EP1586743B1 - Anneau de turbine - Google Patents

Anneau de turbine Download PDF

Info

Publication number
EP1586743B1
EP1586743B1 EP05290821A EP05290821A EP1586743B1 EP 1586743 B1 EP1586743 B1 EP 1586743B1 EP 05290821 A EP05290821 A EP 05290821A EP 05290821 A EP05290821 A EP 05290821A EP 1586743 B1 EP1586743 B1 EP 1586743B1
Authority
EP
European Patent Office
Prior art keywords
ring according
sectors
tongues
slots
tongue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05290821A
Other languages
German (de)
English (en)
Other versions
EP1586743A1 (fr
Inventor
Ludovic Nicollas
Nicolas Hervy
Marc Roger Marchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1586743A1 publication Critical patent/EP1586743A1/fr
Application granted granted Critical
Publication of EP1586743B1 publication Critical patent/EP1586743B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments

Definitions

  • the invention relates to a turbine ring forming the outer casing of the rotor of this turbine.
  • the invention is particularly applicable to a high pressure turbine located immediately downstream of the combustion chamber of an aircraft turbojet engine. It relates more particularly to the connection and cooling of the sectors constituting said turbine ring.
  • the rotor rotates inside a fixed turbine ring formed by a plurality of curved sectors joined end to end, circumferentially, to form the envelope. rotor.
  • the temperature of the gases driving the impeller is such that the thermomechanical stresses that are created in and between the sectors can cause deterioration reducing the life of the rings.
  • the formation of small cracks and / or spalling of the inner (so-called hot surface) side of the sectors is often observed, mainly in the vicinity of the connections between adjacent sectors.
  • sealing systems are provided between these adjacent sectors, comprising tabs extending between these sectors. and housed in slots made vis-à-vis in the adjacent radial faces of said sectors.
  • a known sector 1 represented in figure 1 comprises a sealing system comprising four tongues 2-5, housed in slots 6, 7, 8.
  • the tongue 3 is folded and extends between two slots 6, 7 opening into one another and welcoming d Other straight tabs 2, 4.
  • the slots are difficult to machine accurately, especially because of the difference in thickness required to insert the folded tab. The positioning of the latter is delicate.
  • the tongue 2 is entirely housed in a slot 6 parallel to the hot face 9 of the sector and at a short distance therefrom.
  • the practice of the slots creates areas of stress concentration which, when they are close to the surface hot, weaken the room and accelerate its deterioration.
  • the invention makes it possible to eliminate these disadvantages.
  • the invention relates to a turbine ring forming a rotor casing, of the type constituted by a plurality of sectors, joined end to end with the interposition of sealing systems comprising tabs extending between adjacent sectors, said tabs being accommodated. in slots made opposite each other in adjacent radial faces of said sectors, characterized in that each sealing system is constituted by straight tabs engaged in respective rectilinear slots of said radial faces and that the slots made on each radial face are independent, that is to say that said slots do not communicate with each other.
  • each sealing system comprises a first and a second tongues extending chevron on the inside of said radial faces, said tabs being engaged in slots rectilinear of said radial faces defining their relative positions with precision.
  • the air leak between two consecutive sectors can be precisely calibrated. This leak can therefore be identical in all inter-sector spaces.
  • the leak rate can be reduced by 10 to 20% compared to the configuration of the prior art described above.
  • Another advantage of the invention lies in the fact that the arrangement of the chevron tongues on the side of the hot face makes it possible both to move the stress concentration zones away from said hot face (since the slits deviate from the latter) and also to provide sufficient space between the tabs and the hot face to open air ejection channels cooling supplied from a cavity in the sector itself.
  • each sector comprises a cooling air circulation cavity, characterized in that it further comprises air ejection channels s extending between said cavity and at least one radial face of the sector, these channels opening on said radial face between an inner edge thereof and said first and second tongues.
  • turbine ring sectors 11 constituting the fixed casing of a rotor, not shown.
  • This is the high-pressure turbine of a turbojet engine.
  • This turbine is placed downstream of the combustion chamber.
  • such a ring consists of 32 ring 11 sectors curves such as those shown end to end to form a slightly conical envelope surrounding said rotor.
  • Each sector 11 is constituted a thick, slightly curved plate to reconstitute the ring.
  • Each sector 11 further comprises two radial faces 20, 21 through which it connects circumferentially to neighboring sectors, by sealing systems 26 (see FIG. figure 2 ) mentioned above.
  • Each sealing system 26 consists of a set of tabs engaged in corresponding slots defined in said radial faces 20, 21 facing each other.
