EP1600232B1 - Matériau de dégazage à base de composés intermétalliques et son procédé de production - Google Patents

Matériau de dégazage à base de composés intermétalliques et son procédé de production Download PDF

Info

Publication number
EP1600232B1
EP1600232B1 EP05007316A EP05007316A EP1600232B1 EP 1600232 B1 EP1600232 B1 EP 1600232B1 EP 05007316 A EP05007316 A EP 05007316A EP 05007316 A EP05007316 A EP 05007316A EP 1600232 B1 EP1600232 B1 EP 1600232B1
Authority
EP
European Patent Office
Prior art keywords
metals
component
argon
gas
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05007316A
Other languages
German (de)
English (en)
Other versions
EP1600232A1 (fr
Inventor
Konstantin Chuntonov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanoshell Materials Research & Development GmbH
Original Assignee
Nanoshell Materials Research & Development GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanoshell Materials Research & Development GmbH filed Critical Nanoshell Materials Research & Development GmbH
Priority to AT05007316T priority Critical patent/ATE350188T1/de
Priority to EP05007316A priority patent/EP1600232B1/fr
Priority to DE602005000400T priority patent/DE602005000400D1/de
Publication of EP1600232A1 publication Critical patent/EP1600232A1/fr
Application granted granted Critical
Publication of EP1600232B1 publication Critical patent/EP1600232B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes

