EP1585666B1 - Procede et systeme de commande du partage de flux de prelevement reacteur maitre-esclave - Google Patents

Procede et systeme de commande du partage de flux de prelevement reacteur maitre-esclave Download PDF

Info

Publication number
EP1585666B1
EP1585666B1 EP04704393A EP04704393A EP1585666B1 EP 1585666 B1 EP1585666 B1 EP 1585666B1 EP 04704393 A EP04704393 A EP 04704393A EP 04704393 A EP04704393 A EP 04704393A EP 1585666 B1 EP1585666 B1 EP 1585666B1
Authority
EP
European Patent Office
Prior art keywords
master
slave
bleed air
signal
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04704393A
Other languages
German (de)
English (en)
Other versions
EP1585666A1 (fr
Inventor
Guang Jun Liu
Chun Ho Lam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of EP1585666A1 publication Critical patent/EP1585666A1/fr
Application granted granted Critical
Publication of EP1585666B1 publication Critical patent/EP1585666B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/42Control of fuel supply specially adapted for the control of two or more plants simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0658Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged for the control of a single flow from a plurality of converging flows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Definitions

  • the present invention relates to equipment used on aircraft to derive conditioned compressed air from a multi-engine power source to other on-board systems requiring a continuous supply of air, such as environmental control systems ("ECS”), and more particularly to a system and method of controlling bleed air supplied by the engines in order to ensure an equalized supply of bleed air from each of the engines on the aircraft, thereby achieving balanced flow extraction.
  • ECS environmental control systems
  • US2002/0069646 discloses a system for substantially equalizing the flow of bleed air from a plurality of engines for delivery to a common bleed air duct, comprising a common pressure sensor disposed to measure pressure at said common bleed air duct and generate a measured pressure signal.
  • each bleed air channel is provided with a valve connected to individual controllers.
  • Each individual controller compares a signal from an individual flow sensor in each channel with said measured pressure signal to control the valves with the object of equalizing the airflow.
  • a second, and even more expensive, trade-off is an increased level of engine distress.
  • the engine required to supply substantially more bleed air will tend to wear out faster, since the engine will be running hotter, to compensate for the increased amount of bleed air tapped off. This results in the requirement that the engine be overhauled or replaced at an earlier time, resulting in fewer operating hours on the engine.
  • Systems and methods for substantially equalizing the flow of bleed air extracted from a plurality of engines for delivery to a common bleed air duct according to the present invention are defined by claims 1, 3, 5 and 8 (systems), and by claims 10 and 12 (methods).
  • one of the engines is selected as the master channel such that the pressure at the inlet of the systems down stream receiving the bleed air is controlled to achieve a desirable inlet pressure range.
  • the airflow rate is also measured in the master channel and the measured master airflow rate is used as the airflow setpoint for the slave channels.
  • the difference between the airflow setpoint and the airflow rate in the slave channel is applied to control the pressure, or a valve opening area, of that slave channel.
  • the pressure within the master control channel is controlled by applying the difference between a pressure setpoint and the pressure in the master control channel.
  • the airflow rate is also measured in the master channel and the measured master airflow rate is used as the airflow setpoint for the slave channels.
  • the difference between the airflow setpoint and the airflow rate in the slave channel is applied to control the pressure, or a valve opening area, of that slave channel.
  • Figure 1 illustrates a simplified system diagram of an exemplary master-slave engine bleed flow sharing control in accordance with a first embodiment of the present invention.
  • Figure 2 illustrates a simplified system diagram of an exemplary master-slave engine bleed flow sharing control in accordance with a second embodiment of the present invention.
  • a master-slave engine bleed flow sharing control method and system are disclosed.
  • numerous specific details are set forth to provide a full understanding of the present invention.
  • well-known structures or components have not been shown in detail so as to avoid unnecessarily obscuring the present invention.
  • FIG. 1 a simplified system diagram of an exemplary master-slave engine bleed flow sharing control for a multiple engine system is illustrated.
  • bleed air is extracted from engines 10, 20, 30, 40 for delivery to common air duct 50, 60, such that the extracted bleed air can be used by other systems on-board of the aircraft.
  • Channel 15 for engine K 10 is designated as the master channel to pass the bleed air from engine K 10 to common air duct 50, 60.
  • Channels 25, 35, 45 associated with other engines 20, 30, 40, respectively, are designated as the slave channels for passing the bleed airfrom their corresponding engines to common air duct 50, 60.