  • Each tongue is engaged in two slots belonging to two ring sectors circumferentially adjacent.
  • each sector 11 is hollow and comprises a cooling air circulation cavity 35 fed from the outside.
  • the figure 4 illustrates very schematically the position of the ring formed by all of the sectors 11.
  • a turbine casing 15 defines with this ring an annular cavity 17.
  • the assembly extends radially outside the impeller with high pressure 19 itself axially interposed between the high pressure distributor 21 and the low pressure distributor 23. Air from the compressor is taken upstream of the combustion chamber and enters (via holes) into the annular cavity 17. This cavity fed so all ring sectors.
  • Each ring sector ( figure 3 ) comprises two distinct cavities 39 and 40 in the shape of a paper clip, separated by a partition 42 and respectively fed by orifices 37 and 38.
  • the air flowing in the cavity 39 escapes through a series of channels of objection 44 opening on the inlet edge 16 of the ring sector while the air flowing in the cavity 40 escapes through a series of ejection channels 46 opening on the output edge 18 of the ring sector.
  • the invention relates in particular to an advantageous development of said inter-sector sealing systems.
  • each sealing system 26 here consists of three straight tabs engaged in respective straight slots of the radial faces of the two adjacent sectors.
  • each sealing system ( figure 2 ) has a first tongue 27 and a second tongue 28, located on the inside of said radial faces, that is to say on the hot faces side of the sectors.
  • the tongues 27, 28 are arranged in chevron, that is to say engaged in slots 31, 32 of said radial faces which extend obliquely with respect to the inner faces 12 and outer 14 of the sectors. These slots define the relative positions of the two tabs.
  • each sealing system comprises a third tongue 29 extending substantially from one end to the other of the adjacent sectors, parallel to the axis of the ring, on the outer side of said radial faces.
  • the tongue 29 is engaged in rectilinear slots 33 of adjacent sectors.
  • the first tongue 27 extends between a point A located near the inlet edge of the two sectors, towards the inside (near the hot faces) and a point B located near the third tongue 29.
  • the second tongue 28 is positioned so that it extends between a point C located near the outlet edge 18 of each of the two sectors, inwardly and a point D located near the first tongue, substantially between the middle and two-thirds of it from point A.
  • the length of the first tongue 27 depends on the angle it makes with the third tongue 29. Once this angle is determined (several possibilities are represented on the figure 5 ) the position and the length of the second tab derive from it.
  • the angle defined by the first and third tab can be between 15 and 70 °, approximately.
  • the slots can be machined precisely and are perfectly localized.
  • the tabs can be inserted into these slots and their relative positions can be perfectly controlled. It follows that the leakage section between said first and second tongues (S 1 ) and the leakage section between the first and third tongues (S 2 ) are perfectly controlled.
  • each sector comprises air ejection channels. 50, extending between the cavity 40 and at least one radial face of the sector. These channels open on the radial face 20 between the inner edge thereof (hot face) and said first and second tongues 27, 28.
  • the chevron arrangement of the two tongues makes it possible to practice these air ejection channels.
  • the channels are arranged in a row parallel to the axis of the ring. In the example of the figure 3 they all extend perpendicularly at the radial face.
  • some channels 50 extend perpendicular to the radial face but others at the ends of said row or at least one of them are made at an angle and diverging with respect to the first, here in a direction from the cavity towards the radial face.
  • the angle between the diverging channels may be between 10 and 120 °
  • the parallel channels are at an angle to a direction perpendicular to the radial face. The angle is such that the air is ejected obliquely towards the rear of the ring.
  • the parallel channels are at an angle to a direction perpendicular to the radial face. The angle is such that the air is ejected obliquely towards the front of the ring.
  • the channels 50 open on the radial face 20 which is that the blades first reach given the direction of rotation indicated by the arrow F. This is favorable to avoid or limit reintroductions of hot gas in the spaces inter-segment.
  • the air escaping channels 50 cools the wall in which they are practiced by convection (thermal pumping) while the opposite wall (face 21) is cooled by the impact of the air jets.
  • the air jets escaping from the ducts 50 establish a kind of fluidic system preventing the ingestion of hot gases.
  • the slots 31, 32, 33 are independent, that is to say they do not communicate with each other. This avoids having to make remains at the junction of two slots. Inter-sector leakage sections are also reduced.
  • the invention also relates to any ring sector or ring sector assembly having the characteristics described above.