Definitions

  • the present invention relates to the field of gas sorbents, more precisely of metallic gas sorbents used at room temperature for gas purification and for improvement of vacuum in sealed devices and pumped down chambers.
  • Modem metallic sorbents also called getters
  • getters can be divided conventionally according to their chemical nature into two groups: getters, containing mainly alkaline-earth metals, and getters based on transition metals.
  • the sorption capacity of the former is in average by three orders of magnitude higher than of the latter [ J.J.B. Fransen, H.J.R. Perdijk. Vacuum, 10 (1960)199; B. Ferrario. Vacuum, 47 (1996) 363; P.della Porta.
  • Powder compressing and sintering [ N.P. Reutova et. al. US 6,322,720], screen printing [A. Corazza et. al. WO 98/03987], spraying [S. Carella et. al. WO 95/23425], electrophoresis [E. Giorgi. US 5,242,559], sputtering [V. Palmieri et. al. US 5,306,406; C. Benvenuti et. al. Vacuum, 60(2001) 57], etc. can be considered as examples for this kind of technologies.
  • Ba-films deposited in a vacuum upon heating a powdered mixture of Al 4 Ba and Ni [P. della Porta.US 5,118,988; D. Martelli et. al. US 6,306,314] are in many respects an ideal gas sorbent but they need the support of a large free surface area which contradicts the general trend to miniaturization of electronic devices.
  • CombogetterTM containing powder pills of the composition BaLi 4 as gas sorbent was apparently developed directly for low-vacuum applications [Manini et. al. US 5,600,957]. Independent of the scale of usage of this product, from the technical view point it is not a breakthrough.
  • Two more patents, US 5,312,606 and US 5,312,607 claiming the usage of barium alloys as getter materials for vacuum vessels are also connected with this topic. In the case of the latter two patents we deal with a purely legal act, which is not supported by technical innovations.
  • the present invention therefore relates to new gas sorbents on the basis of intermetallic compounds with high surface area of the formula A n Me m , where A is a chemically active volatile metal and Me is a non-toxic nonvolatile metal, and where n ⁇ m, in the form of an isolated dendrite carcass, separated from a rapidly solidified heterogeneous alloy with the help of sublimation of its volatile fraction, the intermetallic compounds of the alloy being obtainable by a method comprising the following steps:
  • the present invention relates to a method for producing high-purity metallic gas sorbents on the basis of intermetallic compounds of the formula A n Me m which are in a thermodynamic equilibrium with the component A forming with it an eutectic and in which A is a chemically active volatile metal, Me is a non-toxic non-volatile metal, and n ⁇ m, starting from chemically active metals or alloys, said method comprising the following steps:
  • the present invention relates to an apparatus for carrying out the method for producing high purity metallic gas sorbents, said apparatus comprising
  • the new product according to the present invention is an intermetallic dendrite carcass, separated from a rapidly solidified heterogeneous material by sublimation of its volatile fraction. Both the product and the method of its production differ in principle from the traditional variants of getter structures and technologies.
  • the described method is applicable to intermetallic compounds A n Me m , which are in a thermodynamic equilibrium with the component A forming with it eutectics (Fig. 1) and in which A is a chemically active volatile metal, Me is a non-toxic nonvolatile metal, and n ⁇ m.
  • A Ca or Sr
  • these compounds can be specified as Ca 3 Ag, Ca 2 Cu, Ca 28 Ga 11 , Ca 3 In, Ca 2 Si, Ca 2 Ge, Ca 2 Sn, Sr 3 Ag 2 , SrCu, Sr 8 Al 7 , Sr 8 Ga 7 , Sr 3 In, Sr 2 Si, Sr 2 Ge, Sr 2 Sn and SrNi [see H.Okamoto. Phase Diagrams for Binary Alloys, ASM International, Materials Park, OH, 2000].
  • a molten droplet of concentration c 0 containing a certain excess of component A over a stoichiometric composition c s (Fig. 1), is subjected to quenching in a liquid cooling agent, then as a result of crystallization a typical structure will appear (Fig. 2), consisting of a dendritic carcass A n Me m and an eutectic c e , which fills the space between the dendrite arms [see e.g. M. C. Flemings. Solidification processing, McGraw - Hill Book Corp., N.Y., 1974; R. Elliot.
  • the parameters of the sublimation process are defined by the diagrams T- c (Fig. 1) and p - c (Fig. 3).
