EP1590310A1 - Method for production of a b/n/c/si ceramic from a borazine precursor, ceramics made by said method and use of the ceramic made by said method - Google Patents

Method for production of a b/n/c/si ceramic from a borazine precursor, ceramics made by said method and use of the ceramic made by said method

Info

Publication number
EP1590310A1
EP1590310A1 EP04707180A EP04707180A EP1590310A1 EP 1590310 A1 EP1590310 A1 EP 1590310A1 EP 04707180 A EP04707180 A EP 04707180A EP 04707180 A EP04707180 A EP 04707180A EP 1590310 A1 EP1590310 A1 EP 1590310A1
Authority
EP
European Patent Office
Prior art keywords
ceramic
borazine
tris
precursor
hydrosilylvinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04707180A
Other languages
German (de)
French (fr)
Inventor
Reinhard Nesper
Jörg HABERECHT
Hansjörg Grützmacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eidgenoessische Technische Hochschule Zurich ETHZ
Original Assignee
Eidgenoessische Technische Hochschule Zurich ETHZ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidgenoessische Technische Hochschule Zurich ETHZ filed Critical Eidgenoessische Technische Hochschule Zurich ETHZ
Publication of EP1590310A1 publication Critical patent/EP1590310A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/589Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers

Definitions

  • Borazine precursor ceramics produced by this process and use of the ceramics produced by this process
  • Nitride and carbonitride ceramics with boron and silicon are particularly important due to their high thermal stability and resistance to oxidation.
  • WO 02/22625 has made known high temperature stable silicon boron carbide nitride ceramics from silylalkyl borazines as well as processes for their production.
  • the borazines used as precursors each have the structural element Si-C-B-N.
  • a silylalkyl borane is pyrolyzed in an inert or ammonia-containing atmosphere at temperatures between -200 ° C and + 2000 ° C. It is then calcined in an inert or ammonia-containing atmosphere at temperatures between 800 ° C and 2000 ° C.
  • Such ceramics are said to have N-Si-C-B-N structural units.
  • Triethinylborazin ran out.
  • Qatar's hydrosilylation produces borazines as precursors.
  • B-tris (trichlorosilylvinyl) borazine is crosslinked with hydrolyzable SiCl and Si (OR) groups via a sol-gel process and via ammonolysis.
  • the resulting ceramics should be hard, amorphous and homogeneous and stable up to at least 1500 ° C.
  • these ceramics usually contain by-products that are difficult to remove.
  • the production of a pure ceramic is therefore comparatively complex.
  • NH 4 C1 occurs as a by-product.
  • the invention has for its object to provide a method of the type mentioned, which avoids the disadvantages mentioned above. The process should nevertheless enable a comparable high yield.
  • the borazine precursor is B-tris (hydrosilylvinyl) borazine (also referred to as B-tris (silylvinyl) borazine) and this is converted into ceramic by pyrolysis. It has surprisingly been found that the ceramic produced by this process is essentially pore-free and shrinks only minimally when converted to a high-temperature ceramic.
  • the borazine precursor used is liquid at room temperature and can therefore be processed particularly well. For example, this borazine precursor can be applied by brushing or by spraying.
  • the purity of the ceramic obtained is surprisingly high and in pyrolysis there are essentially no other gaseous waste products apart from hydrogen. In addition, the yield is unusually high.
  • a major advantage of the method according to the invention is also seen in the fact that no crosslinking and polymer formation is required.
  • the borazine precursor can be converted directly into ceramic by pyrolysis. A treatment at a higher temperature makes conversion into a high-temperature ceramic easily possible.
  • the ceramic produced by this process has semiconducting properties.
  • the high conductivity results from the existing double bonds and the extensive freedom from oxygen.
  • the ceramic according to the invention is particularly suitable for producing heating elements which, inter alia, can also be operated without contact and which are particularly air-stable.
  • Another advantageous application is the antistatic coating, for example on the inside of pipes. A static charge can be avoided with such a coating.
  • the coating is also comparatively very stable thermally and chemically.
  • the filtrate is freed from the solvents and taken up in a mixture of 150 ml hexane and 50 ml toluene.
  • the by-product LiCl is again filtered off from this suspension.
  • the solvents are removed from the filtrate and a colorless, highly viscous liquid is obtained, which solidifies after drying in a high vacuum.
  • the isomers purple to IIIc can be prepared accordingly.
  • the reaction solution is then concentrated to a volume of about 30 mL, whereupon white LiCl begins to precipitate. 1 OOmL toluene is added to completely precipitate the LiCl. The solid is filtered off and washed with 1 OmL toluene. The solvents and the by-product triethylborane are distilled off from the filtrate in vacuo. The isomers can also be prepared in this way.
  • R is a hydrogen, alkyl, in particular methyl, a phenyl or amine.
  • R is a hydrogen, alkyl, in particular methyl, a phenyl or amine.
  • the above-mentioned synthesis instructions apply to these compounds, for which methyl or phenyl compounds in each case with PhSi (H) Cl 2 or CH 3 Si (H) Cl 2 , Ph 2 Si (H) Cl or (CH 3 ) 2Si ( H) Cl.
  • the subsequent hydrogenation can also be carried out as mentioned above.
  • Vc Vd The properties of the ceramic and in particular the electrical, thermal and mechanical properties can be changed by the choice of the R groups. It has been shown in particular that a higher proportion of carbon results in a higher conductivity of the ceramic, which can be explained by a higher proportion of double bonds.
  • the precursor can be mixed with metal compounds in order to obtain a ceramic doped with metal.
  • the precursor is mixed with organometallic compounds in a solvent such as THF, acetonitrile, toluene, benzene or hexane, for example, and then pyrolyzed as mentioned above.
  • Suitable metal compounds have emerged in particular: Fe (CO) 5 , Fe 2 (CO); Ferrocene, bis (1,5-cyclooctadiene) - nickel (O), LiHB (CH 2 CH 3 ) 3 , (iBut) 2 AlH.
  • the metal atoms or clusters can be distributed very homogeneously at the nanoscopic level. Up to 1500 ° C there is an amorphous distribution and a metal content of up to about 3%. Thermal decomposition can be accelerated with UV rays.
  • FIG. 1 shows an image of a ceramic doped with iron, the iron being visible as black spots which are only up to a few nanometers in size.
  • a ceramic doped with metal has an increased electrical conductivity. For example, it can be heated inductively via an electrical field without contact. Such a ceramic can be used, for example, to produce a medical implant. Such a doped ceramic can also be used as a magnetic memory. The magnetic information can be erased, for example, thermally or with an alternating field.
  • the method according to the invention is also suitable for producing ceramic particles which are coated with carbon nanotubes, as shown in FIG. 2.
  • Ni was used as the catalyst for the formation of the nanotubes, which was mixed into the liquid precursor as a suitable soluble compound.
  • the nanotubes are formed in situ on the entire surface of the ceramic during pyrolysis. Very small parts with a high density of nanotubes can be achieved.
  • the nanotubes are suitable, for example, as carriers for catalysts.
  • the high thermal and chemical stability of the ceramic base body is particularly advantageous here.
  • B-tris (hydrosilylvinyl) borazine is liquid at room temperature after the addition of a small amount of solvent and can be applied as such with a brush or by spraying.
  • the coating properties can be adjusted with a suitable solvent. This is particularly important for the application of thin layers.
  • a suitable tixotropy can also be set here. Different layer thicknesses can be guaranteed exactly.
  • the inside of the tube can be coated with B-tris (hydrosilylvinyl) borazine or solutions thereof.
  • Pyrolysis of B-tris (hydrosilylvinyl) borazine converts it into a ceramic material in a surprisingly high yield.
  • the ceramic yield was 94% according to the above examples.
  • the pyrolysis is preferably carried out with pre-pyrolysis at a temperature below 1000 ° C. and pyrolysis at a temperature above 1000 ° C. to approximately 2000 ° C.
  • the ceramic material can also be produced by pyrolysis of the isomeric compounds or from an isomer mixture.
  • Another key advantage is the comparatively high air stability of the ceramic. This air stability is also present at high temperatures.
  • Ceramic coatings Due to the comparatively high electrical conductivity, such coatings are antistatic. They are also thermally and chemically stable.
  • coatings on the inside of pipes can be produced, for example, for the transport of liquids. Coating is carried out with B-tris (hydrosilylvinyl) borazine, for example by brushing or spraying. Solutions of this compound can also be applied.
  • the ceramic can also be added, for example, as a powder to known coating compositions, for example to increase the conductivity.
  • the ceramic is particularly suitable for the production of enamel, since the ceramic retains properties, in particular the conductivity, even at higher temperatures. After application, pyrolysis is carried out.
  • the properties of the ceramic can be changed by the molecules of the precursor are preferably cross-linked in one or two dimensions by pyrolysis.
  • the borazine molecules can be crosslinked in a chain-like manner by crystallization, mixed crystals also being conceivable.
  • Such pyrolysis crosslinking means that the ceramic has greater flexibility. This flexibility can be influenced by the degree and type of crosslinking of the pyrolysis and can thus be adapted to the desired properties.

