EP1603187B1 - Cavity resonator, use of the cavity resonator in a oscillation circuit - Google Patents
Cavity resonator, use of the cavity resonator in a oscillation circuit Download PDFInfo
- Publication number
- EP1603187B1 EP1603187B1 EP04013104A EP04013104A EP1603187B1 EP 1603187 B1 EP1603187 B1 EP 1603187B1 EP 04013104 A EP04013104 A EP 04013104A EP 04013104 A EP04013104 A EP 04013104A EP 1603187 B1 EP1603187 B1 EP 1603187B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cavity resonator
- cavity
- pot
- cover
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010355 oscillation Effects 0.000 title description 3
- 230000008859 change Effects 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 15
- 230000009467 reduction Effects 0.000 claims description 11
- 239000000919 ceramic Substances 0.000 claims description 10
- 230000008878 coupling Effects 0.000 claims description 10
- 238000010168 coupling process Methods 0.000 claims description 10
- 238000005859 coupling reaction Methods 0.000 claims description 10
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 5
- 230000005684 electric field Effects 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910001080 W alloy Inorganic materials 0.000 claims description 2
- 229910052790 beryllium Inorganic materials 0.000 claims description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 2
- 230000010354 integration Effects 0.000 claims 1
- 230000001965 increasing effect Effects 0.000 description 11
- 230000008901 benefit Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910001374 Invar Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- SBYXRAKIOMOBFF-UHFFFAOYSA-N copper tungsten Chemical compound [Cu].[W] SBYXRAKIOMOBFF-UHFFFAOYSA-N 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/06—Cavity resonators
Definitions
- the present invention relates to cavity resonators and their use especially in oscillator circuits.
- Resonators are important components that are used in a wide variety of applications. For example, microwave systems require high-quality resonators used in filters and resonators (oscillators). One has to make a choice between cavity resonators and dielectric resonators, where size, weight, cost and other aspects can play a role.
- Cavity resonators in the various known embodiments undergo a change in resonant frequency with temperature change, which is undesirable for most applications.
- a change in temperature may result from a change in ambient temperature, from a temperature change in an integrated oscillator circuit, or from losses occurring in the resonant cavity.
- a change in temperature results in a Change in the dimensions of the resonator, which leads to the mentioned change in the resonant frequency.
- FIG. 1A Another possibility is to build a cavity made of different materials with different coefficients of thermal expansion. This possibility is well known and is used for so-called "coaxial re-entrant cavity” resonators.
- An example of such a resonator is, for example, in US Pat Japanese Patent JP 52075154 , which was published on 23.6.1977 described.
- Fig. 1A and 1B show a resonator 10 according to this Japanese patent in a much simplified representation. Like from the Fig. 1A and 1B can be seen, there is a rod 12, which co-axially penetrates into a cavity 11 of the resonator 10.
- a low temperature state T is shown. When the temperature is increased to T ', the cavity 11 expands, as in FIG Fig.
- the rod 12 becomes longer at a temperature increase. If the materials of the cavity 11 and the rod 12 are chosen such that the rod 12 undergoes a smaller expansion, the so-called capacitive gap (area 13) between the lower rod end and the lower wall of the cavity 11 becomes larger. This change in the capacitive gap (reduction of the capacitive load of the resonator with temperature increase) in the region 13 results in that the resonant frequency of the resonator 10 remains relatively constant over a certain temperature range.
- a disadvantage of such a re-entrant cavity resonator 10 is the relatively poor quality factor Q. Especially at high frequencies above 10 GHz, the quality factor Q degrades rapidly due to the high field concentration in the capacitive gap and its immediate environment.
- resonators equipped with means for compensating the influence of temperature. These types of resonators are also referred to as "clamped cavity" resonators.
- An example of such a resonator is the U.S. Patent No. 2,528,387 refer to.
- the cavity of the resonator is designed according to this approach so that the geometric changes that would normally result from a temperature change are locally limited or even suppressed. This can be done by a suitable choice of materials and measures which ensure that the volume of the resonator is kept constant by compensating for an increase in the cross-section by reducing the length.
- Other similar examples are the US Pat. Nos. 4,706,053 and US 6,529,104 which also suggest ways and means to keep the volume of a resonator approximately constant with a temperature increase.
- resonators are made of Invar® or similar materials that have a low coefficient of thermal expansion. Invar is expensive and difficult to work with.
- the object is to provide a resonator which prevents or reduces a change in the resonant frequency with temperature change. Moreover, it is according to the invention to provide a resonator that is inexpensive.
- a cavity resonator is provided, the volume of which increases with an increase in temperature, respectively decreases with a decrease in temperature, without the resonant frequency experiencing a greater change.
- the Cavity resonator a pot and at least one cover, which are made of materials with different coefficients of thermal expansion, wherein the at least one cover has a greater coefficient of thermal expansion than the pot.
- a cavity resonator with the features according to claim 1 the use of a cavity resonator with the features according to claim 16 and an oscillator circuit having the features according to claim 17 is provided.
- the cavity resonator is a component which oscillates in a predetermined wavelength range, for example in the microwave range.
- a resonator has a cavity whose walls form a body which substantially encloses the cavity. This body is referred to herein as a pot regardless of its actual shape.
- a cavity has, for example, the shape of a cylinder, a prism or a sphere and the walls are made of metal or a metal layer, wherein the metal or metal layer has a very high electrical conductivity.
- Particularly suitable are copper, a copper alloy (for example CuW), gold or silver, or a superconducting material, to name a few examples.
- a cavity resonator is provided according to the invention, the volume increases in a temperature increase, respectively, reduced at a temperature drop, without causing the resonant frequency undergoes a greater change.
- a first embodiment of the invention is in Fig. 2 shown. Shown is a schematic view of a cavity resonator 20.
- the cavity resonator 20 has a cylindrical pot 21 with a bottom 21.1 and a cover 22, which together enclose a cavity resonance volume V.
- the cavity resonator 20 is characterized in that the pot 21 comprises a first (metallic) material having a first coefficient of thermal expansion ⁇ 1.
- the cover 22, however, comprises a second (metallic) material having a second coefficient of thermal expansion ⁇ 2.
- the second temperature expansion coefficient ⁇ 2 is greater than the first coefficient of thermal expansion ⁇ 1, ie ⁇ 2> ⁇ 1.
- the pot 21 has a cylindrical shape with a radius R and a (resonator) height H.
- a cover 22 is a dome-shaped element having a height .DELTA.H and a length P.
- the pot 21 and the cover 22 are arranged rotationally symmetrically about the axis 23.
- the rotational symmetry is advantageous for the manufacturing process (Turning), but is not essential to the basic operation of the inventive compensation.
- Fig. 3A the distribution of the intensity of the electric field strength E at a first temperature T is shown.
- the cover 22 has, as in Fig. 2 a length P and a height ⁇ H. If the temperature is increased from T to T ', then the results in Fig. 3B indicated situation where the cover 22 has curved slightly upwards.
- the temperature expansion coefficient ⁇ 2 of the cover 22 must be greater than the thermal expansion coefficient ⁇ 1 of the pot 21.
- the radius R of the Pot 21 is larger and the dome-shaped cover 22 bulges further outwards.
- Increasing the radius R results in a decrease in the resonance frequency f R, and the more curved cover results in an increase in the resonance frequency f R.
- a conventional cavity resonator 30 is shown with a pot 31 closed in all directions.
- the radius R of the pot 31 also increases, which leads both to an increase in the inductance, ie, L '> L and to an increase in the capacitance, ie, C'> C.
- the volume V has increased by changing the height H and the radius R to V ', the capacitance C' has changed, ie C ' ⁇ C, and the inductance has increased, ie L'> L, as already mentioned . Since the product of inductance and capacitance remains constant in the case of a change in height, but increases in the case of an increase in the radius R (L'C '> LC), there is an undesirable reduction in the resonant frequency f R. Temperature compensation can not be achieved in this way.
- the resonator 40 has a cover 42 with a tapered portion, which is shown in FIGS Images arched down.
- This cavity resonator 40 has at the temperature T a volume V 1 , a capacitance C 1 and an inductance L 1 .
- the inductance L 1 is approximately the same size as the inductance L in Fig. 4A because the addition of a domed cover does not cause any significant H field change and therefore no significant inductance change.
- the capacitance C 1 is smaller than the capacitance C because the E-field is reduced by the pointed configuration of the cover 42.