  • the first one limits the volatilization temperature T p to the subsolidus area T p ⁇ T c , to avoid the coursing effect on the dendrite carcass during the appearance of the liquid phase.
  • the second one sets pressure conditions of the process (Fig. 3) p A 0 > P > p A A n ⁇ Me m , where P is the pressure in the volatilization chamber, set by an operator. These conditions provide a sufficient rate of sublimation of A but prevent the decomposition of the A n Me m phase.
  • the end product has the form of a ball with a skeleton intermetallic structure (Fig. 2). High chemical activity and high gas permeability of this kind of material make it a very valuable and potent gas sorbent, equally capable of being applied in vacuum devices and gas purifiers.
  • the initial metals previously subjected to deep outgassing, are introduced into a crucible 6 under argon, active ones from a glove-box, inactive ones from a doser 4.
  • the load is melted, homogenized, and then the resulting melt is pressed through a capillary appendix into a flight tube 20 (Fig. 5), where the droplets solidify in liquid argon, which condensates and is collected in the needed quantities on an argon "stopper" at positive gas pressure.
  • This stopper formed in the narrowed part of the tube, cooled with liquid nitrogen, closes the cross-section of the flight tube for the duration of the melt drip-off.
  • a glass collector 13 (Fig. 4), which also serves as a sublimation chamber. From below a furnace 12 is moved onto the collector and vacuum vaporization of the volatile phase of the eutectic is carried out.
  • Vapors of component A condensate on the cold curved part of the collector and do not get through into the flight tube.
  • the process is terminated at the moment when vacuum gage 2 (Fig. 4) in a sublimation compartment IV shows an abrupt pressure drop, which indicates the disappearance the last crystals of the A phase (Fig. 6).
  • the furnace is moved down and the lower end of the collector containing the product is sealed off under vacuum to form an ampoule.
  • the given method allows producing in one charge of the apparatus several tens of grams of porous granules A n Me m of diameter from ⁇ 0.5mm to ⁇ 5mm, preferably with the diameter 2-3 mm. This is a result, which was unachievable before and which became possible due to the following technical solutions:
  • the new method radically differs from the traditional methods of production of non-evaporable getters. While the previous methods came down to dispersion of the material and its reassembly into a porous conglomerate of particles, the new method consists of a sequence of actions of the opposite character: first formation of the droplets and their crystallization (analogue of assembly) take place and then removal of one of the structural parts of the material by sublimation (analogue of dispersion) is carried out. At this stage of polyphase crystallization of droplets the morphological contours of the future product are founded.
  • this method will also work in case of many other metallic materials containing at least one volatile and at least one non-volatile component.
  • porous metallic materials in which Li, Na, Mg, Ba, serve as a component A and transitional metals like Fe, Zr, Ni, Ti, Ta, play the role of component Me.
  • the given method allows the preparation of an alloy c o from corresponding quantities of elements A and Me directly in the melting compartment II of the process column (Fig. 4).Such a solution guarantees a higher purity of the product than it was allowed by the previous technique of the separate synthesis of a semi-ready product in special equipment with the subsequent transfer of the superactive product to the station for granulation (see WO 2004/082873).
  • the gate valve 5 is closed, the melt is evacuated for a short time and then the argon pressure in compartments II and III is increased for condensation of liquid argon in a quenching bath (Fig. 5).
  • the quenching bath represents by itself a central part of a flight tube with a small narrowed part with a metallic cartridge 1 welded to it, which serves as a reservoir for liquid nitrogen. From outside this cartridge is surrounded with a thermal insulator 90 with a lid 30 (see also 9 on Fig. 4).
  • a tight stopper of solid argon with widened ends is formed.
  • This stopper can withstand the weight of a substantial column of liquid argon together with crystallized metallic product.
  • a bypass line 16 (Fig. 4), which automatically levels the gas pressure above and below the quenching bath, is connected to the flight tube in the refrigerator area.
