EP1602811B1 - Regler für eine Brennkraftmaschine - Google Patents

Regler für eine Brennkraftmaschine Download PDF

Info

Publication number
EP1602811B1
EP1602811B1 EP20050011611 EP05011611A EP1602811B1 EP 1602811 B1 EP1602811 B1 EP 1602811B1 EP 20050011611 EP20050011611 EP 20050011611 EP 05011611 A EP05011611 A EP 05011611A EP 1602811 B1 EP1602811 B1 EP 1602811B1
Authority
EP
European Patent Office
Prior art keywords
pressure
torque
pumping loss
crank chamber
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20050011611
Other languages
English (en)
French (fr)
Other versions
EP1602811A2 (de
EP1602811A3 (de
Inventor
Atsushi Morikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of EP1602811A2 publication Critical patent/EP1602811A2/de
Publication of EP1602811A3 publication Critical patent/EP1602811A3/de
Application granted granted Critical
Publication of EP1602811B1 publication Critical patent/EP1602811B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1006Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque

Definitions

  • the present invention relates to a controller for controlling the fuel injection amount and the intake air amount of an internal combustion engine to obtain the required torque.
  • Torque demand control is known, e.g. from EP 1 184 553 A2 , as one method for controlling the output torque of an internal combustion engine.
  • the torque demand control calculates a target torque based on the engine speed and the amount an accelerator is depressed by a driver. Then, the fuel injection amount and an intake air amount are controlled so that the output torque of the internal combustion engine becomes equal to the target torque.
  • a friction torque of the internal combustion engine is added to the target torque. Most of the friction torque is attributed to pressure loss (pumping loss), which is related to the resistance of intake air in a throttle valve, an EGR valve, etc.
  • the friction torque is obtained from mechanical loss and auxiliary device loss.
  • the mechanical loss includes friction loss of movable parts in the internal combustion engine.
  • the auxiliary device loss occurs when driving auxiliary devices, such as an alternator and an air conditioner.
  • Japanese Laid-Open Patent Publication No. 11-62658 describes a conventional torque demand control.
  • the air-fuel ratio is lean
  • a large amount of air is drawn into combustion chambers under a high intake air pressure. This reduces the pumping loss.
  • the conventional torque demand control calculates the pumping loss torque based on the intake air pressure or based on a parameter relating to the intake air pressure, such as the total amount of gas in the cylinders.
  • the pumping loss torque is calculated with higher accuracy when it is based on the intake air pressure or the total gas amount in the cylinders.
  • the calculation accuracy of the pumping loss torque is still insufficient and requires improvements.
  • the engine actually has different pumping loss torques when driven on flatlands and highlands.
  • the conventional control does not calculate the pumping loss torque considering such different driving states of the engine.
  • One aspect of the present invention provides a controller for an internal combustion engine including a cylinder housing a combustion chamber and retaining a reciprocating piston, an output shaft of a crankshaft rotated in cooperation with the piston, and a crank chamber accommodating the crankshaft.
  • the piston has one side receiving intake air pressure and another side receiving pressure of the crank chamber.
  • the controller includes a calculation means for calculating pumping loss torque using loss of output torque of the output shaft caused by a pumping loss that occurs when the piston reciprocates.
  • the controller generates a corrected target torque by adding the pumping loss torque calculated by the calculation means to a target torque of the internal combustion engine.
  • the controller determines a control parameter that affects the output torque based on the corrected target torque.
  • the calculation means calculates the pumping loss torque based on the difference between the pressure of the crank chamber and the intake air pressure.
  • Another aspect of the present invention is a method for controlling an internal combustion engine including a cylinder housing a combustion chamber and retaining a reciprocating piston, an output shaft of a crankshaft rotated in cooperation with the piston, and a crank chamber accommodating the crankshaft.
  • the piston has one side receiving intake air pressure and another side receiving pressure of the crank chamber.
  • the method includes the steps of calculating the difference between the pressure of the crank chamber and the intake air pressure, calculating pumping loss torque using loss of output torque of the output shaft caused by a pumping loss that occurs when the piston reciprocates, generating a corrected target torque by adding the pumping loss torque calculated by the calculation means to a target torque of the internal combustion engine, and determining a control parameter that affects the output torque based on the corrected target torque (T).