Abstract

B-tris(silylvinyl)borazine is pyrolysed as a borazine precursor for the production of a B/N/C/Si ceramic. A high-temperature ceramic is obtained by means of a further pyrolysis at higher temperatures after a pre-pyrolysis, which is of high purity and essentially free of pores. The ceramic furthermore contains essentially no oxygen and is particularly suitable as a coating material and for the production of heating elements.

Description

Verfahren zur Herstellung einer B/N/C/Si-Keramik aus einem Process for producing a B / N / C / Si ceramic from a
Borazinprecursor, nach diesem Verfahren hergestellte Keramik sowie Verwendung der nach diesem Verfahren hergestellten KeramikBorazine precursor, ceramics produced by this process and use of the ceramics produced by this process
Die Herstellung von Keramiken und insbesondere Hochleistungskeramiken aus Borazin- precursoren sind bekannt. Nitrid- und Carbonitrid-Keramiken mit Bor und Silicium sind insbesondere aufgrund ihrer hohen thermischen Stabilität und Oxidationsbeständigkeit von besonderer Bedeutung.The production of ceramics and in particular high-performance ceramics from borazine precursors are known. Nitride and carbonitride ceramics with boron and silicon are particularly important due to their high thermal stability and resistance to oxidation.
Aus der WO 02/22625 sind hochtemperaturstabile Siliciumborcarbidnitrid-Keramiken aus Silylalkylborazinen sowie Verfahren zu deren Herstellung bekannt geworden. Die als Precursor verwendeten Borazine weisen jeweils das Strukturelement Si-C-B-N auf. Zur Herstellung einer Siliciumborcarbidnitrid-Keramik wird ein Silylalkylboran in einer inerten oder einer ammoniak- haltigen Atmosphäre bei Temperaturen zwischen -200°C und +2000°C pyrolysiert. Anschlies- send wird in einer inerten oder ammoniakhaltigen Atmosphäre bei Temperaturen zwischen 800°C und 2000°C calziniert. In einer solchen Keramik sollen N-Si-C-B-N-Struktureinheiten vorliegen.WO 02/22625 has made known high temperature stable silicon boron carbide nitride ceramics from silylalkyl borazines as well as processes for their production. The borazines used as precursors each have the structural element Si-C-B-N. To produce a silicon boron carbide nitride ceramic, a silylalkyl borane is pyrolyzed in an inert or ammonia-containing atmosphere at temperatures between -200 ° C and + 2000 ° C. It is then calcined in an inert or ammonia-containing atmosphere at temperatures between 800 ° C and 2000 ° C. Such ceramics are said to have N-Si-C-B-N structural units.
Aus der Dissertation ETH Nr. 14179 von Anja Krummland sind neue molekulare und polymere Vorläufer für B/N/C/Si-Keramiken bekannt. Zur Herstellung dieser Keramiken wird von B-Anja Krummland's dissertation ETH No. 14179 discloses new molecular and polymeric precursors for B / N / C / Si ceramics. B-
Triethinylborazin ausgegangen. Durch katarische Hydrosilylierung werden Borazine als Precursor hergestellt. Insbesondere wird B-tris(trichlorosilylvinyl)borazine mit hydrolisierbaren SiCl - und Si(OR) -Gruppen über einen Sol-Gel-Prozess und über eine Ammonolyse vernetzt. Die daraus resultierenden Keramiken sollen hart, amorph und homogen sowie bis mindestens 1500 °C stabil sein. Diese Keramiken enthalten jedoch in der Regel Nebenprodukte, die schwierig zu entfernen sind. Die Herstellung einer reinen Keramik ist damit vergleichsweise aufwändig. Als Nebenprodukt tritt beispielsweise und insbesondere NH4C1 auf. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der genannten Art zu schaffen, das die oben genannten Nachteile vermeidet. Das Verfahren soll trotzdem eine vergleichbar hohe Ausbeute ermöglichen.Triethinylborazin ran out. Qatar's hydrosilylation produces borazines as precursors. In particular, B-tris (trichlorosilylvinyl) borazine is crosslinked with hydrolyzable SiCl and Si (OR) groups via a sol-gel process and via ammonolysis. The resulting ceramics should be hard, amorphous and homogeneous and stable up to at least 1500 ° C. However, these ceramics usually contain by-products that are difficult to remove. The production of a pure ceramic is therefore comparatively complex. For example, NH 4 C1 occurs as a by-product. The invention has for its object to provide a method of the type mentioned, which avoids the disadvantages mentioned above. The process should nevertheless enable a comparable high yield.
Das Verfahren ist dadurch gelöst, dass der Borazinprecursor B-tris(hydrosilylvinyl)borazin (auch als B-tris(silylvinyl)borazin bezeichnet) ist und dieses durch Pyrolyse in Keramik umgewandelt wird. Es hat sich überraschend gezeigt, dass die nach diesem Verfahren hergestellte Keramik im Wesentlichen porenfrei ist und bei der Umwandlung in eine Hochtemperaturkeramik nur minimal schrumpft. Der verwendete Borazinprecursor ist bei Raumtemperatur flüssig und kann damit besonders gut verarbeitet werden. Beispielsweise kann dieser Borazinprecursor durch Streichen mit einem Pinsel oder durch Spritzen appliziert werden.The method is solved in that the borazine precursor is B-tris (hydrosilylvinyl) borazine (also referred to as B-tris (silylvinyl) borazine) and this is converted into ceramic by pyrolysis. It has surprisingly been found that the ceramic produced by this process is essentially pore-free and shrinks only minimally when converted to a high-temperature ceramic. The borazine precursor used is liquid at room temperature and can therefore be processed particularly well. For example, this borazine precursor can be applied by brushing or by spraying.
