EP1600230B1 - Vorrichtung und Verfahren zum Herstellen eines Gusskörpers zur Verwendung beim Genauguss - Google Patents

Vorrichtung und Verfahren zum Herstellen eines Gusskörpers zur Verwendung beim Genauguss Download PDF

Info

Publication number
EP1600230B1
EP1600230B1 EP05252383A EP05252383A EP1600230B1 EP 1600230 B1 EP1600230 B1 EP 1600230B1 EP 05252383 A EP05252383 A EP 05252383A EP 05252383 A EP05252383 A EP 05252383A EP 1600230 B1 EP1600230 B1 EP 1600230B1
Authority
EP
European Patent Office
Prior art keywords
shell
heating
composition
strength
mor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05252383A
Other languages
English (en)
French (fr)
Other versions
EP1600230A1 (de
Inventor
Jacob A. Snyder
James T. Beals
Lea D. Kennard
Joshua E. Persky
Carl R. Verner
Dawn D. Mandich
Stephen D. Murray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of EP1600230A1 publication Critical patent/EP1600230A1/de
Application granted granted Critical
Publication of EP1600230B1 publication Critical patent/EP1600230B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/043Removing the consumable pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C13/00Moulding machines for making moulds or cores of particular shapes
    • B22C13/08Moulding machines for making moulds or cores of particular shapes for shell moulds or shell cores
    • B22C13/085Moulding machines for making moulds or cores of particular shapes for shell moulds or shell cores by investing a lost pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • the invention relates to investment casting. More particularly, the invention relates to investment casting using molds having oxidizable cores.
  • Investment casting is a commonly used technique for forming metallic components having complex geometries, especially hollow components, and is used in the fabrication of superalloy gas turbine engine components.
  • Gas turbine engines are widely used in applications including aircraft propulsion, electric power generation, ship propulsion, and pumps. In gas turbine engine applications, efficiency is a prime objective.
  • Cooling is typically provided by flowing relatively cool air from the compressor section of the engine through passages in the turbine components to be cooled. Such cooling comes with an associated cost in engine efficiency. Consequently, there is a strong desire to provide enhanced specific cooling, maximizing the amount of cooling benefit obtained from a given amount of cooling air. This may be obtained by the use of fine, precisely located, cooling passageway sections.
  • a mold is prepared having one or more mold cavities, each having a shape generally corresponding to the part to be cast.
  • An exemplary process for preparing the mold involves the use of one or more wax patterns of the part. The patterns are formed by molding wax over ceramic cores generally corresponding to positives of the cooling passages within the parts.
  • a ceramic shell is formed around one or more such patterns in well known fashion. The wax may be removed such as by melting in an autoclave. The shell may be fired to strengthen the shell. This leaves a mold comprising the shell having one or more part-defining compartments which, in turn, contain the ceramic core(s) defining the cooling passages.
  • Molten alloy may then be introduced to the mold to cast the part(s). Upon cooling and solidifying of the alloy, the shell and core may be mechanically and/or chemically removed from the molded part(s). The part(s) can then be machined and/or treated in one or more stages.
  • the ceramic cores themselves may be formed by molding a mixture of ceramic powder and binder material by injecting the mixture into hardened metal dies. After removal from the dies, the green cores are thermally post-processed to remove the binder and fired to sinter the ceramic powder together.
  • the trend toward finer cooling features has taxed core manufacturing techniques. The fine features may be difficult to manufacture and/or, once manufactured, may prove fragile.
  • U.S. Patent No. 6,637,500 of Shah et al. discloses various examples of a ceramic and refractory metal core combination. Various refractory metals, however, tend to oxidize at high temperatures in the vicinity of the temperatures used to fire the shell. Thus, the shell firing may degrade the refractory metal cores and, thereby produce potentially unsatisfactory part internal features. Accordingly, there remains room for further improvement in such cores and their manufacturing techniques.