Description

  • L'invention se rapporte à un anneau de turbine formant l'enveloppe extérieure du rotor de cette turbine. L'invention s'applique particulièrement à une turbine haute pression située immédiatement en aval de la chambre de combustion d'un turboréacteur d'avion. Elle concerne plus particulièrement le raccordement et le refroidissement des secteurs constituant ledit anneau de turbine.
  • Dans une turbine du genre indiqué ci-dessus, entraînée par des gaz très chauds, le rotor tourne à l'intérieur d'un anneau de turbine fixe constitué par une pluralité de secteurs courbes réunis bout à bout, circonférentiellement, pour former l'enveloppe de rotor. La température des gaz entraînant la roue à aubes est telle que les contraintes thermomécaniques qui se créent dans et entre les secteurs, peuvent provoquer des détériorations réduisant la durée de vie des anneaux. Typiquement, on observe souvent la formation de petites criques et/ou un écaillage de la face intérieure (dite face chaude) des secteurs, principalement au voisinage des raccordements entre secteurs adjacents.
  • Pour assurer une bonne étanchéité de la couronne d'anneau, réduisant les fuites d'air non travaillant et pour empêcher les réintroductions de gaz chauds, on prévoit des systèmes d'étanchéité entre ces secteurs voisins, comprenant des languettes s'étendant entre ces secteurs et logées dans des fentes pratiquées en vis-à-vis dans les faces radiales adjacentes desdits secteurs.
  • Par exemple, un secteur 1 connu, représenté à la figure 1, comporte un système d'étanchéité comprenant quatre languettes 2-5, logées dans des fentes 6, 7, 8. La languette 3 est pliée et s'étend entre deux fentes 6, 7 débouchant l'une dans l'autre et accueillant d'autres languettes rectilignes 2, 4. Les fentes sont difficiles à usiner avec précision, en raison notamment de la différence d'épaisseur nécessaire pour insérer la languette pliée. Le positionnement de cette dernière est délicat. En outre, la languette 2 se trouve entièrement logée dans une fente 6 parallèle à la face chaude 9 du secteur et à peu de distance de celle-ci. Or, le fait de pratiquer les fentes, crée des zones de concentration de contraintes qui, lorsqu'elles se situent près de la surface chaude, fragilisent la pièce et accélèrent sa détérioration. D'autre part, US 5 997 247 décrit un secteur de stator (et non une enveloppe de rotor) comportant des languettes d'étanchéité insérées dans des fentes communiquant les unes avec les autres, qui nécessitent de réaliser des dépouilles à leurs jonctions. De plus, les sections de fuite inter-secteurs, ne peuvent être parfaitement maîtrisées.
  • L'invention permet notamment d'éliminer ces inconvénients.
  • En premier lieu l'invention concerne un anneau de turbine formant enveloppe de rotor, du type constitué par une pluralité de secteurs, réunis bout à bout avec interposition de systèmes d'étanchéité comprenant des languettes s'étendant entre secteurs voisins, lesdites languettes étant logées dans des fentes pratiquées en vis-à-vis dans des faces radiales adjacentes desdits secteurs, caractérisé en ce que chaque système d'étanchéité est constitué de languettes rectilignes engagées dans des fentes rectilignes respectives desdites faces radiales et en ce que les fentes pratiquées sur chaque face radiale sont indépendantes, c'est-à-dire que lesdites fentes ne communiquent pas les unes avec les autres.
  • Le fait de réaliser le système d'étanchéité à partir de languettes rectilignes simplifie la réalisation des fentes et facilite le montage des languettes dans celles-ci. En outre, le contrôle du positionnement des languettes est amélioré en raison de surfaces d'appui mieux maîtrisées, car strictement linéaires. Globalement, les sections de fuite sont réduites. Une configuration à trois languettes seulement sera décrite plus loin.
  • Plus particulièrement, l'anneau de turbine défini ci-dessus est aussi avantageusement caractérisé en ce que chaque système d'étanchéité comporte une première et une deuxième languettes s'étendant en chevron du côté intérieur desdites faces radiales, lesdites languettes étant engagées dans des fentes rectilignes desdites faces radiales définissant leurs positions relatives avec précision. De cette façon, la fuite d'air entre deux secteurs consécutifs peut être calibrée avec précision. Cette fuite pourra donc être identique dans tous les espaces inter-secteurs. Globalement, on estime que le débit de fuite peut être réduit de 10 à 20 % par rapport à la configuration de l'art antérieur décrite ci-dessus.
  • Un autre avantage de l'invention réside dans le fait que l'agencement des languettes en chevron du côté de la face chaude permet à la fois d'éloigner les zones de concentration de contraintes de ladite face chaude (puisque les fentes s'écartent de celle-ci) et aussi de ménager un espace suffisant entre les languettes et la face chaude pour y faire déboucher des canaux d'éjection d'air de refroidissement alimentés à partir d'une cavité ménagée dans le secteur lui-même.
