EP1578899A2 - Proteines secretees - Google Patents

Proteines secretees

Info

Publication number
EP1578899A2
EP1578899A2 EP02731905A EP02731905A EP1578899A2 EP 1578899 A2 EP1578899 A2 EP 1578899A2 EP 02731905 A EP02731905 A EP 02731905A EP 02731905 A EP02731905 A EP 02731905A EP 1578899 A2 EP1578899 A2 EP 1578899A2
Authority
EP
European Patent Office
Prior art keywords
polynucleotide
seq
polypeptide
amino acid
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02731905A
Other languages
German (de)
English (en)
Inventor
Henry Yue
Ernestine A. Lee
Shanya D. Becha
Mariah R. Baughn
Monique G. Yao
Y. Tom Tang
Janice K. Au-Young
Preeti G. Lal
Bridget A. Warren
Brendan M. Duggan
Uyen K. Tran
Yuming Xu
Kavitha Thangavelu
Thomas W. Richardson
Olga Bandman
Karen Anne Jones
Junming Yang
Brooke M. Emerling
Anita Swarnakar
Wen Luo
Narinder K. Chawla
Yalda Azimzai
Farrah A. Khan
Dyung Aina M. Lu
Jennifer A. Griffin
Soo Yeun Lee
Neil Burford
Vicki S. Elliott
Cynthia D. Honchell
Ann He
Patricia M. Mason
Joana X. Li
April J.A. Hafalia
Rajagopal Gururajan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Incyte Corp
Original Assignee
Incyte Genomics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incyte Genomics Inc filed Critical Incyte Genomics Inc
Publication of EP1578899A2 publication Critical patent/EP1578899A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • This invention relates to nucleic acid and amino acid sequences of secreted proteins and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative, autoimmune/inflammatory, cardiovascular, neurological, and developmental disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of secreted proteins.
  • Proteins that are retained in the plasma membrane contain one or more transmembrane domains, each comprised of about 20 hydrophobic amino acid residues.
  • Secreted proteins are generally synthesized as inactive precursors that are activated by post- translational processing events during transit through the secretory pathway. Such events include glycosylation, proteolysis, and removal of the signal peptide by a signal peptidase. Other events that may occur during protein transport include chaperone-dependent unfolding and folding of the nascent protein and interaction of the protein with a receptor or pore complex. Examples of secreted proteins with amino terminal signal peptides are discussed below and include proteins with important roles in cell-to-cell signaling.
  • Such proteins include transmembrane receptors and cell surface markers, extracellular matrix molecules, cytokines, hormones, growth and differentiation factors, enzymes, neuropeptides, vasomediators, cell surface markers, and antigen recognition molecules. (Reviewed in Alberts, B. et al. (1994) Molecular Biology of The Cell, Garland Publishing, New York, NY, pp. 557-560, 582-592.)
  • Cell surface markers include cell surface antigens identified on leukocytic cells of the immune system. These antigens have been identified using systematic, monoclonal antibody (mAb)- based "shot gun” techniques. These techniques have resulted in the production of hundreds of mAbs directed against unknown cell surface leukocytic antigens. These antigens have been grouped into “clusters of differentiation” based on common immunocytochemical localization patterns in various differentiated and undifferentiated leukocytic cell types. Antigens in a given cluster are presumed to identify a single cell surface protein and are assigned a "cluster of differentiation" or "CD” designation.
  • mAb monoclonal antibody
  • MPs may be heavily glycosylated and may contain an Arginine-Glycine-Aspartate (RGD) tripeptide motif which may play a role in adhesive interactions.
  • MPs include extracellular proteins such as fibronectin, collagen, galectin, vitronectin and its proteolytic derivative somatomedin B; and cell adhesion receptors such as cell adhesion molecules (CAMs), cadherins, and integrins.
  • Mucins are highly glycosylated glycoproteins that are the major structural component of the mucus gel. The physiological functions of mucins are cytoprotection, mechanical protection, maintenance of viscosity in secretions, and cellular recognition.
  • MUC6 is a human gastric mucin that is also found in gall bladder, pancreas, seminal vesicles, and female reproductive tract (Toribara, N.W. et al. (1997) J. Biol. Chem. 272: 16398-16403). The MUC6 gene has been mapped to human chromosome 11 (Toribara, N.W. et al. (1993) J. Biol. Chem. 268:5879-5885).
  • Hemomucin is a novel Drosophila surface mucin that may be involved in the induction of antibacterial effector molecules (Theopold, U. et al. (1996) J. Biol. Chem. 217: 12708-12715).
  • Tuftelins are one of four different enamel matrix proteins that have been identified so far.
  • the other three known enamel matrix proteins are the amelogenins, enamelin and ameloblastin. Assembly of the enamel extracellular matrix from these component proteins is believed to be critical in producing a matrix competent to undergo mineral replacement. (Paine C.T. et al. (1998) Connect Tissue Res.38:257-267).
  • Tuftelin mRNA has been found to be expressed in human ameloblastoma tumor, a non-mineralized odontogenic tumor (Deutsch D. et al. (1998) Connect Tissue Res. 39: 177-184).
  • Olfactomedin-related proteins are extracellular matrix, secreted glycoproteins with conserved C-terminal motifs. They are expressed in a wide variety of tissues and in broad range of species, from Caenorhabditis elegans to Homo sapiens. Olfactomedin-related proteins comprise a gene family with at least 5 family members in humans. One of the five, TIGR/myocilin protein, is expressed in the eye and is associated with the pathogenesis of glaucoma (Kulkarni, N.H. et al., (2000) Genet. Res. 76:41-50). Research by Yokoyama et al.
  • AMY 135-amino acid protein
  • Mac -2 binding protein is a 90-kD serum protein (90K) and another secreted glycoprotein, isolated from both the human breast carcinoma cell line SK-BR-3, and human breast milk. It specifically binds to a human macrophage-associated lectin, Mac-2. Structurally, the mature protein is 567 amino acids in length and is proceeded by an 18-amino acid leader. There are 16 cysteines and seven potential N-linked glycosylation sites. The first 106 amino acids represent a domain very similar to an ancient protein superfamily defined by a macrophage scavenger receptor cysteine-rich domain (Koths,K. et al., (1993) J. Biol. Chem. 268: 14245-14249).
  • 90K is elevated in the serum of subpopulations of AIDS patients and is expressed at varying levels in primary tumor samples and tumor cell lines.
  • Ullrich et al. (1994) have demonstrated that 90K stimulates host defense systems and can induce interleukin-2 secretion. This immune stimulation is proposed to be a result of oncogenic transformation, viral infection or pathogenic invasion (Ullrich,A., et al. (1994) J. Biol. Chem. 269:18401-18407).
  • Semaphorins are a large group of axonal guidance molecules consisting of at least 30 different members and are found in vertebrates, invertebrates, and even certain viruses. All semaphorins contain the sema domain which is approximately 500 amino acids in length. Neuropilin, a semaphorin receptor has been shown to promote neurite outgrowth in vitro. The extracellular region of neuropilins consists of three different domains: CUB, discoidin, and MAM domains. The CUB and the MAM motifs of neuropilin have been suggested as having roles in protein-protein interactions and are suggested to be involved in the binding of semaphorins through the sema and the C-terminal domains (reviewed in Raper, J.A.
  • Plexins are neuronal cell surface molecules that mediate cell adhesion via a homophilic binding mechanism in the presence of calcium ions. Plexins have been shown to be expressed in the receptors and neurons of particular sensory systems (Ohta, K. et al. (1995) Cell 14: 1189-1199). There is evidence that suggests that some plexins function to control motor and CNS axon guidance in the developing nervous system. Plexins, which themselves contain complete semaphorin domains, may be both the ancestors of classical semaphorins and binding partners for semaphorins (Winberg, M.L. et al (1998) Cell 95:903-916).
  • Human pregnancy-specific beta 1 -glycoprotein is a family of closely related glycoproteins of molecular weights of 72 KDa, 64KDa, 62KDa, and 54KDa. Together with the carcinoembryonic antigen, they comprise a subfamily within the immunoglobulin superfamily (Plouzek CA. and Chou J.Y., Endocrinology 129:950-958) Different subpopulations of PSG have been found to be produced by the trophoblasts of the human placenta, and the amnionic, and chorionic membranes (Plouzek CA. et al. (1993) Placenta 14:277-285).
  • Autocrine motility factor is one of the motility cytokines regulating tumor cell migration, therefore identification of the signaling pathway coupled with it has critical importance.
  • Autocrine motility factor receptor (AMFR) expression has been found to be associated with tumor progression in thymoma (Ohta Y. et al. (2000) Int. J. Oncol. 17:259-264).
  • AMFR is a cell surface glycoprotein of molecular weight 78KDa.
  • hormones include amino acid derivatives such as catecholamines (epinephrine, norepinephrine) and histamine, and peptide hormones such as glucagon, insulin, gastrin, secretin, cholecystokinin, adrenocorticotropic hormone, follicle stimulating hormone, luteinizing hormone, thyroid stimulating hormone, and vasopressin.
  • catecholamines epinephrine, norepinephrine
  • histamine peptide hormones
  • peptide hormones such as glucagon, insulin, gastrin, secretin, cholecystokinin, adrenocorticotropic hormone, follicle stimulating hormone, luteinizing hormone, thyroid stimulating hormone, and vasopressin.
  • Pro-opiomelanocortin is the precursor polypeptide of corticotropin (ACTH) a hormone synthesized by the anterior pituitary gland, which functions in the stimulation of the adrenal cortex. POMC is also the precursor polypeptide of the hormone, beta-lipotropin (beta-LPH),. Each hormone includes smaller peptides with distinct biological activities: alpha-melanotropin (alpha- MSH) and corticotropin-like intermediate lobe peptide (CLIP) are formed from ACTH; gamma- lipotropin (gamma-LPH) and beta-endorphin are peptide components of beta-LPH, while beta-MSH is contained within gamma-LPH.
  • alpha-melanotropin alpha-melanotropin
  • CLIP corticotropin-like intermediate lobe peptide
  • gamma-LPH gamma-LPH
  • beta-endorphin are peptide components of beta-LPH, while beta-MSH is contained within gamm
  • Adrenal insufficiency due to ACTH deficiency results in an endocrine disorder characterized by early- onset obesity, adrenal insufficiency, and red hair pigmentation (Chretien, M. et al., (1979) Canad. J. Biochem. 57: 1111-1121, Krude, H. et al., (1998) Nature Genet. 19: 155-157, Online Mendelian Inheritance in Man, OM . Johns Hopkins University, Baltimore, MD. OM Number: 176830: August 1, 2000. World Wide Web URL: www.ncbi.nlm.nih.gov/omim/).
  • Growth and differentiation factors are secreted proteins which function in intercellular communication. Some factors require oligomerization or association with membrane proteins for activity. Complex interactions among these factors and their receptors trigger intracellular signal fransduction pathways that stimulate or inhibit cell division, cell differentiation, cell signaling, and cell motility. Most growth and differentiation factors act on cells in their local environment (paracrine signaling).
  • the first class includes the large polypeptide growth factors such as epidermal growth factor, fibroblast growth factor, transforming growth factor, insulin-like growth factor, and platelet-derived growth factor.
  • the second class includes the hematopoietic growth factors such as the colony stimulating factors (CSFs).
  • CSFs colony stimulating factors
  • Hematopoietic growth factors stimulate the proliferation and differentiation of blood cells such as B- lymphocytes, T-lymphocytes, erythrocytes, platelets, eosinophils, basophils, neutrophils, macrophages, and their stem cell precursors.
  • the third class includes small peptide factors such as bombesin, vasopressin, oxytocin, endothelin, transferrin, angiotensin II, vasoactive intestinal peptide, and bradykinin which function as hormones to regulate cellular functions other than proliferation.
  • Growth and differentiation factors play critical roles in neoplastic transformation of cells in vitro and in tumor progression in vivo. Inappropriate expression of growth factors by tumor cells may contribute to vascularization and metastasis of tumors. During hematopoiesis, growth factor misregulation can result in anemias, leukemias, and lymphomas. Certain growth factors such as interferon are cytotoxic to tumor cells both in vivo and in vitro. Moreover, some growth factors and growth factor receptors are related both structurally and functionally to oncoproteins. In addition, growth factors affect transcriptional regulation of both proto-oncogenes and oncosuppressor genes. (Reviewed in Pimentel, E. (1994) Handbook of Growth Factors.
  • the Slit protein first identified in Drosophila, is critical in central nervous system midline formation and potentially in nervous tissue histogenesis and axonal pathfinding. Itoh et al. have identified mammalian homologues of the slit gene (human Slit-1, Slit-2, Slit-3 and rat Slit-1). The encoded proteins are putative secreted proteins containing EFG-like motifs and leucine-rich repeats, both are conserved protein-protein interaction domains. Slit-1, -2, and -3 mRNAs are expressed in the brain, spinal cord, and thyroid, respectively (Itoh, A. et al., (1998) Brain Res. Mol. Brain Res.
  • NP/VMs can transduce signals directly, modulate the activity or release of other neurotransmitters and hormones, and act as catalytic enzymes in cascades.
  • the effects of NP/VMs range from extremely brief to long-lasting. (Reviewed in Martin, C.R. et al. (1985) Endocrine Physiology. Oxford University Press, New York, NY, pp. 57-62.)
  • NP/VMs are involved in numerous neurological and cardiovascular disorders.
  • neuropeptide Y is involved in hypertension, congestive heart failure, affective disorders, and appetite regulation.
  • Somatostatin inhibits secretion of growth hormone and prolactin in the anterior pituitary, as well as inhibiting secretion in intestine, pancreatic acinar cells, and pancreatic beta-cells.
  • a reduction in somatostatin levels has been reported in Alzheimer's disease and Parkinson's disease.
  • Vasopressin acts in the kidney to increase water and sodium absorption, and in higher concentrations stimulates contraction of vascular smooth muscle, platelet activation, and glycogen breakdown in the liver. Vasopressin and its analogues are used clinically to treat diabetes insipidus.
  • Endothelin and angiotensin are involved in hypertension, and drugs, such as captopril, which reduce plasma levels of angiotensin, are used to reduce blood pressure (Watson, S. and S. Arkinstall (1994) The G-protein Linked Receptor Facts Book. Academic Press, San Diego CA, pp. 194; 252; 284; 55; 111).
  • Neuropeptides have also been shown to have roles in nociception (pain). Vasoactive intestinal peptide appears to play an important role in chronic neuropathic pain.
  • Nociceptin an endogenous ligand for for the opioid receptor-like 1 receptor, is thought to have a predominantly anti- nociceptive effect, and has been shown to have analgesic properties in different animal models of tonic or chronic pain (Dickinson, T. and Fleetwood-Walker, S.M. (1998) Trends Pharmacol. Sci. 19:346-348).
  • proteins that contain signal peptides include secreted proteins with enzymatic activity. Such activity includes, for example, oxidoreductase/dehydrogenase activity, transferase activity, hydrolase activity, lyase activity, isomerase activity, or ligase activity.
  • matrix metalloproteinases are secreted hydrolytic enzymes that degrade the extracellular matrix and thus play an important role in tumor metastasis, tissue morphogenesis, and arthritis (Reponen, P. et al. (1995) Dev. Dyn. 202:388-396; Firestein, G.S. (1992) Curr. Opin. Rheumatol. 4:348-354; Ray, J.M.
  • acetyl-CoA synthetases which activate acetate for use in lipid synthesis or energy generation (Luong, A. et al. (2000) J. Biol. Chem. 275:26458-26466).
  • the result of acetyl-CoA synthetase activity is the formation of acetyl-CoA from acetate and CoA.
  • CyP may be part of the signaling pathway that leads to T-cell activation. CyP isomerase activity is associated with protein folding and protein trafficking, and may also be involved in assembly/disassembly of protein complexes and regulation of protein activity. For example, in Drosophila, the CyP NinaA is required for correct localization of rhodopsins, while a mammalian CyP (Cyp40) is part of the Hsp90/Hsc70 complex that binds steroid receptors.
  • the mammalian CypA has been shown to bind the gag protein from human immunodeficiency virus 1 (HIV-l), an interaction that can be inhibited by cyclosporin. Since cyclosporin has potent anti-HTV-1 activity, CypA may play an essential function in HIV-l replication.
  • Cyp40 has been shown to bind and inactivate the transcription factor c-Myb, an effect that is reversed by cyclosporin. This effect implicates CyPs in the regulation of transcription, transformation, and differentiation (Bergsma, D.J. et al (1991) J. Biol. Chem. 266:23204 - 23214; Hunter, T. (1998) Cell 92: 141-143; and Leverson, J.D. and Ness, S.A. (1998) Mol. Cell. 1:203-211).
