EP1590423A1 - Method for high-temperature distillation of residual oil in a limited time - Google Patents

Method for high-temperature distillation of residual oil in a limited time

Info

Publication number
EP1590423A1
EP1590423A1 EP03813544A EP03813544A EP1590423A1 EP 1590423 A1 EP1590423 A1 EP 1590423A1 EP 03813544 A EP03813544 A EP 03813544A EP 03813544 A EP03813544 A EP 03813544A EP 1590423 A1 EP1590423 A1 EP 1590423A1
Authority
EP
European Patent Office
Prior art keywords
oil
gas
column
vapors
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03813544A
Other languages
German (de)
French (fr)
Other versions
EP1590423B1 (en
Inventor
Hans-Jürgen WEISS
Udo Zentner
Helmut Heurich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lurgi Lentjes AG
Original Assignee
Lurgi Lentjes AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lurgi Lentjes AG filed Critical Lurgi Lentjes AG
Publication of EP1590423A1 publication Critical patent/EP1590423A1/en
Application granted granted Critical
Publication of EP1590423B1 publication Critical patent/EP1590423B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/28Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G70/00Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
    • C10G70/04Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes
    • C10G70/043Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes by fractional condensation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil

Definitions

  • the invention relates to a method for high-temperature short-term distillation of a residual oil from the processing of petroleum, natural bitumen or oil sand, wherein the residual oil is mixed with granular, hot coke as a heat transfer medium in a mixing plant, converted to oil vapor, gas and coke and gases and Extracts vapors from the mixer largely separately from the granular coke, cools gases and vapors and produces a product oil as condensate and gas, and that coke withdrawn from the mixer is heated again and returned to the mixer as a heat carrier.
  • a reduction of the pollutants can basically be done by a subsequent vacuum distillation of the product oil boiling above 360 ° C, in which a pollutant-containing vacuum residue (VR) and a largely pollutant-free vacuum gas oil (VGO) is obtained.
  • VGO pollutant-containing vacuum residue
  • VGO largely pollutant-free vacuum gas oil
  • a disadvantage of this method is that vacuum distillation is technically complex and is only possible up to certain boiling cut temperatures between VGO and VR in the range of approximately 500 to 560 ° C. This results in a large amount of VR containing pollutants, which can be converted in the FCC system but not in a hydrocracker.
  • the object of the invention is to improve the process for the high-temperature, short-term distillation of residual oils in such a way that the smallest possible residue fraction can be obtained from the product oil in a technically simple manner, in which the undesired catalyst pollutants are largely concentrated.
  • the object is achieved in that a pollutant-rich residue fraction of the vaporous product oil from the mixer after the addition of steam or gas to lower the partial pressure at temperatures below 450 ° C. is condensed in a column and taken off separately from the rest of the product oil.
  • the uncondensed product oil vapors can then be fed from the column to a fractionation column in which the remaining low-pollutant product oil is broken down into a VGO and a gasoline / gas oil fraction.
  • the invention makes use of the fact that the entire product oil is in vapor form at the outlet of the mixer and can be broken down into the desired fractions by fractional condensation.
  • the boiling cut between VGO and VR must be set as high as possible in the range between 450 ° C and 650 ° C, so that the separated VR fraction more than 60% of the Conradson carbon residue still contained in the product oil vapors (CCR ), contains more than 70% of the heavy metals nickel (Ni) and vanadium (V) still contained in the product oil vapors as well as more than 80% of the asphaltenes still contained in the product oil vapors.
  • the partial pressure of the oil fractions to be separated is reduced by introducing water vapor or gas into the column, so that at 450 ° C a heavy condensate with a start of boiling above 450 ° C condensed.
  • the condensation of the low-pollutant VGO (start of boiling approx. 360; boiling end 450 to 650 ° C) and the gasoline / gas oil fraction (boiling range C 5 - up to approx. 360 ° C) can then take place in a second condensation stage at correspondingly ' lower temperatures.
  • the low-pollutant VGO obtained in this way can then be catalytically converted to gasoline and gas oil in a hydrocracker and the heavy condensate can either be returned to the mixing reactor or used in some other way, for example as heavy fuel oil.
  • Design options of the method are explained using the drawing as an example. It shows
  • Fig. 1 is a flow diagram of the method.
  • Fig. 1 is a mixing reactor (1) through the line (3) 500 ° C to 700 ° C hot heat transfer coke from the collecting bunker (2).
  • residual oil with a temperature of 100 ° C. to 400 ° C. is fed to the mixing reactor (1) through line (4).
  • a conversion temperature of the mixture of 450 ° C. to 600 ° C. is established during the mixing.
  • the heat transfer coke in the mixing reactor (1) usually has a particle size in the range from 0.1 to 4 mm, so that at the mixer outlet the coke is largely separated from the gases and oil vapors formed in the mixing unit.
  • the mixer (1) has at least two intermeshing screws rotating in the same direction.