- a cavity resonator according to the invention can be dimensioned as follows.
- the choice of material can be made and a resonance frequency f R can be specified.
- the pot may, for example, comprise CuW and the cover CuBe.
- the dimensions of the pot (H and R) and the dimensions of the cover (P and ⁇ H) are determined.
- the resonance frequency f R can be calculated. In this case, the rotational symmetry of the geometric arrangement can be exploited, which makes it possible to obtain accurate simulation results in a short time.
- the output variables (eg H, R and ⁇ H) can be modified in order to then repeat the calculation.
- the influence of a temperature change (increase or decrease of the temperature) on the shape of the pot and the cover can be determined. This is done by means of commercially available simulation programs for this mechanical problem or experimentally.
- the mechanical stresses in the pot and / or the cover can be calculated / simulated. If the mechanical stresses should be too high, the output quantities (eg H, round ⁇ H) can be modified again to repeat the calculation. Now the dependence of the resonance frequency f R on the temperature can be calculated / simulated. In this calculation, specifications for the mechanical tolerances can be incorporated. If the dependence of the resonance frequency f R on the temperature is within a predetermined range, the calculations may be terminated, otherwise the outputs (eg H, R and ⁇ H) may be modified again to then repeat the calculation.
- the invention is particularly suitable for use in circuits designed to process high power signals for broadband communication.
- a resonator according to the invention may be part of a filter circuit which comprises an oscillator with the resonator in the feedback branch. By this type of arrangement only one frequency is transmitted.
- the circuit according to the invention can be constructed on a ceramic substrate, for example a multilayer LTCC (Low Temperature Cofired Ceramics) substrate.
- a ceramic substrate for example a multilayer LTCC (Low Temperature Cofired Ceramics) substrate.
- LTCC Low Temperature Cofired Ceramics
- Such a substrate can on a Base plate sit, which in turn carries the inventive resonator.
- the ceramic substrate and base plate have a compatible (ie, only slightly different) coefficient of thermal expansion to form a stable composite.
- the base plate 53 is connected to a substrate 54 and may serve as a heat sink, for example as a heat sink for electronic components mounted on the opposite side of the substrate 54.
- elements of the circuit 50 are integrated (these elements are not shown).
- the pot 51 is cylindrical in the example shown.
- a conductive surface 57 is provided, which in Fig. 5 is indicated as a thick metallic layer.
- a cover 52 is provided at the opposite end of the pot 51.
- This cover 52 comprises an outer annular region 52. 1, which extends substantially parallel to the conductive surface 57.
- a coupling hole 55 for coupling in an electromagnetic wave and a coupling hole 56 for coupling out the shaft are provided.
- this coupling and decoupling could also be done by one and the same coupling hole.
- Strip conductors are typically arranged on the substrate 54 in order to guide the shaft to the coupling point 55 and to pick it up and forward it on the other side 56. The strip conductors are in Fig. 5 not shown.
- the first material is chosen such that the temperature expansion coefficient ⁇ 1 of the base plate matches the temperature expansion coefficient a3 of the substrate.
- FIG. 6 Another circuit 60 according to the invention, is in Fig. 6 shown in the form of a block diagram. It is an oscillator circuit 60 with a resonator 80 according to the invention, which has a pot 61 and a cover 62. There are a Einkoppelstelle 66 and a decoupling point 65 in the bottom of the pot 61 is provided. The decoupled signal is coupled into a line leading to a Low Noise Amplifier 63 where the signal is amplified.
- an optional attenuator 64 with two PIN diodes is provided which limits the power by "clipping".
- It may be a phase actuator 67 may be provided to adjust the phase position static. Also, the phase actuator 67 is optional.
- a further amplifier 68 is provided to generate sufficiently large output signal power.
- This second amplifier 68 is usually reliant on a good dissipation of the heat loss, which by the present structure (with massive, good heat-conducting bottom plate 53, Fig. 5 ) can be guaranteed.
- the output (OUT) of the oscillator circuit On the output side of the amplifier 68 is the output (OUT) of the oscillator circuit. At this output the circuit 60 is taken power. A small part of the power is conducted via the coupling point 66 into the resonator 80. The resonator 80 is thus in the feedback path of the circuit 60.
- the temperature compensation of the resonator 80 may be designed so that the resonator 80 per se under- or overcompensation.
- the circuit 60 includes an electrical component 64 to limit the power.
- Power may be coupled out of circuit 60 at a suitable location (labeled OUT), which coupling may be capacitive, inductive, or direct. It is important that the overall gain in the circuit 60 is sufficient and the phase is correct, so that the oscillation starts and the circuit 60 vibrates stable.
- FIG Fig. 7 Another embodiment of a cavity resonator 70 according to the invention is shown in FIG Fig. 7 shown.
- the resonator 70 has a cylindrical pot 71 and a cover 72, which are designed so that the inventive temperature compensation is used.
- the walls 71.1 of the pot 71, the base plate 74 (for example in the form of a single-sided metallized ceramic plate) and the cover 72 together enclose a cavity resonance volume.
- the pot 71 comprises a first (metallic or metallized) material having a first coefficient of thermal expansion ⁇ 1, which is preferably in the range between 4 ppm / K and 10 ppm / K.
- the cover 72 comprises a second (metallic or metallised) material having a second coefficient of thermal expansion ⁇ 2, which is preferably in the range between 10 ppm / K and 20 ppm / K.
- the second temperature expansion coefficient ⁇ 2 is greater than the first coefficient of thermal expansion ⁇ 1.
- the radius R of the pot 71 is typically between 2.5 mm and 10 mm. In the illustrated embodiment, the radius is 4 mm.
- the cover 72 may have a circumferential collar 72. 1 in order to be able to connect the cover 72 to the wall 71. 1 of the pot 71.
- the pot 71 may have a larger radius in the upper region than in the lower region. This results in a circumferential step 71.2 on the cover 72 can be placed.
- the cover 72 has in the illustrated embodiment, a thickening 72.2 in the center.
- a continuous bore is provided which extends axially. Through this bore, a dielectric rod 73 can be inserted into the cavity of the resonator 70. With this rod 73, which is optional, the resonance frequency can be adjusted within certain limits, since the rod 73, depending on the position in the cavity changes the effective permittivity.
- the resonator pot can be drilled, milled, rotated, cast, deep-drawn or otherwise manufactured according to the invention.
- the inner walls of the pot are reworked to produce a surface with low surface roughness.
- Rolling, grinding, polishing, coating are particularly suitable as post-processing.
- the walls of the pot have a low roughness and are preferably coated with gold and / or silver.
- cover and the pot are conductively connected to one another.
- This electrical connection can be present on the entire circumference of the cover or on a substantial part of this circumference.
- the cover is electrically and mechanically connected to the pot by a soldered or welded connection.
- a further embodiment is characterized in that, instead of a pot with only one cover, a pot (made, for example, from a prismatic or round tube), which has covers on both sides, is used. In this case, both covers can contribute to the described principle of operation for compensation.
- the height H of the pot can be chosen freely. It is not necessary here, as with waveguide resonators, to satisfy the condition that the height of the resonator corresponds to half the wavelength.
- the invention achieves an additional degree of freedom in determining the dimensions of the resonator.
- the (resonator) height H can be chosen so that a large quality factor Q results. According to the invention, for example, a figure of merit of 2500 can be achieved (at f R ⁇ 30 GHz and gold metallization on the surface of pot and cover).
- the cover according to the invention is dome-shaped, domed or cone-shaped and forms - viewed from the direction of the pot - a cavity. But there are also other forms conceivable.
- the present invention is considered to be a true alternative to the resonators initially referred to as clamped cavity resonators.
- the present invention is a true refinement of the re-entrant approach that is used in conjunction with the Figures 1A and 1B has been described.
- An advantage over the re-entrant resonators is the significantly higher quality.
- a resonator which has a dependence of the resonance frequency on the temperature, which lies in the range between -10 ppm / K and +10 ppm / K.
- the dependence of the resonant frequency f R can be determined in a given frame depending on the application and by appropriate design of the resonator, this framework can be complied with as specified.
- the compensation effect achievable by the present invention is quantified by the choice of materials and geometry.
- Particularly advantageous embodiments are those in which the second temperature expansion coefficient ⁇ 2 is between 1.1 and 5 times greater than the first temperature expansion coefficient ⁇ 1.