  • chaperones are a set of conserved protein families that recognize and selectively bind nonnative proteins under physiological and stress conditions. In this way these protein cofactors prevent irreversible aggregation reactions and misfolding. Many chaperones are also heat shock (stress) proteins. All major heat shock protein families (Hsp 104, Hsp90, Hsp70, Hsp60/GroEL, and small Hsps) suppress irreversible unfolding reactions. They also function to maintain newly synthesized proteins in an unfolded conformation suitable for translocation across membranes.
  • Bip binding protein
  • Bip binding protein is a homolog of the endoplasmic reticulum (ER) hsp70 protein.
  • Bip also known as Grp78 in mammalian cells or Kar2 in yeast
  • Bip is involved in essentially all aspects of protein synthesis and secretion (Yu, M. et al. (2000) J. Biol. Chem. 275:24984-24992), and has been shown to transiently associate with newly synthesized secretory proteins including variant surface glycoprotein (VSG).
  • Apg-1 and apg-2 belong to the hspl 10 family of heat shock proteins.
  • the mouse apg-1 gene is structurally related to the human hsp70RY gene, and is inducible by a 32 to 39°C heat shock. While apg-2 does seem to be an isoform of mouse homolog of hsp70RY, it does not appear to be heat- inducible (Nonoguchi, K. et al. (1999) Gene 237:21-28).
  • Gamma-carboxyglutamic acid (Gla) proteins rich in proline are members of a family of vitamin K-dependent single-pass integral membrane proteins. These proteins are characterized by an extracellular amino terminal domain of approximately 45 amino acids rich in Gla.
  • the intracellular carboxyl terminal region contains one or two copies of the sequence PPXY, a motif present in a variety of proteins involved in such diverse cellular functions as signal transduction, cell cycle progression, and protein turnover (Kulman, J.D. et al., (2001) Proc. Natl. Acad. Sci. U.S.A. 98: 1370-1375).
  • the process of post-translational modification of glutamic residues to form Gla is Vitamin K-dependent carboxylation.
  • Gla proteins which contain Gla include plasma proteins involved in blood coagulation. These proteins are prothrombin, proteins C, S, and Z, and coagulation factors VII, IX, and X. Osteocalcin (bone-Gla protein, BGP) and matrix Gla-protein (MGP) also contain Gla (Friedman, P.A., and C.T. Przysiecki (1987) Int. J. Biochem. 19: 1-3; C. Vermeer (1990) Biochem. J. 266:625-636).
  • the Drosophila sp. gene crossveinless 2 is characterized as having a putative signal or transmembrane sequence, and a partial Von Willebrand Factor D domain similar to those domains known to regulate the formation of intramolecular and intermolecular bonds and five cysteine-rich domains, known to bind BMP-like (bone morphogenetic proteins) ligands.
  • BMP-like (bone morphogenetic proteins) ligands BMP-like (bone morphogenetic proteins) ligands.
  • Antigen recognition molecules are key players in the sophisticated and complex immune systems which all vertebrates have developed to provide protection from viral, bacterial, fungal, and parasitic infections.
  • a key feature of the immune system is its ability to distinguish foreign molecules, or antigens, from "self molecules. This ability is mediated primarily by secreted and transmembrane proteins expressed by leukocytes (white blood cells) such as lymphocytes, granulocytes, and monocytes. Most of these proteins belong to the immunoglobulin (Ig) superfamily, members of which contain one or more repeats of a conserved structural domain. This Ig domain is comprised of antiparallel ⁇ sheets joined by a disulfide bond in an arrangement called the Ig fold.
  • Ig immunoglobulin
  • CD antigens Some of the genes encoding proteins identified by CD antigens have been cloned and verified by standard molecular biology techniques. CD antigens have been characterized as both transmembrane proteins and cell surface proteins anchored to the plasma membrane via covalent attachment to fatty acid-containing glycolipids such as glycosylphosphatidylinositol (GPI). (Reviewed in Barclay, A. N. et al. (1995) The Leucocyte Antigen Facts Book, Academic Press, San Diego, CA, pp. 17-20.)
  • GPI glycosylphosphatidylinositol
  • MHC proteins are cell surface markers that bind to and present foreign antigens to T cells. MHC molecules are classified as either class I or class II. Class I MHC molecules (MHC I) are expressed on the surface of almost all cells and are involved in the presentation of antigen to cytotoxic T cells. For example, a cell infected with virus will degrade intracellular viral proteins and express the protein fragments bound to MHC I molecules on the cell surface. The MHC I/antigen complex is recognized by cytotoxic T-cells which destroy the infected cell and the virus within. Class II MHC molecules are expressed primarily on specialized antigen-presenting cells of the immune system, such as B-cells and macrophages.
  • MHC molecules also play an important role in organ rejection following transplantation. Rejection occurs when the recipient's T-cells respond to foreign MHC molecules on the transplanted organ in the same way as to self MHC molecules bound to foreign antigen.
  • Antibodies are either expressed on the surface of B-cells or secreted by B-cells into the circulation. Antibodies bind and neutralize foreign antigens in the blood and other extracellular fluids.
  • the prototypical antibody is a tetramer consisting of two identical heavy polypeptide chains (H-chains) and two identical light polypeptide chains (L-chains) interlinked by disulfide bonds. This arrangement confers the characteristic Y-shape to antibody molecules.
  • Antibodies are classified based on their H-chain composition.
  • the five antibody classes, IgA, IgD, IgE, IgG and IgM are defined by the ⁇ , ⁇ , e, ⁇ , and ⁇ H-chain types.
  • L- chains There are two types of L- chains, K and ⁇ , either of which may associate as a pair with any H-chain pair.
  • IgG the most common class of antibody found in the circulation, is tetrameric, while the other classes of antibodies are generally variants or multimers of this basic structure.
  • H-chains and L-chains each contain an N-terminal variable region and a C-terminal constant region.
  • the constant region consists of about 110 amino acids in L-chains and about 330 or 440 amino acids in H-chains.
  • the amino acid sequence of the constant region is nearly identical among H- or L-chains of a particular class.
  • the variable region consists of about 110 amino acids in both H- and L-chains. However, the amino acid sequence of the variable region differs among H- or L-chains of a particular class.
  • Within each H- or L-chain variable region are three hypervariable regions of extensive sequence diversity, each consisting of about 5 to 10 amino acids. In the antibody molecule, the H- and L-chain hypervariable regions come together to form the antigen recognition site. (Reviewed in Alberts, supra, pp. 1206-1213 and 1216-1217.)
  • Both H-chains and L-chains contain repeated Ig domains.
  • a typical H-chain contains four Ig domains, three of which occur within the constant region and one of which occurs within the variable region and contributes to the formation of the antigen recognition site.
  • a typical L-chain contains two Ig domains, one of which occurs within the constant region and one of which occurs within the variable region.
  • the immune system is capable of recognizing and responding to any foreign molecule that enters the body. Therefore, the immune system must be armed with a full repertoire of antibodies against all potential antigens.
  • antibody diversity is generated by somatic rearrangement of gene segments encoding variable and constant regions. These gene segments are joined together by site- specific recombination which occurs between highly conserved DNA sequences that flank each gene segment. Because there are hundreds of different gene segments, millions of unique genes can be generated combinatorially. In addition, imprecise joining of these segments and an unusually high rate of somatic mutation within these segments further contribute to the generation of a diverse antibody population.
  • array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes.
  • arrays are employed to detect the expression of a specific gene or its variants.
  • arrays provide a platform for identifying genes that are tissue specific, are affected by a substance being tested in a toxicology assay, are part of a signaling cascade, carry out housekeeping functions, or are specifically related to a particular genetic predisposition, condition, disease, or disorder.
  • Bone Remodeling and Osteoporosis Bone remodeling occurs through teams of juxtaposed bone absorbing osteoclast and bone forming osteoblast and osteocyte cells.
  • Bone is a composite material composed of an organic and an inorganic phase.
  • tissue mineral or inorganic matter (mainly calcium phosphate); water comprises 5 to 8%; and, the organic or extracellular matrix makes up the remainder.
  • mineral phase Approximately 95% of the mineral phase is composed of a specific crystalline hydroxyapatite that is impregnated with impurities which make up the remaining 5% of the inorganic phase.
  • impurities which make up the remaining 5% of the inorganic phase.
  • Ninety-eight percent of the organic phase is composed of type I collagen and a variety of non-collagenous proteins; cells make up the remaining 2% of this phase (Einhom (1996) The bone organ system: form and function. In: Marcus et al. eds.. Osteoporosis. Academic Press, New York NY).
  • the process of matrix deposition by osteoblasts and osteocytes, subsequent mineralization and the coupling with bone resorbing activity of osteoclasts is governed by a complex interplay of systemic hormones, peptides and downstream signaling pathway proteins, local transcription factors, cytokines, growth factors and matrix remodeling genes.
  • Parathyroid hormone (PTH) and its signaling system are the principal regulators of bone remodeling in the adult skeleton (Masiukiewicz and Insogna (1998) Aging 10:232-239; Mierke and Pellegrini (1999) Curr Pharm Des 5:21-36). They have a vital role in the homeostasis of calcium within the blood stream and the acute in vivo effect of PTH is to increase bone resorption, although sustained increases in its circulating levels accelerate both formation and resorption.
  • the PTH signaling pathway may also be involved in the regulation of chondrogenesis during bone formation (Vortkamp et al. (1996) Science 273:613-622; Lanske et_aL (1999) J Clin Invest 104:399-407).
  • growth hormone insulin-like growth factor- 1
  • thyroid hormone calciotrophic hormones
  • calciotrophic hormones such as PTH and prostaglandin E2
  • various cytokines such as interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha
  • 1,25- dihydroxyvitamin D 1,25- dihydroxyvitamin D (calcitriol)
  • Estrogen is involved in inhibition of osteoclast activity (Jilka et ajL (1992) Science 257:88-91; Poli et al. (1994) EMBO J 13:1189-1196; Srivastava et al.
  • Estrogen may prevent bone loss by blocking the production of cytokines in bone or bone marrow (Kimble et al. (1995) Endocrinology 136:3054-3061).
  • cytokines such as interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha, influence bone remodeling (de Vernejoul (1996) Eur J Clin Chem Clin Biochem 34:729-734).
  • osteoporosis develops when bone resorption occurs too quickly or if replacement occurs too slowly.
  • Two major classes of osteoporosis are primary and secondary osteoporosis.
  • Type I osteoporosis occurs in a subset of postmenopausal women who are between 50 and 70 years of age and is associated with fractures of vertebral bodies and the forearm.
  • Type II osteoporosis occurs in women and men over the age of 70 and is associated with fractures of the femoral neck and proximal humerus and tibia. In some instances, osteoporosis is a manifestation of another disease (Fauci et al. (1998) Harrison's Principles of Internal Medicine. McGraw Hill Companies, New York NY, pp
  • ECM extracellular matrix
  • stroma consisting of fibroblasts, adipose cells, vasculature, resident immune cells, and the conventional milieu of cytokines and growth factors.
  • Epithelial parenchyma are physically separated from stroma by a basement membrane: a highly organized, special ECM, whose composition is different from stromal ECM and to which epithelial cells attach.
  • Matrigel matrix is a reconstituted basement membrane isolated from the EHS mouse sarcoma, a tumor rich in ECM proteins. Matrigel matrix is composed of laminin, collagen IV, entactin, and heparin sulfate proteoglycan. It also contains growth factors, matrix metalloproteinases, and other components.
  • the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO: 1-32.
  • the invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-32.
  • polynucleotide encodes a polypeptide selected from the group consisting of SEQ ED NO: 1-32. In another alternative, the polynucleotide is selected from the group consisting of SEQ ED NO:33-64.
  • the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32.
  • the invention provides a cell transformed with the recombinant polynucleotide.
  • the invention provides a transgenic organism comprising the recombinant polynucleotide.
  • the invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-32.
  • the method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
  • the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32.
  • the invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ED NO:33-64, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ED NO: 33-64, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
  • the method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof.
  • the probe comprises at least 60 contiguous nucleotides.
  • the method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
  • the invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-32, and a pharmaceutically acceptable excipient.
  • the composition comprises an amino acid sequence selected from the group consisting of SEQ ED NO: 1- 32.
  • the invention additionally provides a method of treating a disease or condition associated with decreased expression of functional SECP, comprising administering to a patient in need of such treatment the composition.
  • the invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32.
  • the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample.
  • the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient.
  • the invention provides a method of treating a disease or condition associated with decreased expression of functional SECP, comprising administering to a patient in need of such treatment the composition.
  • the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32.
  • the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample.
  • the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient.
  • the invention provides a method of treating a disease or condition associated with overexpression of functional SECP, comprising administering to a patient in need of such treatment the composition.
  • the invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32.
  • the method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.
  • the invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ED NO: 1-32.
  • the method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
  • the invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ ID NO:33-64, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
  • the invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO: 33-64, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO: 33-64, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv
  • the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
  • Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability scores for the matches between each polypeptide and its homolog(s) are also shown.
  • Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.
  • Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.
  • Table 5 shows the representative cDNA library for polynucleotides of the invention.
  • Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.
  • Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.
  • Table 8 shows single nucleotide polymorphisms found in polynucleotide sequences of the invention, along with allele frequencies in different human populations.
  • SECP refers to the amino acid sequences of substantially purified SECP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
  • agonist refers to a molecule which intensifies or mimics the biological activity of SECP.
  • Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of SECP either by directly interacting with SECP or by acting on components of the biological pathway in which SECP participates.
  • altered nucleic acid sequences encoding SECP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as SECP or a polypeptide with at least one functional characteristic of SECP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding SECP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding SECP.
  • the encoded protein may also be "altered,” and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent SECP.
  • Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and or the amphipathic nature of the residues, as long as the biological or immunological activity of SECP is retained.
  • negatively charged amino acids may include aspartic acid and glutamic acid
  • positively charged amino acids may include lysine and arginine.
  • Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine.
  • Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
  • amino acid and amino acid sequence refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence” is recited to refer to a sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule. "Amplification” relates to the production of additional copies of a nucleic acid sequence.
  • Antagonist refers to a molecule which inhibits or attenuates the biological activity of SECP.
  • Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of SECP either by directly interacting with SECP or by acting on components of the biological pathway in which SECP participates.
  • antibody refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab') 2 , and Fv fragments, which are capable of binding an epitopic determinant.
  • Antibodies that bind SECP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen.
  • the polypeptide or oligopeptide used to immunize an animal e.g., a mouse, a rat, or a rabbit
  • an animal e.g., a mouse, a rat, or a rabbit
  • RNA e.g., a mouse, a rat, or a rabbit
  • aptamer refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target.
  • Aptamers are derived from an in vitro evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by Exponential Enrichment), described in U.S. Patent No. 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries.
  • Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules.
  • the nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2'-F or 2'-NH 2 ), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood.
  • Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system.
  • Aptamers may be specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker. (See, e.g., Brody, E.N. and L. Gold (2000) J. Biotechnol. 74:5-13.)
  • introduction refers to an aptamer which is expressed in vivo.
  • a vaccinia vims-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl. Acad. Sci. USA 96:3606-3610).
  • spiegelmer refers to an aptamer which includes L-DNA, L-RNA, or other left- handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.
  • antisense refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence.
  • Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine.
  • Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation.
  • the designation "negative” or “minus” can refer to the antisense strand, and the designation “positive” or “plus” can refer to the sense strand of a reference DNA molecule.
  • the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
  • salts e.g., NaCl
  • detergents e.g., sodium dodecyl sulfate; SDS
  • other components e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.
  • Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and or (c) the bulk of the side chain.
  • Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group.
  • a derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule.
  • a derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
  • a “detectable label” refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.
  • Exon shuffling refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.
  • a “fragment” is a unique portion of SECP or the polynucleotide encoding SECP which is identical in sequence to but shorter in length than the parent sequence.
  • a fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue.
  • a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues.
  • a fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule.
  • a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence.
  • these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.
  • a fragment of SEQ ID NO:33-64 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO: 33-64, for example, as distinct from any other sequence in the genome from which the fragment was obtained.
  • a fragment of SEQ ED NO:33-64 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ED NO:33-64 from related polynucleotide sequences.
  • the precise length of a fragment of SEQ ED NO:33-64 and the region of SEQ ED NO:33-64 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
  • a fragment of SEQ ED NO: 1-32 is encoded by a fragment of SEQ ED NO:33-64.
  • a fragment of SEQ ID NO: 1-32 comprises a region of unique amino acid sequence that specifically identifies SEQ ED NO: 1-32.
  • a fragment of SEQ ED NO: 1-32 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ED NO: 1-32.
  • the precise length of a fragment of SEQ ED NO: 1-32 and the region of SEQ ED NO: 1-32 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
  • a “full length” polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon.
  • a “full length” polynucleotide sequence encodes a "full length” polypeptide sequence.
  • Homology refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
  • percent identity and % identity refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
  • NCBI National Center for Biotechnology Information
  • BLAST Basic Local Alignment Search Tool
  • NCBI National Center for Biotechnology Information
  • BLAST Basic Local Alignment Search Tool
  • the BLAST software suite includes various sequence analysis programs including "blastn,” that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases.
  • BLAST 2 Sequences are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences” tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example: Matrix: BLOSUM62
  • Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides.
  • Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
  • Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
  • percent identity and % identity refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm.
  • Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and.hydrophobicity at the site of substitution, thus preserving the stmcture (and therefore function) of the polypeptide. Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as inco ⁇ orated into the MEG ALIGN version 3.12e sequence alignment program (described and referenced above).
  • NCBI BLAST software suite may be used.
  • BLAST 2 Sequences Version 2.0.12 (April-21-2000) with blastp set at default parameters.
  • Such default parameters may be, for example:
  • Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues.
  • Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
  • HACs Human artificial chromosomes
  • HACs are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.
  • humanized antibody refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
  • Hybridization refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s).
  • wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T m ) for the specific sequence at a defined ionic strength and pH.
  • T m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
  • High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%.
  • blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 ⁇ g/ml.
  • a hybridization complex may be formed in solution (e.g., C 0 t or Rot analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
  • a solid support e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed.
  • insertion and “addition” refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
  • Immuno response can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
  • microarray refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.
  • element and “array element” refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.
  • modulate refers to a change in the activity of SECP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of SECP.
  • nucleic acid and nucleic acid sequence refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
  • operably linked refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence.
  • a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
  • Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
  • PNA protein nucleic acid
  • PNA refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.
  • Post-translational modification of an SECP may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of SECP.
  • Probe refers to nucleic acid sequences encoding SECP, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences.
  • Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes.
  • Primmers are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
  • PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that pu ⁇ ose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA). Oligonucleotides for use as primers are selected using software known in the art for such pu ⁇ ose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have inco ⁇ orated additional features for expanded capabilities.
  • the source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.
  • the PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments.
  • oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
  • a "recombinant nucleic acid” is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra.
  • the term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid.
  • a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
  • such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
  • a “regulatory element” refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.
  • Reporter molecules are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.
  • RNA equivalent in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
  • sample is used in its broadest sense.
  • a sample suspected of containing SECP, nucleic acids encoding SECP, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.
  • specific binding and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition.
  • the interaction is dependent upon the presence of a particular stmcture of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule.
  • a particular stmcture of the protein e.g., the antigenic determinant or epitope
  • the binding molecule e.g., the binding molecule for binding the binding molecule.
  • an antibody is specific for epitope "A”
  • the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
  • substantially purified refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.
  • Substrate refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries.
  • the substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
  • a “transcript image” or “expression profile” refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
  • Transformation describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment.
  • a "transgenic organism,” as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art.
  • the nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant vims.
  • the nucleic acid can be introduced by infection with a recombinant viral vector, such as a lentiviral vector (Lois, C. et al. (2002) Science 295:868-872).
  • the term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule.
  • the transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals.
  • the isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.
  • a polymo ⁇ hic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species.
  • Polymo ⁇ hic variants also may encompass "single nucleotide polymo ⁇ hisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
  • a "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters.
  • Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides.
  • SECP human secreted proteins
  • polynucleotides encoding SECP the polynucleotides encoding SECP, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, autoimmune/inflammatory, cardiovascular, neurological, and developmental disorders.
  • Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ED). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ED) as shown.
  • Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ED NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ED) as shown.
  • Column 6 shows the Encyte ED numbers of physical, full length clones corresponding to the polypeptide and polynucleotide sequences of the invention. The full length clones encode polypeptides which have at least 95% sequence identity to the polypeptide sequences shown in column 3.
  • Table 2 shows sequences with homology to the polypeptides of the invention as identified by BLAST analysis against the GenBank protein (genpept) database.
  • Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ED) for polypeptides of the invention.
  • Column 3 shows the GenBank identification number (GenBank ED NO:) of the nearest GenBank homolog.
  • Column 4 shows the probability scores for the matches between each polypeptide and its homolog(s).
  • Column 5 shows the annotation of the GenBank homolog(s).
  • Table 3 shows various structural features of the polypeptides of the invention.
  • Tables 2 and 3 summarize the properties of polypeptides of the invention, and these properties establish that the claimed polypeptides are secreted proteins.
  • SEQ ID NO: 10 also contains leishmanolysin metalloprotease domains as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, and additional BLAST analyses against the PRODOM and DOMO databases provide further corroborative evidence that SEQ ED NO: 10 is a metalloprotease.
  • HMM hidden Markov model
  • SEQ ED NO: 12 is 98% identical, from residue Ml to residue P419, to human pregnancy-specific beta 1 -glycoprotein 7 precursor (GenBank ED g609314) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 6.0e-229, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
  • BLAST Basic Local Alignment Search Tool
  • SEQ ED NO:24 contains an immunoglobulin domain, a fibronectin type HI domain, and leucine rich repeat domains as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 2.) Note that "immunoglobulin domains" and “fibronectin domains” are distinguishing motifs which are characteristic of matrix proteins, one type of secreted protein.
  • SEQ ED NO:25 is 97% identical, from residue Ml to residue D841, to human apg-2 protein (GenBank ED g4579909) as determined by the Basic Local Alignment Search Tool (BLAST).
  • BLAST Basic Local Alignment Search Tool
  • the BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
  • SEQ ED NO:25 also contains an Hsp70 protein domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains.
  • HMM hidden Markov model
  • Data from BLIMPS, BLAST, and MOTEFS analyses provide further corroborative evidence that SEQ ED NO:25 is a secreted protein molecule.
  • SEQ ED NO:2-9, SEQ ED NO: 11, SEQ ED NO: 13- 23, and SEQ ED N026-32 were analyzed and annotated in a similar manner.
  • the algorithms and parameters for the analysis of SEQ ID NO: 1-32 are described in Table 7.
  • the polynucleotide fragments described in Column 2 of Table 4 may refer specifically, for example, to Incyte cDNAs derived from tissue-specific cDNA libraries or from pooled cDNA libraries.
  • the polynucleotide fragments described in column 2 may refer to GenBank cDNAs or ESTs which contributed to the assembly of the full length polynucleotide sequences.
  • the polynucleotide fragments described in column 2 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (i.e., those sequences including the designation "ENST").
  • the polynucleotide fragments described in column 2 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (i.e., those sequences including the designation "NM” or “NT”) or the NCBI RefSeq Protein Sequence Records (i.e., those sequences including the designation "NP”).
  • the polynucleotide fragments described in column 2 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. For example, a polynucleotide sequence identified as
  • FL_XXXXXXX_N 1 _N 2 _YYYY_N 3 _N 4 represents a "stitched" sequence in which XXXXX is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYY is the number of the prediction generated by the algorithm, and N 1 2,3. . . , if present, represent specific exons that may have been manually edited during analysis (See Example V).
  • the polynucleotide fragments in column 2 may refer to assemblages of exons brought together by an "exon-stretching" algorithm.
  • a polynucleotide sequence identified as FLXXXXX_gAAAAA_gBBBBB_l_N is a "stretched" sequence, with XXXXX being the Incyte project identification number, gA ⁇ AAA being the GenBank identification number of the human genomic sequence to which the "exon-stretching" algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V).
  • a RefSeq identifier (denoted by "NM,” “NP,” or “NT”) may be used in place of the GenBank identifier (i.e., gBBBBB).
  • GenBank identifier i.e., gBBBBB
  • a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods. The following Table lists examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes (see Example IV and Example V).
  • Table 5 shows the representative cDNA libraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences.
  • the representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences.
  • the tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.
  • Table 8 shows single nucleotide polymo ⁇ hisms (SNPs) found in polynucleotide sequences of the invention, along with allele frequencies in different human populations.