  • the screws are designed in the manner of a screw conveyor and are designed with spiral conveyor blades.
  • the hot, largely oil-free, granular coke leaves the mixing reactor (1) at the mixer outlet at a temperature of 450 to 600 ° C. and falls through a channel (7) into a post-degassing bunker (8), to which a stripping gas (9) is fed in the lower part can be. Residual gases and vapors can be drawn out of the post-degassing bunker (8) through the channel (7). Excess coke is withdrawn via line (2a), a part of the coke alternatively also being able to be withdrawn via lines (12a). The coke from line (12) reaches the collecting bunker (2) via a pneumatic conveyor line (10), which is supplied with combustion air via line (5) and fuel via line (6).
  • the coke heated in the pneumatic conveyor section (10) reaches the collecting bunker (2), from which exhaust gas is removed through line (11).
  • the coke in the collection bunker (2) has temperatures in the range of 500 to 700 ° C.
  • the gaseous and vaporous products of the mixing reactor (1) are passed through line (13) into a cyclone (14).
  • the fine coke particles are separated off here, which are passed through line (15) into the post-degassing bunker (8).
  • the gaseous and vaporous products are quenched from the cyclone (14) via line (16) in a column (17) and cooled from 450 to 600 ° C to 350 to 450 ° C.
  • Recirculated C - product gas from the container (23) or steam is introduced into the top of the column (17) via line (24a). This is the partial pressure of the vapor Product oil reduced so far that at 350 - 450 ° C a heavy oil fraction condenses with a boiling point between 450 and 650 ° C, in which almost all pollutants are concentrated. This prevents the condensed oil from decomposing or coking.
  • the column (17) is preferably a quench cooler with a downstream multiventuri scrubber, in which the gases and vapors originating from the mixing reactor (1) are cooled very efficiently in a co-current process and residual coke dust is washed out with its own condensate.
  • a quench cooler with a downstream multiventuri scrubber in which the gases and vapors originating from the mixing reactor (1) are cooled very efficiently in a co-current process and residual coke dust is washed out with its own condensate.
  • other apparatus can also be used for this purpose.
  • the boiling cut between VGO and VR is set to the highest possible temperature in the range from 450 to 650 ° C. This is done by feeding gas or steam to the top of the column (17) via line (24a) and by cooling the gases and vapors by means of cooled heavy oil condensate from line (27a).
  • the heavy oil condensate is withdrawn at a temperature of 350-450 ° C. from the bottom of the column (17) through line (27), cooled to the required temperature in a heat exchanger (25) and partly as a cooling / washing medium at the top of the column (17) fed again.
  • the rest of the heavy oil condensate is withdrawn as a product via line (27b).
  • the heavy oil condensate from line (27b) can then either be returned to the mixing reactor (1) or otherwise, e.g. as a heavy fuel oil.
  • the uncondensed gas / oil vapor mixture is drawn off via line (18) from the lower part of the column (17). According to a further embodiment of the invention, it can be passed into a fractionation column (19). There, the remaining product oil is separated into a low-pollutant VGO and a pollutant-free gasoline / gas oil fraction.
  • the VGO with a boiling point of 450-650 ° C. is drawn off from the bottom of the fractionation column (19) via line (21).
  • the VGO obtained in this way can then be catalytically converted to gasoline and gas oil in a hydrocracker (not shown).
  • the remaining gas / oil vapor mixture is cooled via line (20) in the condenser (22) and in the container (23) into a gasoline / gas oil fraction with a boiling range of, for example, C 5 - 360 ° C and a C 4 . -Gas separated.
  • the gasoline / gas oil fraction is withdrawn via line (26) and partly returned via line (26b) to the top of the fractionation column (19).
  • the remaining gasoline / gasoil mixture is discharged as product via line (26a).
  • the uncondensed C 4 . -Gas is discharged from the container (23) via line (24) upwards and partly returned via line (24a) to the column (17) and partly withdrawn as product via line (24b).
  • line (24) upwards and partly returned via line (24a) to the column (17) and partly withdrawn as product via line (24b).
  • the mixing reactor (1) is fed through line (4) 100 t / h of residual oil at a temperature of 300 ° C. 75 t / h gas / oil vapor mixture at 550 ° C. are passed from the mixing reactor (1) through line (13) into a cyclone (14) for dedusting. The remaining 25 t / h coke are passed through line (7) together with the heat transfer coke into the post-degassing bunker (8).
  • the gas / oil vapor mixture is passed from the cyclone (14) via line (16) into a column (17), where it is diluted with gas and cooled from 550 ° C. to 425 ° C.
  • the column (17) 43 t / h of C 4- gas from line (24a) and 55 t / h of cooled heavy oil condensate from line (27a) are fed at a temperature of 380 ° C.
  • 65 t / h of heavy oil condensate with an initial boiling point of 600 ° C. are drawn off from the bottom of the column (17) via line (27) and cooled in a heat exchanger (25) from 425 ° C. to 380 ° C. 55 t / h of cooled heavy oil condensate are then fed back to the top of the column (17) via line (27a) and 10 t / h are withdrawn as product via line (27b).
  • 108 t / h uncondensed gas / oil vapor mixture are passed via line (18) into a fractionation column (19). 40 t / h of low-pollutant VGO at a temperature of 350 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