  • the step for calculating the pumping loss includes calculating the pumping loss torque based on the difference between the pressure of the crank chamber and the intake air pressure.
  • Figs. 1 and 2 show a gasoline engine 11, which is mounted on a vehicle as an internal combustion engine.
  • the engine 11 includes a cylinder block 13 having a plurality of cylinders 12.
  • a crankcase 14 and an oil pan 15 are attached under the cylinder block 13.
  • a cylinder head 16 is mounted on the cylinder block 13.
  • a piston 17 reciprocates in each cylinder 12.
  • a connecting rod 18 connects each piston 17 to a crankshaft 19, which includes an output shaft of the engine 11.
  • the connecting rod 18 converts the reciprocating motion of each piston 17 to rotational motion of the crankshaft 19.
  • An intake passage 22 and an exhaust passage 23 are connected to a combustion chamber 21 of each cylinder 12. Air outside the engine 11 is drawn into each combustion chamber 21 via the intake passage 22. Exhaust gas is discharged out of each combustion chamber 21 and into the exhaust passage 23.
  • An intake valve 24 and an exhaust valve 25 are arranged in the cylinder head 16 for each combustion chamber 21.
  • the intake valve 24 opens and closes between the corresponding combustion chamber 21 and the intake passage 22.
  • the exhaust valve 25 opens and closes between the corresponding combustion chamber 21 and the exhaust passage 23.
  • the intake valve 24 is driven by an intake camshaft 26.
  • the exhaust valve 25 is driven by an exhaust camshaft 27.
  • a throttle valve 28 is arranged in the intake passage 22.
  • the throttle valve 28 is rotated by an actuator 29, such as a motor.
  • the amount of air flowing through the intake passage 22 changes according to the angle of the throttle valve 28 (throttle opening degree).
  • the throttle opening degree is adjusted by changing the driving amount of the actuator 29 according to the amount an accelerator pedal 31 is depressed by the driver.
  • the engine 11 includes fuel injection valves 32, each provided for one of the cylinders 12. High-pressure fuel discharged from a fuel pump (not shown) is supplied to each fuel injection valve 32. Each fuel injection valve 32 is controlled to open and close so that high-pressure fuel is directly injected into the corresponding combustion chamber 21. The injected fuel is mixed with air in the combustion chamber 21 to form an air-fuel mixture.
  • the engine 11, in which fuel is directly injected from the fuel injection valve 32 into the combustion chamber 21 to form an air-fuel mixture, is usually referred to as a "direct in-cylinder injection engine.”
  • the present invention may be applied to a port injection engine.
  • fuel is injected from the fuel injection valve, which is arranged in the intake passage 22, in a direction downstream from the intake port.
  • the injected fuel is mixed with air that flows through the intake passage 22 to form an air-fuel mixture.
  • the engine 11 includes ignition plugs 33, each provided for one of the cylinders 12. Each ignition plug 33 operates in accordance with an ignition signal, which is generated by an igniter 34. An ignition coil 35 applies high voltage to the ignition plug 33. The ignition plug 33 generates an electric discharge to ignite and burn the mixture. This generates a high-temperature and high-pressure combustion gas. The combustion gas reciprocates the pistons 17 and rotates the crankshaft 19 to produce a driving force (output torque) of the engine 11. The exhaust valve 25 opens to discharge the combustion gas out of the combustion chamber 21 and into the exhaust passage 23.
  • the engine 11 includes a blow-by gas recirculation device 37.
  • the blow-by gas recirculation device 37 recirculates the blow-by gas back to the intake system as indicated by the arrows drawn with solid lines in Fig. 2 so that the blow-by gas is burned again in the combustion chambers 21.
  • a crank chamber 36 which is formed in the space encompassed by the cylinder block 13, the crankcase 14, and the oil pan 15. The crank chamber 36 accommodates the crankshaft 19.
  • the blow-by gas recirculation device 37 includes a blow-by gas passage 39.
  • the blow-by gas passage 39 connects the crank chamber 36 to the intake passage 22 at a position downstream from the throttle valve 28. Negative pressure (pressure lower than atmospheric pressure), which is generated downstream from the throttle valve 28, is communicated to the crank chamber 36 via the blow-by gas passage 39.
  • a positive crankcase ventilation (PCV) valve 41 which adjusts the recirculation amount of the blow-by gas, is arranged in the blow-by gas passage 39.
  • the blow-by gas recirculation device 37 includes an air intake passage 42 for drawing air (fresh air) into the crank chamber 36 from outside the engine 11 as indicated by the arrows drawn in broken line in Fig. 2 .