  • Columns 1 and 2 show the polynucleotide sequence identification number (SEQ ID NO:) and the corresponding Incyte " project identification number (PED) for polynucleotides of the invention.
  • Column 3 shows the Incyte identification number for the EST in which the SNP was detected (EST ID), and column 4 shows the identification number for the SNP (SNP ID).
  • Column 5 shows the position within the EST sequence at which the SNP is located (EST SNP), and column 6 shows the position of the SNP within the full- length polynucleotide sequence (CB1 SNP).
  • a preferred SECP variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the SECP amino acid sequence, and which contains at least one functional or structural characteristic of SECP.
  • the invention also encompasses polynucleotides which encode SECP.
  • the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ED NO: 33-64, which encodes SECP.
  • the polynucleotide sequences of SEQ YD NO:33-64, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
  • the invention also encompasses a variant of a polynucleotide sequence encoding SECP.
  • such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding SECP.
  • a particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ED NO:33-64 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO: 33-64. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of SECP.
  • a polynucleotide variant of the invention is a splice variant of a polynucleotide sequence encoding SECP.
  • a splice variant may have portions which have significant sequence identity to the polynucleotide sequence encoding SECP, but will generally have a greater or lesser number of polynucleotides due to additions or deletions of blocks of sequence arising from alternate splicing of exons during mRNA processing.
  • a splice variant may have less than about 70%, or alternatively less than about 60%, or alternatively less than about 50% polynucleotide sequence identity to the polynucleotide sequence encoding SECP over its entire length; however, portions of the splice variant will have at least about 70%, or alternatively at least about 85%, or alternatively at least about 95%, or alternatively 100% polynucleotide sequence identity to portions of the polynucleotide sequence encoding SECP.
  • a polynucleotide comprising a sequence of SEQ ED NO:63 is a splice variant of a polynucleotide comprising a sequence of SEQ ID NO:48
  • a polynucleotide comprising a sequence of SEQ ED NO:64 is a splice variant of a polynucleotide comprising a sequence of SEQ ID NO:53
  • a polynucleotide comprising a sequence of SEQ ID NO:62 is a splice variant of a polynucleotide comprising a sequence of SEQ DD NO:58.
  • any one of the splice variants described above can encode an amino acid sequence which contains at least one functional or stmctural characteristic of SECP. It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding SECP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring SECP, and all such variations are to be considered as being specifically disclosed.
  • nucleotide sequences which encode SECP and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring SECP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding SECP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host.
  • RNA transcripts having more desirable properties such as a greater half-life, than transcripts produced from the naturally occurring sequence.
  • the invention also encompasses production of DNA sequences which encode SECP and SECP derivatives, or fragments thereof, entirely by synthetic chemistry.
  • the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art.
  • synthetic chemistry may be used to introduce mutations into a sequence encoding SECP or any fragment thereof.
  • polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:33-64 and fragments thereof under various conditions of stringency.
  • Hybridization conditions including annealing and wash conditions, are described in "Definitions.”
  • Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention.
  • the methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Biosciences, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Invitrogen, Carlsbad CA).
  • sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Amersham Biosciences), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology. John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology. Wiley VCH, New York NY, pp. 856-853.)
  • the nucleic acid sequences encoding SECP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
  • restriction-site PCR uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector.
  • inverse PCR uses primers that extend in divergent directions to amplify unknown sequence from a circularized template.
  • the template is derived from restriction fragments comprising a known genomic locus and surrounding sequences.
  • a third method, capture PCR involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA.
  • capture PCR involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA.
  • multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR.
  • Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al.
  • primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.
  • Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
  • Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products.
  • capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide- specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths.
  • Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled.
  • Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
  • polynucleotide sequences or fragments thereof which encode SECP may be cloned in recombinant DNA molecules that direct expression of SECP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express SECP.
  • nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter SECP-encoding sequences for a variety of pu ⁇ oses including, but not limited to, modification of the cloning, processing, and/or expression of the gene product.
  • DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences.
  • oligonucleotide- mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
  • the nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of SECP, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds.
  • MOLECULARBREEDING Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C et al
  • DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening.
  • genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
  • sequences encoding SECP may be synthesized, in whole or in part, using chemical methods well known in the art.
  • chemical methods See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.
  • SECP itself or a fragment thereof may be synthesized using chemical methods.
  • peptide synthesis can be performed using various solution-phase or solid-phase techniques.
  • the peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.)
  • the composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)
  • the nucleotide sequences encoding SECP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host.
  • these elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding SECP. Such elements may vary in their strength and specificity.
  • Specific initiation signals may also be used to achieve more efficient translation of sequences encoding SECP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence.
  • a variety of expression vector/host systems may be utilized to contain and express sequences encoding SECP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors
  • yeast transformed with yeast expression vectors insect cell systems infected with viral expression vectors (e.g., baculovirus)
  • plant cell systems transformed with viral expression vectors e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic
  • Expression vectors derived from refrovimses, adenovimses, or he ⁇ es or vaccinia viruses, or from various bacterial plasmids may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population.
  • the invention is not limited by the host cell employed.
  • cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding SECP.
  • routine cloning, subcloning, and propagation of polynucleotide sequences encoding SECP can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Invitrogen). Ligation of sequences encoding SECP into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules.
  • these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence.
  • vectors which direct high level expression of SECP may be used.
  • vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.
  • Yeast expression systems may be used for production of SECP.
  • a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris.
  • promoters such as alpha factor, alcohol oxidase, and PGH promoters
  • yeast Saccharomyces cerevisiae or Pichia pastoris may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris.
  • such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation.
  • Plant systems may also be used for expression of SECP. Transcription of sequences encoding SECP may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6: 307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Comzzi, G. et al. (1984) EMBO J. 3: 1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J.
  • viral promoters e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6: 307-311).
  • plant promoters such as the small subunit of RUBISCO or
  • a number of viral-based expression systems may be utilized.
  • sequences encoding SECP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome may be used to obtain infective vims which expresses SECP in host cells.
  • transcription enhancers such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.
  • SV40 or EBV- based vectors may also be used for high-level protein expression.
  • HACs Human artificial chromosomes
  • HACs may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid.
  • HACs of about 6 kb to 10 Mb are constmcted and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic pu ⁇ oses.
  • liposomes, polycationic amino polymers, or vesicles for therapeutic pu ⁇ oses.
  • sequences encoding SECP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media.
  • the pu ⁇ ose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences.
  • Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
  • Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the he ⁇ es simplex virus thymidine kinase and adenine phosphoribosylfransferase genes, for use in tk ⁇ and apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection.
  • dhfr confers resistance to methotrexate
  • neo confers resistance to the aminoglycosides neomycin and G-418
  • als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively.
  • Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites.
  • Visible markers e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), ⁇ glucuronidase and its substrate ⁇ -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, CA. (1995) Methods Mol. Biol. 55:121-131.)
  • marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed.
  • sequence encoding SECP is inserted within a marker gene sequence
  • transformed cells containing • sequences encoding SECP can be identified by the absence of marker gene function.
  • a marker gene can be placed in tandem with a sequence encoding SECP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
  • host cells that contain the nucleic acid sequence encoding SECP and that express SECP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.
  • Immunological methods for detecting and measuring the expression of SECP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS).
  • ELISAs enzyme-linked immunosorbent assays
  • RIAs radioimmunoassays
  • FACS fluorescence activated cell sorting
  • Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding SECP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
  • sequences encoding SECP, or any fragments thereof may be cloned into a vector for the production of an mRNA probe.
  • RNA polymerase such as T7, T3, or SP6 and labeled nucleotides.
  • T7, T3, or SP6 RNA polymerase
  • reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
  • Host cells transformed with nucleotide sequences encoding SECP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture.
  • the protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used.
  • expression vectors containing polynucleotides which encode SECP may be designed to contain signal sequences which direct secretion of SECP through a prokaryotic or eukaryotic cell membrane.
  • CHO, HeLa, MDCK, HEK293, and WI38 Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities
  • ATCC American Type Culture Collection
  • SECP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems.
  • a chimeric SECP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of SECP activity.
  • Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices.
  • Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA).
  • GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively.
  • FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags.
  • a fusion protein may also be engineered to contain a proteolytic cleavage site located between the SECP encoding sequence and the heterologous protein sequence, so that SECP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.
  • SECP of the present invention or fragments thereof may be used to screen for compounds that specifically bind to SECP.
  • At least one and up to a plurality of test compounds may be screened for specific binding to SECP.
  • test compounds include antibodies, oligonucleotides, proteins (e.g., ligands or receptors), or small molecules.
  • the compound thus identified is closely related to the natural ligand of SECP, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J.E. et al.
  • the compound thus identified is a natural ligand of a receptor SECP.
  • a receptor SECP See, e.g., Howard, A.D. et al. (2001) Trends Pharmacol. Sci.22:132-140; Wise, A. et al. (2002) Dmg Discovery Today 7:235-246.
  • the compound can be closely related to the natural receptor to which SECP binds, at least a fragment of the receptor, or a fragment of the receptor including all or a portion of the ligand binding site or binding pocket.
  • the compound may be a receptor for SECP which is capable of propagating a signal, or a decoy receptor for SECP which is not capable of propagating a signal (Ashkenazi, A. and V.M. Divit (1999) Curr. Opin. Cell Biol. 11:255-260; Mantovani, A. et al. (2001) Trends Immunol. 22:328-336).
  • the compound can be rationally designed using known techniques.
  • screening for compounds which specifically bind to, stimulate, or inhibit SECP involves producing appropriate cells which express SECP, either as a secreted protein or on the cell membrane.
  • Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing SECP or cell membrane fractions which contain SECP are then contacted with a test compound and binding, stimulation, or inhibition of activity of either SECP or the compound is analyzed.
  • the ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244: 1288-1292).
  • a marker gene e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244: 1288-1292).
  • the vector integrates into the corresponding region of the host genome by homologous recombination.
  • homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97: 1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330).
  • Transformed ES cells are identified and microi ⁇ jected into mouse cell blastocysts such as those from the C57BL/6 mouse strain.
  • the blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains.
  • Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.
  • Polynucleotides encoding SECP can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease.
  • knockin technology a region of a polynucleotide encoding SECP is injected into animal ES cells, and the injected sequence integrates into the animal cell genome.
  • Transformed cells are injected into blastulae, and the blastulae are implanted as described above.
  • Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease.
  • a mammal inbred to overexpress SECP e.g., by secreting SECP in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74). THERAPEUTICS
  • SECP vascular endothelial growth factor
  • expression of SECP is closely associated with: adrenal, brain, fetal thymus, breast, thyroid, ovary, breast tumor, dorsal root ganglion, heart, nasal polyp, pancreas, ileum, and pineal gland tissues, neurological, reproductive, and fetal tissues, and with tissues associated with Alzheimer' s disease.
  • tissues expressing SECP can be found in Table 6. Therefore, SECP appears to play a role in cell proliferative, autoimmune/inflammatory, cardiovascular, neurological, and developmental disorders. In the treatment of disorders associated with increased SECP expression or activity, it is desirable to decrease the expression or activity of SECP.
  • SECP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of SECP.
  • disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, a cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus
  • a vector capable of expressing SECP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of SECP including, but not limited to, those described above.
  • composition comprising a substantially purified SECP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of SECP including, but not limited to, those provided above.