The invention relates to a method for a high temperature short-time distillation of residual oil. The method according to the invention is characterized by a technically simple recovery of a small residual fraction from a gas and/or oil vapour mixture produced by a mixing apparatus (1). Said small residual fraction contains large quantities of undesirable polluting catalytic substances (CCR, Ni, V, asphaltenes). For this purpose, the gas and/or oil vapour mixture produced by the mixing apparatus (1) is diluted with gas or water vapour in a column (17) at a temperature of 450° C. in such a way that a high boiling fraction, which has a high content of the pollutant substances and whose initial boiling point is higher than 450° C., is condensed and extracted. Another realization of the method consists in introducing a non condensed oil produced in the column (17) into a fractionating column (19), where said oil is decomposed in order to produce a depressurized gas oil fraction having a low content of pollutants and a benzine/gas oil fraction.

Description

Verfahren zur Hochtemperatur-Kurzzeit-Destillation von RückstandsölProcess for high-temperature short-term distillation of residual oil
Beschreibungdescription
Die Erfindung betrifft ein Verfahren zur Hochtemperatur-Kurzzeit-Destillation eines Rückstandöls aus der Verarbeitung von Erdöl, natürlichem Bitumen oder Ölsand, wobei man das Rückstandöl mit körnigem, heißem Koks als Wärmeträger in einem Mischwerk mischt, zu Öldampf, Gas und Koks konvertiert und Gase und Dämpfe aus dem Mischwerk weitgehend getrennt vom kömigen Koks abzieht, Gase und Dämpfe abkühlt und ein Produktol als Kondensat sowie Gas erzeugt, und dass man aus dem Mischwerk abgezogenen Koks wieder erhitzt und als Wärmeträger in das Mischwerk zurückführt.The invention relates to a method for high-temperature short-term distillation of a residual oil from the processing of petroleum, natural bitumen or oil sand, wherein the residual oil is mixed with granular, hot coke as a heat transfer medium in a mixing plant, converted to oil vapor, gas and coke and gases and Extracts vapors from the mixer largely separately from the granular coke, cools gases and vapors and produces a product oil as condensate and gas, and that coke withdrawn from the mixer is heated again and returned to the mixer as a heat carrier.
Verfahren dieser Art sind in der DE-C-19724074 sowie der DE-A-19959587 beschrieben. Diese Verfahren haben die Eigenschaft, dass das erzeugte Produktol Schadstoffe wie Schwermetalle (Nickel, Vanadium), Conradson Carbon Rückstand (CCR) sowie Asphaltene im Vergleich zum eingesetzten Rückstandsöl nur noch in stark abgereicherter Konzentration enthält. Dies ist für eine nachfolgende katalytische Konversion der oberhalb von ca. 360 °C siedenden Produktöl- Fraktion in einem Fluidized Catalytic Cracker (FCC) zu Benzin und Gasöl von großem Vorteil. Soll die katalytische Konversion dieser schweren Produktölfraktionen aber in einem Hydrocracker erfolgen, so muss der Katalysator-Schadstoffgehalt wegen dessen höheren Anforderungen weiter reduziert werden.Methods of this type are described in DE-C-19724074 and DE-A-19959587. These processes have the property that the product oil produced contains pollutants such as heavy metals (nickel, vanadium), Conradson carbon residue (CCR) and asphaltenes only in a strongly depleted concentration compared to the residue oil used. This is of great advantage for a subsequent catalytic conversion of the product oil fraction boiling above approximately 360 ° C. in a Fluidized Catalytic Cracker (FCC) to gasoline and gas oil. However, if the catalytic conversion of these heavy product oil fractions is to take place in a hydrocracker, the catalyst pollutant content must be reduced further because of its higher requirements.
Erfahrungsgemäß sind die verbleibenden Schadstoffe in der höchstsiedenden Fraktion des Produktöls angereichert. Eine Reduzierung der Schadstoffe kann somit grundsätzlich durch eine nachfolgende Vakuumdestillation des über 360°C siedenden Produktöles erfolgen, bei der ein schadstoffhaltiger Vakuumrückstand (VR) und ein weitgehend schadstofffreies Vakuumgasöl (VGO) gewonnen wird. Nachteilig an dieser Methode ist, dass eine Vakuumdestillation technisch aufwendig und nur bis zu gewissen Siedeschnitttemperaturen zwischen VGO und VR im Bereich von etwa 500 bis 560 °C möglich ist. Hierdurch ergibt sich eine große Menge an schadstoffhaltigem VR, der zwar in der FCC-Anlage, nicht jedoch in einem Hydrocracker konvertiert werden kann. Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, das Verfahren zur Hochtemperatur-Kurzzeit-Destillation von Rückstandsölen dahingehend zu verbessern, dass aus dem Produktol eine möglichst kleine Rückstandsfraktion auf technisch einfache Weise gewonnen werden kann, in der die unerwünschten Katalysator-Schadstoffe weitgehend aufkonzentriert sind.Experience has shown that the remaining pollutants are enriched in the highest-boiling fraction of the product oil. A reduction of the pollutants can basically be done by a subsequent vacuum distillation of the product oil boiling above 360 ° C, in which a pollutant-containing vacuum residue (VR) and a largely pollutant-free vacuum gas oil (VGO) is obtained. A disadvantage of this method is that vacuum distillation is technically complex and is only possible up to certain boiling cut temperatures between VGO and VR in the range of approximately 500 to 560 ° C. This results in a large amount of VR containing pollutants, which can be converted in the FCC system but not in a hydrocracker. On the basis of this prior art, the object of the invention is to improve the process for the high-temperature, short-term distillation of residual oils in such a way that the smallest possible residue fraction can be obtained from the product oil in a technically simple manner, in which the undesired catalyst pollutants are largely concentrated.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass eine schadstoffreiche Rückstandsfraktion des dampfförmigen Produktöls aus dem Mischwerk nach Zumischung von Wasserdampf oder Gas zur Absenkung des Partialdruckes bei Temperaturen unter 450°C in einer Kolonne kondensiert und getrennt von dem restlichen Produktol abgezogen wird. Anschließend können die nicht kondensierten Produktöldämpfe aus der Kolonne einer Fraktionier-Kolonne zugeführt werden, in der das verbleibende schadstoffarme Produktol in eine VGO und eine Benzin/Gasöl-Fraktion zerlegt wird.According to the invention the object is achieved in that a pollutant-rich residue fraction of the vaporous product oil from the mixer after the addition of steam or gas to lower the partial pressure at temperatures below 450 ° C. is condensed in a column and taken off separately from the rest of the product oil. The uncondensed product oil vapors can then be fed from the column to a fractionation column in which the remaining low-pollutant product oil is broken down into a VGO and a gasoline / gas oil fraction.