  • master valve 11 In the master channel 15 of engine K 10, master valve 11 is connected at the inlet of the master channel 15, responding to the pressure (P k ) of the bleed air supply received from engine K 10. Downstream from master valve 11 is master flow sensor 14, which measures the air flow rate (W k ) in the master channel 15.
  • a master controller formed by summing junction 13 and controller/amplifier unit 12, compares the pressure (P s ) measured at pressure sensor 1 6 of common air duct 50, 60 with a set-point pressure. The difference representative of the set-point pressure subtracted by measured pressure (P s ) from pressure sensor 16 is amplified by controller/amplifier unit 12.
  • This controller/amplifier unit 12 can operate based on pneumatic, fluidic, electronic or other commonly-known principles matching the sensor and actuator types used to implement the control system.
  • the amplified signal is then used to control master valve 11, which can either be a pressure regulator or a conventional valve/actuator. Note that the set-point pressure represents a desired pressure for the system to maintain.
  • slave valves 21, 31, 41 are connected to pressures sources (P 1 , P 2 , P n ) of the bleed air supply received from their corresponding engines. Downstream of channels 25, 35, 45 from slave valves 21, 31, 41 are flow sensors 24, 34, 44, respectively, which measure the air flow rate (W 1 , W 2 , W n ) in the corresponding slave channel.
  • Each slave channel also has a slave controller, which is implemented by summing junction 23, 33, 43 and controller/amplifier unit 22, 32, 42, respectively.
  • the slave controller compares the air flow rate (W 1 , W 2 , W n ) in its respective channel (“slave flow rate”) with the airflow rate (W k ) measured from master channel 15 ("master air flow rate").
  • the value representative of the master air flow rate subtracted by the slave flow rate, after it is amplified by the controller/amplifier unit, is used to control slave valves 21, 31, 41 of the slave channels.
  • the aforementioned section indicates one embodiment of the flow control mechanism of the present invention using a pressure regulator at each slave channel.
  • Another embodiment of the flow control mechanism to achieve the identical slave flow control objective is to use a conventional valve or an actuator, instead of a pressure regulator.
  • the value representative of the master air flow rate subtracted by the slave flow rate, after it is amplified by the controller/amplifier unit, is used to control slave valves 21, 31, 41 valve opening areas of the slave channels.
  • the flow sensor 14, 24, 34, 44 can be the kind that is based on electronic, pneumatic, fluidic, ultrasonic, electromagnetic, pressure (e.g. delta P), heat transfer/thermal (e.g. anemometer), vibration, ionic -type sensor or other principles.
  • the controller 12/13, 22/23, 32/33, 42/43 can be either digital/analog, pneumatic, fluidic or other principles as well as any combination of these principles.
  • the summing junction 13, 23, 33, 43 can also be digital/analog, pneumatic, fluidic or other principles.
  • the valve 11, 21, 31, 41 can be a pressure regulator or valve/actuator which varies its valve/actuator area as regulated by the valve/actuator control signal.
  • the pressure (P k ) at the inlet of the master channel receiving the bleed air supply can be controlled to achieve the desirable inlet pressure range.
  • the master air flow rate (W k ) of the master channel is measured, which is utilized as the set-point air flow to slave the other engines' air flow control channels.
  • one of the channels is selected as the master channel, and the pressure is controlled based on the pressure sensor feedback at their common air duct.
  • the mass flow rate is also measured in the master channel, and the flow sensor output of the master channel is utilized as the commanded input to the slave channel, which is flow controlled.
  • FIG. 2 a simplified system diagram of yet another exemplary master-slave engine bleed flow sharing control is illustrated. As illustrated, this embodiment has essentially the same construction as the previous embodiment. However, instead of measuring the pressure at common air duct 50, 60, pressure (P s ) is measured by sensor 19 just down stream of master valve 11 in master channel 15. The slave controls for bleed air flow in the slave channels 25, 35, 45 remain the same as the previous embodiment.
  • the flow sharing control of the present invention minimizes competitive flow controls among all channels.
  • the strong control coupling among the engine flow and pressure controls is reduced, resulting in a stable and accurate flow balancing system.
  • the present invention enables the bleed airflow extraction to be equalized for each engine, without the need to know the total flow demand from the on-board systems where the bleed air is used. As such, the present invention achieves a self-contained system and can work independent of the ECS, or other load demands and controllers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Flow Control (AREA)
  • Peptides Or Proteins (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Multiple Motors (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Claims (13)