  • One aspect of the invention involves a method for forming an investment casting mold.
  • a shell is formed over a pattern comprising a hydrocarbon-based body with a refractory metal-based core at least partially embedded in the body.
  • the body is then substantially removed from the shell.
  • the shell is strengthened by heating in a first atmosphere of a first composition.
  • the shell is further strengthened by heating in a vacuum or second atmosphere of a second composition, different than the first composition.
  • the heating of the further strengthening step may be a preheating prior to an introduction of molten metal to the mold.
  • the first composition may be more oxidative than the second composition.
  • the method may be used to fabricate a gas turbine engine airfoil element such as a blade or vane.
  • the first composition may consist, in major part (e.g., by volume), of air.
  • the second composition may consist, in major part, of one or more inert gases.
  • the first composition may have an oxygen partial pressure of at least 15kPa.
  • the second composition may have an oxygen partial pressure of no more than 10kPa.
  • the strengthening may be effective to provide the shell with a first modulus of rupture (MOR) strength of 65-80% of a maximum MOR strength.
  • the further strengthening may be effective to provide the shell with a second MOR strength of at least 85% of said maximum MOR strength. After the substantial removal of the body, the shell may have a preliminary MOR strength of no more than 50% of said maximum MOR strength.
  • Another aspect of the invention involves a method for investment casting.
  • a casting mold may be formed.
  • Molten metal may be introduced to the mold.
  • the molten metal may be permitted to solidify.
  • the mold may be destructively removed.
  • the temperature of the shell does not fall below a threshold (such as 1200F (649°C)) between the further strengthening and the introduction of the molten metal.
  • One or more coating layers are applied to a sacrificial pattern having a wax first portion and a second portion comprising refractory metal.
  • a steam dewaxing may remove a major portion of the pattern first portion and leave the second portion within a shell formed by the coating layers.
  • There may be a first heating of the shell to harden the shell and remove residues or byproducts of the wax. This first heating may be effective to provide the shell with a first modulus of rupture (MOR) strength no more than 85% of a maximum MOR strength.
  • MOR modulus of rupture
  • a second heating of the shell may strengthen the shell to a second MOR strength.
  • the first heating may be in an oxidizing atmosphere and the second heating may be in vacuum or an inert atmosphere.
  • the second heating may be a preheating prior to molten metal introduction.
  • the first MOR strength may be 65-80% of the maximum MOR strength.
  • the second heating may be effective so that the second MOR strength is at least 85% of the maximum MOR strength.
  • the first heating may have a peak temperature between 800F and 1100F (427-593°C).
  • the second heating may have a peak temperature in excess of 1500F (816°C).
  • the first heating may have a temperature between 800F and 1100F (427-593°C) for at least 2.0 hours.
  • the second heating may have a temperature in excess of 1500F (816°C) for at least 1.0 hour.
  • the second portion may comprise the refractory metal core, a coating on the refractory metal core, and a ceramic core secured to the refractory metal core prior to the applying.
  • One or more coating layers are applied to a sacrificial pattern having a first portion for forming a mold void and a second portion for forming a portion of the mold.
  • a major portion of the pattern first portion is removed leaving the second portion within a shell formed by the coating layers.
  • the shell is initially hardened effective to provide the shell with a first modulus of rupture (MOR) strength no more than 85% of a maximum MOR strength.
  • MOR modulus of rupture
  • the shell is further hardened without substantial degradation of the pattern second portion.
  • the method may be used to fabricate a gas turbine engine component.
