EP1589811A2 - Microperforation sans contact de zona pellucida d'ovocytes avec un faisceau laser a diode de 1,48 m pour l'introduction de retrovirus - Google Patents
Microperforation sans contact de zona pellucida d'ovocytes avec un faisceau laser a diode de 1,48 m pour l'introduction de retrovirusInfo
- Publication number
- EP1589811A2 EP1589811A2 EP04708744A EP04708744A EP1589811A2 EP 1589811 A2 EP1589811 A2 EP 1589811A2 EP 04708744 A EP04708744 A EP 04708744A EP 04708744 A EP04708744 A EP 04708744A EP 1589811 A2 EP1589811 A2 EP 1589811A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- laser
- zona pellucida
- embryo
- retrovirus
- laser beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 210000001161 mammalian embryo Anatomy 0.000 title claims abstract description 18
- 241001430294 unidentified retrovirus Species 0.000 title claims abstract description 9
- 210000004340 zona pellucida Anatomy 0.000 title claims description 38
- 108700019146 Transgenes Proteins 0.000 claims abstract description 14
- 241000713666 Lentivirus Species 0.000 claims abstract description 10
- 210000002257 embryonic structure Anatomy 0.000 claims description 14
- 210000004027 cell Anatomy 0.000 claims description 8
- 241000699660 Mus musculus Species 0.000 claims description 3
- 238000011830 transgenic mouse model Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 27
- 238000005553 drilling Methods 0.000 description 14
- 239000013598 vector Substances 0.000 description 12
- 210000000287 oocyte Anatomy 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 6
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 6
- 239000005090 green fluorescent protein Substances 0.000 description 6
- 241000700605 Viruses Species 0.000 description 5
- 235000013601 eggs Nutrition 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 102100037935 Polyubiquitin-C Human genes 0.000 description 3
- 230000004720 fertilization Effects 0.000 description 3
- 230000009261 transgenic effect Effects 0.000 description 3
- 101150104383 ALOX5AP gene Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 101100236114 Mus musculus Lrrfip1 gene Proteins 0.000 description 2
- 108010056354 Ubiquitin C Proteins 0.000 description 2
- 210000001109 blastomere Anatomy 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 238000001476 gene delivery Methods 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- MQOMKCIKNDDXEZ-UHFFFAOYSA-N 1-dibutylphosphoryloxy-4-nitrobenzene Chemical compound CCCCP(=O)(CCCC)OC1=CC=C([N+]([O-])=O)C=C1 MQOMKCIKNDDXEZ-UHFFFAOYSA-N 0.000 description 1
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 1
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 101000713211 Colocasia esculenta Mannose-specific lectin TAR1 Proteins 0.000 description 1
- 101710121417 Envelope glycoprotein Proteins 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 1
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 1
- 101150066002 GFP gene Proteins 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108010068086 Polyubiquitin Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 102100021696 Syncytin-1 Human genes 0.000 description 1
- 241000711975 Vesicular stomatitis virus Species 0.000 description 1
- 241001492404 Woodchuck hepatitis virus Species 0.000 description 1
- 102000008937 Zona Pellucida Glycoproteins Human genes 0.000 description 1
- 108010074006 Zona Pellucida Glycoproteins Proteins 0.000 description 1
- JGRGMDZIEXDEQT-UHFFFAOYSA-N [Cl].[Xe] Chemical compound [Cl].[Xe] JGRGMDZIEXDEQT-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000013178 blastocyst hatching Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229960004407 chorionic gonadotrophin Drugs 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 229940028334 follicle stimulating hormone Drugs 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000013421 nuclear magnetic resonance imaging Methods 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 230000016087 ovulation Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 229940064298 pregnyl Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/873—Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M35/00—Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
- C12M35/02—Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16041—Use of virus, viral particle or viral elements as a vector
- C12N2740/16043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Definitions
- lentiviruses are a class of retroviruses that cause chronic illnesses in the host organisms they infect .
- retroviruses lentiviruses have the distinguishing property of being able to infect both dividing and nondividing cells, and this ability has led to their development as gene delivery vehicles. Because of their property to infect both dividing and non-dividing cells, they have been used widely as gene delivery tools.
- lentiviruses engineered to carry a transgene were injected into the perivitelline space of single cell mouse embryos. Embryos were implanted into pseudo-pregnant mothers, and carried to term.
