif d'isolation thermique d'au moins une conduite sous-marine comprenant des cloisons etanches
EP2340388A1 (fr) Ensemble de conduites coaxiales comprenant un manchon d'isolation thermique
WO2015169858A1 (fr) Ensemble de jonction pour former une conduite
CA2218931C (fr) Procede de transport d'un fluide dans une conduite comportant une structure poreuse
FR2939178A1 (fr) Conduite sous-marine de jonction comprenant une isolation thermique.
WO2011144828A1 (fr) Faisceau de conduites pétrolières à performance thermique améliorée
EP3265642B1 (fr) Installation comprenant au moins deux liaisons fond-surface comprenant des risers verticaux relies par des barres
OA18412A (fr) Installation comprenant au moins deux liaisons fond-surface comprenant des risers verticaux reliés par des barres
FR2931188A1 (fr) Dispositif de rechauffage pour conduites petrolieres sous marines par grands fonds et a usage multiple

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060719

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602004001582

Country of ref document: DE

Date of ref document: 20060831

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061019

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061019

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061020

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061219

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070420

BERE Be: lapsed

Owner name: SAIPEM S.A.

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20080601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070312

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070120

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200323

Year of fee payment: 17

Ref country code: IT

Payment date: 20200312

Year of fee payment: 17

Ref country code: NL

Payment date: 20200227

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200313

Year of fee payment: 17

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210312