Die Reinheit der erhaltenen Keramik ist überraschend hoch und bei der Pyrolyse gibt es ausser Wasserstoff im Wesentlichen keine weiteren gasförmigen Abgangsprodukte. Zudem ist die Aus- beute ungewölmlich hoch. Ein wesentlicher Vorteil des erfmdungsgemässen Verfahrens wird auch darin gesehen, dass keine Vernetzung und Polymerbildung erforderlich ist. Der Borazinprecursor kann direkt durch die Pyrolyse in Keramik umgewandelt werden. Durch eine Behandlung bei höherer Temperatur ist eine Umwandlung in eine Hochtemperaturkeramik ohne weiteres möglich.The purity of the ceramic obtained is surprisingly high and in pyrolysis there are essentially no other gaseous waste products apart from hydrogen. In addition, the yield is unusually high. A major advantage of the method according to the invention is also seen in the fact that no crosslinking and polymer formation is required. The borazine precursor can be converted directly into ceramic by pyrolysis. A treatment at a higher temperature makes conversion into a high-temperature ceramic easily possible.
Es hat sich zudem unerwartet gezeigt, dass die nach diesem Verfahren hergestellte Keramik halbleitende Eigenschaften besitzt. Die hohe Leitfähigkeit ergibt sich durch die vorhandenen Doppelbindungen und durch die weitgehende Freiheit von Sauerstoff. Die erfϊndungsgemässe Keramik eignet sich insbesondere zur Herstellung von Heizelementen, welche unter anderem auch kontaktfrei betrieben werden können und die besonders luftstabil sind. Eine weitere vorteilhafte Anwendung ist die antistatische Beschichtung beispielsweise der Innenseite von Rohren. Mit einer solchen Beschichtung kann eine statische Aufladung vermieden werden. Die Beschichtung ist zudem thermisch und chemisch vergleichsweise sehr stabil.It has also been shown, unexpectedly, that the ceramic produced by this process has semiconducting properties. The high conductivity results from the existing double bonds and the extensive freedom from oxygen. The ceramic according to the invention is particularly suitable for producing heating elements which, inter alia, can also be operated without contact and which are particularly air-stable. Another advantageous application is the antistatic coating, for example on the inside of pipes. A static charge can be avoided with such a coating. The coating is also comparatively very stable thermally and chemically.
Nachfolgend wird die Erfindung anhand von Beispielen näher erläutert.The invention is explained in more detail below with the aid of examples.
Ausgangspunkt der Synthese ist Triethinylborazin gemäss Formel I. HThe starting point for the synthesis is triethinylborazine according to formula I. H
CC
Die Synthese dieser Verbindung ist bekannt und beispielsweise in der EP 0570247 AI offenbart. Aus dieser Verbindung kann B-tris(E-trichlorsilylvinyl)borazine hergestellt werden.The synthesis of this compound is known and is disclosed, for example, in EP 0570247 AI. B-tris (E-trichlorosilylvinyl) borazine can be produced from this compound.
Darstellung von B-tris(E-trichlorsilylvinyl)borazine (Formel II)Preparation of B-tris (E-trichlorosilylvinyl) borazine (Formula II)
π Reaktionsgleichungen:π Reaction equations:
1 ) n(N3B3H3)(C≡CH)3 + 3nHSiCl3 1) n (N 3 B 3 H 3 ) (C≡CH) 3 + 3 nHSiCl 3
2) (N3B3H3)(CH=CH(SiCl3))3 + (N3B3H3)(C(SiCl3)=CH2)3 + Isomere Triethinylborain 10g, 65.6 mmol2) (N 3 B 3 H 3 ) (CH = CH (SiCl 3 )) 3 + (N 3 B 3 H 3 ) (C (SiCl 3 ) = CH 2 ) 3 + isomers triethinylborain 10g, 65.6 mmol
Trichlorsilan 54.2g, 400 mmolTrichlorosilane 54.2g, 400 mmol
Platin on carbon (l%) lg, 0.05 mmol PtPlatinum on carbon (l%) lg, 0.05 mmol Pt
10g Triethinylborazin werden in 300mL Toluene gelöst und lg Pt/C(l%Pt) zugegen. Dann wird über einen Tropftrichter das Trichlorsilan zugegeben und kräftig gerührt, so dass die Reaktion beginnt. Bei einer Reaktionstemperatur von etwa 80°C über 12 Stunden reagieren die Komponenten vollständig. Im Anschluss wird das Pt/C abfiltriert und danach überschüssiges Trichlorsilan und das Toluen abdestilliert. Schliesslich wird das Reaktionsprodukt am Hochvakuum getrocknet und man erhält es in quantitativer Ausbeute. Die Reindarstellung/Isolation der Ver- bindung B-tris(E-trichlorsilylvinyl)borazine erfolgt über fraktionierte Kristallisation des Reaktionsproduktes aus Hexan bei -30°C. Eine Unterscheidung der verschiedenen Isomere ist anhand von NMR- Spektren recht einfach möglich.10 g of triethinylborazine are dissolved in 300 ml of toluene and 1 g of Pt / C (1% Pt) is added. Then the trichlorosilane is added via a dropping funnel and stirred vigorously so that the reaction begins. The components react completely at a reaction temperature of about 80 ° C. for 12 hours. The Pt / C is then filtered off and then excess trichlorosilane and the toluene are distilled off. Finally, the reaction product is dried under a high vacuum and is obtained in quantitative yield. The pure presentation / isolation of the compound B-tris (E-trichlorosilylvinyl) borazine takes place via fractional crystallization of the reaction product from hexane at -30 ° C. It is very easy to differentiate between the different isomers using NMR spectra.
Η-NMR(C6D6):6.85/6.22(3J=21.3);4.60 πB-NMR:34.0Η NMR (C 6 D 6 ): 6.85 / 6.22 (3J = 21.3); 4.60 π B NMR: 34.0
13 C-NMR: 137.4/154(b)13 C-NMR: 137.4 / 154 (b)
29Si-NMR:-3.3 29 Si NMR: -3.3
Diese Verbindung ist zudem durch eine Einkristall- Strukturanalyse belegt. This connection is also proven by a single crystal structure analysis.
Darstellung von B-tris(hydrosiIylvinyl)borazine (Formel III bzw. lila bis IIIc)Representation of B-tris (hydrosilyl vinyl) borazine (formula III or purple to IIIc)
Beispiel 1 :Example 1 :
III lilaIII purple
Hlb IIIc Reaktionsgleichungen :Hlb IIIc Reaction equations:
1) 4(N3B3H3χCH=CH(SiH3))3 + 9 A1H4 1) 4 (N 3 B 3 H 3 χCH = CH (SiH 3 )) 3 + 9 A1H 4
2) 4(N3B3H3)(CH=CH(SiH3))3 + Isomere + LiCl + 9ALC13 B-tris(E-trichlorsilylvinyl)borazinelOg, 17.9 mmol2) 4 (N 3 B 3 H 3 ) (CH = CH (SiH 3 )) 3 + isomers + LiCl + 9ALC1 3 B-tris (E-trichlorosilylvinyl) borazinelOg, 17.9 mmol
LiAlH4 1.6g, 42.1 mmolLiAlH4 1.6g, 42.1 mmol