- the resonators according to the invention have the advantage that their quality factor Q is not impaired by the temperature compensation measures, as is the case, for example, with the "re-entrant resonators".
- the invention makes it possible to provide resonators having a high quality factor Q and low losses.
- Such resonators are particularly well suited for low-noise oscillator circuits.
- filter circuits composed of several resonators
- high-quality resonators allow the realization of steep-angle, that is, particularly frequency-selective, filters and / or filters with particularly low insertion loss in the transmission frequency range.
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
- Non-Reversible Transmitting Devices (AREA)
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
Description
Die vorliegende Erfindung bezieht sich auf Hohlraumresonatoren und deren Verwendung speziell in Oszillatorschaltungen.The present invention relates to cavity resonators and their use especially in oscillator circuits.
Resonatoren sind wichtige Bauteile, die in verschiedensten Anwendungen zum Einsatz kommen. So benötigen zum Beispiel Mikrowellen-Systeme Resonatoren mit hoher Güte, die in Filtern und Schwingkreisen (Oszillatoren) eingesetzt werden. Man muss eine Auswahl treffen zwischen Hohlraumresonatoren und dielektrischen Resonatoren, wobei die Grösse, das Gewicht, die Kosten und andere Aspekte eine Rolle spielen können.Resonators are important components that are used in a wide variety of applications. For example, microwave systems require high-quality resonators used in filters and resonators (oscillators). One has to make a choice between cavity resonators and dielectric resonators, where size, weight, cost and other aspects can play a role.
Hohlraumresonatoren in den verschiedenen bekannten Ausführungsformen unterliegen bei Temperaturänderung einer Veränderung der Resonanzfrequenz, was für die meisten Anwendungen unerwünscht ist. Eine Temperaturänderung kann sich durch eine Veränderung der Umgebungstemperatur, durch eine Temperaturänderung in einer integrierten Oszillatorschaltung oder durch Verluste ergeben, die in dem resonanten Hohlraum auftreten. Durch eine Temperaturänderung ergibt sich eine Veränderung der Dimensionen des Resonators, was zu der erwähnten Änderung der Resonanzfrequenz führt.Cavity resonators in the various known embodiments undergo a change in resonant frequency with temperature change, which is undesirable for most applications. A change in temperature may result from a change in ambient temperature, from a temperature change in an integrated oscillator circuit, or from losses occurring in the resonant cavity. A change in temperature results in a Change in the dimensions of the resonator, which leads to the mentioned change in the resonant frequency.
Es gibt verschiedene Ansätze, um den Temperatureinfluss auf Resonatoren zu reduzieren. Es ist zum Beispiel möglich, die durch eine Temperaturänderung verursachte Resonanzfrequenzänderung durch das Einfügen eines dielektrischen Teils in den Hohlraum zu reduzieren, wobei das dielektrische Teil einen geeigneten Temperaturkoeffizienten der dielektrischen Permittivität aufweisen muss.There are several approaches to reduce the influence of temperature on resonators. For example, it is possible to reduce the resonant frequency change caused by a temperature change by inserting a dielectric member into the cavity, the dielectric member having to have a suitable temperature coefficient of dielectric permittivity.
Eine andere Möglichkeit ist es einen Hohlraum aus verschiedenen Materialien mit unterschiedlichen Temperaturausdehnungskoeffizienten aufzubauen. Diese Möglichkeit ist hinlänglich bekannt und wird eingesetzt für sogenannte "coaxial re-entrant cavity" Resonatoren. Ein Beispiel eines solchen Resonators ist zum Beispiel in dem
Es gibt andere Resonatoren, die mit Mitteln zum Kompensieren des Temperatureinflusses ausgestattet sind. Diese Art der Resonatoren werden auch als "clamped cavity" Resonatoren bezeichnet. Ein Beispiel eines solchen Resonators ist dem
Bei der
Andere Resonatoren wiederum sind aus Invar® oder ähnlichen Materialien gefertigt, die einen geringen Temperaturausdehnungskoeffizienten haben. Invar ist jedoch teuer und schwer zu bearbeiten.Other resonators, in turn, are made of Invar® or similar materials that have a low coefficient of thermal expansion. Invar is expensive and difficult to work with.
Ausgehend von dem eingangs genannten Stand der Technik stellt sich die Aufgabe, einen Resonator zu schaffen, der eine Änderung der Resonanzfrequenz bei Temperaturänderung verhindert oder reduziert. Ausserdem geht es gemäss Erfindung darum einen Resonator zu schaffen, der kostengünstig ist.Based on the above-mentioned prior art, the object is to provide a resonator which prevents or reduces a change in the resonant frequency with temperature change. Moreover, it is according to the invention to provide a resonator that is inexpensive.
Es ist eine weitere Aufgabe der Erfindung, verschiedene Verwendungsmöglichkeiten für einen solchen neuartigen Resonator mit Temperaturkompensation und entsprechende Oszillatorschaltungen bereit zu stellen.It is a further object of the invention to provide various uses for such a novel resonator with temperature compensation and corresponding oscillator circuits.
Gemäss Erfindung wird ein Hohlraumresonator bereit gestellt, dessen Volumen sich bei einer Temperaturerhöhung vergrössert, respektive bei einer Temperaturabsenkung verkleinert, ohne dass dabei die Resonanzfrequenz eine stärkere Änderung erfährt. Um dies zu erreichen, umfasst der Hohlraumresonator einen Topf und mindestens eine Abdeckung, die aus Materialien mit unterschiedlichem Temperaturausdehnungskoeffizienten gefertigt sind, wobei die mindestens eine Abdeckung einen grösseren Temperaturausdehnungskoeffizienten hat als der Topf. Obwohl beide Teile des Hohlraumresonators, nämlich der Topf und die Abdeckung bei einer Temperaturerhöhung zu einer Vergrösserung des Hohlraumvolumens beitragen, kann die Resonanzfrequenz bei geeigneter Wahl der Hohlleitermode im wesentlichen konstant gehalten werden, da sich die Abdeckung durch geeignete Formgebung nach aussen wölbt und sich dadurch eine feldarme Zone im Bereich der Abdeckung bildet.According to the invention, a cavity resonator is provided, the volume of which increases with an increase in temperature, respectively decreases with a decrease in temperature, without the resonant frequency experiencing a greater change. To achieve this, the Cavity resonator a pot and at least one cover, which are made of materials with different coefficients of thermal expansion, wherein the at least one cover has a greater coefficient of thermal expansion than the pot. Although both parts of the cavity resonator, namely the pot and the cover contribute to an increase in the cavity volume with an increase in temperature, the resonant frequency can be kept substantially constant with a suitable choice of waveguide mode, as the cover bulges outwards by suitable shaping and thereby a low-field zone forms in the region of the cover.
Um die eingangs genannte Aufgabenstellung zu erfüllen, wird ein Hohlraumresonator mit den Merkmalen gemäss Anspruch 1, die Verwendung eines Hohlraumresonators mit den Merkmalen gemäss Anspruch 16 und eine Oszillatorschaltung mit den Merkmalen gemäss Anspruch 17 bereitgestellt.In order to achieve the aforementioned object, a cavity resonator with the features according to claim 1, the use of a cavity resonator with the features according to claim 16 and an oscillator circuit having the features according to claim 17 is provided.