- Embryos could be maintained in their usual culture dish and medium during the drilling process without requiring special quartz optical equipment as for UV lasers (Sch ⁇ tze et al . , Fertil . Steril . , 61, 783-786, 1994), a change of medium (Blanchet et al . , Fertil. Steril., 57, 1337-1341, 1992) or micromanipulators as for the 2.9 ⁇ m Erbium:YAG laser (Obruca et al . , Hum. Reprod.
- a need remains to provide a procedure to produce transgenic animals at a high rate. Specifically, a need remains to provide a method without an injection and without the necessity for long-term culture of embryos.
- the above object is overcome by the present invention by the use of a 1.48 ⁇ m laser to microdrill a hole in the zona pellucida of a single-cell embryo to introduce a retrovirus, preferably a lentivirus" carrying a particular transgene into said embryo.
- the present inventors used the above method to allow the retroviral vectors to be in contact with the plasma membrane of the embryos.
- Drilled fertilized oocytes were incubated for 2-24 hours preferably, for 3 to 5 , more preferred 4 hours with lentiviruses carrying a particular transgene. Because of the partial denudation, this makes the physical injection of the viral particles under the zona pellucida unnecessary.
- incubation time can be decreased to a few hours.
- the presence of the zona pellucida around the embryos make them stronger and more resistant to the whole procedure.
- the embryo can be transferred back into foster mothers the same day, and therefore the technique is less time consuming.
- the hole as microdrilled in the zona pellucida of a single-cell embryo is between 2 to 60 ⁇ m, preferably between 2 to 20 ⁇ m in diameter, more preferably 5 to 15 ⁇ m, even more preferred 5 - lO ⁇ m.
- the zona pellucida of the single-cell embryo is exposed to one or up to 10 shots, preferably 1 to 5 shots, more preferred once or twice to 0.1 ⁇ s to 100 ms, preferably 0.1 to 15 ms of laser light, preferably 0.5 to 10 ms of laser light, more preferably 1 to 5 ms of laser light, depending on oocyte species and for laser power in focus of 20 - 500 mW, preferably 20 - 250 mW, more preferred 100 - 160 mW.
- the laser can be provided at any point of an optical system.
- Said optical system can in an exemplary embodiment be a microscope.
- the laser is mounted directly in front of the objective (as seen from viewer to object) ; in another embodiment the laser is provided in front of or after the eye-piece or can replace e.g. the eye-piece or the CCD camera.
- the laser could in a further embodiment also be provided within the objective, e.g. in front of the last one to six lenses, preferably two to four lenses, of the objective.
- the actual arrangement of the laser is not restricted to the above embodiments.
- the laser can be provided together with any optical system, e.g. a microscope, in a preferred embodiment an inverse microscope.
- Fig. 1 The 1.48 ⁇ m diode laser assisted hatching unit.
- Fig. 1A The FERTILASE® system, with its control unit on the right, is attached to the fluorescence port at the back of the inverted microscope.
- Fig. IB The compact OCTAXTM system, with its octagonal laser in the back and the miniaturised video camera on the left.
- Fig. 2 Schematic of the 1,48 ⁇ m diode zona pellucida drilling arrangement.
- the fluorescence port of the inverted microscope is used to couple the surgical laser.
- the microscope objective is used to precisely focus the laser radiation onto the egg ZP.
- Fig. 3 Zona pellucida drilling strategy.
- the focused laser beam is directed tangentially to the ZP to produce a trench.
- Fig. 4 Human zygote drilled at the 2-pn stage on day 1.
- the laser drilled trench opens completely the ZP; it has been obtained by two consecutive 9 ms irradiation with the OCTAX laser system.
- Fig. 5 Electron micrograph showing a trench drilled with the 1.48 ⁇ m diode laser system in a mouse zygote. Note the sharpness of the walls of the opening.
- a 1.48 ⁇ m diode laser is used, preferably one of the type that was developed by the Institut d'Optique Appliquee (K. Rink and G. Delacretaz; at the Lausanne, Switzerland) in association with the Reproductive Medicine Unit (DGO; CHUV) (Rink et al . 1994 Supra; Rink et al . 1996 Supra) and commercialized as a functional unit (Fertilase ⁇ ; formerly Medical Technologies Montreux S.A., Clarens, Switzerland, now OCTAX) .
- DGO Reproductive Medicine Unit
- CHUV Reproductive Medicine Unit
- Fertilase ⁇ formerly Medical Technologies Montreux S.A., Clarens, Switzerland, now OCTAX
- ZP Zona pellucida Opening is performed according to the following procedure.
- the culture dish is placed on the displacement stage of the microscope ( Figure 2) .
- Opening is performed by exposing the ZP to the laser beam during 0.1 - 15 ms, preferably during 0.5-10 ms, more preferred 1-5 ms .
