EP1577499B1 - Turbine components with thermal barrier coatings - Google Patents
Turbine components with thermal barrier coatings Download PDFInfo
- Publication number
- EP1577499B1 EP1577499B1 EP05251604A EP05251604A EP1577499B1 EP 1577499 B1 EP1577499 B1 EP 1577499B1 EP 05251604 A EP05251604 A EP 05251604A EP 05251604 A EP05251604 A EP 05251604A EP 1577499 B1 EP1577499 B1 EP 1577499B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine component
- component according
- bond coat
- coat layer
- ceramic material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012720 thermal barrier coating Substances 0.000 title claims abstract description 32
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 19
- 239000002131 composite material Substances 0.000 claims abstract description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract 2
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 claims abstract 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims abstract 2
- 229910052710 silicon Inorganic materials 0.000 claims abstract 2
- 239000010703 silicon Substances 0.000 claims abstract 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract 2
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 10
- 150000002602 lanthanoids Chemical class 0.000 claims description 10
- 229910052771 Terbium Inorganic materials 0.000 claims description 7
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 7
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 229910052693 Europium Inorganic materials 0.000 claims description 5
- 229910052779 Neodymium Inorganic materials 0.000 claims description 5
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 5
- 229910052772 Samarium Inorganic materials 0.000 claims description 5
- 229910052746 lanthanum Inorganic materials 0.000 claims description 5
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 4
- 229910052691 Erbium Inorganic materials 0.000 claims description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 4
- 229910052689 Holmium Inorganic materials 0.000 claims description 4
- 229910052765 Lutetium Inorganic materials 0.000 claims description 4
- 229910052775 Thulium Inorganic materials 0.000 claims description 4
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052863 mullite Inorganic materials 0.000 claims description 4
- -1 rare-earth aluminate Chemical class 0.000 claims description 4
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 150000002910 rare earth metals Chemical class 0.000 claims description 3
- WOIHABYNKOEWFG-UHFFFAOYSA-N [Sr].[Ba] Chemical compound [Sr].[Ba] WOIHABYNKOEWFG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 2
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 claims description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 2
- 239000002223 garnet Substances 0.000 claims description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims description 2
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 claims description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims 1
- 239000000919 ceramic Substances 0.000 description 14
- 239000007789 gas Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000005328 electron beam physical vapour deposition Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910000951 Aluminide Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 241000588731 Hafnia Species 0.000 description 1
- 239000011184 SiC–SiC matrix composite Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 229910001597 celsian Inorganic materials 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/0042—Devices for removing chips
- B23Q11/0046—Devices for removing chips by sucking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B5/00—Cleaning by methods involving the use of air flow or gas flow
- B08B5/04—Cleaning by suction, with or without auxiliary action
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
- C04B35/505—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
- C04B41/5042—Zirconium oxides or zirconates; Hafnium oxides or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/90—Coating; Surface treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/20—Oxide or non-oxide ceramics
- F05D2300/22—Non-oxide ceramics
- F05D2300/228—Nitrides
- F05D2300/2283—Nitrides of silicon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/607—Monocrystallinity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/60—Properties or characteristics given to material by treatment or manufacturing
- F05D2300/611—Coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the present invention relates to turbine components having a substrate formed from a ceramic material, such as a monolithic ceramic or a composite ceramic material, and a thermal barrier coating made from ceramic materials.
- Gas turbine engines are well developed mechanisms for converting chemical potential energy, in the form of fuel, to thermal energy and then to mechanical energy for use in propelling aircraft, generating electrical power, pumping fluids, etc.
- the major available avenue for improved efficiency of gas turbine engines appears to be the use of higher operating temperatures.
- the metallic materials used in gas turbine engines are currently very near the upper limits of their thermal stability. In the hottest portion of modern gas turbine engines, metallic materials are used at gas temperatures above their melting points. They survive because they are air cooled. But providing air cooling reduces engine efficiency.
- thermal barrier coatings for use with cooled gas turbine aircraft hardware.
- the amount of cooling air required can be substantially reduced, thus providing a corresponding increase in efficiency.
- Such coatings are invariably based on ceramic.
- Mullite and alumina have been proposed, but zirconia is the current material of choice.
- Zirconia must be modified with a stabilizer to prevent the formation of the monoclinic phase.
- Typical stabilizers include yttria, calcia, ceria, and magnesia.
- Zirconia based ceramics are resistant to water attack.