  • the second step may be essentially performed under an oxygen partial pressure of at least 20 kPa.
  • the third step may be essentially performed under an oxygen partial pressure of no more than 5 kPa.
  • Another aspect of the invention involves a system for forming an investment casting mold.
  • Means are provided for forming a shell over a pattern.
  • the pattern comprises a hydrocarbon-based body with a refractory metal-based core at least partially embedded in the body.
  • Means are provided for substantially removing the body from the shell.
  • Means are provided for strengthening the shell by heating in a first atmosphere of a first composition.
  • Means are provided for further strengthening of the shell by heating in a vacuum or a second atmosphere of a second composition, different than the first composition.
  • FIG. 1 shows an exemplary method 20 for forming an investment casting mold.
  • One or more metallic core elements are formed 22 (e.g., of refractory metals such as molybdenum and niobium by stamping or otherwise cutting from sheet metal) and coated 24.
  • Suitable coating materials include silica, alumina, zirconia, chromia, mullite and hafnia.
  • CTE coefficient of thermal expansion
  • Coatings may be applied by any appropriate technique (e.g., CVD, PVD, electrophoresis, and sol gel techniques). Individual layers may typically be 0.1 to 1 mil (0.00254 to 0.0254 mm) thick.
  • Metallic layers of Pt, other noble metals, Cr, and Al may be applied to the metallic core elements for oxidation protection, in combination with a ceramic coating for protection from molten metal erosion and dissolution.
  • One or more ceramic cores are also formed 26 (e.g., of silica in a molding and firing process).
  • One or more of the coated metallic core elements (hereafter refractory metal cores (RMCs)) are assembled 28 to one or more of the ceramic cores.
  • RMCs refractory metal cores
  • the core assembly is then overmolded 30 with an easily sacrificed material such as a natural or synthetic wax (e.g., via placing the assembly in a mold and molding the wax around it). There may be multiple such assemblies involved in a given mold.
  • the overmolded core assembly (or group of assemblies) forms a casting pattern with an exterior shape largely corresponding to the exterior shape of the part to be cast.
  • the pattern may then be assembled 32 to a shelling fixture (e.g., via wax welding between end plates of the fixture).
  • the pattern may then be shelled 34 (e.g., via one or more stages of slurry dipping, slurry spraying, or the like).
  • the drying provides the shell with at least sufficient strength or other physical integrity properties to permit subsequent processing.
  • the shell containing the invested core assembly may be disassembled 38 fully or partially from the shelling fixture and then transferred 40 to a dewaxer (e.g., a steam autoclave).
  • a dewaxer e.g., a steam autoclave
  • a steam dewax process 42 removes a major portion of the wax leaving the core assembly secured within the shell.
  • the shell and core assembly will largely form the ultimate mold.
  • the dewax process typically leaves a wax or byproduct hydrocarbon residue on the shell interior and core assembly.
  • the shell is transferred 44 to an atmospheric furnace (e.g., containing air or other oxidizing atmosphere) in which it is heated 46 to a first peak temperature and for a first time duration effective to prestrengthen the shell.
  • the heating 46 may also remove any remaining wax residue (e.g., by vaporization) and/or converting hydrocarbon residue to carbon.
  • Oxygen in the atmosphere reacts with the carbon to form carbon dioxide. Removal of the carbon is advantageous to avoid the carbon clogging the vacuum pumps used in subsequent stages of operation. This burning off of the carbon may be generally coincident with oxidation of the shell associated with the advantageous prestrengthening of the shell.
  • An exemplary prestrengthening provides the shell with a fraction of its ultimate (e.g., the maximum fully-fired) modulus of rupture (MOR) strength (e.g., 50-90% ,more narrowly 60-85% or 65-80%).
  • MOR modulus of rupture
  • industry practice generally associates firing at a temperature of at least 1500F (816°C) for a duration of at least one hour as essentially fully firing the shell to achieve essentially maximum MOR strength.