Weitere erfindungsgemässe Ausführungsformen des Hohlraumresonators sind den abhängigen Patentansprüchen 2 bis 15 zu entnehmen und weitere erfindungsgemässe Ausführungsformen der Oszillatorschaltung sind den abhängigen Patentansprüchen 18 bis 19 zu entnehmen.Further inventive embodiments of the cavity resonator can be found in the
Die Erfindung ist im Folgenden, anhand in den Zeichnungen dargestellter Ausführungsbeispiele, ausführlich beschrieben. Es zeigen:
- Fig. 1A, 1B
- eine schematische Schnittdarstellung eines konventionellen re-entrant cavity Resonators, wobei
Fig. 1A den Zustand bei einer Temperatur T undFig. 1B bei einer höheren Temperatur T' darstellt; - Fig. 2
- eine schematische Ansicht eines Hohlraumresonators in einer ersten Ausführungsform der Erfindung;
- Fig. 3A, 3B
- eine schematische Darstellung der Intensitätsverteilung der elektrischen Feldstärke in einem Hohlraumresonator gemäss Erfindung, wobei
Fig. 3A den Zustand bei einer Temperatur T undFig. 3B bei einer höheren Temperatur T' darstellt; - Fig. 4A, 4B
- eine schematische Schnittdarstellung eines konventionellen Hohlraumresonators, wobei
Fig. 4A den Zustand bei einer Temperatur T undFig. 4B bei einer höheren Temperatur T' darstellt; - Fig. 4C, 4D
- eine schematische Schnittdarstellung eines Hohlraumresonators gemäss Erfindung, wobei
Fig. 4C den Zustand bei einer Temperatur T undFig. 4D bei einer höheren Temperatur T' darstellt; - Fig. 5
- eine schematische Schnittdarstellung einer Schaltung mit einem Hohlraumresonator in einer weiteren Ausführungsform der Erfindung;
- Fig. 6
- ein schematisches Blockdiagramm einer weiteren Schaltung mit einem Hohlraumresonator in einer weiteren Ausführungsform der Erfindung;
- Fig. 7
- eine schematische Schnittdarstellung eines Hohlraumresonators in einer weiteren Ausführungsform der Erfindung.
- Fig. 1A, 1B
- a schematic sectional view of a conventional re-entrant cavity resonator, wherein
Fig. 1A the condition at a temperature T andFig. 1B at a higher temperature T 'represents; - Fig. 2
- a schematic view of a cavity resonator in a first embodiment of the invention;
- Fig. 3A, 3B
- a schematic representation of the intensity distribution of the electric field strength in a cavity resonator according to Invention, wherein
Fig. 3A the condition at a temperature T andFig. 3B at a higher temperature T 'represents; - Fig. 4A, 4B
- a schematic sectional view of a conventional cavity resonator, wherein
Fig. 4A the condition at a temperature T andFig. 4B at a higher temperature T 'represents; - 4C, 4D
- a schematic sectional view of a cavity resonator according to the invention, wherein
Fig. 4C the condition at a temperature T andFig. 4D at a higher temperature T 'represents; - Fig. 5
- a schematic sectional view of a circuit with a cavity resonator in a further embodiment of the invention;
- Fig. 6
- a schematic block diagram of another circuit with a cavity resonator in a further embodiment of the invention;
- Fig. 7
- a schematic sectional view of a cavity resonator in a further embodiment of the invention.
Im Folgenden werden Begriffe erläutert und definiert, die in der Beschreibung und den Patentansprüchen mehrfach auftauchen.In the following, terms are explained and defined that appear several times in the description and the claims.
Es handelt sich bei dem Hohlraumresonator um ein Bauteil, das in einem vorgegebenen Wellenlängenbereich, zum Beispiel im Mikrowellenbereich, schwingt. Wie der Begriff "Hohlraumresonator" aussagt, weist ein solcher Resonator einen Hohlraum auf, dessen Wände einen Körper bilden, der den Hohlraum in Wesentlichen umschliesst. Dieser Körper wird hierin unabhängig von seiner eigentlichen Form als Topf bezeichnet. Typischerweise hat ein solcher Hohlraum zum Beispiel die Form eines Zylinders, eines Prismas oder einer Kugel und die Wände sind aus Metall oder mit einer Metallschicht versehen, wobei das Metall oder die Metallschicht eine sehr hohe elektrische Leitfähigkeit aufweist. Besonders geeignet sind Kupfer, eine Kupferlegierung (zum Beispiel CuW), Gold oder Silber, oder ein supraleitendes Material, um einige Beispiele zu nennen.The cavity resonator is a component which oscillates in a predetermined wavelength range, for example in the microwave range. As the term "cavity resonator" implies, such a resonator has a cavity whose walls form a body which substantially encloses the cavity. This body is referred to herein as a pot regardless of its actual shape. Typically, such a cavity has, for example, the shape of a cylinder, a prism or a sphere and the walls are made of metal or a metal layer, wherein the metal or metal layer has a very high electrical conductivity. Particularly suitable are copper, a copper alloy (for example CuW), gold or silver, or a superconducting material, to name a few examples.
Anders als bei den bisher bekannten Ansätzen, wird gemäss Erfindung ein Hohlraumresonator bereit gestellt, dessen Volumen sich bei einer Temperaturerhöhung vergrössert, respektive bei einer Temperaturabsenkung verkleinert, ohne dass dabei die Resonanzfrequenz eine stärkere Änderung erfährt. Im Folgenden werden Ausführungsbeispiele beschrieben und es wird die Wirkungsweise anhand der Ausführungsbeispiele erläutert.Unlike the previously known approaches, a cavity resonator is provided according to the invention, the volume increases in a temperature increase, respectively, reduced at a temperature drop, without causing the resonant frequency undergoes a greater change. Embodiments will be described below, and the operation will be explained with reference to the embodiments.
Eine erste Ausführungsform der Erfindung ist in
Im gezeigten Ausführungsbeispiel hat der Topf 21 eine zylindrische Form mit einem Radius R und einer (Resonator-)Höhe H. Als Abdeckung 22 dient ein kuppelförmiges Element, das eine Höhe ΔH und eine Länge P hat. Der Topf 21 und die Abdeckung 22 sind rotationssymmetrisch um die Achse 23 angeordnet. Die Rotationssymmetrie ist von Vorteil für den Herstellprozess (Drehen), ist aber nicht wesentlich für die prinzipielle Funktionsweise der erfindungsgemässen Kompensation.In the embodiment shown, the
Die Resonanzfrequenz fR, TM010 des TM010 Modes in einem Hohlraumresonator mit rein zylindrischem Hohlraum hängt nicht von der Höhe H des Topfes ab und ist durch folgende Gleichung gegeben:
wobei c die Lichtgeschwindigkeit und R der Radius des Topfes ist. Für den hier vorliegenden Fall (0 < ΔH<< H) ist die Feldverteilung ähnlich jener des TM010 Mode. Die oben stehende Formel gilt dabei näherungsweise, so dass sie als gute erste Abschätzung im Design-Prozess verwendet werden kann. Die Tatsache, dass die Resonanzfrequenz unabhängig von H ist, gilt ebenfalls nur für ΔH = 0, anderenfalls ist eine geringfügige Abhängigkeit (Effekt höherer Ordnung) der Resonanzfrequenz von der Höhe H vorhanden. Für diesen TM010 -ähnlichen Mode, falls der Topf 21 aus einem Metall mit einem Temperaturausdehnungskoeffizienten α1 gefertigt wäre, ist der Temperaturkoeffizient der Resonanzfrequenz -α1. Gemäss Erfindung wird nun eine Abdeckung 22 vorgesehen, deren Temperaturausdehnungskoeffizient α2 grösser ist als der erste Temperaturausdehnungskoeffizient α1 des Topfes 21. Das führt dazu, dass die Abdeckung sich bei einer Temperaturerhöhung nach aussen wölbt. Falls die Abdeckung 22 zum Beispiel kuppelförmig ist, wie in
Zusätzlich zur Vergrösserung des Volumens von V zu V', ergibt sich aber auch eine Änderung der geometrischen Verhältnisse im Bereich der Abdeckung 22. Der Einfluss der Volumen- und Geometrieänderung auf die elektrischen Eigenschaften des Resonators 20 wird im Folgenden anhand der
Um diesen Effekt der lokalen Feldstärkenreduktion ausnutzen zu können, muss, wie bereits beschrieben, der Temperaturausdehnungskoeffizient α2 der Abdeckung 22 grösser sein als der Temperaturausdehnungskoeffizient α1 des Topfes 21. Das führt dazu, dass beim Erhöhen der Temperatur von T auf T' der Radius R des Topfes 21 grösser wird und die kuppelförmige Abdeckung 22 sich weiter nach aussen wölbt. Durch die Vergrösserung des Radius R ergibt sich eine Abnahme der Resonanzfrequenz fR und durch die stärker gewölbte Abdeckung ergibt sich eine Zunahme der Resonanzfrequenz fR.In order to be able to exploit this effect of the local field strength reduction, the temperature
Es bildet sich gemäss Erfindung durch die Verformung der Abdeckung bei Temperaturzunahme in den verschiedenen Ausführungsformen ein zusätzliches Volumen, das dazu beiträgt, dass sich das Gesamtvolumen des Hohlraums vergrössert. Entgegen der Erwartung des Durchschnittsfachmanns führt diese Vergrösserung des Volumens aber nicht zu einer Verringerung der Resonanzfrequenz, da sich, wie beschrieben, eine geometrische Veränderungen im Bereich der Abdeckung einstellt und sich dort eine feldarme Zone ausbildet.It is formed according to the invention by the deformation of the cover with temperature increase in the various embodiments, an additional volume that helps that increases the total volume of the cavity. Contrary to the expectations of the average person skilled in the art, however, this increase in volume does not lead to a reduction in the resonance frequency since, as described, a geometric change occurs in the region of the cover and a field-poor zone is formed there.