- thermal barrier coating can become a problem - indeed it is known to be a problem for silica-based thermal barrier coatings and alumina-based thermal barrier coatings. Steam is often injected into the combustor of land-based gas turbines to reduce nitric oxide formation, which exacerbates the water attack issue.
- Hafnia and zirconate based materials for thermal/environmental barrier coating applications are disclosed in D. Zhu et al., NASA/TM-2003-212544.
- thermal barrier coatings which exhibit superior thermal insulation capabilities, especially those improved in insulation capabilities when normalized for coating density.
- Weight is always a critical factor when designing gas turbine engines, particularly rotating parts.
- Ceramic thermal barrier coatings are not load supporting materials, and consequently they add weight without increasing strength.
- a turbine component having a substrate formed from a ceramic material selected from the group consisting of a monolithic ceramic material and a composite ceramic material and a thermal barrier coating bonded to said substrate, said thermal barrier coating consisting of at least 15 mol% of at least one lanthanide sesquioxide and the balance consisting of ceria.
- the ceria is preferably present in an amount greater than 50 mol%.
- the at least one lanthanide sesquioxide preferably has a formula A 2 O 3 where A is selected from the group consisting of La, Pr, Nd, Sm, Eu, Tb, and mixtures thereof.
- the essence of the present invention arises from the discovery that certain ceramic materials have great utility as thermal barrier coatings on ceramic material substrates, particularly those used to form components, such as the airfoils, of turbine engine components. These ceramic coating materials have such utility because they exhibit lower thermal conductivity than conventional thermal barrier coatings such as 7 weight% yttria stabilized zirconia.
- a thermal barrier coating which exhibits such a lower thermal conductivity consists of at least 15 mol% of at least one lanthanide sesquioxide and the balance consists of ceria.
- the ceria is present in an amount greater than 50 mol%.
- Each lanthanide sesquioxide has a formula A 2 O 3 where A is selected from the group consisting of La, Pr, Nd, Sm, Eu, Tb, and mixtures thereof.
- the at least one lanthanide sesquioxide is present in a total amount in the range of 15 to 45 mol%.
- the at least one lanthanide sesquioxide is present in a total amount of at least 25 mol%.
- Each cerium ion has more than one adjacent oxide vacancy on average, and preferably at least two adjacent oxide vacancies. The presence of these oxygen vacancies minimizes the thermal conductivity of the coating. Thus, they are a highly desirable feature of the coatings of the present invention.
- the various thermal barrier coatings set forth herein may be characterized with a columnar structure.
- the article has a substrate formed from ceramic material selected the group consisting of a monolithic ceramic material and a composite ceramic material.
- a monolithic ceramic is meant to include, but is not limited to, single-phase or multi-phase ceramics, but not ceramics processed as composite (i.e. infiltrated fiber weaves, etc.).
- monolithic ceramic substrates include, but are not limited to, silicon nitride and also self-reinforced silicon nitride.
- composite ceramic substrates include, but are not limited to, SiC-SiC composites (vapor- or melt-infiltrated 2D or 3D fiber weaves) and C - C composites (again, vapor- or melt-infiltrated 2D or 3D fiber weavers).
- the aforementioned thermal barrier coating is applied to the substrate.
- the thermal barrier coating may be applied directly to a surface of the substrate or may be applied to a bond coat deposited on one or more surfaces of the substrate. Any suitable technique known in the art may be used to deposit a thermal barrier coating in accordance with one of the embodiments of the present invention. Suitable techniques include electron beam physical vapor deposition, chemical vapor deposition, LPPS techniques, and diffusion processes.
- the bond coat may comprise any suitable bond coat known in the art.
- the bond coat may be formed from an aluminium containing material, an aluminide, a platinum aluminide, a ceramic material, such as 7wt% yttria stabilized zirconia, or a MCrAlY material.
- the bond coat may be multiple layers of ceramics which are designed to provide coefficient of thermal expansion match as well as to provide oxidation resistance (by blocking oxidation diffusion) and corrosion resistance (by blocking corrosive oxide liquid attack).
- the multiple bond coat layers may be multiple distinct layers formed from the same or different materials. Additionally, the multiple bond coat layers may be functionally graded layers of mixtures of the above. In addition to serving as matching layers and bond coat layers, these layers act as environment barriers and oxygen barriers. Functional grading may be used to replace a distinct interface between two layers of dissimilar materials with a region in which the two materials are mixed such that the overall concentration gradually changes from 100% of the first material to 100% of the second material. Thus, a step change in concentration may be replaced with a gradually sloping change in concentration. This approach is effective in reducing residual stresses, for example between layers of materials with large thermal expansion mismatches.