1,6g LiAlH4 werden in lOmL THF suspendiert und auf -20°C gekühlt. Danach tropft man über etwa 1 Stunde 10g B-tris(E-trichlorsilylvinyl)borazine, gelöst in 80mL THF, unter Beibehaltung der Temperatur zu. Nachdem sich das Reaktionsgemisch auf Raumtemperatur erwärmt hat, wird 12 Stunden weiter gerührt. Danach werden 20mL Hexan zugegeben, um überschüssiges LiAlH4 sowie einen Teil des AlCl /LiCl auszufällen. Der Feststoff wird abfiltriert und mit lOmL Hexan gewaschen. Das Filtrat wird von den Lösungsmitteln befreit und mit einem Gemisch aus 150mL Hexan und 50mL Toluen aufgenommen. Von dieser Suspension wird das Nebenprodukt LiCl wiederum abfiltriert. Vom Filtrat werden die Lösungsmittel entfernt und man erhält eine farblose, hochviskose Flüssigkeit, welche nach dem Trocknen am Hochvakuum fest wird. Entsprechend können die Isomeren lila bis IIIc hergestellt werden.1.6 g of LiAlH 4 are suspended in 10 ml of THF and cooled to -20 ° C. Then 10 g of B-tris (E-trichlorosilylvinyl) borazine, dissolved in 80 ml THF, are added dropwise over about 1 hour while maintaining the temperature. After the reaction mixture has warmed to room temperature, stirring is continued for 12 hours. Then 20 ml of hexane are added in order to precipitate excess LiAlH 4 and part of the AlCl / LiCl. The solid is filtered off and washed with 10 ml of hexane. The filtrate is freed from the solvents and taken up in a mixture of 150 ml hexane and 50 ml toluene. The by-product LiCl is again filtered off from this suspension. The solvents are removed from the filtrate and a colorless, highly viscous liquid is obtained, which solidifies after drying in a high vacuum. The isomers purple to IIIc can be prepared accordingly.
1H-NMR(C6D6):4.26/4.96/6.38/6.75(3JVinyι-trans=21.6Hz;3JHsi-CH=2.8HZ) πB-NMR:33.4 1 H-NMR (C 6 D 6 ): 4.26 / 4.96 / 6.38 / 6.75 (3J V i ny ι- trans = 21.6Hz; 3J H si- CH = 2.8HZ) π B-NMR: 33.4
13C-NMR:135/153.7(b) 29Si-NMR:-63.1(JSi-H=199Hz) 13 C-NMR: 135 / 153.7 (b) 29 Si-NMR: -63.1 (JSi-H = 199Hz)
Darstellung von B-tris(hydrosilylvinyl)bora2-ineRepresentation of B-tris (hydrosilylvinyl) bora2-ine
Beispiel 2:Example 2:
Reaktionsgleichungen:Reaction equations:
1) (N3B3H3)(CH=CH(SiCl3))3 + 9LiHB(Et)3 1) (N 3 B 3 H 3 ) (CH = CH (SiCl 3 )) 3 + 9LiHB (Et) 3
2) (N3B3H3)(CH=CH(SiH3))3 + Isomere + 9LiCl + 9B(Et)3 B-tris(E-trichlorsilylvinyl)borazine 10g, 17.9 mmol LiHB(Et)3 IM in THF 161,1 mL, 161,1 mmol LiHB(Et)3 10g B-tris(E-trichlorsilylvinyl)borazine werden in 200mL THF gelöst und auf -50°C gekühlt. Dazu werden 161,1 mL einer 1-molaren Lösung von LiHB(Et) in RHF gegeben. Nachdem sich das Reaktionsgemisch auf Raumtemperatur erwärmt hat, wird zur vollständigen Umsetzung 12 Stunden weiter gerührt. Danach wird die Reaktionslösung auf ein Volumen von etwa 30 mL eingeengt, wobei weisses LiCl auszufallen beginnt. Zur vollständigen Ausfällung des LiCl werden 1 OOmL Toluen zugegeben. Der Feststoff wird abfiltriert und mit 1 OmL Toluen gewaschen. Vom Filtrat werden die Lösungsmittel und das Nebenprodukt Triethylboran im Vakuum abdestilliert. Auf diesem Weg können auch die Isomeren hergestellt werden.2) (N 3 B 3 H 3 ) (CH = CH (SiH 3 )) 3 + isomers + 9LiCl + 9B (Et) 3 B-tris (E-trichlorosilylvinyl) borazine 10g, 17.9 mmol LiHB (Et) 3 IM in THF 161.1 mL, 161.1 mmol LiHB (Et) 3 10g B-tris (E-trichlorosilylvinyl) borazine are dissolved in 200mL THF and cooled to -50 ° C. 161.1 mL of a 1 molar solution of LiHB (Et) in RHF are added. After the reaction mixture has warmed to room temperature, stirring is continued for 12 hours to complete the reaction. The reaction solution is then concentrated to a volume of about 30 mL, whereupon white LiCl begins to precipitate. 1 OOmL toluene is added to completely precipitate the LiCl. The solid is filtered off and washed with 1 OmL toluene. The solvents and the by-product triethylborane are distilled off from the filtrate in vacuo. The isomers can also be prepared in this way.
Als Precursor, die durch Pyrolyse direkt zu Keramik umgewandelt werden , eignen sich auch die Verbindungen gemäss den Formeln IVa - IVd und V bis Vd5 wobei R ein Wasserstoff, Alkyl, insbesondere Methyl, ein Phenyl oder Amin ist. Für diese Verbindungen gelten die oben erwähnten Synthesevorschriften, für die Methyl- bzw. Phenylverbindungen jeweils mit PhSi(H)Cl2 bzw. CH3Si(H)Cl2, Ph2Si(H)Cl bzw. (CH3)2Si(H)Cl. Die anschliessende Hydrierung kann ebenfalls wie oben erwähnt erfolgen.Also suitable as precursors, which are converted directly to ceramic by pyrolysis, are the compounds of the formulas IVa-IVd and V to Vd 5 where R is a hydrogen, alkyl, in particular methyl, a phenyl or amine. The above-mentioned synthesis instructions apply to these compounds, for which methyl or phenyl compounds in each case with PhSi (H) Cl 2 or CH 3 Si (H) Cl 2 , Ph 2 Si (H) Cl or (CH 3 ) 2Si ( H) Cl. The subsequent hydrogenation can also be carried out as mentioned above.
Die Analysedaten für B-tris((phenyl-dihydrosilyl)vinyl)borazin sind:The analysis data for B-tris ((phenyl-dihydrosilyl) vinyl) borazine are:
29Si-NMR:-36.3 / "ß-NMR: 31.7 / 1H-NMR: 3.7;4.9;6.6;7.6 / 13C-NMR: 153.2;139.5;134.1;131.9;132.0;128.5 29 Si-NMR: -36.3 / "β-NMR: 31.7 / 1H-NMR: 3.7; 4.9; 6.6; 7.6 / 13 C-NMR: 153.2; 139.5; 134.1; 131.9; 132.0; 128.5
Für B-tris((methyl-dihydrosilyl)vinyl)borazin ergaben sich die folgenden Analysedaten:The following analysis data were obtained for B-tris ((methyl-dihydrosilyl) vinyl) borazine:
29 Si-NMR: -30.0 / nB-NMR: 33 / 1H-NMR: 0.6;3.5;5.0;6.8 / 13C-NMR: 151.4;141.0;4.6 29 Si-NMR: -30.0 / n B-NMR: 33 / 1H-NMR: 0.6; 3.5; 5.0; 6.8 / 13 C-NMR: 151.4; 141.0; 4.6
IVa IVbIVa IVb
IVc IVd IVc IVd
Va VbVa vb
Vc Vd Durch die Wahl der R-Gruppen können die Eigenschaften der Keramik und insbesondere die elektrischen, thermischen und mechanischen Eigenschaften verändert werden. Es hat sich insbesondere gezeigt, dass ein höherer Anteil von Kohlenstoff eine höhere Leitfähigkeit der Keramik ergibt, was mit einem höheren Anteil von Doppelbindungen zu erklären ist.Vc Vd The properties of the ceramic and in particular the electrical, thermal and mechanical properties can be changed by the choice of the R groups. It has been shown in particular that a higher proportion of carbon results in a higher conductivity of the ceramic, which can be explained by a higher proportion of double bonds.