Die Erfindung macht sich die Tatsache zu nutze, dass das gesamte Produktol am Austritt des Mischwerkes in dampfförmiger Form vorliegt und durch eine fraktionierende Kondensation in die gewünschten Fraktionen zerlegt werden kann. Zur Reduktion des Anteils an schadstoffreichem VR muss der Siedeschnitt zwischen VGO und VR möglichst hoch im Bereich zwischen 450°C und 650°C eingestellt werden, sodass die abgetrennte VR-Fraktion mehr als 60% des in den Produktöldämpfen noch enthaltenen Conradson Carbon Rückstandes (CCR), mehr als 70% der in den Produktöldämpfen noch enthaltenen Schwermetalle Nickel (Ni) und Vanadium (V) sowie mehr als 80% der in den Produktöldämpfen noch enthaltenen Asphaltene enthält. Da sich kondensierte Ölfraktionen bei Temperaturen über 450°C schnell zersetzen bzw. verkoken würden, wird der Partialdruck der zu trennenden Ölfraktionen durch Aufgabe von Wasserdampf oder Gas in die Kolonne herabgesetzt, sodass dort bei unter 450°C ein schweres Kondensat mit einem Siedebeginn über 450°C kondensiert. Die Kondensation des schadstoffarmen VGO (Siedebeginn ca. 360;Siedeende 450 bis 650°C) und der Benzin/Gasöl- Fraktion (Siedebereich C5 - bis ca. 360°C) kann dann in einer zweiten Kondensatiqnsstufe bei entsprechend' niedrigeren Temperaturen erfolgen. Das so gewonnene schadstoffarme VGO kann anschließend in einem Hydrocracker katalytisch zu Benzin und Gasöl konvertiert und das schwere Kondensat entweder in den Mischreaktor zurückgeführt oder anderweitig, z.B. als schweres Heizöl, verwendet werden. Ausgestaltungsmöglichkeiten des Verfahrens werden mit Hilfe der Zeichnung beispielhaft erläutert. Dabei zeigtThe invention makes use of the fact that the entire product oil is in vapor form at the outlet of the mixer and can be broken down into the desired fractions by fractional condensation. To reduce the proportion of pollutant-rich VR, the boiling cut between VGO and VR must be set as high as possible in the range between 450 ° C and 650 ° C, so that the separated VR fraction more than 60% of the Conradson carbon residue still contained in the product oil vapors (CCR ), contains more than 70% of the heavy metals nickel (Ni) and vanadium (V) still contained in the product oil vapors as well as more than 80% of the asphaltenes still contained in the product oil vapors. Since condensed oil fractions would decompose or coke quickly at temperatures above 450 ° C, the partial pressure of the oil fractions to be separated is reduced by introducing water vapor or gas into the column, so that at 450 ° C a heavy condensate with a start of boiling above 450 ° C condensed. The condensation of the low-pollutant VGO (start of boiling approx. 360; boiling end 450 to 650 ° C) and the gasoline / gas oil fraction (boiling range C 5 - up to approx. 360 ° C) can then take place in a second condensation stage at correspondingly ' lower temperatures. The low-pollutant VGO obtained in this way can then be catalytically converted to gasoline and gas oil in a hydrocracker and the heavy condensate can either be returned to the mixing reactor or used in some other way, for example as heavy fuel oil. Design options of the method are explained using the drawing as an example. It shows
Fig. 1 ein Fließschema des Verfahrens.Fig. 1 is a flow diagram of the method.
In Fig. 1 wird einem Mischreaktor (1) durch die Leitung (3) 500 °C bis 700 °C heißer Wärmeträger-Koks aus dem Sammelbunker (2) zugeführt. Gleichzeitig wird dem Mischreaktor (1) durch Leitung (4) Rückstandsöl mit einer Temperatur von 100 °C bis 400 °C zugeführt. Während des Mischens stellt sich eine Konversionstemperatur des Gemisches von 450 °C bis 600 °C ein. Der Wärmeträger-Koks im Mischreaktor (1) hat üblicherweise eine Korngröße im Bereich von 0,1 bis 4 mm, so dass am Mischeraustritt eine weitgehende Trennung des Kokses von den im Mischwerk gebildeten Gasen und Öldämpfen stattfindet.In Fig. 1 is a mixing reactor (1) through the line (3) 500 ° C to 700 ° C hot heat transfer coke from the collecting bunker (2). At the same time, residual oil with a temperature of 100 ° C. to 400 ° C. is fed to the mixing reactor (1) through line (4). A conversion temperature of the mixture of 450 ° C. to 600 ° C. is established during the mixing. The heat transfer coke in the mixing reactor (1) usually has a particle size in the range from 0.1 to 4 mm, so that at the mixer outlet the coke is largely separated from the gases and oil vapors formed in the mixing unit.
Das Mischwerk (1) weist mindestens zwei ineinandergreifende, gleichsinnig rotierende Schnecken auf. Die Schnecken sind in Art eines Schraubenförderers ausgebildet und mit gewendelten Förderschaufeln ausgebildet.The mixer (1) has at least two intermeshing screws rotating in the same direction. The screws are designed in the manner of a screw conveyor and are designed with spiral conveyor blades.