  • the fresh air drawn into the crank chamber 36 via the air intake passage 42 lowers the concentration of the blow-by gas in the crank chamber 36.
  • the air intake passage 42 is connected to the intake passage 22 at a position upstream from the throttle valve 28.
  • a head cover 43 is arranged on the cylinder head 16.
  • the air intake passage 42 is connected to the crank chamber 36 via the head cover 43, the cylinder head 16, and the cylinder block 13.
  • the engine 11 includes an exhaust gas recirculation (EGR) device 44.
  • the EGR device 44 recirculates some of the exhaust gas flowing through the exhaust passage 23 back to the intake passage 22.
  • the exhaust gas recirculated back to the intake passage 22 (EGR gas) is mixed with the intake air.
  • NOx nitrogen oxide
  • the EGR device 44 includes an EGR passage 45 and an EGR valve 46.
  • the EGR passage 45 connects the exhaust passage 23 to the intake passage 22 at a position downstream from the throttle valve 28.
  • the EGR valve 46 is arranged in the EGR passage 45.
  • the negative pressure generated downstream from the throttle valve 28 in the intake passage 22 is communicated to the exhaust passage 23 via the EGR passage 45.
  • Some of the exhaust gas discharged from the exhaust passage 23 is recirculated back to the intake passage 22 as EGR gas via the EGR passage 45.
  • the flow amount of the EGR gas changes in accordance with the opening degree of the EGR valve 46 (EGR opening degree).
  • auxiliary devices are attached to the engine 11.
  • the auxiliary devices include, for example, an alternator, a power-steering pump, an air conditioner compressor, an engine oil pump, and an engine water pump.
  • Each auxiliary device has an output shaft connected to the crankshaft 19 via a pulley and a belt in order to rotate together with the crankshaft 19.
  • the vehicle includes various sensors for detecting the state of various parts in the vehicle, including the driving state of the engine 11.
  • a crank angle sensor 51 is arranged near the crankshaft 19.
  • the crank angle sensor 51 generates a pulse signal every time the crankshaft 19 is rotated by a fixed angle.
  • the pulse signal generated by the crank angle sensor 51 is used to calculate the crank angle, which is the rotation angle of the crankshaft 19, and the rotation speed of the crankshaft 19 per unit time, or the engine speed.
  • An intake air pressure sensor 52 is arranged downstream from the throttle valve 28 in the intake passage 22.
  • the intake air pressure sensor 52 detects the intake air pressure epim (absolute pressure).
  • An atmospheric pressure sensor 53 is arranged in the passenger compartment. The atmospheric pressure sensor 53 detects the atmospheric pressure epa, which changes in accordance with the weather and the altitude (e.g., sea level or highland level).
  • An accelerator sensor 54 is arranged on or near the accelerator pedal 31. The accelerator sensor 54 detects the amount the accelerator pedal 31 is depressed by the driver.
  • An electronic control unit (ECU) 56 which is mainly formed by a microcomputer, controls various parts of the engine 11 based on the detection values of the sensors 51 to 54.
  • the ECU 56 includes a central processing unit (CPU).
  • the CPU performs calculations in accordance with control programs and initial data stored in a read only memory (ROM) and executes various controls based on the calculation results.
  • the calculation result of the CPU is temporarily stored in a random access memory (RAM).
  • the ECU 56 determines values for control parameters that affect the output torque of the engine 11 so that the output torque of the engine 11 becomes equal to the torque required by the driver (target torque Tt).
  • This control is referred to as “output torque control” or “torque demand control.”
  • the target torque Tt is calculated in accordance with the engine speed and the amount the accelerator pedal 31 is depressed by the driver.
  • the ECU 56 drives the engine 11 using the target torque as its command value, the actual output torque generated by the engine 11 is lower than the target torque Tt due to the friction produced when the engine 11 is driven (friction loss).
  • the ECU 56 calculates the torque that is lowered (consumed) by such friction as a friction torque Tf.
  • the ECU 56 adds the friction torque Tf to the target torque Tt to correct the target torque Tt. In this way, the ECU 56 generates a final target torque T. Based on the final target torque T, the ECU 56 determines values for the control parameters that affect the output torque of the engine 11.
  • the above friction loss includes pumping loss, mechanical loss, and auxiliary device loss.
  • the pumping loss is the loss of pressure caused by the resistance of intake air in the throttle valve 28 and the EGR valve 46.
  • the mechanical loss is caused by the friction produced in movable parts of the engine 11.