Der Precursor kann mit Metall- Verbindungen gemischt werden um eine mit Metall dotierte Keramik zu erhalten. Beispielsweise wird hierzu der Precursor mit metallorganischen Verbindungen in einem Lösungsmittel wie beispielsweise THF, Acetonitril, Toluen, Benzen oder Hexan gemischt und anschliessend wie oben erwähnt pyrolysiert. Als geeignete Metallverbindungen haben sich insbesondere ergeben: Fe(CO)5, Fe2(CO) ; Ferrocen, Bis(l,5-cyclooctadiene)- nickel(O), LiHB(CH2CH3)3, (iBut)2AlH. Die Metallatome bzw. Cluster können auf nanoskopi- scher Ebene sehr homogen verteilt werden. Bis 1500° C ergibt sich eine amorphe Verteilung und ein Metallgehalt bis etwa 3 %. Die thermische Zersetzung kann mit UV-Strahlen beschleunigt werden.The precursor can be mixed with metal compounds in order to obtain a ceramic doped with metal. For this purpose, the precursor is mixed with organometallic compounds in a solvent such as THF, acetonitrile, toluene, benzene or hexane, for example, and then pyrolyzed as mentioned above. Suitable metal compounds have emerged in particular: Fe (CO) 5 , Fe 2 (CO); Ferrocene, bis (1,5-cyclooctadiene) - nickel (O), LiHB (CH 2 CH 3 ) 3 , (iBut) 2 AlH. The metal atoms or clusters can be distributed very homogeneously at the nanoscopic level. Up to 1500 ° C there is an amorphous distribution and a metal content of up to about 3%. Thermal decomposition can be accelerated with UV rays.
Figur 1 zeigt eine Aufnahme einer mit Eisen dotierten Keramik, wobei das Eisen als schwarze Flecken, welche nur bis zu wenige Nanometer gross sind, sichtbar ist.FIG. 1 shows an image of a ceramic doped with iron, the iron being visible as black spots which are only up to a few nanometers in size.
Eine mit Metall dotierte Keramik besitzt eine erhöhte elektrische Leitfähigkeit. Sie ist beispiels- weise kontaktlos über ein elektrisches Feld induktiv heizbar. Eine solche Keramik kann beispielsweise zur Herstellung eines medizinischen Implantates verwendet werden. Weiter kann eine solche dotierte Keramik auch als magnetischer Speicher verwendet werden. Die magnetischen Informationen können beispielsweise thermisch oder mit einem Wechselfeld gelöscht werden.A ceramic doped with metal has an increased electrical conductivity. For example, it can be heated inductively via an electrical field without contact. Such a ceramic can be used, for example, to produce a medical implant. Such a doped ceramic can also be used as a magnetic memory. The magnetic information can be erased, for example, thermally or with an alternating field.
Das erfmdungsgemässe Verfahren eignet sich zudem zur Herstellung von Keramik-Partikeln, die mit Kohlenstoff-Nanotubes beschichtet sind, wie die Figur 2 zeigt. Als Katalysator zur Bildung der Nanotubes wurde Ni verwendet, welcher als geeignete lösliche Verbindung dem flüssigen Precursor beigemischt wurde. Die Nanotubes entstehen während der Pyrolyse in situ auf der ganzen Oberfläche der Keramik. Es können sehr kleine Teile mit einer hohen Dichte an Nanotubes erreicht werden. Die Nanotubes eignen sich beispielsweise als Trä- ger von Katalysatoren. Vorteilhaft ist hier insbesondere die hohe thermische und chemische Stabilität des Grundkörpers aus Keramik.The method according to the invention is also suitable for producing ceramic particles which are coated with carbon nanotubes, as shown in FIG. 2. Ni was used as the catalyst for the formation of the nanotubes, which was mixed into the liquid precursor as a suitable soluble compound. The nanotubes are formed in situ on the entire surface of the ceramic during pyrolysis. Very small parts with a high density of nanotubes can be achieved. The nanotubes are suitable, for example, as carriers for catalysts. The high thermal and chemical stability of the ceramic base body is particularly advantageous here.
B-tris(hydrosilylvinyl)borazin ist bei Raumtemperatur nach der Beigabe bereits einer geringen Menge Lösungsmittel flüssig und kann als solche mit einem Pinsel oder durch Sprühen aufgetra- gen werden. Die Streicheigenschaften können mit einem geeigneten Lösungsmittel eingestellt werden. Dies ist besonders für das Auftragen von dünnen Schichten wesentlich. Ebenfalls kann hierbei eine geeignete Tixotropie eingestellt werden. Es können dadurch unterschiedliche Schichtdicken exakt gewährleistet werden. Beispielsweise können Rohrinnenseiten mit B-tris- (hydrosilylvinyl)borazin oder Lösungen davon beschichtet werden.B-tris (hydrosilylvinyl) borazine is liquid at room temperature after the addition of a small amount of solvent and can be applied as such with a brush or by spraying. The coating properties can be adjusted with a suitable solvent. This is particularly important for the application of thin layers. A suitable tixotropy can also be set here. Different layer thicknesses can be guaranteed exactly. For example, the inside of the tube can be coated with B-tris (hydrosilylvinyl) borazine or solutions thereof.
Durch Pyrolyse von B-tris(hydrosilylvinyl)borazin wird dieses in einer überraschend hohen Ausbeute in einen keramischen Stoff umgewandelt. Die keramische Ausbeute betrug gemäss den oben genannten Beispielen 94%. Die Pyrolyse erfolgt vorzugsweise mit einer Vorpyrolyse bei einer Temperatur unterhalb 1000°C und einer Pyrolyse bei einer Temperatur über 1000°C bis etwa 2000°C. Der keramische Stoff kann auch durch Pyrolyse der isomeren Verbindungen oder aus einem Isomerengemisch hergestellt werden.Pyrolysis of B-tris (hydrosilylvinyl) borazine converts it into a ceramic material in a surprisingly high yield. The ceramic yield was 94% according to the above examples. The pyrolysis is preferably carried out with pre-pyrolysis at a temperature below 1000 ° C. and pyrolysis at a temperature above 1000 ° C. to approximately 2000 ° C. The ceramic material can also be produced by pyrolysis of the isomeric compounds or from an isomer mixture.