  • Plus précisément, l'invention concerne aussi un anneau de turbine selon la définition qui précède dans lequel chaque secteur comprend une cavité de circulation d'air de refroidissement, caractérisé en ce qu'il comprend en outre des canaux d'éjection d'air s'étendant entre ladite cavité et au moins une face radiale du secteur, ces canaux débouchant sur ladite face radiale entre un bord intérieur de celle-ci et lesdites première et deuxième languettes.
  • L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront plus clairement à la lumière de la description qui va suivre, donnée uniquement à titre d'exemple et faite en référence aux dessins annexés dans lesquels :
    • la figure 1 représente une face radiale d'un secteur entrant dans la constitution d'un anneau de turbine conforme à l'état de la technique ;
    • la figure 2 représente une face radiale d'un secteur entrant dans la constitution d'un anneau de turbine conforme à l'invention ;
    • la figure 3 est une vue schématique de deux secteurs consécutifs représentés selon la flèche 3 de la figure 2 ;
    • la figure 4 est une vue schématique du carter associé à de tels secteurs d'anneau ;
    • la figure 5 est une vue schématique illustrant diverses orientations possibles desdites première et deuxième languettes ; et
    • les figures 6 à 8 sont des vues partielles de variantes d'un secteur de la figure 3.
  • Sur les dessins et plus particulièrement sur les figures 2 à 4, on a représente des secteurs d'anneau de turbine 11 constituant l'enveloppe fixe d'un rotor, non représenté. Il s'agit ici de la turbine haute pression d'un turboréacteur. Cette turbine est placée en aval de la chambre de combustion. En l'occurrence, un tel anneau est constitué de 32 secteurs d'anneau 11 courbes tels que ceux représentés, bout à bout pour former une enveloppe légèrement conique entourant ledit rotor. Chaque secteur 11 est constitué d'une plaquette épaisse légèrement incurvée, pour reconstituer l'anneau. On distingue une face intérieure 12 sensiblement rectangulaire, légèrement concave, dite "face chaude", en contact avec la veine et une face extérieure 14 sensiblement rectangulaire, dite "face froide". Par rapport au flux de gaz chaud qui traverse le rotor, on distingue aussi un bord d'entrée 16 faisant face à la tuyère de la chambre de combustion et un bord de sortie 18 opposé. Chaque secteur 11 comporte en outre deux faces radiales 20, 21 par lesquelles il se raccorde circonférentiellement aux secteurs voisins, par des systèmes d'étanchéité 26 (voir figure 2) mentionnées ci-dessus. Chaque système d'étanchéité 26 est constitué d'un ensemble de languettes engagées dans des fentes correspondantes définies dans lesdites faces radiales 20, 21 en regard. Chaque languette est engagée dans deux fentes appartenant à deux secteurs d'anneau adjacents circonférentiellement.
  • Les extrémités des aubes du rotor se déplacent en regard de la surface intérieure de l'anneau ainsi constitué. Le sens de rotation est indiqué par la flèche F, sur la figure 2. Les gaz chauds expulsés de la chambre de combustion s'écoulent donc à proximité de la surface interne de l'anneau qui doit supporter de très hautes températures. On doit donc à la fois minimiser autant que faire se peut les gradients thermiques dans la structure de l'anneau (et par conséquent minimiser notamment les fuites de gaz entre les secteurs) et refroidir efficacement ledit anneau. A cet effet, on utilise une partie de l'air délivré par le compresseur qui alimente la chambre de combustion. Pour ce faire, chaque secteur 11 est creux et comprend une cavité de circulation d'air de refroidissement 35 alimentée par l'extérieur.
  • La figure 4 illustre très schématiquement la position de l'anneau formé par l'ensemble des secteurs 11. Un carter de turbine 15 définit avec cet anneau une cavité annulaire 17. L'ensemble s'étend radialement à l'extérieur de la roue à aubes haute pression 19 elle-même intercalée axialement entre le distributeur haute pression 21 et le distributeur basse pression 23. De l'air provenant du compresseur est prélevé en amont de la chambre de combustion et pénètre (via des perçages) dans la cavité annulaire 17. Cette cavité alimente donc tous les secteurs d'anneau. Chaque secteur d'anneau (figure 3) comporte deux cavités distinctes 39 et 40 en forme de trombone, séparées par une cloison 42 et alimentées respectivement par des orifices 37 et 38. L'air circulant dans la cavité 39 s'échappe par une série de canaux d'objection 44 débouchant sur le bord d'entrée 16 du secteur d'anneau tandis que l'air qui circule dans la cavité 40 s'échappe par une série de canaux d'éjection 46 débouchant sur le bord de sortie 18 du secteur d'anneau.
  • A l'exception des systèmes d'étanchéité entre les secteurs, l'agencement décrit jusqu'à présent est connu en soi. L'invention concerne notamment une évolution avantageuse desdits systèmes d'étanchéité entre secteurs.
  • Plus particulièrement (figures 2 à 4), chaque système d'étanchéité 26 est ici constitué de trois languettes rectilignes engagées dans des fentes rectilignes respectives des faces radiales des deux secteurs adjacents. Notamment, chaque système d'étanchéité (figure 2) comporte une première languette 27 et une deuxième languette 28, situées du côté intérieur desdites faces radiales, c'est-à-dire du côté des faces chaudes des secteurs. Les languettes 27, 28 sont agencées en chevron, c'est-à-dire engagées dans des fentes 31, 32 desdites faces radiales qui s'étendent en biais par rapport aux faces intérieure 12 et extérieure 14 des secteurs. Ces fentes définissent les positions relatives des deux languettes.