- the bond coat may be formed on the substrate, using any suitable process known in the art including, but not limited to, low pressure plasma spray, electron beam physical vapor deposition, diffusion processes and chemical vapor deposition processes. If desired, the bond coat may have an oxide scale on an outer surface, which oxide scale consists essentially of alumina.
- the thermal barrier coatings of the present invention may be bonded to the oxide scale using any suitable technique known in the art.
- a ceramic layer may be bonded to the thermal barrier coating.
- the additional ceramic material may be selected from the group consisting of materials which reduce oxygen diffusion, provide erosion and abrasion resistance, and/or provide optical emissivity of 0.7.
- high emissivity ceramic materials which can be used are alumina and mullite. High emissivity reduces the heat transfer across a thermal barrier coating by internal radiation (radiation of the thermal barrier coating material itself) due to the temperature difference between the hotter outer surface of the coating and the cooler interface between the coating and the TGO, thereby reducing the temperature of the TGO, thus the bondcoat, thus the ceramic.
- high emissivity increases the insulative properties of the TBC.
- the additional ceramic layer may be formed over an exterior surface of the thermal barrier coating.
- the article may have an oxide scale on its surfaces and one of the thermal barrier coatings of the present invention may be applied directly over and bonded to the oxide scale using any suitable deposition technique known in the art including, but not limited to, diffusion processes, electron beam physical vapor deposition, and/or chemical vapor deposition techniques.
- the oxide scale may consist substantially of alumina.
- thermal barrier coatings of the present invention were developed for application in gas turbine engines, the coatings have utility in other applications where high temperatures are encountered, such as furnaces and internal combustion engines.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Coating By Spraying Or Casting (AREA)
- Laminated Bodies (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Ceramic Products (AREA)
Abstract
Description
- The present invention relates to turbine components having a substrate formed from a ceramic material, such as a monolithic ceramic or a composite ceramic material, and a thermal barrier coating made from ceramic materials.
- Gas turbine engines are well developed mechanisms for converting chemical potential energy, in the form of fuel, to thermal energy and then to mechanical energy for use in propelling aircraft, generating electrical power, pumping fluids, etc. At this time, the major available avenue for improved efficiency of gas turbine engines appears to be the use of higher operating temperatures. However, the metallic materials used in gas turbine engines are currently very near the upper limits of their thermal stability. In the hottest portion of modern gas turbine engines, metallic materials are used at gas temperatures above their melting points. They survive because they are air cooled. But providing air cooling reduces engine efficiency.
- Accordingly, there has been extensive development of thermal barrier coatings for use with cooled gas turbine aircraft hardware. By using a thermal barrier coating, the amount of cooling air required can be substantially reduced, thus providing a corresponding increase in efficiency.
- Such coatings are invariably based on ceramic. Mullite and alumina have been proposed, but zirconia is the current material of choice. Zirconia must be modified with a stabilizer to prevent the formation of the monoclinic phase. Typical stabilizers include yttria, calcia, ceria, and magnesia.
- Zirconia based ceramics are resistant to water attack.
- This is critical for land-based gas turbine applications, since the coatings are exposed at high temperatures for much longer than they are in aeroengine applications. Thus, corrosion of the thermal barrier coating can become a problem - indeed it is known to be a problem for silica-based thermal barrier coatings and alumina-based thermal barrier coatings. Steam is often injected into the combustor of land-based gas turbines to reduce nitric oxide formation, which exacerbates the water attack issue.
- Hafnia and zirconate based materials for thermal/environmental barrier coating applications are disclosed in D. Zhu et al., NASA/TM-2003-212544.
- Despite the success with thermal barrier coatings, there is a continuing desire for improved coatings which exhibit superior thermal insulation capabilities, especially those improved in insulation capabilities when normalized for coating density. Weight is always a critical factor when designing gas turbine engines, particularly rotating parts. Ceramic thermal barrier coatings are not load supporting materials, and consequently they add weight without increasing strength. There is a strong desire for a ceramic thermal barrier material which adds the minimum weight while providing the maximum thermal insulation capability. In addition, there are the normal desires for long life, stability and economy.
- Accordingly, it is an object of the present invention to provide a turbine component having a ceramic material substrate and a thermal barrier coating having low thermal conductivity.