  • a two-zone model is used with a "cold" zone in the form of a vessel with liquid nitrogen and a "hot” zone in the form of a part of the flight tube with a filament heater 40 (Fig. 5).
  • the height of the liquid argon column ⁇ H H 1g - H s1 (Fig. 5, b) is controlled by two parameters: the heat power produced by cryoheater 40 and the gas pressure in the flight tube. The first one defines the value of T h , the second one the range of liquid argon ⁇ T L (Ar).
  • thermocouples Two of which are welded at different height to the narrow part of the tube while the other two are welded, also at different height, between the loops of the cryoheater 40 (the thermocouples are not shown in Fig. 5.).
  • the next step is pressing the melt through a capillary into liquid argon.
  • the surface of the melt is forced with pressure pulses sent along the gas line through a solenoid valve 17 (Fig. 4).
  • a solenoid valve 17 Fig. 4
  • low-frequency acoustic vibrations directed from an outside generator to the area of the capillary, can be used.
  • Characteristic values of this process stage are: the depth of the liquid argon layer is ⁇ 10cm, the gas pressure in the column is 1.5 - 2.0 bar, the mass of the quenched particles is 35 - 60 g, the duration of the stage is 10 - 15 minutes, the main fraction of shot with diameter 2 - 3 mm is about 70% of the total product.
  • the experimental dependence p p ( ⁇ ), separated from outgassing effects, has the form of curve 2 in Fig. 6.
  • ⁇ s when the entire A - constituent of the eutectic is removed from the granules, the sublimation process is stopped by switching the furnace off and moving it down.
  • the final product is sealed off under vacuum or inert gas and used further according to the destination.
  • the collector tube must not necessarily be made of glass; it also can be made of metallic materials which can be sealed off under vacuum.
  • the upper part of the collector with a zigzag part and a flange is cleaned from condensate, washed, dried and rebuilt by attaching a new test tube from below.
  • the new materials form a wide class of substances of different elemental composition, which also differ in dimensional and structural parameters.
  • the compartment IV (Fig. 4) is pumped down and filled with argon to a pressure of 1 bar.
  • a line which connects the compartment III with the tank is opened for transporting argon into the tank.
  • the gate valve 10 is opened, the lid 3 (Fig. 5) is lifted and a flow of warm air is directed from above into the liquid nitrogen for speeding up the unfreezing process.
  • the product is sealed-off in an ampoule. It consists of porous granules of Ca 3 In with a wide particle-size distribution; the main fraction is - 1.8 mm in diameter.
  • Porous granules of SnSr 2 are obtained in a similar way.
  • the apparatus is charged with 25 g of pure strontium (distilled dendritic pieces,99.95%, Alfa Aesar) and 10 g of tin previously outgassed at 750°C under a vacuum of 10 -6 mbar (Puratronic, 99.999%,Alfa Aesar).
  • the procedure resembles the one described above for Ca 3 In with the following differences:
  • the argon pressure is varied in the range of 1 - 100 mbar.
  • a Ta-crucible is used for melting, the melt is pressed at the temperature of 1200°C through a capillary with an opening of 0.6 mm in diameter.
  • Sublimation of strontium is carried out at 350 - 400°C.
  • the porous granules obtained have an average diameter of ⁇ 1.4 mm.
  • the granules were sealed off under vacuum, weighed together with an ampoule, and introduced into a test chamber containing a mechanism for breaking ampoules.
  • the measurements were carried out by a dynamic flow method using two chambers according to the procedure described in Pat. US 5,312,607. After the ampoule was baked for two hours at 200° C it was opened at room temperature when the pressure in the chamber reached the basic value of 10 -8 mbar. Oxygen was used as the gas to be sorbed. When the measurements, which were carried out at room temperature, were completed, the glass was collected, rinsed, dried and weighed, to define the mass of the sample from the difference in weight.
  • Fig. 7 gives a visual picture of the general relation between sorption parameters of getters of different type and serves as a helpful guide for a user in finding the right material for his needs.
  • the new product takes a high position among getter materials and has a potential for development.
  • the most advantageous application fields for the new material are sealed vacuum chambers and gas purification filters.