  • the shell is maintained at least generally isothermal for at least this period. This may represent an increase from well below 50% of ultimate MOR strength in the relatively green state immediately post-dewax.
  • the pre-harden temperature is, advantageously, sufficiently low, in view of the oxidizing nature of the atmosphere in the atmospheric furnace to avoid substantial oxidation of the metallic core element(s).
  • oxidation is still a substantial potential problem due to the presence of microcracks and porosity in the coating. Oxidation can produce coating delamination or other damage and surface irregularities on the metallic core. Coating damage may allow vaporization of the metallic core elements at the high subsequent casting temperatures and/ or reactions between the casting alloy and the metallic core elements. Surface irregularities caused by the oxidation may, in turn form imperfections in the associated interior surfaces of the cast part - a particular problem where fine features are being formed.
  • the exemplary peak preharden temperature is less than 1150F (621°C) (e.g., 800-1100F (427-593°C)) for a preharden time of 2-4 hours.
  • An exemplary preharden temperature and time is about 1000F (538°C) for about 3.5 hours.
  • the mold may be removed from the atmospheric furnace, allowed to cool, and inspected 48.
  • the mold may be seeded 50 by placing a metallic seed in the mold to establish the ultimate crystal structure of a directionally solidified (DS) casting or a single-crystal (SX) casting. Nevertheless the present teachings may be applied to other DS and SX casting techniques (e.g., wherein the shell geometry defines a grain selector) or to casting of other microstructures.
  • the mold may be transferred 52 to a casting furnace (e.g., placed atop a chill plate in the furnace).
  • the casting furnace may be pumped down to vacuum 54 or charged with a non-oxidizing atmosphere (e.g., inert gas) to prevent oxidation of the casting alloy.
  • a non-oxidizing atmosphere e.g., inert gas
  • the casting furnace is heated 56 to preheat the mold.
  • This preheating serves two purposes: to further harden and strengthen the shell (e.g., by at least 5% more of ultimate MOR strength); and to preheat the shell for the introduction of molten alloy to prevent thermal shock and premature solidification of the alloy.
  • the preheat temperature and duration are advantageously sufficient to substantially further harden the shell above its prehardened condition. This may involve sintering of the ceramic particles within the shell.
  • Advantageous MOR is in excess of 85%, and more particularly, in excess of 90 or 95% of ultimate MOR.
  • Exemplary preheat times are approximately one hour (e.g., 0.25-4.0 hours, more narrowly, 0.75-2.0 hours).
  • the molten alloy is poured 58 into the mold and the mold is allowed to cool to solidify 60 the alloy (e.g., after withdrawal from the furnace hot zone).
  • the vacuum may be broken 62 and the chilled mold removed 64 from the casting furnace.
  • the shell may be removed in a deshelling process 66 (e.g., mechanical breaking of the shell) and the core assembly removed in a decoring process 68 (e.g., a chemical process) to leave a cast article (e.g., a metallic precursor of the ultimate part).
  • the cast article may be machined 70, chemically and/or thermally treated 72 and coated 74 to form the ultimate part.
  • FIG. 2 shows an alternate version 100 of the exemplary process wherein like steps are shown with like numerals.
  • the alternate process separates the firing from the preheating.
  • the prehardened mold is transferred 102 to a nonatmospheric furnace which may be separate from the casting furnace in which casting subsequently occurs.
  • the nonatmospheric furnace may be pumped down 104 to vacuum (and/or charged with an inert atmosphere such as a noble gas or mixture thereof).
  • the mold may be fired 106 at a temperature and duration similar to the preheat 56.
  • the vacuum may be broken 108 (or inert atmosphere otherwise vented) and the mold removed 110.
  • a pump down 118 may be similar to the pump down 54.
  • a preheat 120 may be similar to the preheat 56 or more abrupt as the firing function will, at least largely, already have taken place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)
  • Casting Devices For Molds (AREA)