Der heiße, weitgehend ölfreie, körnige Koks verläßt den Mischreaktor (1) am Mischeraustritt mit einer Temperatur von 450 bis 600 °C und fällt durch einen Kanal (7) in einen Nachentgasungsbunker (8), dem im unteren Teil ein Strippgas (9) zugeführt werden kann. Restliche Gase und Dämpfe können aus dem Nachentgasungsbunker (8) durch den Kanal (7) nach oben abziehen. Überschüssiger Koks wird über Leitung (2a) abgezogen, wobei ein Teil des Kokses alternativ auch über die Leitungen (12a) abgezogen werden kann. Der Koks aus Leitung (12) gelangt über eine pneumatische Förderstrecke (10), der über Leitung (5) Verbrennungsluft und über Leitung (6) Brennstoff zugeführt wird, in den Sammelbunker (2). Mit der Förderung durch die pneumatische Förderstrecke (10) nach oben wird gleichzeitig ein Teil des Kokses und/oder des zugeförderten Brennstoffes verbrannt. Der in der pneumatischen Förderstrecke (10) erhitzte Koks gelangt in den Sammelbunker (2), aus dem durch Leitung (11) Abgas entfernt wird. Der Koks im Sammelbunker (2) hat Temperaturen im Bereich von 500 bis 700 °C.The hot, largely oil-free, granular coke leaves the mixing reactor (1) at the mixer outlet at a temperature of 450 to 600 ° C. and falls through a channel (7) into a post-degassing bunker (8), to which a stripping gas (9) is fed in the lower part can be. Residual gases and vapors can be drawn out of the post-degassing bunker (8) through the channel (7). Excess coke is withdrawn via line (2a), a part of the coke alternatively also being able to be withdrawn via lines (12a). The coke from line (12) reaches the collecting bunker (2) via a pneumatic conveyor line (10), which is supplied with combustion air via line (5) and fuel via line (6). With the conveyance upwards through the pneumatic conveying section (10), part of the coke and / or the supplied fuel is burned at the same time. The coke heated in the pneumatic conveyor section (10) reaches the collecting bunker (2), from which exhaust gas is removed through line (11). The coke in the collection bunker (2) has temperatures in the range of 500 to 700 ° C.
Die gas- und dampfförmigen Produkte des Mischreaktors (1 ) werden durch die Leitung (13) in einen Zyklon (14) geleitet. Hier findet eine Abtrennung der feinen Koks Partikel statt, welche durch Leitung (15) in den Nachentgasungsbunker (8) geleitet werden.The gaseous and vaporous products of the mixing reactor (1) are passed through line (13) into a cyclone (14). The fine coke particles are separated off here, which are passed through line (15) into the post-degassing bunker (8).
Die gas und dampfförmigen Produkte werden aus dem Zyklon (14) über Leitung (16) in einer Kolonne (17) gequencht und dabei von 450 bis 600 °C auf 350 bis 450 °C abgekühlt. In den Kopf der Kolonne (17) wird über Leitung (24a) rückgeführtes C - -Produktgas aus dem Behälter (23) oder Wasserdampf eingeführt. Damit wird der Partialdruck des dampfförmigen Produktöls soweit gesenkt, dass dort bei 350 - 450 °C ein Schwerölfraktion mit einem Siedebeginn zwischen 450 und 650°C kondensiert, in der fast sämtliche Schadstoffe aufkonzentriert sind. Ein Zersetzen oder Verkoken des kondensierten Öls wird damit vermieden. Bei der Kolonne (17) handelt es sich bevorzugt um einen Quenchkühler mit nachgeschaltetem Multiventuriwäscher, bei dem die aus dem Mischreaktor (1) stammenden Gase und Dämpfe im Gleichstromverfahren sehr effizient gekühlt und restlicher Koksstaub mit eigenem Kondensat ausgewaschen wird. Es können aber auch andere Apparate für diesen Zweck verwendet werden.The gaseous and vaporous products are quenched from the cyclone (14) via line (16) in a column (17) and cooled from 450 to 600 ° C to 350 to 450 ° C. Recirculated C - product gas from the container (23) or steam is introduced into the top of the column (17) via line (24a). This is the partial pressure of the vapor Product oil reduced so far that at 350 - 450 ° C a heavy oil fraction condenses with a boiling point between 450 and 650 ° C, in which almost all pollutants are concentrated. This prevents the condensed oil from decomposing or coking. The column (17) is preferably a quench cooler with a downstream multiventuri scrubber, in which the gases and vapors originating from the mixing reactor (1) are cooled very efficiently in a co-current process and residual coke dust is washed out with its own condensate. However, other apparatus can also be used for this purpose.
Zur Reduzierung des Anteils an schadstoffreichem Schweröl wird der Siedeschnitt zwischen VGO und VR auf eine möglichst hohe Temperatur im Bereich von 450 bis 650 °C eingestellt. Dies erfolgt durch die Aufgabe von Gas oder Wasserdampf auf den Kopf der Kolonne (17) über Leitung (24a) und durch die Kühlung der Gase und Dämpfe mittels gekühltem Schweröl- Kondensat aus Leitung (27a). Das Schweröl-Kondensat wird mit einer Temperatur von 350 - 450°C aus dem Sumpf der Kolonne (17) durch Leitung (27) abgezogen, in einem Wärmetauscher (25) auf die erforderliche Temperatur gekühlt und teilweise als Kühl / Waschmedium dem Kopf der Kolonne (17) wieder zugeführt. Der übrige Teil des Schweröl- Kondendates wird über Leitung (27b) als Produkt abgezogen. Das Schweröl-Kondensat aus Leitung (27b) kann anschließend entweder in den Mischreaktor (1) zurückgeführt oder anderweitig, z.B. als schweres Heizöl, verwendet werden.In order to reduce the proportion of polluting heavy oil, the boiling cut between VGO and VR is set to the highest possible temperature in the range from 450 to 650 ° C. This is done by feeding gas or steam to the top of the column (17) via line (24a) and by cooling the gases and vapors by means of cooled heavy oil condensate from line (27a). The heavy oil condensate is withdrawn at a temperature of 350-450 ° C. from the bottom of the column (17) through line (27), cooled to the required temperature in a heat exchanger (25) and partly as a cooling / washing medium at the top of the column (17) fed again. The rest of the heavy oil condensate is withdrawn as a product via line (27b). The heavy oil condensate from line (27b) can then either be returned to the mixing reactor (1) or otherwise, e.g. as a heavy fuel oil.
Aus dem unteren Teil der Kolonne (17) wird das nicht kondensierte Gas-/ÖIdampfgemisch über Leitung (18) abgezogen. Nach einer weiteren Ausbildung der Erfindung kann es in eine Fraktionier-Kolonne (19) geleitet werden. Dort wird das verbleibende Produktol in schadstoffarmes VGO und eine schadstofffreie Benzin-/Gasöl-Fraktion getrennt. Das VGO mit einem Siedeende von 450 - 650°C wird über Leitung (21) aus dem Boden der Fraktionier- Kolonne (19) abgezogen. Das so gewonnene VGO kann anschließend in einem nicht dargestellten Hydrocracker katalytisch zu Benzin und Gasöl konvertiert werden. Aus dem Kopf der Fraktionier-Kolonne (19) wird das verbleibende Gas-/Öldampfgemisch über Leitung (20) im Kondensator (22) gekühlt und im Behälter (23) in eine Benzin-/Gasöl-Fraktion mit einem Siedebereich von z.B. C5 - 360°C und ein C4. -Gas getrennt. Die Benzin-/Gasöl-Fraktion wird über Leitung (26) abgezogen und teilweise über Leitung (26b) zum Kopf der Fraktionier- Kolonne (19) zurückgeführt. Das restliche Benzin-/Gasöl-Gemisch wird über Leitung (26a) als Produkt abgeführt.The uncondensed gas / oil