Claims (15)

  1. Sorbants de gaz à base de composés intermétalliques ayant une grande surface spécifique de formule AnMem, qui sont en équilibre thermodynamique avec le composé A formant avec lui un eutectique, où le composant A est un métal chimiquement actif et volatil choisi dans le groupe constitué par les métaux alcalins, les métaux alcalino-terreux, et Me est choisi dans le groupe des métaux constitués par Ag, Al, Cu, Ga, Ge, In, Ni, Si, Sn et où nm, sous la forme d'une carcasse de dendrite isolée, séparée d'un alliage hétérogène rapidement solidifié à l'aide d'une sublimation de sa fraction volatile, les composés intermétalliques de l'alliage pouvant être obtenus par un procédé comprenant les étapes suivantes consistant à :
    - mélanger et faire fondre des métaux initiaux et homogénéiser la matière fondue sous une pression négative de gaz inerte,
    - fabriquer une grenaille de coulée en trempant des gouttelettes fondues sous une pression positive,
    - obtenir des granules de type squelette par évaporation de l'excès du composant A provenant de la grenaille de coulée sous vide.
  2. Sorbants de gaz selon la revendication 1, dans lesquels les gouttelettes fondues contenant un certain excès de composant A par rapport à une composition stoechiométrique sont soumises à une trempe dans de l'argon liquide, puis par suite une cristallisation d'une structure se produit laquelle consiste en une carcasse dendritique AnMem et un eutectique, qui remplit l'espace entre les bras de dendrite.
  3. Sorbants de gaz selon la revendication 1 ou 2, dans lesquels le composant A dans la formule AnMem est choisi dans le groupe constitué par Ca, Sr, Li, Mg, Ba.
  4. Sorbants de gaz selon la revendication 3, dans lesquels le composant A dans la formule AnMem est le calcium ou le strontium.
  5. Sorbants de gaz selon les revendications 1 à 4, dans lesquels les composés intermétalliques sont choisis dans le groupe constitué par Ca3Ag, Ca2Cu, Ca28Ga11, Ca3ln, Ca2Si, Ca2Ge, Ca2Sn, Sr3Ag2, SrCu, Sr8Al7, Sr8Ga7, Sr3ln, Sr2Si, Sr2Ge, Sr2Sn et SrNi.
  6. Procédé de production de sorbants de gaz métalliques de haute pureté à base de composés intermétalliques de formule A n Me m
    Figure imgb0009
    qui sont en équilibre thermodynamique avec le composant A formant avec lui un eutectique et dans lequel A est choisi dans le groupe constitué par les métaux alcalins, les métaux alcalino-terreux, Me est choisi dans le groupe des métaux constitués par Ag, Al, Cu, Ga, Ge, In, Ni, Si, Sn et où n ≥ m, en démarrant à partir de métaux ou alliages chimiquement actifs, ledit procédé comprenant les étapes suivantes consistant à :
    - mélanger et faire fondre des métaux initiaux et homogénéiser la matière fondue sous une pression négative de gaz inerte,
    - fabriquer une grenaille de coulée en trempant des gouttelettes fondues sous une pression positive,
    - obtenir des granules de type squelette par évaporation de l'excès du composant A provenant de la grenaille de coulée sous vide,
    - emballer le produit en le scellant dans un conteneur sous vide ou sous une pression négative d'un gaz inerte.
  7. Procédé selon la revendication 6, dans lequel le gaz inerte est l'argon.
  8. Procédé selon la revendication 6 ou 7, dans lequel les gouttelettes fondues contenant un certain excès de composant A par rapport à une composition stoechiométrique sont soumises à une trempe dans de l'argon liquide, puis par suite une cristallisation d'une structure se produit laquelle consiste en une carcasse dendritique AnMem et un eutectique, qui remplit l'espace entre les bras de dendrite.
  9. Procédé selon l'une quelconque des revendications 6 à 8 précédentes, dans lequel le composant A dans la formule AnMem est choisi dans le groupe constitué par Ca, Sr, Li, Mg, Ba.
  10. Procédé selon les revendications 6 à 9, dans lequel les composés intermétalliques sont choisis dans le groupe contenant Ca et Sr en tant que composant A dans la formule AnMem constitué par Ca3Ag, Ca2Cu, Ca28Ga11, Ca3ln, Ca2Si, Ca2Ge, Ca2Sn, Sr3Ag2, SrCu, Sr8Al7, Sr8Ga7, Sr3ln, Sr2Si, Sr2Ge, Sr2Sn et SrNi.
  11. Procédé selon l'une quelconque des revendications 6 à 10 précédentes, dans lequel le métal A est fondu dans une atmosphère d'argon pur sous une pression d'environ 1 à 100 mbar à l'aide d'un chauffage inductif tout en maintenant sous le creuset une pression légèrement en excès.
  12. Procédé selon l'une quelconque des revendications 6 à 11 précédentes, dans lequel les paramètres du procédé de sublimation sont définis à partir des diagrammes de phase et des données thermodynamiques sur les alliages A - Me, dans lequel la température de volatilisation est limitée par l'aire de sous-solides et par les pressions auxquelles une décomposition de cristaux de AnMem n'a pas lieu.
  13. Procédé selon l'une quelconque des revendications 6 à 12 précédentes, dans lequel le traitement thermique additionnel de la grenaille de coulée consiste en une sublimation destinée à éliminer une phase volatile A du matériau pour obtenir une structure de type squelette de composés intermétalliques isolés.
  14. Procédé selon l'une quelconque des revendications 6 à 13 précédentes, dans lequel la condensation de l'argon liquide à une pression positive se fait dans la gamme de pression de 1 à 5 bar afin d'obtenir un volume suffisant de liquide de trempe.
  15. Appareil destiné à réaliser le procédé selon une ou plusieurs des revendications 7 à 14 précédentes, ledit appareil comprenant :
    - un compartiment de charge (I) comprenant une boîte à gants et un doseur (4) destinés à charger et mélanger des métaux ou composants initiaux,
    - un compartiment de fusion (11) comprenant un dispositif de chauffage (8) et un creuset (6), dans lequel les métaux ou composants initiaux, précédemment soumis à un dégazage profond, sont introduits,
    - un compartiment de trempe (lll), où les gouttelettes se solidifient dans de l'argon liquide,
    - un compartiment de sublimation (IV) comprenant un collecteur de particule (13), un robinet de vapeur (11) et un analyseur de gaz.
EP05007316A 2005-04-04 2005-04-04 Matériau de dégazage à base de composés intermétalliques et son procédé de production Not-in-force EP1600232B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT05007316T ATE350188T1 (de) 2005-04-04 2005-04-04 Getter auf grund von intermetallischen verbindungen sowie verfahren zu dessen herstellung
EP05007316A EP1600232B1 (fr) 2005-04-04 2005-04-04 Matériau de dégazage à base de composés intermétalliques et son procédé de production
DE602005000400T DE602005000400D1 (de) 2005-04-04 2005-04-04 Getter auf Grund von intermetallischen Verbindungen sowie Verfahren zu dessen Herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05007316A EP1600232B1 (fr) 2005-04-04 2005-04-04 Matériau de dégazage à base de composés intermétalliques et son procédé de production