  • En outre, chaque système d'étanchéité comporte une troisième languette 29 s'étendant sensiblement d'une extrémité à l'autre des secteurs adjacents, parallèlement à l'axe de l'anneau, du côté extérieur desdites faces radiales. La languette 29 est engagée dans des fentes rectilignes 33 des secteurs adjacents. Comme on le voit sur la figure 2, la première languette 27 s'étend entre un point A situé à proximité du bord d'entrée des deux secteurs, vers l'intérieur (près des faces chaudes) et un point B situé à proximité de la troisième languette 29. La deuxième languette 28 est positionnée de façon qu'elle s'étende entre un point C situé à proximité du bord de sortie 18 de chacun des deux secteurs, vers l'intérieur et un point D situé à proximité de la première languette, sensiblement entre le milieu et les deux tiers de celle-ci en partant du point A.
  • Les pressions qui s'établissent dans les espaces inter-secteur à l'intérieur et à l'extérieur et entre lesdites première et deuxième languettes d'une part et la troisième languette d'autre part, sont telles que lesdites première et troisième languettes 27, 29 se trouvent plaquées contre les faces intérieures des fentes 31, 33 dans lesquelles elles se logent tandis que ladite deuxième languette 28 se trouve plaquée contre les faces extérieures de la fente 32 dans lesquelles elle se loge, comme cela est visible sur la figure 2.
  • La longueur de la première languette 27 dépend de l'angle qu'elle fait avec la troisième languette 29. Une fois cet angle déterminé (plusieurs possibilités sont représentées sur la figure 5) la position et la longueur de la deuxième languette en découlent.
  • L'angle défini par les première et troisième languette peut être compris entre 15 et 70°, environ.
  • Les fentes peuvent être usinées avec précision et sont parfaitement localisées. Les languettes peuvent être insérées dans ces fentes et leur positions relatives peuvent être parfaitement maîtrisées. Il on résulte que la section de fuites entre lesdites première et deuxième languettes (en S1) et la section de fuites entre les première et troisième languettes (en S2) sont parfaitement maîtrisées.
  • En considérant plus particulièrement les figures 2 et 3, on remarque une autre particularité intéressante de l'invention, qui concerne le refroidissement des faces radiales 20, 21 à partir de la cavité 35 de circulation d'air de refroidissement, on voit que chaque secteur comprend des canaux d'éjection d'air 50, s'étendant entre la cavité 40 et au moins une face radiale du secteur. Ces canaux débouchent sur la face radiale 20 entre le bord intérieur de celle-ci (face chaude) et lesdites première et deuxième languettes 27, 28. L'agencement en chevron des deux languettes permet de pratiquer ces canaux d'éjection d'air. Les canaux sont disposés selon une rangée parallèle à l'axe de l'anneau. Dans l'exemple de la figure 3, ils s'étendent tous perpendiculairement à la face radiale. Dans l'exemple de la figure 6 certains canaux 50 s'étendent perpendiculairement à la face radiale mais d'autres situés aux extrémités de ladite rangée ou à au moins l'une d'elles sont pratiqués en biais et divergent par rapport aux premiers, ici dans un sens allant de la cavité vers la face radiale. L'angle entre les canaux divergents peut être compris entre 10 et 120° On pourrait aussi dans certains cas prévoir des canaux pratiqués en biais et convergeant dans l'autre sens. Selon la variante de la figure 7, les canaux, parallèles, font un angle par rapport à une direction perpendiculaire à la face radiale. L'angle est tel que l'air soit éjecté en biais vers l'arrière de l'anneau. Dans la variante de la figure 8, les canaux, parallèles, font un angle par rapport à une direction perpendiculaire à la face radiale. L'angle est tel que l'air soit éjecté en biais vers l'avant de l'anneau.
  • Selon l'exemple, les canaux 50 débouchent sur la face radiale 20 qui est celle que les aubes atteignent en premier compte tenu du sens de rotation indiqué par la flèche F. Ceci est favorable pour éviter ou limiter les réintroductions de gaz chaud dans les espaces inter-secteurs. On pourrait aussi pratiquer des canaux semblables dans la paroi opposée, débouchant sur la face radiale 21. L'air qui s'échappe des canaux 50 refroidit la paroi dans laquelle ils sont pratiqués par convection (pompage thermique) tandis que la paroi opposée (face 21) est refroidie par l'impact des jets d'air. De plus, les jets d'air s'échappant des conduits 50 établissent une sorte de système fluidique empêchant les ingestions de gaz chauds.
  • On remarque en outre que, préférentiellement, les fentes 31, 32, 33 sont indépendantes, c'est-à-dire qu'elles ne communiquent pas les unes avec les autres. Ceci évite d'avoir à réaliser des dépouilles à la jonction de deux fentes. Les sections de fuite inter-secteurs sont aussi réduites.
  • L'invention concerne aussi tout secteur d'anneau ou tout assemblage de secteurs d'anneau présentant les caractéristiques décrites ci-dessus.