vapor mixture is drawn off via line (18) from the lower part of the column (17). According to a further embodiment of the invention, it can be passed into a fractionation column (19). There, the remaining product oil is separated into a low-pollutant VGO and a pollutant-free gasoline / gas oil fraction. The VGO with a boiling point of 450-650 ° C. is drawn off from the bottom of the fractionation column (19) via line (21). The VGO obtained in this way can then be catalytically converted to gasoline and gas oil in a hydrocracker (not shown). From the top of the fractionation column (19), the remaining gas / oil vapor mixture is cooled via line (20) in the condenser (22) and in the container (23) into a gasoline / gas oil fraction with a boiling range of, for example, C 5 - 360 ° C and a C 4 . -Gas separated. The gasoline / gas oil fraction is withdrawn via line (26) and partly returned via line (26b) to the top of the fractionation column (19). The remaining gasoline / gasoil mixture is discharged as product via line (26a).
Das nicht kondensierte C4. -Gas wird aus dem Behälter (23) über Leitung (24) nach oben abgeführt und teils über Leitung (24a) in die Kolonne (17) zurückgeführt teils als Produkt über Leitung (24b) abgezogen. BeispielThe uncondensed C 4 . -Gas is discharged from the container (23) via line (24) upwards and partly returned via line (24a) to the column (17) and partly withdrawn as product via line (24b). example
Dem Mischreaktor (1) werden durch Leitung (4) 100 t/h Rückstandsöl mit einer Temperatur von 300°C zugeführt. Aus dem Mischreaktor (1) werden 75 t/h Gas/Öldampf-Gemisch mit 550°C durch Leitung (13) in einen Zyklon (14) zur Entstaubung geleitet. Die verbleibenden 25 t/h Koks werden durch Leitung (7) gemeinsam mit dem Wärmeträger-Koks in den Nachentgasungsbunker (8) geleitet.The mixing reactor (1) is fed through line (4) 100 t / h of residual oil at a temperature of 300 ° C. 75 t / h gas / oil vapor mixture at 550 ° C. are passed from the mixing reactor (1) through line (13) into a cyclone (14) for dedusting. The remaining 25 t / h coke are passed through line (7) together with the heat transfer coke into the post-degassing bunker (8).
Das Gas/Öldampf-Gemisch wird aus dem Zyklon (14) über Leitung (16) in eine Kolonne (17) geleitet, dort mit Gas verdünnt und von 550°C auf 425°C gekühlt. Hierzu werden der Kolonne (17) 43 t/h C4- -Gas aus Leitung (24a) und 55 t/h gekühltes Schweröl-Kondensat aus Leitung (27a) mit einer Temperatur von 380 °C zugeführt.The gas / oil vapor mixture is passed from the cyclone (14) via line (16) into a column (17), where it is diluted with gas and cooled from 550 ° C. to 425 ° C. For this purpose, the column (17) 43 t / h of C 4- gas from line (24a) and 55 t / h of cooled heavy oil condensate from line (27a) are fed at a temperature of 380 ° C.
Aus dem Boden der Kolonne (17) werden 65 t/h Schweröl-Kondensat mit einem Siedebeginn von 600°C über Leitung (27) abgezogen und in einem Wärmetauscher (25) von 425 °C auf 380 °C gekühlt. Anschließend werden 55 t/h gekühltes Schweröl-Kondensat über Leitung (27a) dem Kopf der Kolonne (17) wieder zugeführt und 10 t/h über Leitung (27b) als Produkt abgezogen. Aus dem unteren Teil der Kolonne (17) werden 108 t/h nicht kondensiertes Gas/Öldampf- Gemisch über Leitung (18) in eine Fraktionier-Kolonne (19) geleitet. Aus dem Boden der Fraktionier-Kolonne (19) werden 40 t/h schadstoffarmes VGO mit einer Temperatur von 350°C über Leitung (21) abgezogen. Die verbleibenden 68 t/h Gas/Öldampf-Gemisch werden aus dem Kopf der Fraktionier-Kolonne (19) über Leitung (20) abgezogen, in einem Kondensator (22) auf 43°C gekühlt, in den Behälter (23) geleitet und dort in eine flüssige Benzin/Gasöl Fraktion mit einem Siedebereich von C5- 360°C und ein C4. -Gas getrennt. Über Leitung (24) werden 53 t/h C4. -Gas abgezogen und davon 43 t/h über Leitung (24a) in den Kopf der Kolonne (17) zurückgeführt. Die verbleibenden 10 t/h C4. -Gas werden über Leitung (24b) als Produkt abgezogen. Aus dem Behälter (23) werden weiterhin 15 t/h Benzin/Gasöl Gemisch über Leitung (26a) als Produkt abgezogen.65 t / h of heavy oil condensate with an initial boiling point of 600 ° C. are drawn off from the bottom of the column (17) via line (27) and cooled in a heat exchanger (25) from 425 ° C. to 380 ° C. 55 t / h of cooled heavy oil condensate are then fed back to the top of the column (17) via line (27a) and 10 t / h are withdrawn as product via line (27b). From the lower part of the column (17), 108 t / h uncondensed gas / oil vapor mixture are passed via line (18) into a fractionation column (19). 40 t / h of low-pollutant VGO at a temperature of 350 ° C. are drawn off from the bottom of the fractionation column (19) via line (21). The remaining 68 t / h gas / oil vapor mixture are withdrawn from the top of the fractionation column (19) via line (20), cooled to 43 ° C. in a condenser (22), passed into the container (23) and there into a liquid petrol / gas oil fraction with a boiling range of C 5 - 360 ° C and a C 4 . -Gas separated. Via line (24) 53 t / h C 4 . -Gas withdrawn and 43 t / h of this fed back via line (24a) into the top of the column (17). The remaining 10 t / h C 4 . -Gas are withdrawn as a product via line (24b). From the container (23) 15 t / h gasoline / gasoil mixture are still withdrawn as a product via line (26a).
Bei einer einstufigen Kondensation nach dem Stand der Technik, würden statt 10 t/h Schweröl- Kondensat mit einem Siedebeginn von 600°C, 50 t/h Rückstand mit einem Siedebeginn von 360°C gewonnen. Aus diesem Rückstand sind selbst mit einer aufwendigen Vakuum- Destillation nur 20 t/h schadstoffarmes VGO mit einem Siedebereich von 360 - 510°C gewinnbar. Nach dieser Erfindung können jedoch auf technisch einfachere Weise 40 t/h schadstoffarmes VGO mit einem Siedebereich von 360 - 600°, d.h. die doppelte Menge, gewonnen werden. In a one-stage condensation according to the prior art, instead of 10 t / h heavy oil condensate with a boiling point of 600 ° C, 50 t / h residue with a boiling point of 360 ° C would be obtained. Even with a complex vacuum distillation, only 20 t / h of low-pollutant VGO with a boiling range of 360 - 510 ° C can be obtained from this residue. According to this invention, however, 40 t / h low-pollutant VGO with a boiling range of 360-600 °, i.e. double the amount to be won.