  • the auxiliary loss is caused by the friction produced when driving the auxiliary devices.
  • the mechanical loss and the auxiliary loss are directly determined by the viscosity of oil.
  • the viscosity of oil does not change drastically but changes gradually when the engine is being driven.
  • the viscosity of oil is estimated based on parameters such as the oil temperature and the coolant temperature.
  • the mechanical loss and the auxiliary loss are estimated based on the oil temperature and the coolant temperature.
  • the throttle valve 28 and the EGR valve 46 are constantly operated.
  • the pumping loss constantly changes.
  • the pumping loss is more difficult to calculate (estimate).
  • the calculation (estimation) of the friction torque Tf with high accuracy is important for accurate calculation of the target torque Tt.
  • Fig. 3 is a flowchart of a friction torque calculation routine.
  • the ECU 56 calculates the pumping loss torque Tp.
  • the ECU 56 calculates the pressure difference ⁇ P between the intake air pressure epim and the crank chamber pressure epcr.
  • the intake air pressure epim is, for example, the detection value of the intake air pressure sensor 52.
  • the pumping loss is normally large when the throttle opening degree is small.
  • the pumping loss decreases as the throttle opening degree increases.
  • a map which is generated in advance and which defines the relationship between the throttle opening degree and the pumping loss torque Tp, may referred to in order to determine the pumping loss torque Tp corresponding to any given throttle opening degree.
  • the relationship between the throttle opening degree and the pumping loss torque Tp may deviate from the relationship defined by the map when, for example, the amount of deposits adhered to the throttle valve 28 increases thereby increasing the resistance of intake air. Such deviation of the relationship may also be caused by factors other than the deposits adhered to the throttle valve 28 such as wear of the throttle valve 28 or characteristic of each throttle valve 28.
  • the EGR opening degree has a similar relationship with the pumping loss torque Tp as the throttle opening degree has with the pumping loss torque Tp.
  • the pumping loss decreases as the EGR opening degree increases.
  • a map which is generated in advance and which defines the relationship between the EGR opening degree and the pumping loss torque Tp, may also be referred to in order to determine the pumping loss torque Tp corresponding to any given EGR opening degree.
  • the characteristic of each EGR valve 46 or wear of the EGR valve 46 may deviate the relationship between the EGR opening degree and the pumping loss torque Tp from that defined by the map.
  • the pumping loss torque Tp may be calculated based on the throttle opening degree and the EGR opening degree.
  • the two parameters, the throttle opening degree and the EGR opening degree may change at the same time.
  • the change in the throttle opening degree and the change in the EGR opening degree have a combined influence on the pumping loss torque Tp.
  • the pumping loss torque Tp would deviate from a value calculated by simply adding or subtracting the pumping loss torque Tp determined from the map in correspondence with the throttle opening degree or the EGR opening degree.
  • the intake air pressure epim is influenced by both of the throttle opening degree and the EGR opening degree.
  • the intake air pressure epim reflects the influence of the throttle opening degree and the influence of the EGR opening degree.
  • the intake air pressure epim further reflects a combined influence of a change in the throttle opening degree and a change in the EGR opening degree when such changes occur at the same time.
  • the intake air pressure epim also reflects the influence of the characteristic of the throttle valve 28 or the EGR valve 46 and the influence of wear of the throttle valve 28 or the EGR valve 46.
  • the intake air pressure epim is a parameter that reflects all of these influences.
  • the intake air pressure epim to calculate the pumping loss torque Tp eliminates the above problems that would occur when using values determined from maps for the throttle opening degree and the EGR opening degree. Accordingly, in the first embodiment, the pumping loss torque Tp is calculated using the intake air pressure epim instead of using maps.
  • crank chamber pressure epcr The reason for using the crank chamber pressure epcr to calculate the pumping loss torque Tp will now be described.
  • the pressure of the crank chamber 36 influences the descent of the piston 17. For example, when the pressure of the crank chamber 36 is high, the descent of the piston 17 is hindered. In this case, the pumping loss is small. Accordingly, to be accurate, in addition to the pressure in the combustion chamber 21 (intake air pressure epim), the crank chamber pressure epcr also influences the pumping loss torque Tp.