Ein wesentlicher Vorteil dieser Herstellung wird darin gesehen, dass keine Vernetzung und Polymerbildung erforderlich ist. Das B-tris(hydrosilylvinyl)borazin wird direkt durch Pyrolyse in Keramik umgewandelt. Bei der Pyrolyse entweicht als Abbauprodukt im Wesentlichen lediglichA major advantage of this production is seen in the fact that no crosslinking and polymer formation is required. The B-tris (hydrosilylvinyl) borazine is converted directly into ceramic by pyrolysis. In pyrolysis, essentially only escapes as a degradation product
Wasserstoff. Damit ergibt sich eine Keramik, die im Wesentlichen porenfrei und sehr dicht ist. Die Schrumpfung ist während der Pyrolyse sehr gering. Überraschend ist zudem die hohe Stabilität der Keramik, die durch eine bessere Vernetzung aufgrund der vielen Doppelbindungen erklärt werden kann. Die vergleichsweise vielen Doppelbindungen und die weitgehende Sauer- Stofffreiheit ergeben eine leitfähige Keramik. Dadurch ergeben sich folgende vorzugsweise Verwendungen der nach diesem Verfahren hergestellten Keramik: Aufgrund der hohen Temperaturstabilität und der elektrischen Leitfähigkeit eignet sich die Keramik besonders für die Herstellung von Heizelementen und insbesondere kontaktlosen Heizelementen. Die Leitfähigkeit der erfmdungsgemässen Keramik ergibt sich aus der Messkurve der Figur 3.Hydrogen. This results in a ceramic that is essentially non-porous and very dense. The shrinkage is very low during pyrolysis. What is also surprising is the high stability of the ceramic, which can be explained by better networking due to the many double bonds. The comparatively large number of double bonds and extensive freedom from oxygen result in a conductive ceramic. This results in the following preferred uses of the ceramic produced by this process: Due to the high temperature stability and the electrical conductivity, the ceramic is particularly suitable for the production of heating elements and in particular contactless heating elements. The conductivity of the ceramic according to the invention results from the measurement curve in FIG. 3.
Ein wesentlicher Vorteil ist auch die vergleichsweise hohe Luftstabilität der Keramik. Diese Luftstabilität ist auch bei hohen Temperaturen vorhanden.Another key advantage is the comparatively high air stability of the ceramic. This air stability is also present at high temperatures.
Eine weitere vorzugsweise Verwendung ist die Herstellung von keramischen Beschichtungen. Aufgrund der vergleichsweise hohen elektrischen Leitfähigkeit sind solche Beschichtungen antistatisch. Sie sind zudem thermisch und chemisch stabil. Insbesondere können Beschichtungen der Innenseite von Rohren beispielsweise für den Transport von Flüssigkeiten hergestellt werden. Die Beschichtung erfolgt mit B-tris(hydrosilylvinyl)borazin beispielsweise durch Streichen oder Sprühen. Ebenfalls können Lösungen dieser Verbindung aufgetragen werden. Die Keramik kann zudem beispielsweise als Pulver zu bekannten Beschichtungsmitteln beigegeben werden, um beispielsweise die Leitfähigkeit zu erhöhen. Die Keramik eignet sich insbesondere zur Herstellung von Emaille, da die Keramik auch bei höheren Temperaturen bleibende Eigenschafen, insbesondere die Leitfähigkeit behält. Nach dem Auftragen wird pyrolysiert.Another preferred use is the production of ceramic coatings. Due to the comparatively high electrical conductivity, such coatings are antistatic. They are also thermally and chemically stable. In particular, coatings on the inside of pipes can be produced, for example, for the transport of liquids. Coating is carried out with B-tris (hydrosilylvinyl) borazine, for example by brushing or spraying. Solutions of this compound can also be applied. The ceramic can also be added, for example, as a powder to known coating compositions, for example to increase the conductivity. The ceramic is particularly suitable for the production of enamel, since the ceramic retains properties, in particular the conductivity, even at higher temperatures. After application, pyrolysis is carried out.
Die Eigenschaften der Keramik können verändert werden, indem die Moleküle des Precursors von der Pyrolyse vorzugsweise ein- oder zweidimensional vernetzt werden. Insbesondere können die Borazine-Moleküle durch Kristallisation kettenartig vernetzt werden, wobei auch Mischkristalle denkbar sind. Eine solche Vernetzung von der Pyrolyse hat zur Folge, dass die Keramik eine höhere Flexibilität besitzt. Diese Flexibilität kann durch den Grad und die Art der Vernet- zung von der Pyrolyse beeinflusst und damit an die gewünschten Eigenschaften angepasst werden.The properties of the ceramic can be changed by the molecules of the precursor are preferably cross-linked in one or two dimensions by pyrolysis. In particular, the borazine molecules can be crosslinked in a chain-like manner by crystallization, mixed crystals also being conceivable. Such pyrolysis crosslinking means that the ceramic has greater flexibility. This flexibility can be influenced by the degree and type of crosslinking of the pyrolysis and can thus be adapted to the desired properties.
Weitere Verwendungen und Anwendungen der erfmdungsgemässen Keramik sind denkbar. Insbesondere können mit der Keramik verschiedene Halbleiterbauteile hergestellt werden. Further uses and applications of the ceramic according to the invention are conceivable. In particular, various semiconductor components can be produced with the ceramic.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung einer B/N/C/Si-Keramik aus einem Borazinprecursor, dadurch gekennzeichnet, dass der Borazinprecursor B-tris(hydrosilylvinyl)borazin ist und dieses durch Pyrolyse in Keramik umgewandelt wird.1. A process for producing a B / N / C / Si ceramic from a borazine precursor, characterized in that the borazine precursor is B-tris (hydrosilylvinyl) borazine and this is converted into ceramic by pyrolysis.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das B-tris(hydrosilylvinyl)- borazin durch Hydrieren von B-tris(trichlorsilylvinyl)borazin hergestellt wird.2. The method according to claim 1, characterized in that the B-tris (hydrosilylvinyl) borazine is prepared by hydrogenating B-tris (trichlorosilylvinyl) borazine.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das B-tris(trichlorsilylvinyl)- borazin aus B-Triethinylborazin durch Hydrosilylation hergestellt wird.3. The method according to claim 2, characterized in that the B-tris (trichlorosilylvinyl) borazine is produced from B-triethinylborazine by hydrosilylation.