  1. Système permettant d'égaliser sensiblement le flux d'air prélevé extrait d'une pluralité de réacteurs (10, 20, 30, 40) en vue de l'introduire dans une canalisation d'air prélevé commune (50, 60), comprenant :
    un capteur de pression commun (16) disposé pour mesurer la pression au niveau de ladite canalisation d'air prélevé commune (50, 60) et générer un signal de pression mesurée ;
    un canal maître disposé pour acheminer l'air prélevé d'un réacteur maître (10) jusqu'à ladite canalisation d'air prélevé commune (50, 60), ledit canal maître comprenant :
    une vanne maîtresse (11) disposée pour recevoir l'alimentation en air prélevé provenant dudit réacteur maître et réguler la pression de l'alimentation en air prélevé ;
    un capteur de flux maître (14) disposé en aval de ladite vanne maîtresse (11) pour mesurer le flux d'air prélevé pour générer un signal de flux maître ;
    un module de commande maître (12, 13) disposé pour comparer un signal de pression prédéterminée audit signal de pression mesurée (16) pour générer un signal d'erreur maître, ledit signal d'erreur maître étant appliqué pour commander ladite vanne maîtresse (11) ;
    au moins un canal esclave disposé pour acheminer l'air prélevé d'au moins un réacteur esclave, jusqu'à une canalisation d'air prélevé commune (50, 60) ;
    une vanne esclave (21, 31, 41) disposée pour recevoir l'air prélevé provenant dudit réacteur esclave (20, 30, 40) et réguler le flux d'air prélevé ;
    un capteur d'écoulement esclave (24, 34, 44) disposé en aval de ladite vanne esclave (21, 31, 41) pour mesurer le flux d'air prélevé et générer un signal de flux esclave ;
    un module de commande esclave (22/23, 32/33, 42/43) disposé pour comparer ledit signal de flux maître audit signal de flux esclave pour générer un signal d'erreur de flux esclave, ledit signal d'erreur de flux esclave étant appliqué pour commander ladite vanne esclave (21, 31, 41).
  2. Système selon la revendication 1, chacune desdites vannes maîtresse (11) et esclave (21, 31, 41) étant actionnée par commande par régulateur de pression respectivement par ledit module de commande maître (12, 13) et ledit module de commande esclave (22/23, 32/33, 42/43).
  3. Système permettant d'égaliser sensiblement le flux d'air prélevé extrait d'une pluralité de réacteurs en vue de l'introduire dans une canalisation d'air prélevé commune, comprenant :
    un moyen formant capteur de pression commun (16) pour mesurer la pression d'air prélevé de ladite canalisation d'air prélevé commune (50, 60) et générer un signal de pression mesurée ;
    un canal maître disposé pour acheminer l'air prélevé d'un réacteur maître (10) jusqu'à ladite canalisation d'air prélevé commune (50, 60), ledit canal maître comprenant :
    un moyen formant vanne maîtresse (11) pour recevoir l'alimentation en air prélevé provenant dudit réacteur maître et réguler la pression de l'alimentation en air prélevé ;
    un moyen formant capteur de flux maître (14) couplé audit moyen formant vanne maîtresse (11) pour mesurer le flux d'air prélevé et générer un signal de flux maître ;
    un moyen formant module de commande maître (12, 13) pour commander ledit moyen formant vanne maîtresse (11) en comparant un signal de pression prédéterminée audit signal de pression mesurée (16) ;
    un canal esclave disposé pour acheminer l'air prélevé d'un réacteur esclave jusqu'à une canalisation d'air prélevé commune ;
    un moyen formant vanne esclave (21, 31, 41) pour recevoir l'air prélevé provenant dudit réacteur esclave (20, 30, 40) et réguler la pression du flux d'air prélevé ou la surface d'ouverture de vanne ;
    un moyen formant capteur d'écoulement esclave (24, 34, 44) pour mesurer le flux d'air prélevé et générer un signal de flux esclave ;
    un moyen formant module de commande esclave (22/23, 32/33, 42/43) pour commander ledit moyen formant vanne esclave (21, 31, 41) en comparant ledit signal de flux maître audit signal de flux esclave.
  4. Système selon la revendication 3, ledit moyen formant module de commande esclave comprenant :
    une jonction de sommation (23, 33, 43) disposée pour soustraire ledit signal de flux esclave dudit signal de flux maître pour générer un signal d'erreur esclave ;
    une unité module de commande / amplificateur (22, 32, 42) disposée pour amplifier ledit signal d'erreur esclave.