  • the negative pressure downstream from the throttle valve 28 is merely communicated to the crank chamber 36 to recirculate the blow-by gas back to the intake system.
  • the value of the crank chamber pressure epcr is substantially the same as the value of the atmospheric pressure epa.
  • the atmospheric pressure epa detected by the atmospheric pressure sensor 53 is used as a value relating to the crank chamber pressure epcr.
  • step S120 the ECU 56 calculates the pumping loss torque Tp using equation (i).
  • Tp ⁇ P * C * K
  • C is a coefficient for converting pressure (pressure difference ⁇ P) to torque.
  • K is a correction coefficient for reflecting influences of parameters other than the pressure difference ⁇ P on the pumping loss torque Tp to calculate the pumping loss torque Tp.
  • the correction coefficient K is, for example, a basic correction term k1 corresponding to an influence of the blow-by gas on the pumping loss torque Tp.
  • step S130 the ECU 56 adds the mechanical loss torque Tm and the auxiliary device loss torque Ta to the pumping loss torque Tp to calculate the friction torque Tf.
  • the friction torque calculation routine ends after step S130.
  • the ECU 56 in executing steps S110 and S120 in the friction torque calculation routine functions as a calculation means.
  • step S210 the ECU 56 reads the friction torque Tf, which is calculated in the friction torque calculation routine of Fig. 3 , and the target torque Tt, which is in accordance with the depression of the accelerator pedal 31 by the driver.
  • the target torque Tt is calculated based on the depression amount of the accelerator pedal 31 and the engine speed, for example, in another routine.
  • step S220 the ECU 56 adds the friction torque Tf to the target torque Tt to correct the target torque Tt. In this way, the ECU 56 generates the final target torque T.
  • the ECU 56 in executing step S220 in Fig. 4 functions as a correction means for correcting the target torque Tt.
  • the ECU 56 determines values for control parameters that influence the output torque of the engine 11. to achieve the final target torque T.
  • the control parameters differ depending on the type of the engine 11.
  • the control parameters include the intake air amount, the fuel injection amount, and the ignition timing.
  • the ECU 56 calculates the values of the throttle opening degree, the fuel injection amount, the ignition timing, etc. to achieve the final target torque T using a predetermine map and an operational expression.
  • the ECU 56 controls the actuator 29, the fuel injection valve 32, and the igniter 34 based on the calculated values. Theoretically, the engine 11 generates an output torque substantially equal to the final target torque T.
  • the output torque control routine ends after step S230.
  • the ECU 56 executing step S230 in Fig. 4 functions as a determination means for determining the control parameters.
  • the first embodiment has the advantages described below.
  • the first to fourth embodiments may be modified in the following forms.
  • the auxiliary correction term k2 in the second embodiment may be determined based on a value representing the top surface area S, such as the inner diameter (bore diameter) of the cylinder 12, diameter of the piston 17, a function of the internal diameter of the cylinder 12, or a function of the diameter of the piston 17.
  • the crank chamber pressure epcr may be estimated through a process that differs from that of the fourth embodiment. For example, since the capacity of the crank chamber 36 is fixed, the crank chamber pressure epcr increases by an amount corresponding to an increase in the generation amount of the blow-by gas. Further, when the engine load changes, the negative pressure drawing in the blow-by gas changes and alters the crank chamber pressure epcr. Normally, the negative pressure decreases as the engine load increases. Thus, the generated amount of the blow-by gas and the engine load are parameters that influence the crank chamber pressure epcr. Focusing on this point, the crank chamber pressure epcr may be estimated using a predetermined operational expression, based on the capacity of the crank chamber 36, the generation amount of the blow-by gas, and the engine load.
  • a pressure sensor 61 for directly detecting the pressure of the crank chamber 36 may be used as a pressure detection means.
  • the detection value of the pressure sensor 61 is used as the crank chamber pressure epcr in the first to third embodiments. In this case, the calculation accuracy of the pumping loss torque Tp is further improved.
  • step S130 in Fig. 3 the pumping loss torque Tp is necessary for calculation of the friction torque Tf.
  • the terms other than the pumping loss torque Tp may be freely changed.
  • a term representing a further loss torque may additionally be used in the calculation.
  • the first to fourth embodiments are applicable to engines other than a gasoline engine, such as a diesel engine.