Das Prinzip der vorliegenden Erfindung wird im Folgenden anhand der
In
In den
Wird nun die Temperatur von T auf T' erhöht, so ergibt sich der in
Ein erfindungsgemässer Hohlraumresonator kann wie folgt dimensioniert werden. In einem ersten Schritt kann die Materialwahl getroffen und eine Resonanzfrequenz fR vorgegeben werden. Der Topf kann zum Beispiel CuW und die Abdeckung CuBe umfassen. Dann werden die Dimensionen des Topfes (H und R), sowie die Abmessungen der Abdeckung (P und ΔH) festgelegt.
Nun kann mit einem kommerziell erhältlichen Simulationsprogramm, welches das vorliegende Eigenwertproblem für die Maxwellschen Differentialgleichungen für die gegebene Geometrie löst, die Resonanzfrequenz fR berechnet werden. Dabei lässt sich die Rotationssymmetrie der geometrischen Anordnung ausnutzen, was es erlaubt, genaue Simulationsergebnisse in kurzer Zeit zu erhalten. Stimmt der berechnete Wert der Resonanzfrequenz fR nicht mit der Vorgabe überein, so können die Ausgangsgrössen (z.B. H, R und ΔH) modifiziert werden, um die Berechnung dann zu wiederholen. In einem nachfolgenden Schritt kann der Einfluss einer Temperaturveränderung (Erhöhung oder Reduktion der Temperatur) auf die Form des Topfes und der Abdeckung ermittelt werden. Das geschieht mittels kommerziell erhältlicher Simulationsprogramme für diese mechanische Problemstellung oder aber auf experimentellem Wege. Ausserdem können die mechanischen Spannungen in dem Topf und/oder der Abdeckung berechnet/simuliert werden. Falls die mechanischen Spannungen zu gross sein sollten, können die Ausgangsgrössen (z.B. H, Rund ΔH) erneut modifiziert werden, um die Berechnung dann zu wiederholen. Nun kann die Abhängigkeit der Resonanzfrequenz fR von der Temperatur berechnet/simuliert werden. Bei dieser Berechnung können Vorgaben für die mechanischen Toleranzen einfliessen. Falls die Abhängigkeit der Resonanzfrequenz fR von der Temperatur in einem vorgegebenen Bereich liegt, können die Berechnungen beendet werden, ansonsten können die Ausgangsgrössen (z.B. H, R und ΔH) erneut modifiziert werden, um die Berechnung dann zu wiederholen.A cavity resonator according to the invention can be dimensioned as follows. In a first step, the choice of material can be made and a resonance frequency f R can be specified. The pot may, for example, comprise CuW and the cover CuBe. Then the dimensions of the pot (H and R) and the dimensions of the cover (P and ΔH) are determined.
Now, with a commercially available simulation program that solves the eigenvalue problem for the Maxwell differential equations for the given geometry, the resonance frequency f R can be calculated. In this case, the rotational symmetry of the geometric arrangement can be exploited, which makes it possible to obtain accurate simulation results in a short time. If the calculated value of the resonance frequency f R does not agree with the specification, then the output variables (eg H, R and ΔH) can be modified in order to then repeat the calculation. In a following Step, the influence of a temperature change (increase or decrease of the temperature) on the shape of the pot and the cover can be determined. This is done by means of commercially available simulation programs for this mechanical problem or experimentally. In addition, the mechanical stresses in the pot and / or the cover can be calculated / simulated. If the mechanical stresses should be too high, the output quantities (eg H, round ΔH) can be modified again to repeat the calculation. Now the dependence of the resonance frequency f R on the temperature can be calculated / simulated. In this calculation, specifications for the mechanical tolerances can be incorporated. If the dependence of the resonance frequency f R on the temperature is within a predetermined range, the calculations may be terminated, otherwise the outputs (eg H, R and ΔH) may be modified again to then repeat the calculation.
Bei geeigneter Wahl der Geometrie und der Materialien des Topfes und der Abdeckung der verschiedenen Ausführungsformen der Erfindung ergibt sich zumindest in einem vorgegebenen Temperaturbereich (z.B. Arbeitstemperatur ±50K) eine Reduktion der Temperaturabhängigkeit der Resonanzfrequenz fR oder eine komplette Kompensation oder gar eine Umkehr der Temperaturabhängigkeit (Überkompensation).With a suitable choice of the geometry and the materials of the pot and the cover of the various embodiments of the invention results in a reduction of the temperature dependence of the resonant frequency f R or a complete compensation or even a reversal of the temperature dependence at least in a predetermined temperature range (eg working temperature ± 50K) ( overcompensation).
Die Erfindung ist besonders zum Einsatz in Schaltungen geeignet, die zum Verarbeiten von Hochleistungssignalen für die Breitbandkommunikation ausgelegt sind.The invention is particularly suitable for use in circuits designed to process high power signals for broadband communication.
Ein erfindungsgemässer Resonator kann Bestandteil einer Filterschaltung sein, die einen Oszillator mit dem Resonator im Rückkopplungszweig umfasst. Durch diese Art der Anordnung wird nur eine Frequenz durchgelassen.A resonator according to the invention may be part of a filter circuit which comprises an oscillator with the resonator in the feedback branch. By this type of arrangement only one frequency is transmitted.
Die Schaltung kann gemäss Erfindung auf einem keramischen Substrat, zum Beispiel einem mehrlagigen LTCC (Low Temperature Cofired Ceramics) Substrat, aufgebaut sein. Ein solches Substrat kann auf einer Grundplatte sitzen, die wiederum den erfindungsgemässen Resonator trägt. Vorzugsweise haben das keramische Substrat und die Grundplatte einen kompatiblen (d.h., nur geringfügig unterschiedlichen) Temperaturausdehnungskoeffizienten, um einen stabilen Verbund bilden zu können.The circuit according to the invention can be constructed on a ceramic substrate, for example a multilayer LTCC (Low Temperature Cofired Ceramics) substrate. Such a substrate can on a Base plate sit, which in turn carries the inventive resonator. Preferably, the ceramic substrate and base plate have a compatible (ie, only slightly different) coefficient of thermal expansion to form a stable composite.
Bevorzugt ist eine Ausführungsform einer Schaltung 50, bei der der Topf 51 des Resonators in einer Grundplatte 53 der Schaltung ausgebildet ist, wie in
Vorzugsweise wird in einer erfindungsgemässen Schaltung das erste Material so gewählt ist, dass der Temperaturausdehnungskoeffizient α1 der Grundplatte zu dem Temperaturausdehnungskoeffizienten a3 des Substrates passt.Preferably, in a circuit according to the invention, the first material is chosen such that the temperature expansion coefficient α1 of the base plate matches the temperature expansion coefficient a3 of the substrate.