Claims (26)

  1. Verfahren zur Herstellung einer Investmentgussform, aufweisend:
    Ausbilden (34) einer Gießmaske über einem Modell, das einen Körper auf Kohlenwasserstoffbasis mit einem Kern auf der Basis eines hitzebeständigen Metalls, der zumindest teilweise in den Körper eingebettet ist, aufweist; und
    im wesentlichen Entfernen (42) des Körpers aus der Gießmaske;
    wobei das Verfahren dadurch gekennzeichnet ist, dass es außerdem aufweist:
    Härten der Gießmaske durch Erhitzen (46) in einer ersten Atmosphäre einer ersten Zusammensetzung; und
    weiter Härten der Gießmaske durch Erhitzen (56; 106) in einem Vakuum oder einer zweiten Atmosphäre einer zweiten Zusammensetzung, die von der ersten Zusammensetzung verschieden ist.
  2. Verfahren nach Anspruch 1, bei dem:
    das Erhitzen (46) des Härtens im wesentlichen bei 800 bis 1100 F (427-593°C) stattfindet; und
    das Erhitzen , (56; 106) des weiteren Härtens im wesentlichen bei 1400 bis 1600 F (760 bis 871°C) stattfindet.
  3. Verfahren nach Anspruch 1 oder 2, bei dem:
    das Erhitzen (56) des weiteren Härtens ein Vorerhitzen vor einer Einbringung (58) von geschmolzenem Metall in die Form ist.
  4. Verfahren nach irgendeinem vorangehenden Anspruch, bei dem:
    die erste Zusammensetzung oxidierender als die zweite Zusammensetzung ist.
  5. Verfahren nach irgendeinem vorangehenden Anspruch, das zur Herstellung eines Gasturbinenmaschinen-Turbinen-Strömungsprofilelements verwendet wird.
  6. Verfahren nach irgendeinem vorangehenden Anspruch, bei dem:
    die erste Zusammensetzung mehrheitlich aus Luft besteht.
  7. Verfahren nach Anspruch 6, bei dem:
    die zweite Zusammensetzung mehrheitlich aus einem oder mehreren inerten Gasen besteht.
  8. Verfahren nach irgendeinem vorangehenden Anspruch, bei dem:
    die erste Zusammensetzung einen Sauerstoff-Partialdruck von mindestens 15 kPa hat.
  9. Verfahren nach Anspruch 8, bei dem:
    die zweite Zusammensetzung einen Sauerstoff-Partialdruck von nicht mehr als 10 kPa hat.
  10. Verfahren nach irgendeinem vorangehenden Anspruch, außerdem aufweisend:
    vollständig Einbetten des Kerns auf der Basis von hitzebeständigem Metall in den Körper auf Kohlenwasserstoffbasis.
  11. Verfahren nach irgendeinem vorangehenden Anspruch, bei dem:
    das Härten dahingehend wirksam ist, der Gießmaske eine erste Bruchmodul (MOR-modulus of rupture)-Festigkeit von 65 bis 80% einer maximalen MOR-Festigkeit zu verleihen; und
    das weitere Härten dahingehend wirksam ist, der Gießmaske eine zweite MOR-Festigkeit von mindestens 85% der maximalen MOR-Festigkeit zu verleihen.
  12. Verfahren nach Anspruch 11, bei dem:
    die Gießmaske, nach dem im wesentlichen Entfernen, eine vorläufige MOR-Festigkeit von nicht mehr als 50% der maximalen MOR-Festigkeit hat.
  13. Verfahren zum Investmentgießen aufweisend:
    Herstellen einer Investmentgussform nach einem Verfahren, wie es in irgendeinem vorangehenden Anspruch beansprucht wird;
    Einbringen (58) von geschmolzenem Metall in die Form;
    Zulassen, dass das geschmolzene Metall fest wird (60); und
    Entfernen (64) der Form unter Zerstörung.
  14. Verfahren nach Anspruch 13, bei dem:
    eine Temperatur der Gießmaske zwischen dem weiteren Härten und dem Einbringen nicht unter 1200F (649°C) fällt.
  15. Verfahren nach Anspruch 1, bei dem der Körper auf Kohlenwasserstoffbasis Wachs ist, und die Gießmaske durch Aufbringen (34) einer oder mehrerer Beschichtungsschichten auf das Modell hergestellt wird, und das aufweist;
    Dampf-Entwachsen (42) des beschichteten Modells, um einen Hauptteil des Wachskörpers zu entfernen und den Kern auf der Basis von hitzebeständigem Metall in der durch die Beschichtungsschichten ausgebildeten Gießmaske zu belassen;
    und bei dem das erste Erhitzen (46) die Gießmaske härtet und Rückstände oder Nebenprodukte des Wachses entfernt und der Gießmaske eine erste Bruchmodul (MOR)-Festigkeit von nicht mehr als 85% der maximalen MOR-FestigKeit verleiht; und
    das zweite Erhitzen (56; 106) der Gießmaske die Gießmaske auf eine zweite MOR-Festigkeit härtet.