Claims (7)

  1. Steuerung für einen Verbrennungsmotor (11), wobei der Verbrennungsmotor (11) aufweist:
    einen Zylinder (12), in dem ein Verbrennungsraum (21) aufgenommen ist und ein sich hin- und herbewegender Kolben (17) gehalten wird,
    eine Ausgangswelle einer Kurbelwelle (19), die unter Mitwirkung von dem Kolben (17) gedreht wird,
    eine Durchblasegas-Rückführvorrichtung (37), die ein Durchblasegas wieder an eine Saugleitung (22) des Verbrennungsmotors (11) zurückführt, und
    eine Kurbelkammer (36), in der die Kurbelwelle aufgenommen ist, wobei
    der Kolben (17) eine Seite aufweist, die den Ansaugluftdruck (epim) aufnimmt, und eine andere Seite aufweist, die den Druck (epcr) der Kurbelkammer (36) aufnimmt,
    die Steuerung eine Berechnungseinrichtung (S120) zum Berechnen eines Pumpverlustmoments unter Verwendung eines Verlustes des Ausgangsdrehmoments der Ausgangswelle beinhaltet, der durch einen Pumpverlust verursacht wird, der auftritt, wenn sich der Kolben (17) hin- und herbewegt, wobei
    die Steuerung ein korrigiertes Soll-Drehmoment (T) erzeugt, indem das Pumpverlustmoment, das durch die Berechnungseinrichtung (S 120) berechnet wird, zu einem Soll-Drehmoment (Tt) des Verbrennungsmotors (11) hinzuaddiert wird, und einen Steuerungsparameter bestimmt, der das Ausgangsdrehmoment basierend auf dem korrigierten Soll-Drehmoment (T) beeinflusst,
    wobei die Steuerung dadurch gekennzeichnet ist, dass
    die Berechnungseinrichtung (S120) das Pumpverlustmoment basierend auf der Differenz (ΔP) zwischen dem Druck der Kurbelkammer (36) und dem Ansaugluftdruck berechnet.
  2. Steuerung nach Anspruch 1, dadurch gekennzeichnet, dass der atmosphärische Druck als ein Wert verwendet wird, der auf den Druck der Kurbelkammer bezogen ist.
  3. Steuerung nach Anspruch 1 oder 2, ferner gekennzeichnet durch:
    eine Schätzeinrichtung (56) zum Schätzen des Drucks der Kurbelkammer (36) unter Verwendung des atmosphärischen Drucks, der gemäß einem Antriebszustand des Verbrennungsmotors (11) korrigiert wird;
    wobei die Berechnungseinrichtung (S 120) das Pumpverlustmoment unter Verwendung eines Werts des Drucks der Kurbelkammer (36), der durch die Schätzeinrichtung (56) geschätzt wird, berechnet.
  4. Steuerung nach Anspruch 1, ferner gekennzeichnet durch:
    eine Druckerfassungseinrichtung (61) zum Erfassen des Drucks der Kurbelkammer (36);
    wobei die Berechnungseinrichtung (56) das Pumpverlustmoment unter Verwendung des Drucks der Kurbelkammer (36) berechnet, der durch die Druckerfassungseinrichtung (61) erfasst wird.