  • an agonist which modulates the activity of SECP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of SECP including, but not limited to, those listed above.
  • an antagonist of SECP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of SECP.
  • disorders include, but are not limited to, those cell proliferative, autoimmune/inflammatory, cardiovascular, neurological, and developmental disorders described above.
  • an antibody which specifically binds SECP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express SECP.
  • a vector expressing the complement of the polynucleotide encoding SECP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of SECP including, but not limited to, those described above.
  • any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
  • the combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
  • An antagonist of SECP may be produced using methods which are generally known in the art.
  • purified SECP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind SECP.
  • Antibodies to SECP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.
  • Single chain antibodies may be potent enzyme inhibitors and may have advantages in the design of peptide mimetics, and in the development of immuno-adsorbents and biosensors (Muyldermans, S. (2001) J. Biotechnol. 74:277-302).
  • various hosts including goats, rabbits, rats, mice, camels, dromedaries, llamas, humans, and others may be immunized by injection with SECP or with any fragment or oligopeptide thereof which has immunogenic properties.
  • various adjuvants may be used to increase immunological response.
  • adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol.
  • BCG Bacilli Calmette-Guerin
  • Corvnebacterium parvum are especially preferable.
  • the oligopeptides, peptides, or fragments used to induce antibodies to SECP have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of SECP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced. Monoclonal antibodies to SECP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture.
  • hybridoma technique examples include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique.
  • chimeric antibodies such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity.
  • techniques developed for the production of single chain antibodies may be adapted, using methods known in the art, to produce SECP-specif ⁇ c single chain antibodies.
  • Antibodies with related specificity, but of distinct idiotypic composition may be generated by chain shuffling from random combinatorial immunoglobulin libraries.
  • Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature.
  • Antibody fragments which contain specific binding sites for SECP may also be generated.
  • fragments include, but are not limited to, F(ab ⁇ ) 2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab12 fragments.
  • Fab expression libraries may be constmcted to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)
  • Various immunoassays may be used for screening to identify antibodies having the desired specificity.
  • K a is defined as the molar concentration of SECP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions.
  • K a association constant
  • the K a determined for a preparation of monoclonal antibodies, which are monospecific for a particular SECP epitope represents a tme measure of affinity.
  • High-affinity antibody preparations with K a ranging from about 10 9 to 10 12 L/mole are preferred for use in immunoassays in which the SECP-antibody complex must withstand rigorous manipulations.
  • Low-affinity antibody preparations with K a ranging from about 10 6 to 10 7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of SECP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies. Volume I: A Practical Approach. IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies. John Wiley & Sons, New York NY).
  • polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications.
  • a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml is generally employed in procedures requiring precipitation of SECP-antibody complexes.
  • Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)
  • the polynucleotides encoding SECP may be used for therapeutic pu ⁇ oses.
  • modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding SECP.
  • complementary sequences or antisense molecules DNA, RNA, PNA, or modified oligonucleotides
  • antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding SECP. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics.
  • Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein.
  • Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovims and adeno-associated virus vectors.
  • viral vectors such as retrovims and adeno-associated virus vectors.
  • retrovims See, e.g., Miller, A.D. (1990) Blood 76:271; Ausubel, supra; Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63(3):323-347.
  • Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art.
  • polynucleotides encoding SECP may be used for somatic or germline gene therapy.
  • Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCED)-Xl disease characterized by X- linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al.
  • SCED severe combined immunodeficiency
  • ADA adenosine deaminase
  • hepatitis B or C vims (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi).
  • HBV hepatitis B or C vims
  • fungal parasites such as Candida albicans and Paracoccidioides brasiliensis
  • protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi.
  • diseases or disorders caused by deficiencies in SECP are treated by constmcting mammalian expression vectors encoding SECP and introducing these vectors by mechanical means into SECP-deficient cells.
  • Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivies, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Recipon (1998) Curr.
  • Expression vectors that may be effective for the expression of SECP include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA).
  • SECP may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 vims, thymidine kinase (TK), or ⁇ -actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268: 1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol.
  • a constitutively active promoter e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 vims, thymidine kinase (TK), or ⁇ -
  • diseases or disorders caused by genetic defects with respect to SECP expression are treated by constmcting a retrovims vector consisting of (i) the polynucleotide encoding SECP under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus -acting RNA sequences and coding sequences required for efficient vector propagation.
  • Retrovims vectors e.g., PFB and PFBNEO
  • Retrovims vectors are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci.
  • the vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61: 1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al.
  • VSVg vector producing cell line
  • U.S. Patent No. 5,910,434 to Rigg discloses a method for obtaining retrovims packaging cell lines and is hereby inco ⁇ orated by reference. Propagation of retrovims vectors, transduction of a population of cells (e.g., CD4 + T- cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020- 7029; Bauer, G. et al.
  • an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding SECP to cells which have one or more genetic abnormalities with respect to the expression of SECP.
  • the construction and packaging of adenovims-based vectors are well known to those with ordinary skill in the art. Replication defective adenovims vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent No.
  • Addenovirus vectors for gene therapy hereby inco ⁇ orated by reference.
  • adenoviral vectors see also Antinozzi, P.A. et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, I.M. and N. Somia (1997) Nature 18:389:239-242, both inco ⁇ orated by reference herein.
  • a he ⁇ es-based, gene therapy delivery system is used to deliver polynucleotides encoding SECP to target cells which have one or more genetic abnormalities with respect to the expression of SECP.
  • HSV he ⁇ es simplex vims
  • the use of he ⁇ es simplex vims (HSV)-based vectors may be especially valuable for introducing SECP to cells of the central nervous system, for which HSV has a tropism.
  • the construction and packaging of he ⁇ es-based vectors are well known to those with ordinary skill in the art.
  • a replication-competent he ⁇ es simplex vims (HSV) type 1 -based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res.
  • HSV vectors see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al. (1994) Dev. Biol. 163:152-161, hereby inco ⁇ orated by reference.
  • the manipulation of cloned he ⁇ esvims sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large he ⁇ esvims genomes, the growth and propagation of he ⁇ esvims, and the infection of cells with he ⁇ esvims are techniques well known to those of ordinary skill in the art.
  • an alphavims (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding SECP to target cells.
  • SFV Semliki Forest Vims
  • alphavims infection is typically associated with cell lysis within a few days
  • the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis vims (SEN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83).
  • the wide host range of alphavimses will allow the introduction of SECP into a variety of cell types.
  • the specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction.
  • the methods of manipulating infectious cDNA clones of alphaviruses, performing alphavims cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.
  • Oligonucleotides derived from the transcription initiation site may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches. Futura Publishing, Mt. Kisco NY, pp. 163- 177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
  • Ribozymes enzymatic RNA molecules
  • Ribozymes may also be used to catalyze the specific cleavage of RNA.
  • the mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
  • engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding SECP.
  • RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary stmctural features which may render the oligonucleotide inoperable.
  • the suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
  • RNA molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis.
  • RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding SECP. Such DNA sequences may be inco ⁇ orated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6.
  • these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.
  • RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule.
  • An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding SECP.
  • Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression.
  • a compound which specifically inhibits expression of the polynucleotide encoding SECP may be therapeutically useful, and in the treatment of disorders associated with decreased SECP expression or activity, a compound which specifically promotes expression of the polynucleotide encoding SECP may be therapeutically useful.
  • test compounds may be screened for effectiveness in altering expression of a specific polynucleotide.
  • a test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or stmctural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly.
  • a sample comprising a polynucleotide encoding SECP is exposed to at least one test compound thus obtained.
  • the sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system.
  • Alterations in the expression of a polynucleotide encoding SECP are assayed by any method commonly known in the art.
  • the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding SECP.
  • the amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds.
  • a screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Amdt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun.
  • a particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bmice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bmice, T.W. et al. (2000) U.S.
  • oligonucleotides such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides
  • vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient.
  • Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat.
  • any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
  • An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient.
  • Excipients may include, for example, sugars, starches, celluloses, gums, and proteins.
  • Various formulations are commonly known and are thoroughly discussed in the latest edition of
  • compositions may consist of SECP, antibodies to SECP, and mimetics, agonists, antagonists, or inhibitors of SECP.
  • the compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, infranasal, enteral, topical, sublingual, or rectal means.
  • compositions are generally aerosolized immediately prior to inhalation by the patient.
  • small molecules e.g. traditional low molecular weight organic dmgs
  • aerosol delivery of fast-acting formulations is well-known in the art.
  • macromolecules e.g. larger peptides and proteins
  • recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton,
  • compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended pu ⁇ ose. The determination of an effective dose is well within the capability of those skilled in the art.
  • compositions may be prepared for direct intracellular delivery of macromolecules comprising SECP or fragments thereof.
  • liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule.
  • SECP or a fragment thereof may be joined to a short cationic N- terminal portion from the HEV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285: 1569-1572).
  • the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
  • a therapeutically effective dose refers to that amount of active ingredient, for example SECP or fragments thereof, antibodies of SECP, and agonists, antagonists or inhibitors of SECP, which ameliorates the symptoms or condition.
  • Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED 50 (the dose therapeutically effective in 50% of the population) or LD 50 (the dose lethal to 50% of the population) statistics.
  • the dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD 50 /ED 50 ratio.
  • Compositions which exhibit large therapeutic indices are preferred.
  • the data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use.
  • the dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED 50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.
  • antibodies which specifically bind SECP may be used for the diagnosis of disorders characterized by expression of SECP, or in assays to monitor patients being treated with SECP or agonists, antagonists, or inhibitors of SECP.
  • Antibodies useful for diagnostic pu ⁇ oses may be prepared in the same manner as described above for therapeutics. Diagnostic assays for SECP include methods which utilize the antibody and a label to detect SECP in human body fluids or in extracts of cells or tissues.
  • the antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule.
  • a wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
  • the polynucleotides encoding SECP may be used for diagnostic pu ⁇ oses.
  • the polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs.
  • the polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of SECP may be correlated with disease.
  • the diagnostic assay may be used to determine absence, presence, and excess expression of SECP, and to monitor regulation of SECP levels during therapeutic intervention.
  • Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the SECP encoding sequences.
  • the hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:33-64 or from genomic sequences including promoters, enhancers, and introns of the SECP gene.
  • Means for producing specific hybridization probes for DNAs encoding SECP include the cloning of polynucleotide sequences encoding SECP or SECP derivatives into vectors for the production of mRNA probes.
  • Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32 P or 35 S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
  • Polynucleotide sequences encoding SECP may be used for the diagnosis of disorders associated with expression of SECP.
  • disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, a cancer of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas
  • polynucleotide sequences encoding SECP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELlSA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered SECP expression. Such qualitative or quantitative methods are well known in the art.
  • the nucleotide sequences encoding SECP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above.
  • the nucleotide sequences encoding SECP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding SECP in the sample indicates the presence of the associated disorder.
  • Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
  • hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject.
  • the results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
  • the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms.
  • a more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
  • oligonucleotides designed from the sequences encoding SECP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding SECP, or a fragment of a polynucleotide complementary to the polynucleotide encoding SECP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