Eine weitere Schaltung 60 gemäss Erfindung, ist in
Um Temperaturverschiebungen der Oszillationsfrequenz der Oszillatorschaltung 60 auszugleichen, die durch Bauteile der Schaltung 60 verursacht werden können, kann die Temperaturkompensation des Resonators 80 so ausgelegt sein, dass der Resonator 80 an sich eine Unter- oder Überkompensation zeigt.In order to compensate for temperature shifts in the oscillation frequency of the
In der bevorzugten Ausführungsform, die in
Eine weitere Ausführungsform eines Hohlraumresonators 70, gemäss Erfindung, ist in
Im Folgenden sind weitere beispielhafte Angaben zu dem Resonator 70 gemacht. Der Radius R des Topfes 71 liegt typischerweise zwischen 2.5 mm und 10 mm. Im gezeigten Ausführungsbeispiel beträgt der Radius 4 mm. Die Höhe H beträgt typischerweise zwischen 2 mm und 20 mm. Im gezeigten Ausführungsbeispiel beträgt die Gesamthöhe ca. 4 mm (Gesamthöhe = H + ΔH). Die Abdeckung 72 kann einen umlaufenden Kragen 72.1 aufweisen, um die Abdeckung 72 mit der Wand 71.1 des Topfes 71 verbinden zu können. Zu diesem Zweck kann der Topf 71 im oberen Bereich einen grösseren Radius aufweisen als im unteren Bereich. Dadurch ergibt sich eine umlaufende Stufe 71.2 auf die die Abdeckung 72 aufgesetzt werden kann. Die Abdeckung 72 weist im gezeigten Ausführungsbeispiel eine Verdickung 72.2 im Zentrum auf. Im Bereich der Verdickung 72.2 ist eine durchgehende Bohrung vorgesehen, die axial verläuft. Durch diese Bohrung hindurch kann ein dielektrischer Stab 73 in den Hohlraum des Resonators 70 eingeführt werden. Mit diesem Stab 73, der optional ist, kann die Resonanzfrequenz in gewissen Grenzen justiert werden, da der Stab 73 je nach Lage im Hohlraum die effektive Permittivität ändert.In the following, further exemplary statements are made for the
Der Resonator-Topf kann gemäss Erfindung gebohrt, gefräst, gedreht, gegossen, tiefgezogen oder anders gefertigt werden. Vorzugsweise werden die Innenwände des Topfes nachbearbeitet, um eine Oberfläche mit geringer Oberflächenrauhigkeit zu erzeugen. Besonders als Nachbearbeitung geeignet ist das Rollieren, Schleifen, Polieren, Beschichten.The resonator pot can be drilled, milled, rotated, cast, deep-drawn or otherwise manufactured according to the invention. Preferably, the inner walls of the pot are reworked to produce a surface with low surface roughness. Rolling, grinding, polishing, coating are particularly suitable as post-processing.
Besonders vorteilhaft ist eine Ausführungsform bei der die Wände des Topfes eine geringe Rauhigkeit aufweisen und vorzugsweise mit Gold und/oder Silber beschichtet sind.Particularly advantageous is an embodiment in which the walls of the pot have a low roughness and are preferably coated with gold and / or silver.
In einer besonders vorteilhaften Ausführungsform wird durch spezielle Massnahmen sicher gestellt, dass die Abdeckung und der Topf leitend miteinander verbunden sind. Diese elektrische Verbindung kann auf dem gesamten Umfang der Abdeckung oder aber auf einem wesentlichen Teil dieses Umfanges vorliegen. Vorzugsweise wird die Abdeckung mit dem Topf durch eine Löt- oder Schweissverbindung elektrisch und mechanisch verbunden.In a particularly advantageous embodiment, special measures ensure that the cover and the pot are conductively connected to one another. This electrical connection can be present on the entire circumference of the cover or on a substantial part of this circumference. Preferably, the cover is electrically and mechanically connected to the pot by a soldered or welded connection.
Eine weitere Ausführungsform zeichnet sich dadurch aus, dass 1a: anstelle eines Topfes mit nur einer Abdeckung ein Topf (zum Beispiel aus einer prismatischen oder runden Röhre gefertigt) verwendet wird, der auf beiden Seiten Abdeckungen aufweist. In diesem Fall können beide Abdeckungen mit dem beschriebenen Funktionsprinzip zur Kompensation beitragen.A further embodiment is characterized in that, instead of a pot with only one cover, a pot (made, for example, from a prismatic or round tube), which has covers on both sides, is used. In this case, both covers can contribute to the described principle of operation for compensation.
Es wird als ein Vorteil der Erfindung angesehen, dass bei Verwendung der TM010-Mode die Höhe H des Topfes frei gewählt werden kann. Es muss hier nicht wie bei Hohlleiter-Resonatoren die Bedingung erfüllt sein, dass die Höhe des Resonators der halben Wellenlänge entspricht. Man gewinnt durch die Erfindung einen zusätzlichen Freiheitsgrad beim Festlegen der Dimensionen des Resonators. Die (Resonator-) Höhe H kann so gewählt werden, dass sich ein grosser Gütefaktor Q ergibt. Gemäss Erfindung kann zum Beispiel ein Gütefaktor von 2500 erreicht werden (bei fR~30 GHz und Gold-Metallisierung an der Oberfläche von Topf und Abdeckung).It is considered as an advantage of the invention that when using the TM 010 mode, the height H of the pot can be chosen freely. It is not necessary here, as with waveguide resonators, to satisfy the condition that the height of the resonator corresponds to half the wavelength. The invention achieves an additional degree of freedom in determining the dimensions of the resonator. The (resonator) height H can be chosen so that a large quality factor Q results. According to the invention, for example, a figure of merit of 2500 can be achieved (at f R ~ 30 GHz and gold metallization on the surface of pot and cover).
Vorzugsweise ist die erfindungsgemässe Abdeckung kuppel-, dom- oder kegel-artig geformt und bildet - aus Richtung des Topfes betrachtet - eine Kavität. Es sind aber auch andere Formen denkbar.Preferably, the cover according to the invention is dome-shaped, domed or cone-shaped and forms - viewed from the direction of the pot - a cavity. But there are also other forms conceivable.
Die vorliegende Erfindung wird als eine echte Alternative zu den Resonatoren angesehen, die eingangs als "clamped cavity" Resonatoren bezeichnet wurden. Bei der vorliegenden Erfindung handelt es sich um eine echte Verbesserung des re-entrant Ansatzes, der im Zusammenhang mit den
Je nach Ausführungsform der Erfindung lässt sich ein Resonator realisieren, der eine Abhängigkeit der Resonanzfrequenz von der Temperatur hat, die im Bereich zwischen -10 ppm/K und +10 ppm/K liegt. Die Abhängigkeit der Resonanzfrequenz fR kann in einem vorgegebenen Rahmen je nach Anwendung festgelegt werden und durch entsprechende Auslegung des Resonators kann dieser Rahmen gemäss Vorgabe eingehalten werden.Depending on the embodiment of the invention, it is possible to realize a resonator which has a dependence of the resonance frequency on the temperature, which lies in the range between -10 ppm / K and +10 ppm / K. The dependence of the resonant frequency f R can be determined in a given frame depending on the application and by appropriate design of the resonator, this framework can be complied with as specified.
Der durch die vorliegende Erfindung erreichbare Kompensationseffekt wird durch die Wahl der Materialien und durch die Geometrie quantitativ bestimmt. Vorzugsweise wird für den Topf ein Material verwendet, das einen Ausdehnungskoeffizienten α1 zwischen 4 ppm/K und 10 ppm/K aufweist (zum Beispiel eine Kupfer-Wolfram Legierung, CuW, mit α1 = 6.1 ppm/K). Die Abdeckung dagegen umfasst ein Material, das vorzugsweise einen Ausdehnungskoeffizienten α2 zwischen 10 ppm/K und 20 ppm/K aufweist (zum Beispiel eine andere Kupferlegierung wie Kupfer-Berillium, CuBe, mit α2 = 17.0 ppm/K). Besonders vorteilhaft sind Ausführungsformen, bei denen der zweite Temperaturausdehnungskoeffizient α2 zwischen 1.1 und 5 mal grösser ist als der erste Temperaturausdehnungskoeffizient α1.The compensation effect achievable by the present invention is quantified by the choice of materials and geometry. Preferably, a material is used for the pot, which has an expansion coefficient α1 between 4 ppm / K and 10 ppm / K (for example, a copper-tungsten alloy, CuW, with α1 = 6.1 ppm / K). On the other hand, the cover comprises a material which preferably has an expansion coefficient α2 between 10 ppm / K and 20 ppm / K (for example, another copper alloy such as copper beryllium, CuBe, with α2 = 17.0 ppm / K). Particularly advantageous embodiments are those in which the second temperature expansion coefficient α2 is between 1.1 and 5 times greater than the first temperature expansion coefficient α1.
Die erfindungsgemässen Resonatoren haben den Vorteil, dass ihr Gütefaktor Q nicht durch die Temperaturkompensationsmassnahmen beeinträchtig wird, wie das zum Beispiel bei den "re-entrant Resonatoren" der Fall ist.The resonators according to the invention have the advantage that their quality factor Q is not impaired by the temperature compensation measures, as is the case, for example, with the "re-entrant resonators".