  5. Steuerung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass:
    die eine Seite des Kolbens eine obere Oberfläche des Kolbens (17) ist; und
    die Berechnungseinrichtung (56) den Differenzdruck gemäß einem Bereich der oberen Oberfläche des Kolbens (17) oder einem Wert, der den Bereich darstellt, korrigiert, um das Pumpverlustmoment unter Verwendung des korrigierten Differenzdrucks zu berechnen.
  6. Steuerung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Berechnungseinrichtung den Differenzdruck gemäß der Anzahl der Zylinder korrigiert, die in dem Verbrennungsmotor beinhaltet sind, um das Pumpverlustmoment unter Verwendung des korrigierten Differenzdrucks zu berechnen.
  7. Verfahren zum Steuern eines Verbrennungsmotors (11), wobei der Verbrennungsmotor aufweist:
    einen Zylinder (12), in dem ein Verbrennungsraum (21) aufgenommen ist und ein sich hin- und herbewegender Kolben (17) gehalten wird,
    eine Ausgangswelle einer Kurbelwelle (19), die unter Mitwirkung von dem Kolben (17) gedreht wird,
    eine Durchblasegas-Rückführvorrichtung (37), die ein Durchblasegas wieder an eine Saugleitung (22) des Verbrennungsmotors (11) zurückführt, und
    eine Kurbelkammer (36), in der die Kurbelwelle aufgenommen ist, wobei der Kolben (17) eine Seite aufweist, die den Ansaugluftdruck (epim) aufnimmt und eine andere Seite aufweist, die den Druck (epcr) der Kurbelkammer (36) aufnimmt, wobei das Verfahren beinhaltet:
    Berechnen der Differenz zwischen dem Druck der Kurbelkammer und dem Ansaugluftdruck (S 110);
    Berechnen des Pumpverlustmoments unter Verwendung des Verlusts des Ausgangsdrehmoments der Ausgangswelle, der durch einen Pumpverlust verursacht wird, der auftritt, wenn sich der Kolben hin- und herbewegt (S 120);
    Erzeugen eines korrigierten Soll-Drehmoments (T) durch Hinzuaddieren des Pumpverlustmoments, der durch die Berechnungseinrichtung berechnet wird, zu einem Soll-Drehmoment (Tt) des Verbrennungsmotors (S220); und
    Bestimmen eines Steuerparameters, der das Ausgangsdrehmoment basierend auf dem korrigierten Soll-Drehmoment (T) beeinflusst (S239),
    wobei das Verfahren dadurch gekennzeichnet ist, dass der Schritt zum Berechnen des Pumpverlusts ein Berechnen des Pumpverlustmoments basierend auf der Differenz (ΔP) zwischen dem Druck der Kurbelkammer und dem Ansaugluftdruck beinhaltet.
EP20050011611 2004-06-01 2005-05-30 Regler für eine Brennkraftmaschine Active EP1602811B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004163515A JP4033173B2 (ja) 2004-06-01 2004-06-01 内燃機関の制御装置
JP2004163515 2004-06-01