  • oligonucleotide primers derived from the polynucleotide sequences encoding SECP may be used to detect single nucleotide polymo ⁇ hisms (SNPs).
  • SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans.
  • Methods of SNP detection include, but are not limited to, single-stranded conformation polymo ⁇ hism (SSCP) and fluorescent SSCP (fSSCP) methods.
  • SSCP single-stranded conformation polymo ⁇ hism
  • fSSCP fluorescent SSCP
  • oligonucleotide primers derived from the polynucleotide sequences encoding SECP are used to amplify DNA using the polymerase chain reaction (PCR).
  • SNPs may be detected and characterized by mass specfrometry using, for example, the high throughput MASS ARRAY system (Sequenom, Inc., San Diego CA). SNPs may be used to study the genetic basis of human disease. For example, at least 16 common SNPs have been associated with non-insulin-dependent diabetes mellitus. SNPs are also useful for examining differences in disease outcomes in monogenic disorders, such as cystic fibrosis, sickle cell anemia, or chronic granulomatous disease.
  • variants in the rriannose-binding lectin, MBL2 have been shown to be correlated with deleterious pulmonary outcomes in cystic fibrosis.
  • SNPs also have utility in pharmacogenomics, the identification of genetic variants that influence a patient's response to a dmg, such as life-threatening toxicity.
  • a variation in N-acetyl transferase is associated with a high incidence of peripheral neuropathy in response to the anti-tuberculosis dmg isoniazid, while a variation in the core promoter of the ALOX5 gene results in diminished clinical response to treatment with an anti-asthma dmg that targets the 5-lipoxygenase pathway.
  • Methods which may also be used to quantify the expression of SECP include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and inte ⁇ olating results from standard curves.
  • radiolabeling or biotinylating nucleotides include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and inte ⁇ olating results from standard curves.
  • the speed of quantitation of multiple samples may be accelerated by mnning the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
  • oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray.
  • the microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below.
  • the microarray may also be used to identify genetic variants, mutations, and polymo ⁇ hisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease.
  • this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient.
  • therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.
  • SECP, fragments of SECP, or antibodies specific for SECP may be used as elements on a microarray.
  • the microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.
  • a particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type.
  • a transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484, expressly inco ⁇ orated by reference herein.)
  • a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type.
  • the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray.
  • the resultant transcript image would provide a profile of gene activity.
  • Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples.
  • the transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.
  • Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular finge ⁇ rints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24: 153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly inco ⁇ orated by reference herein).
  • a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties.
  • These finge ⁇ rints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in inte ⁇ retation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity.
  • the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound.
  • Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified.
  • the transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.
  • proteome refers to the global pattern of protein expression in a particular tissue or cell type.
  • proteome expression patterns, or profiles are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time.
  • a profile of a cell' s proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type.
  • the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra).
  • the proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains.
  • the optical density of each protein spot is generally proportional to the level of the protein in the sample.
  • the optical densities of equivalently positioned protein spots from different samples for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment.
  • the proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass specfrometry.
  • the identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.
  • a proteomic profile may also be generated using antibodies specific for SECP to quantify the levels of SECP expression.
  • the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) Anal. Biochem.
  • Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level.
  • There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile.
  • the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.
  • the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.
  • the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
  • Microarrays may be prepared, used, and analyzed using methods known in the art.
  • methods known in the art See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93: 10614-10619; Baldeschweiler et al. (1995) PCT application W095/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150- 2155; and Heller, MJ. et al.
  • nucleic acid sequences encoding SECP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping.
  • sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constmctions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constmctions, or single chromosome cDNA libraries.
  • HACs human artificial chromosomes
  • YACs yeast artificial chromosomes
  • BACs bacterial artificial chromosomes
  • PI constmctions or single chromosome cDNA libraries.
  • the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymo ⁇ hism (RFLP).
  • RFLP restriction fragment length polymo ⁇ hism
  • FISH Fluorescent in situ hybridization
  • Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding SECP on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.
  • OMIM Online Mendelian Inheritance in Man
  • In situ hybridization of chromosomal preparations and physical mapping techniques may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 1 lq22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation.
  • nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
  • SECP in another embodiment, SECP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of dmg screening techniques.
  • the fragment employed in such screening may be free in solution, affixed to a solid support, bome on a cell surface, or located intracellularly. The formation of binding complexes between SECP and the agent being tested may be measured.
  • Another technique for dmg screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest.
  • This method large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with SECP, or fragments thereof, and washed. Bound SECP is then detected by methods well known in the art. Purified SECP can also be coated directly onto plates for use in the aforementioned dmg screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
  • nucleotide sequences which encode SECP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
  • Incyte cDNAs were derived from cDNA libraries described in the LEFESEQ GOLD database (Incyte Genomics, Palo Alto CA). Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Invitrogen), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
  • TRIZOL Invitrogen
  • poly(A)+ RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN).
  • cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Invitrogen), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte Genomics, Palo Alto CA), pRARE (Incyte Genomics), or pENCY (Incyte Genomics), or derivatives thereof.
  • PBLUESCRIPT plasmid (Stratagene)
  • PSPORT1 plasmid Invitrogen
  • PCDNA2.1 plasmid Invitrogen, Carlsbad CA
  • PBK-CMV plasmid PCR2-TOPOTA plasmid
  • coli cells including XLl-Blue, XLl-BlueMRF, or SOLR from Stratagene or DH5 ⁇ , DH10B, or ElectroMAX DH10B from Invitrogen.
  • Isolation of cDNA Clones Plasmids obtained as described in Example I were recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis.
  • Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C
  • plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN H fluorescence scanner (Labsystems Oy, Helsinki, Finland). III. Sequencing and Analysis Encyte cDNA recovered in plasmids as described in Example H were sequenced as follows.
  • Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system.
  • cDNA sequencing reactions were prepared using reagents provided by Amersham Biosciences or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).
  • Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Amersham Biosciences); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VHE.
  • the polynucleotide sequences derived from Incyte cDNAs were validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis.
  • the Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM; PROTEOME databases with sequences from Homo sapiens. Rattus norvegicus, Mus musculus.
  • HMM hidden Markov model
  • Full length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, the PROTEOME databases, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, hidden Markov model (HMM)-based protein family databases such as PFAM, ENCY, and TIGRFAM; and HMM-based protein domain databases such as SMART.
  • GenBank protein databases Genpept
  • PROTEOME databases
  • BLOCKS BLOCKS
  • PRINTS DOMO
  • PRODOM hidden Markov model
  • Prosite Prosite
  • HMM-based protein family databases such as PFAM, ENCY, and TIGRFAM
  • HMM-based protein domain databases such as SMART.
  • Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR).
  • Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as inco ⁇ orated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.
  • Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of
  • Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters.
  • the first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are inco ⁇ orated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).
  • Genscan is a general- pu ⁇ ose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin (1998) Curr. Opin. Stmct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon.
  • Genscan is a FASTA database of polynucleotide and polypeptide sequences.
  • the maximum range of sequence for Genscan to analyze at once was set to 30 kb.
  • the encoded polypeptides were analyzed by querying against PFAM models for secreted proteins. Potential secreted proteins were also identified by homology to Incyte cDNA sequences that had been annotated as secreted proteins. These selected Genscan- predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases.
  • Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons.
  • BLAST analysis was also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to correct or confirm the Genscan predicted sequence.
  • Full length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example EH. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.
  • Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example EH were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity.
  • Partial DNA sequences were extended to full length with an algorithm based on BLAST analysis.
  • GenBank primate a GenBank primate
  • rodent a rodent
  • mammalian a mammalian
  • vertebrate eukaryote databases
  • eukaryote databases using the BLAST program.
  • GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example EV.
  • a chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog.
  • HSPs high-scoring
  • sequences which were used to assemble SEQ ED NO: 33-64 were compared with sequences from the Encyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ED NO:33-64 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.
  • SHGC Stanford Human Genome Center
  • WIGR Whitehead Institute for Genome Research
  • Map locations are represented by ranges, or intervals, of human chromosomes.
  • the map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p- arm.
  • centiMorgan cM
  • centiMorgan is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.
  • the cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.
  • Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound.
  • a membrane on which RNAs from a particular cell type or tissue have been bound See, e.g., Sambrook, supra, ch. 7; Ausubel (1995) supra, ch. 4 and 16.
  • Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations.
  • the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar.
  • the basis of the search is the product score, which is defined as:
  • the product score takes into account both the degree of similarity between two sequences and the length of the sequence match.
  • the product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences).
  • the BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score.
  • the product score represents a balance between fractional overlap and quality in a BLAST alignment.
  • a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared.
  • a product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other.
  • a product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.
  • polynucleotide sequences encoding SECP are analyzed with respect to the tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example HI). Each cDNA sequence is derived from a cDNA library constructed from a human tissue.
  • Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract.
  • the number of libraries in each category is counted and divided by the total number of libraries across all categories.
  • each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding SECP.
  • cDNA sequences and cDNA library/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA). VIII. Extension of SECP Encoding Polynucleotides
  • Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment.
  • One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment.
  • the initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72°C Any stretch of nucleotides which would result in hai ⁇ in structures and primer-primer dimerizations was avoided.
  • Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
  • the concentration of DNA in each well was determined by dispensing 100 ⁇ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in IX TE and 0.5 ⁇ l of undiluted PCR product into each well of an opaque fluorimeter plate (Coming Costar, Acton MA), allowing the DNA to bind to the reagent.
  • the plate was scanned in a Fluoroskan H (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA.
  • a 5 ⁇ l to 10 ⁇ l aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.
  • the cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Biosciences) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above.
  • SNPs single nucleotide polymo ⁇ hisms
  • LEFESEQ database Incyte Genomics
  • Sequences from the same gene were clustered together and assembled as described in Example III, allowing the identification of all sequence variants in the gene.
  • An algorithm consisting of a series of filters was used to distinguish SNPs from other sequence variants. Preliminary filters removed the majority of basecall errors by requiring a minimum Phred quality score of 15, and removed sequence alignment errors and errors resulting from improper trimming of vector sequences, chimeras, and splice variants.
  • Certain SNPs were selected for further characterization by mass specfrometry using the high throughput MASSARRAY system (Sequenom, Inc.) to analyze allele frequencies at the SNP sites in four different human populations.
  • the Caucasian population comprised 92 individuals (46 male, 46 female), including 83 from Utah, four French, three deciualan, and two Amish individuals.
  • the African population comprised 194 individuals (97 male, 97 female), all African Americans.
  • the Hispanic population comprised 324 individuals (162 male, 162 female), all Mexican Hispanic.
  • the Asian population comprised 126 individuals (64 male, 62 female) with a reported parental breakdown of 43% Chinese, 31% Japanese, 13% Korean, 5% Vietnamese, and 8% other Asian. Allele frequencies were first analyzed in the Caucasian population; in some cases those SNPs which showed no allelic variance in this population were not further tested in the other three populations.
  • Hybridization probes derived from SEQ ID NO:33-64 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 ⁇ Ci of [ ⁇ - 32 P] adenosine triphosphate (Amersham Biosciences), and T4 polynucleotide kinase (DuPont NEN, Boston MA).
  • state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 ⁇ Ci of [ ⁇ - 32 P] adenosine triphosphate (Amersham Biosciences),
  • the labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Biosciences). An aliquot containing 10 7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl H, Eco RI, Pst I, Xba I, or Pvu H (DuPont NEN). The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40 °C.
  • blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.