Die Erfindung erlaubt es Resonatoren bereit zu stellen, die einen hohen Gütefaktor Q und niedrige Verluste aufweisen. Derartige Resonatoren sind besonders gut für Oszillatorschaltungen mit niedrigem Rauschen (low-noise) geeignet. In (aus mehreren Resonatoren zusammengesetzten) Filterschaltungen erlauben hochgütige Resonatoren die Realisierung von steilflankigen, d.h., besonders frequenzselektiven, Filtern und / oder von Filtern mit besonders niedriger Einfügedämpfung im Durchlass-Frequenzbereich.The invention makes it possible to provide resonators having a high quality factor Q and low losses. Such resonators are particularly well suited for low-noise oscillator circuits. In filter circuits (composed of several resonators), high-quality resonators allow the realization of steep-angle, that is, particularly frequency-selective, filters and / or filters with particularly low insertion loss in the transmission frequency range.
Es ist ein weiterer Vorteil der Erfindung, dass dasselbe Wirkprinzip auch auf andere Resonanzmoden TEm0m in einem rechteckförmigen Hohlraum oder TM0n0 (mit m, n > 0 und ganzzahlig) in einem kreisförmigen Hohlraum angewandt werden kann. Viele dieser Resonanzmoden führen zu mechanisch aufwändigeren (z.B. rechteckigen anstelle kreisrunden) und toleranzempfindlicheren Strukturen. Der Vorteil liegt aber, wie beschrieben, in der Erreichbarkeit höherer Güten (niedrigerer Verluste).It is a further advantage of the invention that the same operating principle can also be applied to other resonance modes TE m0m in a rectangular cavity or TM 0n0 (with m, n> 0 and integer) in a circular cavity. Many of these resonance modes lead to mechanically more complex (eg rectangular instead of circular) and more sensitive to tolerances structures. However, the advantage lies, as described, in the accessibility of higher grades (lower losses).
Claims (19)
- Cavity resonator (20; 40; 80; 70) with temperature compensation, comprising a pot (21; 41; 51; 61; 71) with a floor (21.1; 54, 57; 74) and a cover (22; 42; 52.1, 52.2; 62; 72), with the pot (21; 41; 51; 61; 71) surrounding jointly with the floor (21.1; 54, 57; 74) and the cover (22; 42; 52.1, 52.2; 62; 72) a cavity resonance volume (V), and- the cavity resonator (20; 40; 80; 70) having a resonant frequency (fR) in operation,- the pot (21; 41; 51; 61; 71) comprising a first material which has a first temperature expansion coefficient (α1),- the cover (22; 42; 52.1, 52.2; 62; 72) comprising a second material having a second temperature expansion coefficient (α2),and with the second temperature expansion coefficient (α2) being greater than the first temperature expansion coefficient (α1), and in case of an increase in temperature there being an expansion of the pot (21; 41; 51; 61; 71) and a deformation of the cover (22; 42; 52.1, 52.2; 62; 72) which jointly causes an enlargement of the cavity resonance volume (V), characterized in that the cover is bulged outwardly in such a way that it forms a cavity when viewed from the direction of the pot, and the cover (22; 42; 52.1, 52.2; 62; 72) bulges as a result of the deformation of the cover (22; 42; 52.1, 52.2; 62; 72), thus resulting in an increase in the resonant frequency (fR), and the diameter of the pot (21; 41; 51; 61; 71) increases by the expansion of the pot (21; 41; 51; 61; 71), thus resulting in a reduction of the resonant frequency (fR), with the increase of the resonant frequency (fR) and the reduction of the resonant frequency (fR) substantially compensate each other in order to ensure in a temperature range that the resonant frequency (fR) remains substantially stable.
- Cavity resonator (20; 40; 80; 70) according to claim 1, characterized in that the cavity resonator (20; 40; 80; 70) has a resonant frequency (fR) in operation and the increase in the cavity resonance volume (V) during a temperature increase occurs in such a way that the resonant frequency (fR) remains stable within a predetermined margin, or that the resonant frequency (fR) has a predetermined temperature coefficient which is unequal to zero.
- Cavity resonator (20; 40; 80; 70) according to claim 2, characterized in that the resonant frequency (fR) of at least one resonance mode remains stable.
- Cavity resonator (20; 40; 80; 70) according to claim 1 or 2, characterized in that a local reduction of an electric field strength (
E ) is obtained in the cavity resonance volume by the deformation of the cover (22; 42; 52.1, 52.2; 62; 72). - Cavity resonator (20; 40; 80; 70) according to claim 1 or 2, characterized in that a reduction of a capacitive load of the cavity resonator (20; 40; 80; 70) is obtained by the deformation of the cover (22; 42; 52.1, 52.2; 62; 72).
- Cavity resonator (20; 40; 80; 70) according to claim 1 or 2, characterized in that a cavity resonator (20; 40; 80; 70) is concerned which operates in TM0N0 resonance mode, with n>0 and integral numbers applying.
- Cavity resonator (20; 40; 80; 70) according to one of the claims 1 to 5, characterized in that the cover (22; 42; 52.1, 52.2; 62; 72) is shaped in a cupola-like or conical manner and forms a cavity when seen from the direction of the pot (21; 41; 51; 61; 71).
- Cavity resonator (20; 40; 80; 70) according to claim 1, 2 or 3, characterized in that a cavity resonator (20; 40; 80; 70) is concerned which is suitable for integration in a metallic baseplate of a ceramic substrate (54; 74), preferably the base plate of an LTCC multi-layer ceramics.
- Cavity resonator (20; 40; 80; 70) according to claim 8, characterized in that the first material is chosen in such a way that the first temperature expansion coefficient (α1) of the baseplate matches the temperature expansion coefficient (α3) of the substrate (54; 74).
- Cavity resonator (20; 40; 80; 70) according to claim 1, 2 or 3, characterized in that the cavity resonator (20; 40; 80; 70) has a quality factor (Q) which is determined substantially by the resonator height (H) of the pot (21; 41; 51; 61; 71).
- Cavity resonator (20; 40; 80; 70) according to claim 1, 2 or 3, characterized in that the pot (21; 41; 51; 61; 71) has a copper alloy, preferably a copper and tungsten alloy (CuW), and the cover (22; 42; 52.1, 52.2; 62; 72) has another copper alloy, preferably a copper and beryllium one (CuBe).
- Cavity resonator (20; 40; 80; 70) according to claim 1, 2 or 3, characterized in that the second temperature expansion coefficient (α2) is larger than the first temperature expansion coefficient (α1) by between 1.1 and 5 times.
- Cavity resonator (20; 40; 80; 70) according to claim 1, 2 or 3, characterized in that the pot (21; 41; 51; 61; 71) has a low roughness on the inside and is preferably coated with gold and/or silver.
- Cavity resonator (20; 40; 80; 70) according to claim 1, 2 or 3, characterized in that means (73) for influencing the resonant frequency are provided which preferably partially protrude into the cavity resonance volume and change the effective permittivity there.
- Cavity resonator (20; 40; 80; 70) according to claim 1, 2 or 3, characterized in that means (55, 56; 65, 66) are provided for injecting and extracting an electromagnetic wave, with preferably a coupling hole for injecting and extracting being provided.
- Use of a cavity resonator (20; 40; 80; 70) according to one of the claims 1 to 15 in a microwave system (50; 60), with the cavity resonator (20; 40; 80; 70) being part of an oscillator circuit.
- Oscillator circuit (50; 60), characterized in that a cavity resonator (20; 40; 80; 70) according to one of the claims 1 to 15 is part of the oscillator circuit (50; 60).
- Oscillator circuit (50; 60) according to claim 17, characterized in that the oscillator circuit (50; 60) is integrated in or on a ceramic substrate (54; 74), preferably an LTCC multi-layer ceramics.
- Oscillator circuit (50; 60) according to claim 18, characterized in that a part of the oscillator circuit (50; 60) is arranged on one side of the ceramic substrate (54; 74) and the cavity resonator (20; 40; 80; 70) is arranged on another side of the ceramic substrate (54; 74).