4. Verfahren nach Ansprach 1, dadurch gekennzeichnet, dass das B-tris(hydrosilylvinyl)- borazin pyrolysiert wird.4. The method according spoke 1, characterized in that the B-tris (hydrosilyl vinyl) - borazine is pyrolyzed.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass dass B-tris (hydrosilylvinyl)borazin flüssig appliziert und nachher pyrolysiert wird.5. The method according to any one of claims 1 to 4, characterized in that B-tris (hydrosilylvinyl) borazine is applied in liquid form and is subsequently pyrolyzed.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass B-tris(hydrosilylvinyl)borazin in einem Lösungsmittel gelöst und auf Tixotropie eingestellt wird.6. The method according to claim 5, characterized in that B-tris (hydrosilylvinyl) borazine is dissolved in a solvent and adjusted to tixotropy.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass B-tris (hydrosilylvinyl)borazin oder eine Lösung davon durch Streichen oder Spritzen appliziert und anschliessend pyrolisiert wird.7. The method according to claim 5 or 6, characterized in that B-tris (hydrosilylvinyl) borazine or a solution thereof is applied by brushing or spraying and then pyrolyzed.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das B-tris (hydrosilylvinyl)borazin nach einer Vorpyrolyse bei einer höheren Temperatur zwischen 1000°C und 2000°C insbesondere 1 100-1300°C in eine Hochtemperaturkeramik umgewandelt wird.8. The method according to any one of claims 1 to 7, characterized in that the B-tris (hydrosilylvinyl) borazine is converted into a high-temperature ceramic after pre-pyrolysis at a higher temperature between 1000 ° C and 2000 ° C, in particular 1 100-1300 ° C ,
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Precursor zur Herstellung einer dotierten Keramik mit einem Metall oder einer Metallverbindung gemischt wird.9. The method according to any one of claims 1 to 8, characterized in that the precursor is mixed to produce a doped ceramic with a metal or a metal compound.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Moleküle des Borazineprecursors vor der Pyrolyse ein- oder zweidimensional vernetzt werden. 10. The method according to any one of claims 1 to 9, characterized in that the molecules of the borazine precursor are cross-linked in one or two dimensions before pyrolysis.
1 1. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Precursor B-tris((phenyl- dihydrosilyl)vinyl)borazin, B-tris((methyl-dihydrosilyl)vinyl)borazin oder ein Amin ist.1 1. The method according to claim 1, characterized in that the precursor is B-tris ((phenyl-dihydrosilyl) vinyl) borazine, B-tris ((methyl-dihydrosilyl) vinyl) borazine or an amine.
12. Keramik hergestellt nach Anspruch 1, dadurch gekennzeichnet, dass sie im Wesentlichen porenfrei ist.12. Ceramic produced according to claim 1, characterized in that it is substantially non-porous.
13. Keramik nach Anspruch 12, dadurch gekennzeichnet, dass sie eine im Wesentlichen sauerstofffreie Hochtemperaturkeramik ist.13. Ceramic according to claim 12, characterized in that it is an essentially oxygen-free high-temperature ceramic.
14. Keramik nach Anspruch 12, dadurch gekennzeichnet, dass sie ein Halbleiter ist.14. Ceramic according to claim 12, characterized in that it is a semiconductor.
15. Keramik nach Anspruch 12, dadurch gekennzeichnet, dass sie mit Metall dotiert ist.15. Ceramic according to claim 12, characterized in that it is doped with metal.
16. Verwendung der gemäss Anspruch 1 hergestellten Keramik zur Herstellung eines Heizele- mentes.16. Use of the ceramic produced according to claim 1 for the production of a heating element.
17. Verwendung der gemäss Anspruch 1 hergestellten Keramik zur Herstellung einer Beschichtung.17. Use of the ceramic produced according to claim 1 for the production of a coating.
18. Verwendung nach Anspruch 15, dadurch gekennzeichnet, dass die Beschichtung antistatisch ist.18. Use according to claim 15, characterized in that the coating is antistatic.
19. Verwendung nach Anspruch 15, dadurch gekennzeichnet, dass die Beschichtung eine Innenbeschichtung, insbesondere eines Rohres ist.19. Use according to claim 15, characterized in that the coating is an inner coating, in particular a tube.
20. Verwendung der nach Anspruch 1 hergestellten Keramik zur Herstellung eines Halbleiters.20. Use of the ceramic produced according to claim 1 for the production of a semiconductor.
21. Verwendung der nach Anspruch 1 hergestellten Keramik als medizinisches Implantat.21. Use of the ceramic produced according to claim 1 as a medical implant.
22. Verwendung nach Anspruch 21, dadurch gekennzeichnet, dass die Keramik mit Metall do- tiert ist. 22. Use according to claim 21, characterized in that the ceramic is doped with metal.
EP04707180A 2003-02-03 2004-02-02 Method for production of a b/n/c/si ceramic from a borazine precursor, ceramics made by said method and use of the ceramic made by said method Withdrawn EP1590310A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH1492003 2003-02-03
CH149032003 2003-02-03
PCT/CH2004/000052 WO2004069768A1 (en) 2003-02-03 2004-02-02 Method for production of a b/n/c/si ceramic from a borazine precursor, ceramics made by said method and use of the ceramic made by said method