Claims (12)

  1. Anneau de turbine formant enveloppe de rotor, du type constitué par une pluralité de secteurs (11), réunis bout à bout avec interposition de systèmes d'étanchéité comprenant des languettes (27, 28, 29) s'étendant entre secteurs voisins, lesdites languettes étant logées dans des fentes pratiquées en vis-à-vis dans des faces radiales adjacentes desdits secteurs, chaque système d'étanchéité étant constituée de languettes rectilignes engagées dans des fentes rectilignes (31, 32, 33) respectives desdites faces radiales, caractérisé en ce que les fentes pratiquées sur chaque face radiale sont indépendantes, c'est-à-dire que lesdites fentes (31, 32, 33) ne communiquent pas les unes avec les autres.
  2. Anneau de turbine selon la revendication 1, caractérisé en ce que chaque système d'étanchéité entre deux secteurs comporte une première et une deuxième languettes (27, 28) s'étendant en chevron du côté intérieur desdites faces radiales, lesdites languettes étant engagées dans des fentes (31, 32) desdites faces radiales définissant leurs positions relatives.
  3. Anneau de turbine selon la revendication 2, caractérisé en ce que chaque système d'étanchéité comporte une troisième languette (29) s'étendant sensiblement d'une extrémité à l'autre des secteurs adjacents, parallèlement à l'axe de l'anneau, du côté extérieur desdites faces radiales.
  4. Anneau de turbine selon la revendication 3, caractérisé en ce que ladite première languette (27) s'étend entre un point (A) situé à proximité d'un bord d'entrée de chaque secteur, vers l'intérieur, et un point (B) situé à proximité de ladite troisième languette.
  5. Anneau de turbine selon la revendication 4, caractérisé en ce que l'angle défini par les directions desdites première et troisième languettes est compris entre 15 et 70 degrés.
  6. Anneau de turbine selon l'une des revendications 4 ou 5, caractérisé en ce que ladite deuxième languette (28) s'étend entre un point (C) situé à proximité d'un bord de sortie de chaque secteur, vers l'intérieur et un point (D) situé à proximité de ladite première languette, sensiblement entre le milieu et les deux tiers de celle-ci.
  7. Anneau de turbine selon l'une des revendications 4 ou 5, dans lequel chaque secteur comprend une cavité de circulation d'air de refroidissement (40), caractérisé en ce que chaque secteur comprend des canaux d'éjection d'air (50), s'étendant entre ladite cavité et au moins une face radiale 20 dudit secteur, ces canaux débouchant sur ladite face radiale entre un bord intérieur de celle-ci et lesdites première et deuxième languettes.
  8. Anneau de turbine selon la revendication 7, caractérisé en ce qu'au moins certains canaux s'étendent sensiblement perpendiculairement à ladite face radiale.
  9. Anneau de turbine selon la revendication 7, caractérisé en ce que les orifices desdits canaux sont disposés selon une rangée qui s'étend parallèlement à l'axe de l'anneau.
  10. Anneau de turbine selon la revendication 9, caractérisé en ce que des canaux situés aux extrémités de ladite rangée sont pratiqués en biais et divergent par rapport aux autres dans le sens allant de la cavité vers la face radiale.
  11. Anneau de turbine selon l'une des revendications précédentes, caractérisé en ce que les fentes en regard de deux faces radiales adjacentes desdits secteurs abritent une seule languette (27, 28, 29).
  12. Turbine caractérisée en ce qu'elle comporte un anneau selon l'une des revendications précédentes.
EP05290821A 2004-04-15 2005-04-14 Anneau de turbine Active EP1586743B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0403925A FR2869070B1 (fr) 2004-04-15 2004-04-15 Anneau de turbine
FR0403925 2004-04-15