  • the linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, supra.), mechanical microspotting technologies, and derivatives thereof.
  • the substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), supra). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures.
  • a typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)
  • RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A) + RNA is purified using the oligo-(dT) cellulose method.
  • Each poly(A) + RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ ⁇ l oligo-(dT) primer (21mer), IX first strand buffer, 0.03 units/ ⁇ l RNase inhibitor, 500 ⁇ M dATP, 500 ⁇ M dGTP, 500 ⁇ M dTTP, 40 ⁇ M dCTP, 40 ⁇ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Biosciences).
  • the reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A) + RNA with GEMBRIGHT kits (Incyte).
  • RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37 °C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is freated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 ⁇ l 5X SSC/0.2% SDS.
  • Sequences of the present invention are used to generate array elements.
  • Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts.
  • PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert.
  • Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 ⁇ g.
  • Amplified array elements are then purified using SEPHACRYL-400 (Amersham Biosciences). Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Coming) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments.
  • Array elements are applied to the coated glass substrate using a procedure described in U.S. Patent No. 5,807,522, inco ⁇ orated herein by reference.
  • 1 ⁇ l of the array element DNA, at an average concentration of 100 ng/ ⁇ l, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.
  • Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60° C followed by washes in 0.2% SDS and distilled water as before. Hybridization
  • Hybridization reactions contain 9 ⁇ l of sample mixture consisting of 0.2 ⁇ g each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer.
  • the sample mixture is heated to 65° C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm 2 coverslip.
  • the arrays are transferred to a wate ⁇ roof chamber having a cavity just slightly larger than a microscope slide.
  • the chamber is kept at 100% humidity internally by the addition of 140 ⁇ l of 5X SSC in a comer of the chamber.
  • the chamber containing the arrays is incubated for about 6.5 hours at 60° C.
  • the arrays are washed for 10 min at 45° C in a first wash buffer (IX SSC, 0.1% SDS), three times for 10 minutes each at 45° C in a second wash buffer (0.1X SSC), and dried. Detection
  • Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5.
  • the excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY).
  • the slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster- scanned past the objective.
  • the 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.
  • a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477,
  • a specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1 : 100,000.
  • the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
  • the output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer.
  • a D analog-to-digital
  • the digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal).
  • the data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectmm.
  • SEQ ID NO: 39 showed differential expression in inflammatory responses as determined by microarray analysis.
  • the expression of SEQ ID NO: 39 was decreased by at least two fold in an endothelial cell line treated with interleukin 1 (IL-1) and tumor necrosis factor (TNF). Therefore, SEQ ID NO:39 may be used in diagnostic assays for inflammatory responses.
  • IL-1 interleukin 1
  • TNF tumor necrosis factor
  • SEQ DD NO:43 is co-expressed with one or more genes known to be involved in bone remodeling and osteoporosis. Therefore, SEQ ID NO:43 may be used in diagnostic assays for bone diseases such as osteoporosis.
  • Microarray analysis could be used to determine the level of secreted proteins in differentiated adipocytes compared to undifferenciated preadipocytes.
  • primary cultures of preadipocytes were obtained from subcutaneous fat from two female donors.
  • Preadipocytes were cultured in F-10 medium with 10% fetal bovine semm.
  • Confluent cells were either treated with 1 ⁇ M rosiglitazone (BRL49653, a PPAR ⁇ agonist), 0.2 mM D3MX (3-isobutyl-l -methylxanthine, another inducer of adipocyte differentiation), and 100 nM human insulin for 3 days; or remained untreated.
  • SEQ ID NO:44 which encodes the polypeptide of SEQ ID NO: 12, is down-regulated between 5 and 7-fold in differentiated adipocytes compared to the undifferentiated cells. This down-regulation was observed from 1 day following treatment until the end of the experiment. Therefore, SEQ DD NO: 48 has utility in monitoring cell proliferative diseases and cancers. SEQ DO NO:44 has utility in the monitoring and disease staging of lipid metabolism disorders.
  • SEQ DO NO:44 was up-regulated about two-fold in a breast adenocarcinoma cell line (MCF7) following treatment with a selective, cell-permeable inhibitor of MAPK kinase/ERK kinase 1 (MEK1) that acts by inhibiting MAPK and the subsequent phosphorylation of MAPK substrates.
  • MCF7 breast adenocarcinoma cell line
  • MEK1 MAPK kinase/ERK kinase 1
  • SEQ ID NO:44 also has utility in monitoring aberrant cell proliferation or apoptosis resulting from GPCR-mediated signal transduction via the MAPK kinase and/or ERK kinase pathways.
  • PBMCs Human peripheral blood mononuclear cells
  • PBMCs Human peripheral blood mononuclear cells
  • Expression of SEQ ID NO:57 was increased by at least 2-fold following exposure of these cells to (a) 0.1 ⁇ M/ml PMA (a broad activator of protein kinase C) with 10 ng/ml ionomycin (a calcium ionophore that increases cytosolic calcium) for 20 h; and (b) 1 ng/ml SEB (a staphylococcal exotoxin, a specific activator of human T cells) for 72 h. Therefore, SEQ ID NO: 57 may be used in diagnostic assays for inflammatory and immune responses.
  • PMA broad activator of protein kinase C
  • ionomycin a calcium ionophore that increases cytosolic calcium
  • SEB a staphylococcal exotoxin, a specific activator of human T cells
  • Prostate tumor cell lines LNCaP (human prostate carcinoma) and MDAPCa2b (human prostate adenocarcinoma), were grown by embedding single cell suspensions in Matrigel matrix.
  • Matarigel matrix is a reconstituted basement membrane matrix isolated from a mouse sarcoma and composed of laminin, collagen EV, entactin, and heparin sulfate proteoglycan. It also contains growth factors, matrix metalloproteinases, and other components. Cells normally in contact with a basement membrane in vivo often are well differentiated when cultured on Matrigel basement membrane matrix in vitro.
  • RNA from the prostate cancer cells was harvested when modestly sized colonies formed.
  • SEQ ED NO: 58 exhibited greater than a 2-fold increase in cDNA expression when these human prostate cancer cells were grown in Matrigel. Therefore, SEQ ID NO: 58 may be used as a diagnostic marker or as a potential therapeutic target for prostate cancer.
  • the expression of SEQ ID NO:62 was increased by at least two fold in
  • LNCaP prostate carcinoma cells and MDAPCa2b prostate adenocarcinoma cells grown in single cell suspensions in Matrigel matrix relative to untreated cells. RNA was harvested when modestly sized colonies formed (i.e., the length of time required for normal epithelial cells undergo mo ⁇ hogenesis in the presence of Matrigel matrix).
  • LNCaP prostate carcinoma cell line was isolated from a lymph node biopsy of a 50-year-old male with metastatic prostate carcinoma. LNCaP cells express prostate specific antigens, produce prostatic acid phosphatase, and express androgen receptors.
  • MDAPCa2b prostate adenocarcinoma cell line was isolated from a metastatic site in the bone of a 63-year-old male.
  • MDAPCa2b cell line expresses prostate specific antigen (PSA) and androgen receptor grows in vitro and in vivo and is androgen sensitive. This experiment showed that SEQ ID NO:62 may be used as a diagnostic marker or as a potential therapeutic target for cancers.
  • PSA prostate specific antigen
  • XII Complementary Polynucleotides
  • SECP expression and purification of SECP is achieved using bacterial or vims-based expression systems.
  • cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription.
  • promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element.
  • Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).
  • Antibiotic resistant bacteria express SECP upon induction with isopropyl beta-D- thiogalactopyranoside (IPTG).
  • SECP in eukaryotic cells
  • baculovirus recombinant Autographica californica nuclear polyhedrosis vims
  • AcMNPV Autographica californica nuclear polyhedrosis vims
  • the nonessential polyhedrin gene of baculovims is replaced with cDNA encoding SECP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription.
  • Recombinant baculovims is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases.
  • SECP is synthesized as a fusion protein with, e.g., glutathione S- transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates.
  • GST glutathione S- transferase
  • a peptide epitope tag such as FLAG or 6-His
  • FLAG an 8-amino acid peptide
  • 6- His a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified SECP obtained by these methods can be used directly in the assays shown in Examples XVH, and XVHI, where applicable. XIV. Functional Assays
  • SECP function is assessed by expressing the sequences encoding SECP at physiologically elevated levels in mammalian cell culture systems.
  • cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression.
  • Vectors of choice include PCMV SPORT plasmid (Invitrogen, Carlsbad CA) and PCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 ⁇ g of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation.
  • 1-2 ⁇ g of an additional plasmid containing sequences encoding a marker protein are co-transfected.
  • Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector.
  • Marker proteins of choice include, e.g., Green Fluorescent Protein
  • FCM Flow cytometry
  • CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG).
  • Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY).
  • mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding SECP and other genes of interest can be analyzed by northern analysis or microarray techniques. XV.
  • SECP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize animals (e.g., rabbits, mice, etc.) and to produce antibodies using standard protocols.
  • PAGE polyacrylamide gel electrophoresis
  • SECP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art.
  • LASERGENE software DNASTAR
  • Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)
  • oligopeptides of about 15 residues in length are synthesized using an ABI 431 A peptide synthesizer (Applied Biosystems) using FMOC chemistry and coupled to KLH (Sigma-
  • Naturally occurring or recombinant SECP is substantially purified by immunoaffinity chromatography using antibodies specific for SECP.
  • An immunoaffinity column is constmcted by covalently coupling anti-SECP antibody to an activated chromatographic resin, such as
  • Media containing SECP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of SECP (e.g., high ionic strength buffers in the presence of detergent).
  • the column is eluted under conditions that disrupt antibody/SECP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and SECP is collected.
  • SECP or biologically active fragments thereof, are labeled with l25 I Bolton-Hunter reagent.
  • Bolton-Hunter reagent See, e.g., Bolton, A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.
  • Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled SECP, washed, and any wells with labeled SECP complex are assayed. Data obtained using different concentrations of SECP are used to calculate values for the number, affinity, and association of SECP with the candidate molecules.
  • molecules interacting with SECP are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
  • SECP may also be used in the PATHCALLING process (CuraGen Co ⁇ ., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).
  • PATHCALLING process CuraGen Co ⁇ ., New Haven CT
  • yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes
  • An assay for growth stimulating or inhibiting activity of SECP measures the amount of DNA synthesis in Swiss mouse 3T3 cells (McKay, I. and Leigh, I., eds. (1993) Growth Factors: A Practical Approach. Oxford University Press, New York, NY).
  • varying amounts of SECP are added to quiescent 3T3 cultured cells in the presence of [ 3 H] thymidine, a radioactive DNA precursor.
  • SECP for this assay can be obtained by recombinant means or from biochemical preparations. Inco ⁇ oration of [ 3 H]thymidine into acid-precipitable DNA is measured over an appropriate time interval, and the amount inco ⁇ orated is directly proportional to the amount of newly synthesized DNA.
  • a linear dose-response curve over at least a hundred-fold SECP concentration range is indicative of growth modulating activity.
  • One unit of activity per milliliter is defined as the concentration of SECP producing a 50% response level, where 100% represents maximal inco ⁇ oration of [ 3 H]thymidine into acid-precipitable DNA .
  • an assay for SECP activity measures the stimulation or inhibition of neurotransmission in cultured cells.
  • Cultured CHO fibroblasts are exposed to SECP.
  • the cells are washed with fresh culture medium, and a whole cell voltage- clamped Xenopus myocyte is manipulated into contact with one of the fibroblasts in SECP-free medium.
  • Membrane currents are recorded from the myocyte. Increased or decreased current relative to control values are indicative of neuromodulatory effects of SECP (Morimoto, T. et al. (1995) Neuron 15:689-696).
  • an assay for SECP activity measures the amount of SECP in secretory, membrane-bound organelles.
  • Transfected cells as described above are harvested and lysed.
  • the lysate is fractionated using methods known to those of skill in the art, for example, sucrose gradient ultracentrifugation. Such methods allow the isolation of subcellular components such as the Golgi apparatus, ER, small membrane-bound vesicles, and other secretory organelles.
  • Immunoprecipitations from fractionated and total cell lysates are performed using SECP-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting techniques.
  • concentration of SECP in secretory organelles relative to SECP in total cell lysate is proportional to the amount of SECP in transit through the secretory pathway.
  • protease activity of SECP is measured by the hydrolysis of appropriate synthetic peptide substrates conjugated with various chromogenic molecules in which the degree of hydrolysis is quantified by spectrophotometric (or fluoromefric) abso ⁇ tion of the released chromophore (Beynon, R.J. and J.S.
  • Peptide substrates are designed according to the category of protease activity as endopeptidase (serine, cysteine, aspartic proteases, or metalloproteases), aminopeptidase (leucine aminopeptidase), or carboxypeptidase (carboxypeptidases A and B, procollagen C-proteinase).
  • Commonly used chromogens are 2-naphthylamine, 4- nitroaniline, and furylacrylic acid.
  • Assays are performed at ambient temperature and contain an aliquot of the enzyme and the appropriate substrate in a suitable buffer. Reactions are carried out in an optical cuvette, and the increase/decrease in absorbance of the chromogen released during hydrolysis of the peptide substrate is measured. The change in absorbance is proportional to SECP activity in the assay.
  • AMP-binding activity of SECP is measured by combining SECP with 32 P-labeled AMP. The reaction is incubated at 37°C and terminated by addition of trichloroacetic acid. The acid extract is neutralized and subjected to gel electrophoresis to remove unbound label. The radioactivity retained in the gel is proportional to SECP activity in the assay.
  • XVIII Demonstration of Secretory Activity
  • Secretory activity can be quantified by comparing proteins secreted from [ 35 S]methionine- labeled cells grown at various temperatures and evaluated using SDS-PAGE. By labeling cells grown at 25, 37, and 39°C, the intensity of immunoprecipitated bands can be compared as a function of thermoregulation. Using this method, heat stress has been shown to increase secretion of a 150-kDa secretory glycoprotein in S. cerevisiae SEY2101a cells by 90% (Russo, P. et al. (1992) Proc. Natl. Acad. Sci. USA 89:3671-3675).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pain & Pain Management (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cardiology (AREA)
  • Rheumatology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La présente invention concerne des protéines sécrétées humaines (SECP) et des polynucléotides qui identifient et qui sont codants pour SECP. Cette invention concerne aussi des vecteurs d'expression, des cellules hôtes, des anticorps, des agonistes et des antagonistes. Cette invention concerne enfin des techniques de diagnostic, de traitement ou de prévention de pathologies associées à l'expression aberrante de SECP.
EP02731905A 2001-05-25 2002-05-21 Proteines secretees Withdrawn EP1578899A2 (fr)