Publications (3)

Publication Number Publication Date
EP1602811A2 EP1602811A2 (de) 2005-12-07
EP1602811A3 EP1602811A3 (de) 2006-06-07
EP1602811B1 true EP1602811B1 (de) 2012-05-02

Family

ID=34937048

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050011611 Active EP1602811B1 (de) 2004-06-01 2005-05-30 Regler für eine Brennkraftmaschine

Country Status (2)

Country Link
EP (1) EP1602811B1 (de)
JP (1) JP4033173B2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952654B2 (ja) * 2008-05-21 2012-06-13 トヨタ自動車株式会社 内燃機関の制御システム
FR3029877B1 (fr) * 2014-12-12 2016-12-23 Renault Sa Procede de commande d'un groupe motopropulseur hybride comprenant un moteur a combustion interne couple a un moteur electrique, lors d'une phase d'arret du moteur a combustion interne
FR3029861A1 (fr) * 2014-12-12 2016-06-17 Renault Sa Procede d'estimation d'un couple resistif global genere par un moteur a combustion interne hors injection pendant le fonctionnement d'un moteur electrique, procede de commande et vehicule associes
JP6225934B2 (ja) 2015-02-27 2017-11-08 トヨタ自動車株式会社 内燃機関の制御装置
JP6447339B2 (ja) * 2015-04-17 2019-01-09 株式会社デンソー エンジン制御装置
FR3100568B1 (fr) * 2019-09-06 2022-06-24 Psa Automobiles Sa Procédé de détermination de pertes mécaniques de frottement d’un moteur à combustion interne
FR3102214B1 (fr) * 2019-10-16 2021-10-08 Psa Automobiles Sa Groupe motopropulseur comprenant un dispositif de contrôle déterminant un couple de perte d’un moteur à combustion.
CN111828191B (zh) * 2020-03-24 2021-10-08 同济大学 一种混合动力发动机的空燃比控制系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6575022B1 (en) * 1995-11-25 2003-06-10 Cummins Engine Company, Inc. Engine crankcase gas blow-by sensor
JPH1162658A (ja) 1997-08-08 1999-03-05 Nissan Motor Co Ltd 内燃機関の制御装置
SE521667C2 (sv) * 1999-06-07 2003-11-25 Volvo Personvagnar Ab Förbränningsmotor
DE10043691A1 (de) * 2000-09-04 2002-03-14 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betreiben einer direkteinspitzenden Brennkraftmaschine eines Kraftfahrzeugs
US6807958B2 (en) * 2002-11-07 2004-10-26 Ford Global Technologies, Llc Valve assembly and method for controlling flow of gases from an engine crankcase to an engine intake manifold

Also Published As

Publication number Publication date
EP1602811A2 (de) 2005-12-07
JP4033173B2 (ja) 2008-01-16
EP1602811A3 (de) 2006-06-07
JP2005344565A (ja) 2005-12-15

Similar Documents

Publication Publication Date Title
EP1602811B1 (de) Regler für eine Brennkraftmaschine
US6497212B2 (en) Control apparatus for a cylinder injection type internal combustion engine capable of suppressing undesirable torque shock
JP4826560B2 (ja) 内燃機関の燃料性状検出装置
US6704639B2 (en) Method of calculating engine torque
KR100310094B1 (ko) 기통내분사형불꽃점화식내연엔진의제어장치
EP1548255B1 (de) Steuervorrichtung für eine Brennkraftmaschine
US6510835B1 (en) Device and method for controlling engines
CN100432399C (zh) 用于发动机扭矩控制的凸轮相位器和按需排量协调
CN101573517B (zh) 用于内燃发动机的控制设备和控制方法
EP1593824A2 (de) Brennstoffeinspritzsystem
US6904356B2 (en) Apparatus and method for estimating internal EGR amount in internal combustion engine
EP1612391A2 (de) Vorrichtung und Verfahren zur Regelung der Abgasrückführung einer Brennkraftmaschine
KR101034168B1 (ko) 내연 기관의 제어 장치
EP1437498B1 (de) Viertaktmotorsteuervorrichtung und -steuerverfahren
US8620563B2 (en) Fuel supply apparatus for internal combustion engine
EP1918555A1 (de) Steuerung für dieselverbrennungsmotor
EP1249593A2 (de) Steuerungssystem und Methode für eine Mehrzylinder-Brennkraftmaschine
EP1239142B1 (de) Fehlererkennungsgerät für eine Abgasrückführungsvorrichtung
EP2305989B1 (de) Vorrichtung und verfahren zum beurteilen von anomalität eines leerlaufregulierungssystems
EP1447551B1 (de) Atmosphärendruckerfassungsvorrichtung für viertaktmotor und verfahren zur erfassung von atmosphärendruck
JP4415509B2 (ja) 内燃機関の制御装置
US7181336B2 (en) Control system of internal combustion engine
JP2005127213A (ja) 内燃機関の制御装置
US6612284B1 (en) Device and method for engine control
US6705288B2 (en) Starting control apparatus for internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050530

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17Q First examination report despatched

Effective date: 20060927

AKX Designation fees paid

Designated state(s): DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MORIKAWA, ATSUSHI

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005033945

Country of ref document: DE

Effective date: 20120712

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602005033945

Country of ref document: DE

Effective date: 20130312

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005033945

Country of ref document: DE

Effective date: 20130205

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230411

Year of fee payment: 19

Ref country code: DE

Payment date: 20230404

Year of fee payment: 19