  16. Verfahren nach Anspruch 15, bei dem:
    das erste Erhitzen (46) in einer oxidierenden Atmosphäre stattfindet; und
    das zweite Erhitzen (56; 106) im Vakuum oder in einer inerten Atmosphäre stattfindet.
  17. Verfahren nach Anspruch 15 oder 16, bei dem;
    das zweite Erhitzen (56) ein Vorerhitzen vor der Einbringung von geschmolzenem Metall ist.
  18. Verfahren nach Anspruch 15, 16 oder 17, bei dem:
    die erste MOR-Festigkeit 65 bis 80% der maximalen MOR-Festigkeit beträgt; und
    das zweite Erhitzen (56; 106) dahingehend wirksam ist, dass die zweite MOR-Festigkeit mindestens 85% der maximalen MOR-Festigkeit beträgt.
  19. Verfahren nach irgendeinem der Ansprüche 15 bis 18, bei dem:
    das erste Erhitzen (46) eine Spitzentemperatur zwischen 800F und 9100F (427 bis 593°C) aufweist; und
    das zweite Erhitzen (56: 106) eine Spitzentemperatur über 1500F (816°C) aufweist.
  20. Verfahren nach einem der Ansprüche 15 bis 19, bei dem:
    das erste Erhitzen (46) eine Temperatur zwischen 800F (427°C) und 1100F (593°C) für mindestens 2,0 Stunden aufweist; und
    das zweite Erhitzen (56; 106) eine Temperatur über 1500F (816°C) für mindestens 1,0 Stunden aufweist.
  21. Verfahren nach einem der Ansprüche 15 bis 20, bei dem der zweite Teil aufweist:
    den Kern aus hitzebeständigem Metall;
    eine Beschichtung auf dem Kern aus hitzebeständigem Metall; und
    einen vor dem Aufbringen der Beschichtung an dem Kern aus hitzebeständigem Metall befestigten Keramik-Kern.
  22. Verfahren nach Anspruch 1, bei dem die Gießmaske durch Aufbringen (34) einer oder mehrerer Beschichtungsschichten auf das Modell hergestellt wird, und das aufweist:
    einen ersten Schritt (42), um einen Hauptteil des Körpers auf Kohlenwasserstoffbasis zu entfernen und den Kern auf der Basis von hitzebeständigem Metall in der durch die Beschichtungsschichten ausgebildeten Gießmaske zu belassen;
    einen zweiten Schritt (46) zur Anfangshärtung der Gießmaske, der wirksam ist, der Gießmaske eine erste Bruchmodul (MOR)-Festigkeit von nicht mehr als 85% einer maximalen MOR-Festigkeit zu verleihen; und
    einen dritten Schritt (56; 106) zur weiteren Härtung der Gießmaske ohne wesentliche Verschlechterung des Kerns auf der Basis von hitzebeständigem Metall.
  23. Verfahren nach Anspruch 22, das zur Herstellung einer Gasturbinenmaschinen-Komponente verwendet wird.
  24. Verfahren nach Anspruch 22 oder 23, bei dem:
    der zweite Schritt (46) im wesentlichen unter einem Sauerstoff-Partialdruck von mindestens 20 kPa durchgeführt wird,
    der dritte Schritt (56; 106) im wesentlichen unter einem Sauerstoff-Partialdruck von nicht mehr als 5 kPa durchgeführt wird.
  25. Verfahren zum Investmentgießen aufweisend:
    Herstellen einer Investmentgussform nach einem Verfahren, wie es in Anspruch 23 oder 24 beansprucht wird;
    Einbringen (58) von geschmolzenem Metall in die Form;
    Zulassen, dass das geschmolzene Metall fest wird (60); und
    Entfernen (64) der Investmentgussform unter Zerstörung.
  26. System zur Herstellung einer Investmentgussform, aufweisend:
    Mittel zur Ausbildung einer Gießmaske über einem Modell, wobei das Modell einen Körper auf Kohlenwasserstoffbasis mit einem Kern auf der Basis von hitzebeständigem Metall, der zumindest teilweise in den Körper eingebettet ist, aufweist; und
    Mittel zum im wesentlichen Entfernen des Körpers aus der Gießmaske;
    wobei das System dadurch gekennzeichnet ist, dass es außerdem aufweist:
    Mittel zum Härten der Gießmaske durch Erhitzen in einer ersten Atmosphäre einer ersten Zusammensetzung; und
    Mittel zum weiteren Härten der Gießmaske durch Erhitzen in einem Vakuum oder einer zweiten Atmosphäre einer zweiten Zusammensetzung, die von der ersten Zusammensetzung verschieden ist.
EP05252383A 2004-04-15 2005-04-15 Vorrichtung und Verfahren zum Herstellen eines Gusskörpers zur Verwendung beim Genauguss Active EP1600230B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/825,396 US6951239B1 (en) 2004-04-15 2004-04-15 Methods for manufacturing investment casting shells
US825396 2004-04-15