  5. Système permettant d'égaliser sensiblement le flux d'air prélevé extrait d'une pluralité de réacteurs (10, 20, 30, 40) en vue de l'introduire dans une canalisation d'air prélevé commune (50, 60), comprenant :
    un canal maître (15) disposé pour acheminer l'air prélevé d'un réacteur maître (10) jusqu'à ladite canalisation d'air prélevé commune (50, 60), ledit canal maître comprenant :
    une vanne maîtresse (11) disposée pour recevoir l'alimentation en air prélevé provenant dudit réacteur maître et réguler la pression de l'alimentation en air prélevé dans ledit canal maître ;
    un capteur de pression commun (19) disposé en aval de ladite vanne maîtresse (11) pour mesurer la pression d'air prélevé dudit canal maître et générer un signal de pression mesurée ;
    un capteur de flux maître (14) disposé en aval de ladite vanne maîtresse (11) pour mesurer le flux d'air prélevé dudit canal maître pour générer un signal de flux maître ;
    un module de commande maître (12, 13) disposé pour commander ladite vanne maîtresse en comparant un signal de pression prédéterminée audit signal de pression mesurée pour générer un signal d'erreur maître ;
    au moins un canal esclave (25, 35, 45) disposé pour acheminer l'air prélevé d'au moins un réacteur esclave jusqu'à une canalisation d'air prélevé commune (50, 60) ;
    une vanne esclave (21, 31, 41) disposée pour recevoir l'air prélevé provenant dudit réacteur esclave (20, 30, 40) et réguler la pression du flux d'air prélevé ou la surface d'ouverture de vanne dans ledit canal esclave ;
    un capteur d'écoulement esclave (24, 34, 44) disposé en aval de ladite vanne esclave (21, 31, 41) pour mesurer le flux d'air prélevé dudit canal esclave et générer un signal de flux esclave ;
    un module de commande esclave (22/23, 32/33, 42/43) disposé pour commander ladite vanne esclave (21, 31, 41) en comparant ledit signal de flux maître audit signal de flux esclave pour générer un signal d'erreur esclave.
  6. Système selon la revendication 5,
    ledit module de commande maître comprenant :
    une jonction de sommation maîtresse (13) disposée pour recevoir ledit signal de pression prédéterminée et ledit signal de pression mesurée, ladite jonction de sommation étant disposée pour générer un signal d'erreur en soustrayant ledit signal de pression mesurée dudit signal de pression prédéterminée ;
    un module de commande / amplificateur maître (12) disposé pour amplifier ledit signal d'erreur et appliquer le signal d'erreur amplifié à ladite vanne maîtresse ;
    ledit module de commande esclave comprenant :
    une jonction de sommation esclave (23, 33, 43) disposée pour recevoir ledit signal de flux maître et ledit signal de flux esclave, ladite jonction de sommation esclave étant disposée pour générer un signal d'erreur en soustrayant ledit signal de flux esclave dudit signal de flux maître ;
    un module de commande / amplificateur esclave (21, 31, 41) disposé pour amplifier ledit signal d'erreur et appliquer le signal d'erreur amplifié à ladite vanne esclave.
  7. Système selon la revendication 5, chacune desdites vannes maîtresse et esclave étant actionnée par commande par régulateur de pression respectivement par ledit module de commande maître et ledit module de commande esclave.
  8. Système permettant d'égaliser sensiblement le flux d'air prélevé extrait d'une pluralité de réacteurs en vue de l'introduire dans une canalisation d'air prélevé commune, comprenant :
    un canal maître (15) disposé pour acheminer l'air prélevé d'un réacteur maître (10) jusqu'à ladite canalisation d'air prélevé commune (50, 60), ledit canal maître comprenant :
    un moyen formant vanne maîtresse (11) pour recevoir l'air prélevé provenant dudit réacteur maître et réguler la pression du flux d'air prélevé dans ledit canal maître ;
    un moyen formant capteur de pression maître (19) pour mesurer la pression dudit canal maître et générer un signal de pression mesurée ;
    un moyen formant capteur de flux maître (14) couplé audit moyen formant vanne maîtresse pour mesurer le flux d'air prélevé dudit canal maître et générer un signal de flux maître ;
    un moyen formant module de commande maître (12, 13) pour commander ledit moyen formant vanne maîtresse en comparant un signal de pression prédéterminée audit signal de pression mesurée ;
    un canal esclave (25, 35, 45) disposé pour acheminer l'air prélevé d'un réacteur esclave jusqu'à une canalisation d'air prélevé commune ;