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE502004006842T DE502004006842D1 (en) | 2004-06-03 | 2004-06-03 | Cavity resonator, use of a cavity resonator and oscillator circuit |
EP04013104A EP1603187B1 (en) | 2004-06-03 | 2004-06-03 | Cavity resonator, use of the cavity resonator in a oscillation circuit |
US11/569,879 US8035465B2 (en) | 2004-06-03 | 2005-06-01 | Cavity resonator, use of a cavity resonator and oscillator circuit |
PCT/EP2005/005900 WO2005119833A1 (en) | 2004-06-03 | 2005-06-01 | Cavity resonator, use of a cavity resonator and oscillator circuit |
JP2007513848A JP4443603B2 (en) | 2004-06-03 | 2005-06-01 | Cavity resonator, method of using the same, and resonant circuit |
HK06106127A HK1085572A1 (en) | 2004-06-03 | 2006-05-26 | Cavity resonator, use of the cavity resonator in aoscillation circuit |
IL179793A IL179793A (en) | 2004-06-03 | 2006-12-03 | Cavity resonator, use of a cavity resonator and oscillator circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04013104A EP1603187B1 (en) | 2004-06-03 | 2004-06-03 | Cavity resonator, use of the cavity resonator in a oscillation circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1603187A1 EP1603187A1 (en) | 2005-12-07 |
EP1603187B1 true EP1603187B1 (en) | 2008-04-16 |
Family
ID=34925232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04013104A Expired - Lifetime EP1603187B1 (en) | 2004-06-03 | 2004-06-03 | Cavity resonator, use of the cavity resonator in a oscillation circuit |
Country Status (7)
Country | Link |
---|---|
US (1) | US8035465B2 (en) |
EP (1) | EP1603187B1 (en) |
JP (1) | JP4443603B2 (en) |
DE (1) | DE502004006842D1 (en) |
HK (1) | HK1085572A1 (en) |
IL (1) | IL179793A (en) |
WO (1) | WO2005119833A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011144610A1 (en) * | 2010-05-17 | 2011-11-24 | Mindray Medical Sweden Ab | Mechanical temperature compensation means, method for assembly said means and method for mechanically temperature compensating |
SE534995C2 (en) * | 2010-05-17 | 2012-03-13 | Mindray Medical Sweden Ab | Mechanical temperature compensation element, method of mounting thereof, and method of mechanical temperature compensation |
US8664832B2 (en) | 2010-05-18 | 2014-03-04 | Mindray Medical Sweden Ab | Mechanical temperature compensation methods and devices |
DE102013100975B3 (en) * | 2013-01-31 | 2014-05-15 | Ott-Jakob Spanntechnik Gmbh | Device for monitoring the position of a tool or tool carrier on a work spindle |
US9413291B2 (en) * | 2014-08-11 | 2016-08-09 | Honeywell International Inc. | System and method for frequency drift compensation for a dielectric resonator oscillator |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE449834A (en) | 1942-03-26 | |||
GB577662A (en) * | 1944-05-03 | 1946-05-27 | Automatic Telephone & Elect | Improvements in resonators for use in wave-guide electrical communication systems |
US3202944A (en) * | 1962-04-09 | 1965-08-24 | Varian Associates | Cavity resonator apparatus |
JPS6027203B2 (en) | 1975-12-18 | 1985-06-27 | 富士通株式会社 | Temperature compensated semi-coaxial cavity resonator |
CA1152169A (en) * | 1982-08-25 | 1983-08-16 | Adrian V. Collins | Temperature compensated resonant cavity |
IT1185323B (en) * | 1985-07-29 | 1987-11-12 | Gte Telecom Spa | METALLIC MICROWAVE CAVITY |
US5309129A (en) * | 1992-08-20 | 1994-05-03 | Radio Frequency Systems, Inc. | Apparatus and method for providing temperature compensation in Te101 mode and Tm010 mode cavity resonators |
US5374911A (en) * | 1993-04-21 | 1994-12-20 | Hughes Aircraft Company | Tandem cavity thermal compensation |
CA2187829C (en) * | 1996-10-15 | 1998-10-06 | Steven Barton Lundquist | Temperature compensated microwave filter |
DE19859028A1 (en) * | 1998-12-21 | 2000-06-29 | Bosch Gmbh Robert | Frequency-stabilized waveguide arrangement |
US6232852B1 (en) | 1999-02-16 | 2001-05-15 | Andrew Passive Power Products, Inc. | Temperature compensated high power bandpass filter |
KR100552658B1 (en) * | 1999-03-31 | 2006-02-17 | 삼성전자주식회사 | Cavity resonator for reducing a phase noise of a voltage controlled oscillator |
JP3427781B2 (en) | 1999-05-25 | 2003-07-22 | 株式会社村田製作所 | Dielectric resonator, filter, duplexer, oscillator and communication device |
US6356172B1 (en) * | 1999-12-29 | 2002-03-12 | Nokia Networks Oy | Resonator structure embedded in mechanical structure |
-
2004
- 2004-06-03 DE DE502004006842T patent/DE502004006842D1/en not_active Expired - Lifetime
- 2004-06-03 EP EP04013104A patent/EP1603187B1/en not_active Expired - Lifetime
-
2005
- 2005-06-01 JP JP2007513848A patent/JP4443603B2/en not_active Expired - Fee Related
- 2005-06-01 WO PCT/EP2005/005900 patent/WO2005119833A1/en active Application Filing
- 2005-06-01 US US11/569,879 patent/US8035465B2/en not_active Expired - Fee Related
-
2006
- 2006-05-26 HK HK06106127A patent/HK1085572A1/en not_active IP Right Cessation
- 2006-12-03 IL IL179793A patent/IL179793A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
HK1085572A1 (en) | 2006-08-25 |
IL179793A0 (en) | 2007-05-15 |
US20090278631A1 (en) | 2009-11-12 |
WO2005119833A1 (en) | 2005-12-15 |
EP1603187A1 (en) | 2005-12-07 |
DE502004006842D1 (en) | 2008-05-29 |
IL179793A (en) | 2012-10-31 |
JP2008502179A (en) | 2008-01-24 |
JP4443603B2 (en) | 2010-03-31 |
US8035465B2 (en) | 2011-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69933682T2 (en) | WAVE-LINE FILTERS FROM THE DAMPING TYPE WITH MULTIPLE DIELECTRIC LAYERS | |
DE60306067T2 (en) | Dielectric monoblock microwave delay filter with triple mode | |
DE2341903C2 (en) | Electromagnetic wave filter | |
DE69431412T2 (en) | Dielectric resonator, dielectric notch filter and dielectric filter | |
DE69524673T2 (en) | Dielectric filter | |
EP2656435B1 (en) | Tunable high-frequency filter | |
DE4090507C2 (en) | Oscillator circuit | |
DE69222585T2 (en) | Transverse electromagnetic vibration mode resonator | |
DE60217799T2 (en) | Tunable monoblock filter arrangement in triple mode | |
DE69816324T2 (en) | COMPOSITE FILTER | |
DE69711327T2 (en) | Device with dielectric resonator and high frequency module | |
DE4236769C2 (en) | Dielectric resonator component | |
DE69805095T2 (en) | RESONATOR COUPLED WITH DIFFERENT SURFACES | |
DE69938626T2 (en) | COAXIAL CAVITY RESONATOR | |
WO2005119833A1 (en) | Cavity resonator, use of a cavity resonator and oscillator circuit | |
EP0973227B1 (en) | Dual mode ring resonator | |
DE60038079T2 (en) | Dielectric resonance device, dielectric filter, assembled dielectric filter device, dielectric duplexer and communication device | |
DE102005052637A1 (en) | Monolithic integrated circuit | |
DE68917373T2 (en) | Magnetically tunable bandpass filter. | |
DE69206951T2 (en) | DIELECTRIC RESONATOR | |
DE69932653T2 (en) | Dielectric filter and dielectric duplexer | |
DE69418579T2 (en) | Dielectric coaxial resonator | |
DE69522553T2 (en) | DIELECTRIC RESONATOR | |
DE60109001T2 (en) | Dual mode bandpass filter | |
DE60110033T2 (en) | Band-pass filter with a compact dielectric structure consisting of half-wave resonators and intermediate evanescent waveguides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20060328 |
|
17Q | First examination report despatched |
Effective date: 20060627 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1085572 Country of ref document: HK |
|
17Q | First examination report despatched |
Effective date: 20060627 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 502004006842 Country of ref document: DE Date of ref document: 20080529 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1085572 Country of ref document: HK |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090119 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110630 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110620 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110622 Year of fee payment: 8 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120603 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004006842 Country of ref document: DE Effective date: 20130101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120702 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120603 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130101 |