Publications (1)

Publication Number Publication Date
EP1590310A1 true EP1590310A1 (en) 2005-11-02

Family

ID=32831659

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04707180A Withdrawn EP1590310A1 (en) 2003-02-03 2004-02-02 Method for production of a b/n/c/si ceramic from a borazine precursor, ceramics made by said method and use of the ceramic made by said method

Country Status (3)

Country Link
US (1) US7777062B2 (en)
EP (1) EP1590310A1 (en)
WO (1) WO2004069768A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2634845B1 (en) 2012-02-29 2020-09-16 Belenos Clean Power Holding AG Coating and lithiation of inorganic oxidants by reaction with lithiated reductants

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188757A (en) * 1989-02-17 1993-02-23 University Of New Mexico Precursor compositions for conversion to boron nitride
DE4313130C1 (en) * 1993-04-22 1994-05-26 Goldschmidt Ag Th Silanes and organosilicon hydrides prodn. - by redn. of corresp. silicon halides with non-pyrophoric storage magnesium hydride in THF etc., with continuous removal of halide deposits
US5585136A (en) * 1995-03-22 1996-12-17 Queen's University At Kingston Method for producing thick ceramic films by a sol gel coating process
US6422229B1 (en) 2000-06-29 2002-07-23 Advanced Micro Devices, Inc. Saw blade for cutting integrated circuit package boards
DE10108069A1 (en) * 2001-02-20 2002-08-22 Max Planck Gesellschaft New silylalkylborane compounds, useful for the production of ceramic powder, are prepared by reaction of a silane with a metal in an aprotic solvent followed by reaction with a borane compound
ATE291580T1 (en) * 2000-09-12 2005-04-15 Max Planck Gesellschaft HIGH TEMPERATURE STABLE SILICON BORON CARBIDE NITRIDE CERAMICS MADE OF SILYLALKYLBORAZINES, METHOD FOR THEIR PRODUCTION AND THEIR USE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004069768A1 *

Also Published As

Publication number Publication date
US20060293164A1 (en) 2006-12-28
US7777062B2 (en) 2010-08-17
WO2004069768A1 (en) 2004-08-19

Similar Documents

Publication Publication Date Title
Dement'ev et al. Structure and electrochemistry of ferrocenyloligosilanes:. alpha.,. omega.-bis (ferrocenyl)-and. alpha.,. omega.-(1, 1'-ferrocenediyl) oligosilanes
DE60125174T2 (en) DIRECT PRINTING OF THIN-LAYERED LADDERS WITH METAL CHELAT INKS
EP1756003B1 (en) Method for the production of silanized carbon nanotubes
DE2926613A1 (en) FUEL CELL CATODE
EP1996753B1 (en) Metal nanowires with an oxide sheath and production method for same
DE3126240A1 (en) METHOD FOR PRODUCING METALLIC SILICON
EP1087836A1 (en) Method for modifying the dispersion characteristics of metal-organic-prestabilized or pre-treated nanometal colloids
DE3323436A1 (en) METHOD FOR PRODUCING SILICON CARBIDE FIBERS
EP0463624A2 (en) Process for preparing organopolysilanes
KR20070108702A (en) Method for preparing metal nanocrystal
EP1324961B1 (en) Silicon-boron-carbon-nitrogen ceramics and precursor compounds, methods for the production and use thereof
DE102008018062A1 (en) Silicon-boron-carbon-nitrogen ceramics and precursors, salt-free polymerization of RnHal3-nSi-X-BRmHal2-m
EP1590310A1 (en) Method for production of a b/n/c/si ceramic from a borazine precursor, ceramics made by said method and use of the ceramic made by said method
DE2236443B2 (en) Aqueous BATH FOR THE PRODUCTION OF METALLIC COATINGS THAT CONTAIN NON-METALLIC, FINELY DISTRIBUTED SOLIDS
EP0601405A2 (en) Polymeric borosilazanes and alumosilazanes and their use
KR101692852B1 (en) Catalyst for oxygen reduction reaction based cobalt and the preparation method thereof
EP2925805B1 (en) Method for producing hydridosilanes containing carbon
EP0973781B1 (en) Sililalkylboranes, oligo or polyborocarbosilazanes and silicon carbonitrides ceramics
DE4221659C2 (en) Volatile, organometallic alkoxides and their use in the production of microcomposites from ceramic and metal
DE4100990C2 (en) Process for the preparation of composite dielectric materials and their use
WO1998045303A1 (en) Boron-containing carbosilanes, boron-containing oligo or polycarbosilazanes and silicon borocarbonitride ceramics
Haberecht et al. Carbon nanostructures on high-temperature ceramics–a novel composite material and its functionalization
JPH05238709A (en) Manufacture of new boron nitride and boron nitride obtained by the manufacturing method
CN115304766B (en) Multifunctional nanowire with adjustable surface groups and components and super-assembly preparation method thereof
DE4320783A1 (en) Prepn. of boron-contg. poly:silazane, useful for prodn. of ceramics - by reacting tris-di:chloro:silyl-ethyl-borane(s) with ammonia

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: GRUETZMACHER, HANSJOERG

Inventor name: HABERECHT, JOERG

Inventor name: NESPER, REINHARD

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140902