Publications (2)

Publication Number Publication Date
EP1600230A1 EP1600230A1 (de) 2005-11-30
EP1600230B1 true EP1600230B1 (de) 2008-06-11

Family

ID=34940869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05252383A Active EP1600230B1 (de) 2004-04-15 2005-04-15 Vorrichtung und Verfahren zum Herstellen eines Gusskörpers zur Verwendung beim Genauguss

Country Status (10)

Country Link
US (1) US6951239B1 (de)
EP (1) EP1600230B1 (de)
JP (1) JP2005297067A (de)
KR (1) KR100619195B1 (de)
CN (1) CN1683098A (de)
AT (1) ATE397983T1 (de)
CA (1) CA2504059A1 (de)
DE (1) DE602005007420D1 (de)
RU (1) RU2299111C2 (de)
SG (1) SG116594A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7240718B2 (en) * 2005-09-13 2007-07-10 United Technologies Corporation Method for casting core removal
US20070068649A1 (en) * 2005-09-28 2007-03-29 Verner Carl R Methods and materials for attaching ceramic and refractory metal casting cores
US7861766B2 (en) * 2006-04-10 2011-01-04 United Technologies Corporation Method for firing a ceramic and refractory metal casting core
US20080110024A1 (en) * 2006-11-14 2008-05-15 Reilly P Brennan Airfoil casting methods
US7967555B2 (en) * 2006-12-14 2011-06-28 United Technologies Corporation Process to cast seal slots in turbine vane shrouds
US7866370B2 (en) * 2007-01-30 2011-01-11 United Technologies Corporation Blades, casting cores, and methods
US20120175075A1 (en) * 2007-07-18 2012-07-12 United Technologies Corporation Preformed ceramic seed well for single crystal starter seed
US8434997B2 (en) * 2007-08-22 2013-05-07 United Technologies Corporation Gas turbine engine case for clearance control
US7942188B2 (en) * 2008-03-12 2011-05-17 Vent-Tek Designs, Llc Refractory metal core
US8042268B2 (en) * 2008-03-21 2011-10-25 Siemens Energy, Inc. Method of producing a turbine component with multiple interconnected layers of cooling channels
US9174271B2 (en) * 2008-07-02 2015-11-03 United Technologies Corporation Casting system for investment casting process
US8914976B2 (en) * 2010-04-01 2014-12-23 Siemens Energy, Inc. Turbine airfoil to shroud attachment method
US9403208B2 (en) 2010-12-30 2016-08-02 United Technologies Corporation Method and casting core for forming a landing for welding a baffle inserted in an airfoil
CN102161076B (zh) * 2011-04-21 2013-01-23 安徽应流铸业有限公司 精密铸造消失模精铸模壳的热态处理方法
CN102248124B (zh) * 2011-06-17 2012-12-26 河南豫兴铸造有限公司 一种整体铸件的蜡模成型工艺
US9314838B2 (en) * 2012-09-28 2016-04-19 Solar Turbines Incorporated Method of manufacturing a cooled turbine blade with dense cooling fin array
WO2014053189A1 (en) * 2012-10-05 2014-04-10 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Lost wax process and calcination furnace therefor
US20160001354A1 (en) * 2013-03-01 2016-01-07 United Technologies Corporation Gas turbine engine component manufacturing method and core for making same
CN103433431B (zh) * 2013-09-06 2016-08-31 安徽应流集团霍山铸造有限公司 气缸盖内腔的陶瓷芯
FR3020292B1 (fr) * 2014-04-24 2016-05-13 Snecma Moule pour fonderie monocristalline
FR3046736B1 (fr) 2016-01-15 2021-04-23 Safran Noyau refractaire comprenant un corps principal et une coque
FR3054149B1 (fr) 2016-07-22 2019-04-05 Safran Procede de fabrication de moule carapace
US10639705B2 (en) * 2016-12-23 2020-05-05 Fisher Controls International Llc Combined technology investment casting process
US10814377B2 (en) 2017-06-28 2020-10-27 Raytheon Technologies Corporation Method for casting shell dewaxing
CN107745082A (zh) * 2017-09-01 2018-03-02 东风精密铸造安徽有限公司 一种热压注陶瓷型芯及其制备方法
FR3084894B1 (fr) * 2018-08-07 2022-01-21 Commissariat Energie Atomique Revetement ceramique pour noyau de fonderie
RU2718635C1 (ru) * 2019-06-19 2020-04-10 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Способ изготовления керамической оболочки для литья лопаток (варианты)
CN112808936A (zh) * 2020-12-30 2021-05-18 中核北方核燃料元件有限公司 一种cf4核燃料管座的成型制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB783805A (en) * 1954-07-26 1957-10-02 Mercast Corp Improvements in disposable casting patterns and the production of shell moulds thereby
US3519057A (en) * 1967-08-08 1970-07-07 Howmet Corp Eliminating patterns from and hardening of shell molds
JPH01237047A (ja) * 1988-03-18 1989-09-21 Hitachi Ltd シェルモールド用金型
US6209621B1 (en) * 1995-07-07 2001-04-03 Depuy Orthopaedics, Inc. Implantable prostheses with metallic porous bead preforms applied during casting and method of forming the same
GB9601910D0 (en) * 1996-01-31 1996-04-03 Rolls Royce Plc A method of investment casting and a method of making an investment casting mould
CA2254505A1 (en) * 1997-12-22 1999-06-22 Joseph C. Schim Rapidly forming complex hollow shapes using lost wax investment casting
DE19830607C2 (de) * 1998-07-09 2002-08-01 Hte Ag The High Throughput Exp Verfahren zum Nachweis eines Produktes im Abstrom eines katalytischen Materials einer Vielzahl von katalytischen Materialien
US6932145B2 (en) * 1998-11-20 2005-08-23 Rolls-Royce Corporation Method and apparatus for production of a cast component
JP4903310B2 (ja) * 1998-11-20 2012-03-28 ロールス−ロイス・コーポレーション 鋳造部品を製造する装置
US20020104639A1 (en) * 2001-01-09 2002-08-08 Kroes Calvin L. Investment casting with improved melt feeding
US20030015308A1 (en) * 2001-07-23 2003-01-23 Fosaaen Ken E. Core and pattern manufacture for investment casting
US6637500B2 (en) 2001-10-24 2003-10-28 United Technologies Corporation Cores for use in precision investment casting