Claims

Patentansprüche claims
1. Verfahren zur Hochtemperatur-Kurzzeit-Destillation eines Rückstandöls aus der Verarbeitung von Erdöl, natürlichem Bitumen oder Ölsand, wobei man das Rückstandöl mit körnigem, heißem Koks als Wärmeträger in einem Mischwerk (1) mischt, zu Öldampf, Gas und Koks konvertiert und Gase und Dämpfe aus dem Mischwerk (1) weitgehend getrennt vom körnigen Koks abzieht, Gase und Dämpfe abkühlt und ein Produktol als Kondensat sowie Gas erzeugt, und dass man aus dem Mischwerk (1) abgezogenen Koks wieder erhitzt und als Wärmeträger in das Mischwerk (1) zurückführt, dadurch gekennzeichnet, dass das verdampfte Produktol in einer Kolonne (17) unter Zusatz von Gas oder Wasserdampf zur Absenkung des Partialdruckes bei Temperaturen unter 450°C teilweise kondensiert wird, aus dieser Kolonne (17) eine schwer siedende Fraktion abgezogen und die nicht kondensierten Gase und Öldämpfe abgeleitet werden.1. A method for the high-temperature short-term distillation of a residue oil from the processing of petroleum, natural bitumen or oil sand, whereby the residue oil is mixed with granular, hot coke as heat transfer medium in a mixing plant (1), converted to oil vapor, gas and coke and gases and withdraws vapors from the mixer (1) largely separately from the granular coke, cools gases and vapors and produces a product oil as condensate and gas, and that coke withdrawn from the mixer (1) is heated again and transferred to the mixer (1) as a heat transfer medium recycled, characterized in that the vaporized product oil is partially condensed in a column (17) with the addition of gas or water vapor to lower the partial pressure at temperatures below 450 ° C, a high-boiling fraction is withdrawn from this column (17) and the non-condensed Gases and oil vapors are derived.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die nicht kondensierten Gase und Öldämpfe aus der Kolonne (17) einer zweiten Fraktionier-Kolonne (19) zugeführt werden, in der das in der ersten Kolonne (17) nicht kondensierte Produktol in schadstoffarmes Vakuum-Gasöl sowie in eine Benzin/Gasöl-Fraktion zerlegt wird.2. The method according to claim 1, characterized in that the uncondensed gases and oil vapors from the column (17) are fed to a second fractionation column (19) in which the product oil uncondensed in the first column (17) in a low-pollutant vacuum -Gas oil and is broken down into a gasoline / gas oil fraction.
3. Verfahren nach Anspruch 1 bis 2, dadurch gekennzeichnet, dass selbsterzeugtes rückgeführtes Produktgas in die Kolonne ( 7) als Gas eingeführt wird.3. The method according to claim 1 to 2, characterized in that self-generated recycle product gas is introduced into the column (7) as a gas.
4. Verfahren naGh Anspruch 1 bis 3, dadurch gekennzeichnet, dass der Partialdruck des Produktöls in der Kolonne (17) soweit abgesenkt wird, dass bei Temperaturen unter 450°C eine schwer siedende Fraktion mit einem Siedebeginn zwischen 450 und 650°C kondensiert und getrennt von den übrigen Produktölfraktionen abgezogen werden kann.4. The method according to claims 1 to 3, characterized in that the partial pressure of the product oil in the column (17) is reduced to such an extent that a low-boiling fraction with a start of boiling between 450 and 650 ° C condenses and separates at temperatures below 450 ° C can be deducted from the other product oil fractions.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die abgetrennte schwer siedende Fraktion mehr als 60% des in den Produktöldämpfen noch enthaltenen Conradson Carbon Rückstandes (CCR), mehr als 70% der in den Produktöldämpfen noch enthaltenen Schwermetalle Nickel (Ni) und Vanadium (V) sowie mehr als 80% der in den Produktöldämpfen noch enthaltenen Asphaltene enthält.5. The method according to claim 1 to 4, characterized in that the separated high-boiling fraction more than 60% of the Conradson carbon residue (CCR) still contained in the product oil vapors, more than 70% of the heavy metals nickel (Ni) still contained in the product oil vapors and vanadium (V) and more than 80% of the asphaltenes still contained in the product oil vapors.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass vor der Einleitung in die Kolonne (17) das Gas/ÖIdampfgemisch aus dem Mischwerk (1) in einem Zyklon (14) entstaubt wird. 6. The method according to claim 1 to 5, characterized in that before the introduction into the column (17), the gas / oil vapor mixture from the mixer (1) is dedusted in a cyclone (14).
7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass die Kolonne (17) als Quenchkühler mit nachgeschaltetem Multiventuriwäscher ausgebildet ist, in welchem die aus dem Mischer stammenden Gase und Dämpfe gekühlt und restlicher Koksstaub ausgewaschen wird.7. The method according to claim 1 to 6, characterized in that the column (17) is designed as a quench cooler with a downstream multiventuri scrubber, in which the gases and vapors originating from the mixer are cooled and residual coke dust is washed out.
8. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass die in der Kolonne (17) abgetrennte schwer siedende Fraktion in das Mischwerk (1) zurückgeführt wird. 8. The method according to claim 1 to 7, characterized in that the separated in the column (17) high-boiling fraction is returned to the mixer (1).
EP03813544A 2002-12-19 2003-07-09 Method for high-temperature distillation of residual oil in a limited time Expired - Fee Related EP1590423B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10259450A DE10259450B4 (en) 2002-12-19 2002-12-19 Process for the high-temperature short-term distillation of residual oil
DE10259450 2002-12-19
PCT/EP2003/007377 WO2004056942A1 (en) 2002-12-19 2003-07-09 Method for high-temperature distillation of residual oil in a limited time

Publications (2)