Publications (2)

Publication Number Publication Date
EP1586743A1 EP1586743A1 (fr) 2005-10-19
EP1586743B1 true EP1586743B1 (fr) 2012-05-30

Family

ID=34942125

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05290821A Active EP1586743B1 (fr) 2004-04-15 2005-04-14 Anneau de turbine

Country Status (9)

Country Link
US (1) US7513740B1 (fr)
EP (1) EP1586743B1 (fr)
JP (1) JP4679215B2 (fr)
CN (1) CN1683772B (fr)
CA (1) CA2503066C (fr)
ES (1) ES2386146T3 (fr)
FR (1) FR2869070B1 (fr)
RU (1) RU2377419C2 (fr)
UA (1) UA91958C2 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1991762B1 (fr) * 2006-03-06 2015-03-11 Alstom Technology Ltd Turbine a gaz avec ecran thermique et bandes d'etancheite coudees
FR2919345B1 (fr) * 2007-07-26 2013-08-30 Snecma Anneau pour une roue de turbine de turbomachine.
US7874792B2 (en) 2007-10-01 2011-01-25 United Technologies Corporation Blade outer air seals, cores, and manufacture methods
US8075255B2 (en) * 2009-03-31 2011-12-13 General Electric Company Reducing inter-seal gap in gas turbine
US20130134678A1 (en) * 2011-11-29 2013-05-30 General Electric Company Shim seal assemblies and assembly methods for stationary components of rotary machines
US9810086B2 (en) * 2011-11-06 2017-11-07 General Electric Company Asymmetric radial spline seal for a gas turbine engine
US9863323B2 (en) 2015-02-17 2018-01-09 General Electric Company Tapered gas turbine segment seals
US10689994B2 (en) * 2016-03-31 2020-06-23 General Electric Company Seal assembly to seal corner leaks in gas turbine
US10648362B2 (en) * 2017-02-24 2020-05-12 General Electric Company Spline for a turbine engine
US10655495B2 (en) * 2017-02-24 2020-05-19 General Electric Company Spline for a turbine engine
US20180355754A1 (en) * 2017-02-24 2018-12-13 General Electric Company Spline for a turbine engine
US20180355741A1 (en) * 2017-02-24 2018-12-13 General Electric Company Spline for a turbine engine
US20180340437A1 (en) * 2017-02-24 2018-11-29 General Electric Company Spline for a turbine engine
FR3070718B1 (fr) 2017-09-06 2019-08-23 Safran Aircraft Engines Ensemble de turbine a secteurs d'anneau
US10982559B2 (en) * 2018-08-24 2021-04-20 General Electric Company Spline seal with cooling features for turbine engines