- the hole size can be chosen by varying the ' irradiation time, typically a hole having a diameter of 20 ⁇ m is produced with a 12-30 ms irradiation time. Larger hole diameters are obtained by increasing the irradiation time. If the egg is placed tangentially to the diode laser beam a trench is induced in the ZP. By precisely positioning the laser focalization point with respect to the ZP width a complete opening or only a local thinning of the ZP can be generated at will ( Figure 3) .
- the above technique can be used for all single-cell embryos comprising a zona pellucida. Particularly, it can be used for all mammals, including human and non-human embryos. In a more preferred embodiment, the embryo is a mouse or rat embryo .
- the lentiviral backbone which can be used in these methods is based on a self-activating vector described previously (H. Miyoshi et al . , L.Virol. 72, 8750, (1998).
- Plasmid pFUGW is based on the HRCS-G vector gift of I. Verma, Salk Insitute, La Jolla, CA) constructed by inserting into its multicloning site the HIV-1 flap sequence polymerase chain reaction (PCR) -amplified from the HIV NLAA3 genome, the human polyubiquitin promoter C (gift of L. Thiel , Amgen, Thousand Oaks, CA) , the* GFP gene and the WRE (gift of D. Trono, University of Geneva, Geneva, Switzerland) .
- PCR HIV-1 flap sequence polymerase chain reaction
- Lentiviral vectors were produced by co-transfecting the transfer vector of pfUGW, the HIV-1 packaging vector ⁇ 8.9 and the VSVG envelope glycoprotein into 293 fibroblasts and concentrated as described previously, FUGW viruses were titered on 293 fibroblasts. Serial dilutions of the virus were applied to the cells, and infectivity was determined after 72 hours by fluorescence microscopy for GPF expression.
- the vector was engineered to carry an internal promoter driving the GFP reporter gene.
- the human ubiquitin-C promoter was found to provide the most reliable expression across different cell types and was selected for subsequent experiments .
- the wood-chuck hepatitis virus posttranscriptional regulatory element (WRE) was inserted downstream of GFP.
- WRE wood-chuck hepatitis virus posttranscriptional regulatory element
- the human immunodeficiency virus-I (HIV-1) flap element V. Zennon et al . , Cell 101, 173, (2000)
- LTR 5 ' long terminal repeat
- Viruses were pseudotyped with the vesicular stomatitis virus glycoprotein (VSVG) and concentrated by ultra-centrifugation to approximately 1x10 s infectious units (I.U.)/ ⁇ l.
- VSVG vesicular stomatitis virus glycoprotein
- I.U. infectious units
- mice Female mice (C57Bh/6, 6D2F1 ; IFFA, Credo, France or NMRI Charles River France) aged 5 to 8 weeks were stimulated (day 1) with one peritoneal injection of follicle stimulating hormone (FSH, 5-10u, Folligon; Intervet AG. , Pfaffikon, Switzerland) , followed on day 3 by a second injection (10 IU/0.2 ml) of human chorionic gonadotrophin (HCG, Pregnyl ; Organon, Zurich, Switzerland) to induce ovulation. Females were then mated with normal males from the same strain. The day after the females were killed by cervical dislocation 13 h after HCG administration.
- FSH follicle stimulating hormone
- HCG human chorionic gonadotrophin
- the swollen ampullae of the oviducts were dissected; the available oocyte-cumulus complexes were isolated under a stereo microscope in M2 medium containing hyaluronidase (300 ⁇ g/ml) and maintained under standard incubation conditions (10% C0 2 ) .
- the thus prepared oocytes can then be submitted to the zona pellucida laser-drilling procedure.
- said procedure is described in detail:
- each oocyte was positioned to bring a region of the zona pellucida on the aiming spot and the zona pellucida was exposed once or twice to 1-2 ms laser light .
- the diameter of the drilled holes varied between 2-20 ⁇ m.
- the appropriately prepared and drilled oocytes are brought into contact with the lentiviral vectors. This can be done by incubating the drilled fertilised oocytes with 3 to 5 , preferably 4 hours with lentiviruses carrying a particular transgene .
- the transgene can be any transgene of interest, specifically those which will introduce a desired property into a host.