Publication Number Publication Date
EP1590423A1 true EP1590423A1 (en) 2005-11-02
EP1590423B1 EP1590423B1 (en) 2007-02-21

Family

ID=32519110

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03813544A Expired - Fee Related EP1590423B1 (en) 2002-12-19 2003-07-09 Method for high-temperature distillation of residual oil in a limited time

Country Status (10)

Country Link
US (1) US7507330B2 (en)
EP (1) EP1590423B1 (en)
JP (1) JP4365788B2 (en)
AT (1) ATE354625T1 (en)
AU (1) AU2003250003B2 (en)
CA (1) CA2511156C (en)
DE (2) DE10259450B4 (en)
ES (1) ES2282737T3 (en)
MX (1) MXPA05006696A (en)
WO (1) WO2004056942A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2624746C (en) 2007-03-12 2015-02-24 Robert Graham Methods and systems for producing reduced resid and bottomless products from heavy hydrocarbon feedstocks
CN107298989B (en) * 2016-04-14 2019-03-19 中国石油化工股份有限公司 A kind of absorption stabilizing process and system
CN107298987B (en) * 2016-04-14 2019-03-19 中国石油化工股份有限公司 Absorption stabilizing process and system
CN107298986B (en) * 2016-04-14 2019-05-21 中国石油化工股份有限公司 A kind of absorption stabilizing process method
CN107298988B (en) * 2016-04-14 2019-03-19 中国石油化工股份有限公司 A kind of refinery absorption stabilizing process and system
CN107400538B (en) * 2016-05-21 2019-03-19 中国石油化工股份有限公司 A kind of coking, absorbing and stabilizing technique and system
CN107400536B (en) * 2016-05-21 2019-03-19 中国石油化工股份有限公司 Coking, absorbing and stabilizing technique and system
CN107400537B (en) * 2016-05-21 2019-03-19 中国石油化工股份有限公司 A kind of coking, absorbing and stabilizing technique and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983278A (en) * 1987-11-03 1991-01-08 Western Research Institute & Ilr Services Inc. Pyrolysis methods with product oil recycling
CA2314586C (en) * 1996-09-27 2006-11-14 William Taciuk Thermal apparatus and process for removing contaminants from oil
DE19724074C2 (en) * 1997-06-07 2000-01-13 Metallgesellschaft Ag Process for high-temperature short-term distillation of residual oils
DE19959587B4 (en) * 1999-12-10 2006-08-24 Lurgi Lentjes Ag Process for the gentle short-term distillation of residual oils

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004056942A1 *

Also Published As

Publication number Publication date
DE10259450A1 (en) 2004-07-15
ATE354625T1 (en) 2007-03-15
WO2004056942A1 (en) 2004-07-08
JP2006510757A (en) 2006-03-30
US20060138030A1 (en) 2006-06-29
ES2282737T3 (en) 2007-10-16
DE10259450B4 (en) 2006-08-10
DE50306611D1 (en) 2007-04-05
CA2511156A1 (en) 2004-07-08
EP1590423B1 (en) 2007-02-21
CA2511156C (en) 2012-04-03
AU2003250003A1 (en) 2004-07-14
US7507330B2 (en) 2009-03-24
AU2003250003B2 (en) 2006-12-21
JP4365788B2 (en) 2009-11-18
MXPA05006696A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
EP1009785B1 (en) Method for high-temperature short-time distillation of residual oils
DE3711550C2 (en) Delayed coking process
DE69126638T2 (en) Refining sludge heavy oil fractions
DE3504010A1 (en) METHOD FOR CONVERTING HEAVY OIL RESIDUES TO HYDROGEN AND GASEOUS AND DISTILLABLE HYDROCARBONS
DE1119438B (en) Process for refining heavy oils containing sulfur
EP1590423B1 (en) Method for high-temperature distillation of residual oil in a limited time
EP0138213B1 (en) Pyrolysis of coal hydrogenation residues
DE2728455A1 (en) Pyrolysis of carbonaceous fuels in cyclone separator - with solid heat carrier, giving higher yields of middle distillate
DE3609988C2 (en) Combined process for separating and treating asphaltenes with high softening temperature
DE3038951C2 (en)
DE2803985C2 (en) Process for liquefying coal
DE1921917C3 (en) Process for the production of low-sulfur heating oils from residual oils with a high sulfur content
US2843462A (en) Heat treating fluid coke briquettes
DE69723465T2 (en) TWO-STAGE PROCESS FOR OBTAINING SIGNIFICANT OLEFIN YIELDS FROM RESIDUAL FEEDSTOCKS
DE1010218B (en) Process for obtaining valuable products from crude oils by distillation and thermal conversion
DE3401888A1 (en) METHOD AND INSTALLATION FOR THE PROCESSING OF HEAVY RAW OILS, IN PARTICULAR FOR THE PRODUCTION OF COOKS FOR METALLURGICAL PURPOSES
DE599629C (en) Process for the treatment of solid fuel distillation products.
CN114479937A (en) Method for converting heavy oil into light oil and acetylene
Weiss et al. SATCON A Novel Process for Refinery Residue Conversion
JPS6220588A (en) Treatment of cracking product oil
DE3604631A1 (en) Process for stabilising cleavage products in delayed coking
DE1036433B (en) Process for coking heavy oils
DE3151438A1 (en) Process for producing synthesis gas by partial oxidation of slag-rich feedstocks
DE3720513A1 (en) Process for reducing the formation of solids in the hydrogen treatment of resid
DE1016392B (en) Process and device for the production of high-quality petroleum products that boil in the field of motor fuels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT DE ES FR GB NL

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070221

REF Corresponds to:

Ref document number: 50306611

Country of ref document: DE

Date of ref document: 20070405

Kind code of ref document: P

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2282737

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130722

Year of fee payment: 11

Ref country code: ES

Payment date: 20130729

Year of fee payment: 11

Ref country code: NL

Payment date: 20130719

Year of fee payment: 11

Ref country code: AT

Payment date: 20130711

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130722

Year of fee payment: 11

Ref country code: GB

Payment date: 20130719

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50306611

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 354625

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140709

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50306611

Country of ref document: DE

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140709

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140709

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140710