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2597921A1 (fr) * 1986-04-24 1987-10-30 Snecma Anneau de turbine sectorise
US5127793A (en) * 1990-05-31 1992-07-07 General Electric Company Turbine shroud clearance control assembly
US5088888A (en) * 1990-12-03 1992-02-18 General Electric Company Shroud seal
FR2758856B1 (fr) * 1997-01-30 1999-02-26 Snecma Joint d'etancheite a plaquettes empilees glissant dans des fentes de reception
FR2800797B1 (fr) * 1999-11-10 2001-12-07 Snecma Assemblage d'un anneau bordant une turbine a la structure de turbine
US6340285B1 (en) * 2000-06-08 2002-01-22 General Electric Company End rail cooling for combined high and low pressure turbine shroud
US6814538B2 (en) * 2003-01-22 2004-11-09 General Electric Company Turbine stage one shroud configuration and method for service enhancement

Also Published As

Publication number Publication date
UA91958C2 (uk) 2010-09-27
FR2869070B1 (fr) 2008-10-17
RU2005110997A (ru) 2006-10-20
ES2386146T3 (es) 2012-08-10
RU2377419C2 (ru) 2009-12-27
CN1683772B (zh) 2011-07-06
US20090074579A1 (en) 2009-03-19
US7513740B1 (en) 2009-04-07
JP4679215B2 (ja) 2011-04-27
FR2869070A1 (fr) 2005-10-21
CA2503066C (fr) 2013-01-15
CA2503066A1 (fr) 2005-10-15
EP1586743A1 (fr) 2005-10-19
JP2005299663A (ja) 2005-10-27
CN1683772A (zh) 2005-10-19

Similar Documents

Publication Publication Date Title
EP1586743B1 (fr) Anneau de turbine
EP1593814B1 (fr) Arrangement des languettes d'étanchéité pour une virole d'une turbine à gaz
CA2228786C (fr) Systeme de ventilation des plates-formes des aubes mobiles
EP0651137B1 (fr) Turbomachine pourvue d'un moyen de réchauffage des disques de turbines aux montées en regime
EP0967364B1 (fr) Anneau de stator de turbine haute pression d'une turbomachine
EP3277937B1 (fr) Turbomachine equipee d'un secteur d'aubage et d'un circuit de refroidissement.
CA2254259C (fr) Aube de distributeur de turbine refroidie
EP1847687A1 (fr) Dispositif de refroidissement d'un carter de turbine d'une turbomachine et distributeur associé
FR2966868A1 (fr) Systeme et procede de refroidissement des zones de plate-forme d'aubes rotatives de turbine
EP2026006A1 (fr) Turbomachine avec diffuseur
EP2821597A1 (fr) Bec de séparation avec tôle formant une surface de guidage du flux et un canal de dégivrage
EP2053200A1 (fr) Contrôle du jeu en sommet d'aubes dans une turbine haute-pression de turbomachine
FR2919345A1 (fr) Anneau pour une roue de turbine de turbomachine.
FR3036140B1 (fr) Turbomachine d'aeronef a effet coanda
FR2851286A1 (fr) Aubes de turbine refroidie a fuite d'air de refroidissement reduite
FR2955152A1 (fr) Turbomachine a circulation de flux d'air de purge amelioree
EP4136326A1 (fr) Turbine pour une turbomachine
EP2705219B1 (fr) Distributeur de turbine dans une turbomachine
EP3768949B1 (fr) Aube fixe de turbine à refroidissement par impacts de jets d'air
WO2019229377A1 (fr) Dispositif de refroidissement d'un carter de turbomachine
EP3947917B1 (fr) Aube pour une turbomachine, distributeur pour une turbomachine et turbomachine associés
EP3320186A1 (fr) Ensemble pour turbine
WO2020193913A1 (fr) Aube de turbomachine equipee d'un circuit de refroidissement optimise
EP4222353A1 (fr) Aube de turbine pour turbomachine d'aéronef, comprenant une plateforme pourvue d'un canal de réjection de flux primaire vers une cavité de purge
EP3867499A1 (fr) Aube de turbomachine à refroidissement amélioré

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MARCHI, MARC ROGER

Inventor name: NICOLLAS, LUDOVIC

Inventor name: HERVY, NICOLAS

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20081126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005034397

Country of ref document: DE

Effective date: 20120802

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2386146

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120810

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005034397

Country of ref document: DE

Effective date: 20130301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130415

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230327

Year of fee payment: 19

Ref country code: IT

Payment date: 20230322

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240320

Year of fee payment: 20