    un moyen formant vanne esclave (21, 31, 41) pour recevoir l'air prélevé provenant dudit réacteur esclave et réguler la pression du flux d'air prélevé ou la surface d'ouverture de vanne / d'actionneur dans ledit canal esclave ;
    un moyen formant capteur d'écoulement esclave (24, 34, 44) pour mesurer le flux d'air prélevé dudit canal esclave et générer un signal de flux esclave ;
    un moyen formant module de commande esclave (22/23, 32/33, 42/43) pour commander ledit moyen formant vanne esclave en comparant ledit signal de flux maître audit signal de flux esclave.
  9. Système selon la revendication 8, ledit moyen formant module de commande esclave comprenant :
    une jonction de sommation (23, 33, 43) disposée pour soustraire ledit signal de flux esclave dudit signal de flux maître pour générer un signal d'erreur esclave ;
    une unité module de commande / amplificateur disposée pour amplifier ledit signal d'erreur esclave.
  10. Procédé permettant d'égaliser sensiblement le flux d'air prélevé d'une pluralité de canaux depuis une pluralité de réacteurs (10, 20, 30, 40) jusqu'à une canalisation d'air commune (50, 60), comprenant les étapes consistant à :
    a) désigner un canal maître (15) et une pluralité de canaux esclaves (25, 35, 45) parmi lesdits canaux ;
    b) obtenir (13) un signal d'erreur maître en fonction d'une différence entre la pression au niveau de ladite canalisation d'air commune (16) et une pression de consigne prédéterminée ;
    c) réguler la pression (11) dudit canal maître en utilisant ledit signal d'erreur maître ;
    d) mesurer (14) le débit d'air dudit canal maître pour générer un débit d'air maître ;
    e) mesurer (24, 34, 44) le débit d'air de chaque canal esclave pour générer un débit d'air esclave ;
    f) obtenir (23, 33, 43) un signal d'erreur esclave en fonction d'une différence entre ledit débit d'air maître et ledit débit d'air esclave d'un canal esclave correspondant ;
    g) réguler (21, 31, 41) la pression ou la surface d'ouverture de vanne / d'actionneur de chaque canal esclave en utilisant ledit signal d'erreur esclave.
  11. Procédé selon la revendication 10, l'étape consistant à obtenir un signal d'erreur maître comprenant les étapes consistant à :
    soustraire (23, 33, 43) ladite pression au niveau de ladite canalisation d'air commune de ladite pression de consigne prédéterminée pour générer un signal de différence ;
    amplifier (22, 32, 42) ledit signal de différence pour générer ledit signal d'erreur maître.
  12. Procédé permettant d'égaliser sensiblement le flux d'air prélevé d'une pluralité de canaux depuis une pluralité de réacteurs (10, 20, 30, 40) jusqu'à une canalisation d'air commune, comprenant les étapes consistant à :
    a) désigner un canal maître (15) et une pluralité de canaux esclaves (25, 35, 45) parmi lesdits canaux ;
    b) obtenir (70) un signal d'erreur maître en fonction d'une différence entre la pression (19) au niveau dudit canal maître et une pression de consigne prédéterminée ;
    c) réguler (11) la pression dudit canal maître en utilisant ledit signal d'erreur maître ;
    d) mesurer (14) le débit d'air dudit canal maître pour générer un débit d'air maître ;
    e) mesurer (24, 34, 44) le débit d'air de chaque canal esclave pour générer un débit d'air esclave ;
    f) obtenir (22/23, 32/33, 42/43) un signal d'erreur esclave en fonction d'une différence entre ledit débit d'air maître et ledit débit d'air esclave d'un canal esclave correspondant ;
    g) réguler (21, 31, 41) la pression ou la surface d'ouverture de vanne / d'actionneur de chaque canal esclave en utilisant ledit signal d'erreur esclave.
  13. Procédé selon la revendication 12, l'étape consistant à obtenir un signal d'erreur maître comprenant les étapes consistant à :
    soustraire (13) ladite pression dudit canal maître de ladite pression de consigne prédéterminée pour générer un signal de différence ;
    amplifier (12) ledit signal de différence pour générer ledit signal d'erreur maître.
EP04704393A 2003-01-22 2004-01-22 Procede et systeme de commande du partage de flux de prelevement reacteur maitre-esclave Expired - Lifetime EP1585666B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US349434 1994-12-05
US10/349,434 US6782701B2 (en) 2003-01-22 2003-01-22 Master-slave engine bleed flow sharing control method and system
PCT/US2004/001546 WO2004065215A1 (fr) 2003-01-22 2004-01-22 Procede et systeme de commande du partage de flux de prelevement reacteur maitre-esclave