Publications (2)

Publication Number Publication Date
EP1600232A1 EP1600232A1 (fr) 2005-11-30
EP1600232B1 true EP1600232B1 (fr) 2007-01-03

Family

ID=34934736

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05007316A Not-in-force EP1600232B1 (fr) 2005-04-04 2005-04-04 Matériau de dégazage à base de composés intermétalliques et son procédé de production

Country Status (3)

Country Link
EP (1) EP1600232B1 (fr)
AT (1) ATE350188T1 (fr)
DE (1) DE602005000400D1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075680A1 (fr) 2005-01-14 2006-07-20 Matsushita Electric Industrial Co., Ltd. Substance d'adsorption de gaz, alliage d'adsorption de gaz et materiau d'adsorption de gaz
EP1791151A1 (fr) * 2005-11-29 2007-05-30 Nanoshell Materials Research & Development GmbH Matériaux métalliques de dégazage à base d'alliage de lithium
EP1821328A1 (fr) 2006-02-10 2007-08-22 Nanoshell Materials Research & Development GmbH Matériau de dégazage dendritique et métallique et son procédé de production
CN108265189B (zh) * 2018-01-24 2019-09-13 福州大学 一种Bi掺杂立方相锗钙热电材料及其微波固相制备方法
CN108165790B (zh) * 2018-01-24 2019-06-04 福州大学 一种立方相Ca2Ge合金材料及其微波固相制备方法
CN110899710B (zh) * 2018-09-14 2023-03-17 于志远 一种制备金属或合金球形粉末的方法和装置
CN110666114A (zh) * 2019-11-14 2020-01-10 江西江锐新材料科技有限公司 一种镍锂合金制备设备及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE762989A (fr) * 1970-02-16 1971-07-16 Eastman Kodak Co Procede de granulation d'une matiere fondue
JPH03170661A (ja) * 1989-11-27 1991-07-24 Kobe Steel Ltd 昇華性金属の蒸発方法
WO2004082873A1 (fr) * 2003-03-20 2004-09-30 'konstantin' Technologies Gmbh Procede et dispositif pour produire des poudres et des granules coules spheriques de grande purete a partir de metaux ou d'alliages chimiquement actifs

Also Published As

Publication number Publication date
DE602005000400D1 (de) 2007-02-15
ATE350188T1 (de) 2007-01-15
EP1600232A1 (fr) 2005-11-30

Similar Documents

Publication Publication Date Title
EP1600232B1 (fr) Matériau de dégazage à base de composés intermétalliques et son procédé de production
US20060225817A1 (en) Gas sorbents on the basis of intermetallic compounds and a method for producing the same
DE60105412T2 (de) Nicht verdampfbare getterlegierung
RU2147386C1 (ru) Композиция из веществ для низкотемпературного инициирования процесса активирования газопоглощающих веществ и содержащие ее газопоглощающие средства
EP1953800B1 (fr) Compositions fournissant du mercure
KR100966669B1 (ko) 수소 흡착을 위한 비-증발성 게터 합금
US20030203105A1 (en) Composite materials capable of hydrogen sorption and methods for the production thereof
JP2631055B2 (ja) 非蒸発型バリウムゲッタ合金による残留気体の収着方法
US8529673B2 (en) Safe gas sorbents with high sorption capacity on the basis of lithium alloys
JP2627703B2 (ja) 非蒸発型バリウムゲッタ合金による残留気体、特に窒素気体の収着方法
US20070196256A1 (en) Metallic gas sorbents on the basis of lithium alloys
US8623302B2 (en) Barium containing granules for sorption applications
US20050163930A1 (en) Device and method for producing a calcium-rich getter thin film
US4201739A (en) Manufacture of metal halide particles
US20050089627A1 (en) Method of obtaining protective coatings on the surface of chemically active materials
EP1821328A1 (fr) Matériau de dégazage dendritique et métallique et son procédé de production
RU2082249C1 (ru) Способ сорбции остаточного газа, в частности газообразного азота посредством неиспаренного бариевого газопоглотительного сплава
JP3244332B2 (ja) 希土類金属球状粒子の製造方法およびその装置
DE60022045T2 (de) Getter enthaltende vorrichtungen zur verdampfung von kalzium
A Chuntonov et al. Evaporators of Reactive Metals and Droplet Casting
CZ7198A3 (cs) Jednotka s odpařitelným getrem se zkrácenou dobou aktivace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20051014

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005000400

Country of ref document: DE

Date of ref document: 20070215

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070403

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070604

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

26N No opposition filed

Effective date: 20071005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070103

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070704

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090404