- the embryo After incubation which is preferably carried out at 20 to 37°C, more preferred at 37°C, under standard incubation conditions (10% C0 2 ) the embryo can be transferred back to foster mothers the same day.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Sustainable Development (AREA)
- Electromagnetism (AREA)
- Immunology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Virology (AREA)
- Developmental Biology & Embryology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
La présente invention concerne l'utilisation d'un laser 1,48 µm pour réaliser la microperforation d'un orifice dans la zona pellucida d'un embryon monocellulaire. Ainsi, un rétrovirus, en particulier un lentivirus portant un transgène particulier, peut être introduit dans ledit embryon.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44588503P | 2003-02-06 | 2003-02-06 | |
US445885P | 2003-02-06 | ||
PCT/EP2004/001101 WO2004069993A2 (fr) | 2003-02-06 | 2004-02-06 | MICROPERFORATION SANS CONTACT DE ZONA PELLUCIDA D'OVOCYTES AVEC UN FAISCEAU LASER A DIODE DE 1,48 µM POUR L'INTRODUCTION DE RETROVIRUS |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1589811A2 true EP1589811A2 (fr) | 2005-11-02 |
Family
ID=32851012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04708744A Withdrawn EP1589811A2 (fr) | 2003-02-06 | 2004-02-06 | Microperforation sans contact de zona pellucida d'ovocytes avec un faisceau laser a diode de 1,48 m pour l'introduction de retrovirus |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1589811A2 (fr) |
WO (1) | WO2004069993A2 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3021323A1 (fr) | 2016-04-20 | 2017-10-26 | Coopersurgical, Inc. | Orientation de faisceau pour systemes laser et procedes associes |
-
2004
- 2004-02-06 WO PCT/EP2004/001101 patent/WO2004069993A2/fr not_active Application Discontinuation
- 2004-02-06 EP EP04708744A patent/EP1589811A2/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2004069993A3 * |
Also Published As
Publication number | Publication date |
---|---|
WO2004069993A3 (fr) | 2004-09-23 |
WO2004069993A2 (fr) | 2004-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Boada et al. | Successful use of a laser for human embryo biopsy in preimplantation genetic diagnosis: report of two cases | |
AU2002330022B2 (en) | Method for producing transgenic birds and fish | |
Berns et al. | Laser scissors and tweezers | |
Whitelaw et al. | Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector | |
Takada et al. | Selective production of transgenic mice using green fluorescent protein as a marker | |
ES2298745T3 (es) | Promotores bidireccionales de sintesis y utilizacion de los mismos. | |
Clement-Sengewald et al. | Fertilization of bovine oocytes induced solely with combined laser microbeam and optical tweezers | |
Cavard et al. | In vivo activation by ultraviolet rays of the human immunodeficiency virus type 1 long terminal repeat. | |
AU2002330022A1 (en) | Method for producing transgenic birds and fish | |
AU2002336517A1 (en) | Method for producing transgenic animals | |
CA2045480A1 (fr) | Vecteur retroviral et son utilisation dans la production d'animaux transgeniques | |
Zhou et al. | A simplified method for the reconstruction of fully competent mouse zygotes from adult somatic donor nuclei | |
Pu et al. | Production of transgenic mice by pronuclear microinjection | |
Xu et al. | Production of transgenic Korean native cattle expressing enhanced green fluorescent protein using a FIV-based lentiviral vector injected into MII oocytes | |
Chandrashekran et al. | Efficient generation of transgenic mice by lentivirus‐mediated modification of spermatozoa | |
Chan et al. | Generation of transgenic monkeys with human inherited genetic disease | |
Iannaccone et al. | Preimplantation and postimplantation development of rat embryos cloned with cumulus cells and fibroblasts | |
WO2004069993A2 (fr) | MICROPERFORATION SANS CONTACT DE ZONA PELLUCIDA D'OVOCYTES AVEC UN FAISCEAU LASER A DIODE DE 1,48 µM POUR L'INTRODUCTION DE RETROVIRUS | |
Martin et al. | En masse lentiviral gene delivery to mouse fertilized eggs via laser perforation of zona pellucida | |
Miao et al. | A new method to efficiently produce transgenic embryos and mice from low-titer lentiviral vectors | |
Malter et al. | Zona dissection by infrared laser: developmental consequences in the mouse, technical considerations, and controlled clinical trial | |
Obruca et al. | Ultrastructural observations in human oocytes and preimplantation embryos after zona opening using an erbium-yttrium-aluminium-garnet (Er: YAG) laser. | |
Cohen et al. | Gamete and embryo micromanipulation for infertility treatment | |
Martin et al. | Laser-assisted lentiviral gene delivery to mouse fertilized eggs | |
Uhm et al. | Effect of transgene introduction and recloning on efficiency of porcine transgenic cloned embryo production in vitro |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050719 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20060907 |