Publications (2)

Publication Number Publication Date
EP1585666A1 EP1585666A1 (fr) 2005-10-19
EP1585666B1 true EP1585666B1 (fr) 2006-05-10

Family

ID=32712733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04704393A Expired - Lifetime EP1585666B1 (fr) 2003-01-22 2004-01-22 Procede et systeme de commande du partage de flux de prelevement reacteur maitre-esclave

Country Status (7)

Country Link
US (1) US6782701B2 (fr)
EP (1) EP1585666B1 (fr)
JP (1) JP2006518683A (fr)
AT (1) ATE325748T1 (fr)
CA (1) CA2513703A1 (fr)
DE (1) DE602004000861T2 (fr)
WO (1) WO2004065215A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7536865B2 (en) * 2005-02-09 2009-05-26 Honeywell International Inc. Method and system for balancing bleed flows from gas turbine engines
DE102006014572B4 (de) * 2006-03-29 2008-08-28 Airbus Deutschland Gmbh Vorrichtung und Verfahren zur Luftverteilung in einem Frachtflugzeug
US8033118B2 (en) * 2008-01-31 2011-10-11 EMBRAER—Empresa Brasileira de Aeronautica S.A. Bleed airflow balancing control using simplified sensing
US20100107594A1 (en) * 2008-10-31 2010-05-06 General Electric Company Turbine integrated bleed system and method for a gas turbine engine
US8484983B2 (en) * 2009-12-07 2013-07-16 The Boeing Company Thermoelectric generator on an aircraft bleed system
US9359949B2 (en) * 2011-02-17 2016-06-07 Honeywell International Inc. Distributed bleed system temperature management
US10041407B2 (en) * 2011-03-29 2018-08-07 General Electric Company System and method for air extraction from gas turbine engines
GB2513132B (en) * 2013-04-16 2015-05-27 Ge Aviat Systems Ltd Method for predicting a bleed air system fault
GB2513133B (en) 2013-04-16 2015-07-08 Ge Aviat Systems Ltd Methods for predicting a speed brake system fault
GB2514108B (en) * 2013-05-13 2015-06-24 Ge Aviat Systems Ltd Method for diagnosing a bleed air system fault
CN105667810B (zh) * 2014-11-19 2018-01-16 中国航空工业集团公司西安飞机设计研究所 一种多发引气系统流量平衡控制方法
US10822112B2 (en) 2018-02-14 2020-11-03 General Electric Company Slope-based event detection for turbine engines
US10926883B2 (en) 2018-03-21 2021-02-23 Hamilton Sunstrand Corporation Environmental control system including shared air source with balanced airflow output
CN116395129B (zh) * 2023-06-08 2023-08-08 中国空气动力研究与发展中心低速空气动力研究所 双余度引气机构、控制系统、控制方法及飞行设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2316237A (en) * 1939-11-25 1943-04-13 Grunert Siegfried Means for controlling the supply of air to the closed cabins of aircraft
US2407257A (en) * 1942-02-07 1946-09-10 Douglas Aircraft Co Inc Regulating means for pressure cabins
US2545563A (en) * 1944-12-26 1951-03-20 Honeywell Regulator Co Air flow control apparatus
US2851254A (en) * 1952-09-10 1958-09-09 Lockheed Aircraft Corp High altitude cabin pressurization and air conditioning system
US2973702A (en) * 1957-03-19 1961-03-07 Kollsman Instr Corp Cabin pressurization system using a.-c. power
GB1213864A (en) * 1968-01-25 1970-11-25 Westland Aircraft Ltd Improvements in or relating to pressure control systems
US3811273A (en) * 1973-03-08 1974-05-21 United Aircraft Corp Slaved fuel control for multi-engined aircraft
US4779644A (en) * 1985-02-08 1988-10-25 Allied-Signal Inc. Aircraft engine bleed air flow balancing technique
US4765131A (en) * 1985-02-08 1988-08-23 Allied Signal Inc. Aircraft engine bleed air flow balancing technique
US4671318A (en) * 1985-02-08 1987-06-09 The Garrett Corporation Aircraft engine bleed air flow balancing technique
US4735056A (en) * 1986-06-30 1988-04-05 United Technologies Corporation Pressure regulating valve controller
FR2628860B1 (fr) * 1988-03-17 1992-06-05 Abg Semca Dispositif d'equilibrage de debit, dispositif de climatisation d'aeronef comportant ledit dispositif d'equilibrage et aeronef comportant ledit dispositif de climatisation
US5145124A (en) * 1990-07-12 1992-09-08 Allied-Signal Inc. Fluid conditioning system and apparatus
US5063963A (en) * 1990-08-09 1991-11-12 General Electric Company Engine bleed air supply system
US5155991A (en) * 1991-04-01 1992-10-20 United Technologies Corporation Bleed air flow regulators with flow balance
DE19628395C2 (de) * 1996-07-13 1998-06-04 Daimler Benz Aerospace Airbus System zur Regelung der Abluftmengenströme eines Flugzeuges
US5927257A (en) * 1997-09-19 1999-07-27 Caterpillar Inc Pressure compensating exhaust gas recirculation valve
FR2774357B1 (fr) * 1998-02-05 2000-04-07 Aerospatiale Systeme d'alimentation en air chaud pour aeronef
US6494047B2 (en) * 2000-12-07 2002-12-17 Honeywell International Inc. Airflow sharing