Also Published As

Publication number Publication date
SG116594A1 (en) 2005-11-28
US20050230078A1 (en) 2005-10-20
RU2299111C2 (ru) 2007-05-20
CA2504059A1 (en) 2005-10-15
CN1683098A (zh) 2005-10-19
DE602005007420D1 (de) 2008-07-24
ATE397983T1 (de) 2008-07-15
KR20060045420A (ko) 2006-05-17
KR100619195B1 (ko) 2006-09-06
JP2005297067A (ja) 2005-10-27
US6951239B1 (en) 2005-10-04
EP1600230A1 (de) 2005-11-30

Similar Documents

Publication Publication Date Title
EP1600230B1 (de) Vorrichtung und Verfahren zum Herstellen eines Gusskörpers zur Verwendung beim Genauguss
EP1844878B1 (de) Verfahren zur Feuerung von keramische und metallkerne im Feingiessverfahren
EP1857198B1 (de) Verfahren zum Verbinden von Gusskernen
US8100165B2 (en) Investment casting cores and methods
EP1992431B1 (de) Präzisionsgusskerne und Verfahren
US7753104B2 (en) Investment casting cores and methods
EP2511024B1 (de) Profilierter metallener gusskern
US10821501B2 (en) Coated casting core and manufacture methods
EP1785205B1 (de) Verfahren und Einrichtung zur Verbindung von keramische und metallkerne im Feingiessverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060504

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: SYSTEM AND METHOD FOR MANUFACTURING INVESTMENT CASTING SHELLS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 602005007420

Country of ref document: DE

Date of ref document: 20080724

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081011

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080922

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080911

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

26N No opposition filed

Effective date: 20090312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090415

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005007420

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005007420

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005007420

Country of ref document: DE

Owner name: UNITED TECHNOLOGIES CORP. (N.D.GES.D. STAATES , US

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP., HARTFORD, CONN., US

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200319

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005007420

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230321

Year of fee payment: 19