Applications Claiming Priority (17)

Application Number Priority Date Filing Date Title
US29372801P 2001-05-25 2001-05-25
US293728P 2001-05-25
US29701901P 2001-06-08 2001-06-08
US297019P 2001-06-08
US29929701P 2001-06-19 2001-06-19
US299297P 2001-06-19
US30053701P 2001-06-22 2001-06-22
US300537P 2001-06-22
US30193601P 2001-06-29 2001-06-29
US301936P 2001-06-29
US36243902P 2002-03-06 2002-03-06
US362439P 2002-03-06
US36364902P 2002-03-08 2002-03-08
US363649P 2002-03-08
US36604102P 2002-03-19 2002-03-19
PCT/US2002/016234 WO2002097035A2 (fr) 2001-05-25 2002-05-21 Proteines secretees
US366041P 2010-07-20

Publications (1)

Publication Number Publication Date
EP1578899A2 true EP1578899A2 (fr) 2005-09-28

Family

ID=27575351

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02731905A Withdrawn EP1578899A2 (fr) 2001-05-25 2002-05-21 Proteines secretees

Country Status (4)

Country Link
EP (1) EP1578899A2 (fr)
JP (1) JP2005507239A (fr)
CA (1) CA2448146A1 (fr)
WO (1) WO2002097035A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093083A1 (fr) * 2004-03-29 2005-10-06 Kazuhisa Maeda Procédé pour la prédiction de maladies et procédé utilisant celui-ci
EP1762575A1 (fr) * 2005-09-12 2007-03-14 Ganymed Pharmaceuticals AG Identification d' antigènes associés aux tumeurs pour diagnose et thérapie
AU2013206613B2 (en) * 2005-09-12 2017-03-02 Biontech Ag Identification of tumor-associated antigens for diagnosis and therapy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518055B2 (en) * 2001-03-26 2003-02-11 Applera Corporation Isolated human protease proteins, nucleic acid molecules encoding human protease proteins, and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02097035A2 *

Also Published As

Publication number Publication date
AU2002303843A8 (en) 2007-09-20
JP2005507239A (ja) 2005-03-17
WO2002097035A2 (fr) 2002-12-05
CA2448146A1 (fr) 2002-12-05
WO2002097035A3 (fr) 2007-08-23

Similar Documents

Publication Publication Date Title
WO2002038602A2 (fr) Proteines secretees
EP1299538A2 (fr) Proteines secretees
EP1409535A2 (fr) Proteines secretees humaines
WO2003029437A2 (fr) Proteines secretees
US20030215822A1 (en) Secreted proteins
WO2003004615A2 (fr) Proteines secretees
EP1436383A2 (fr) Proteines secretees
WO2003068943A2 (fr) Proteines secretees
EP1385977A2 (fr) Proteines secretees
EP1370655A2 (fr) Proteines secretees humaines
US20050069876A1 (en) Secreted proteins
US20070087342A1 (en) Secreted proteins
EP1409550A1 (fr) Messagers extracellulaires
WO2003087300A2 (fr) Proteines secretees
EP1417224A2 (fr) Proteines secretees
WO2004094589A2 (fr) Proteines secretees
WO2002097035A2 (fr) Proteines secretees
EP1355935A2 (fr) Proteines secretees
WO2002070709A2 (fr) Molecules de detection et de traitement de maladies
WO2003046196A1 (fr) Proteines secretees
WO2004020459A2 (fr) Proteines secretees
WO2004085666A2 (fr) Proteines secretees
JP2004534506A (ja) 分泌タンパク質
WO2004085612A2 (fr) Proteines de liaison de metaux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031208

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051201

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015