Also Published As

Publication number Publication date
US20040139751A1 (en) 2004-07-22
DE602004000861D1 (de) 2006-06-14
JP2006518683A (ja) 2006-08-17
US6782701B2 (en) 2004-08-31
EP1585666A1 (fr) 2005-10-19
DE602004000861T2 (de) 2006-12-14
ATE325748T1 (de) 2006-06-15
CA2513703A1 (fr) 2004-08-05
WO2004065215A1 (fr) 2004-08-05

Similar Documents

Publication Publication Date Title
US5155991A (en) Bleed air flow regulators with flow balance
EP1585666B1 (fr) Procede et systeme de commande du partage de flux de prelevement reacteur maitre-esclave
EP2252784B1 (fr) Commande d'équilibrage de flux d'air de prélèvement par détection simplifiée
US10752365B2 (en) Method and device for thermal control of a plurality of cabins of a vehicle
EP0511935B1 (fr) Régulation de l'air d'échappement par mélange
EP0190943B1 (fr) Technique d'équilibrage du débit du prélèvement d'air des moteurs d'avion
US20150034767A1 (en) Method For Regulating The De-Icing Of A Leading Edge Of An Aircraft And Device For Its Implementation
US10011361B2 (en) Aircraft environmental control system providing improved performance and backup temperature control
US3192848A (en) Air flow control system
US6494047B2 (en) Airflow sharing
US5135161A (en) Reduced noise trim air system
US4765131A (en) Aircraft engine bleed air flow balancing technique
CN110294131B (zh) 用于飞行器引气网络的合成低压引气方案
US10926883B2 (en) Environmental control system including shared air source with balanced airflow output
CN110471475B (zh) 温度调节系统和由其实现的应用方法
US3511161A (en) Selecting the air source for an aircraft supercharger
US3299630A (en) Multiple gas turbine engine fuel control
CN115562320B (zh) 一种变推力推进系统及控制方法
McMurtry 777 Wing and Engine Ice Protection System
Payne Environmental Control Systems for Executive Jet Aircraft
Burkhardt Automatic Environmental Control System for Electronic Equipment Platforms
JPS5941437B2 (ja) 航空機における機内空調装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060510

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060510

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060510

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060510

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060510

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060510

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060510

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060510

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060510

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060510

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 602004000861

Country of ref document: DE

Date of ref document: 20060614

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060810

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061010

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060510

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060510

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141226

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150126

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004000861

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160201