- The foregoing object is attained by the turbine component of the present invention.
- In accordance with the present invention, a turbine component is provided having a substrate formed from a ceramic material selected from the group consisting of a monolithic ceramic material and a composite ceramic material and a thermal barrier coating bonded to said substrate, said thermal barrier coating consisting of at least 15 mol% of at least one lanthanide sesquioxide and the balance consisting of ceria.
- The ceria is preferably present in an amount greater than 50 mol%. The at least one lanthanide sesquioxide preferably has a formula A2O3 where A is selected from the group consisting of La, Pr, Nd, Sm, Eu, Tb, and mixtures thereof.
- Certain preferred embodiments of the present invention will now be explained in greater detail by way of example only.
- The essence of the present invention arises from the discovery that certain ceramic materials have great utility as thermal barrier coatings on ceramic material substrates, particularly those used to form components, such as the airfoils, of turbine engine components. These ceramic coating materials have such utility because they exhibit lower thermal conductivity than conventional thermal barrier coatings such as 7 weight% yttria stabilized zirconia.
- In accordance with the present invention, a thermal barrier coating which exhibits such a lower thermal conductivity consists of at least 15 mol% of at least one lanthanide sesquioxide and the balance consists of ceria. Preferably, the ceria is present in an amount greater than 50 mol%. Each lanthanide sesquioxide has a formula A2O3 where A is selected from the group consisting of La, Pr, Nd, Sm, Eu, Tb, and mixtures thereof. In a preferred embodiment, the at least one lanthanide sesquioxide is present in a total amount in the range of 15 to 45 mol%. In a most preferred embodiment, the at least one lanthanide sesquioxide is present in a total amount of at least 25 mol%. Each cerium ion has more than one adjacent oxide vacancy on average, and preferably at least two adjacent oxide vacancies. The presence of these oxygen vacancies minimizes the thermal conductivity of the coating. Thus, they are a highly desirable feature of the coatings of the present invention.
- The various thermal barrier coatings set forth herein may be characterized with a columnar structure.
- An article, having particular utility as a component in a gas turbine engine, is provided in accordance with the present invention. The article has a substrate formed from ceramic material selected the group consisting of a monolithic ceramic material and a composite ceramic material. As used herein, the term "monolithic ceramic" is meant to include, but is not limited to, single-phase or multi-phase ceramics, but not ceramics processed as composite (i.e. infiltrated fiber weaves, etc.). Examples of monolithic ceramic substrates include, but are not limited to, silicon nitride and also self-reinforced silicon nitride. Examples of composite ceramic substrates include, but are not limited to, SiC-SiC composites (vapor- or melt-infiltrated 2D or 3D fiber weaves) and C - C composites (again, vapor- or melt-infiltrated 2D or 3D fiber weavers).
- The aforementioned thermal barrier coating is applied to the substrate. The thermal barrier coating may be applied directly to a surface of the substrate or may be applied to a bond coat deposited on one or more surfaces of the substrate. Any suitable technique known in the art may be used to deposit a thermal barrier coating in accordance with one of the embodiments of the present invention. Suitable techniques include electron beam physical vapor deposition, chemical vapor deposition, LPPS techniques, and diffusion processes.
- When a bond coat is used, the bond coat may comprise any suitable bond coat known in the art. For example, the bond coat may be formed from an aluminium containing material, an aluminide, a platinum aluminide, a ceramic material, such as 7wt% yttria stabilized zirconia, or a MCrAlY material. Alternatively, the bond coat may be multiple layers of ceramics which are designed to provide coefficient of thermal expansion match as well as to provide oxidation resistance (by blocking oxidation diffusion) and corrosion resistance (by blocking corrosive oxide liquid attack). Suitable bond coats may be formed from Ta2O5, all rare-earth disilicates having the formula X2Si207 where X = La, Nd, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and mixtures thereof, Y2Si2O7, mullite, BSAS (barium strontium alumino silicate or celsian), yttrium aluminum garnet, ytterbium aluminum garnet, and other rare-earth aluminate garents where the rare earth element is selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Lu, and mixtures thereof. The multiple bond coat layers may be multiple distinct layers formed from the same or different materials. Additionally, the multiple bond coat layers may be functionally graded layers of mixtures of the above. In addition to serving as matching layers and bond coat layers, these layers act as environment barriers and oxygen barriers. Functional grading may be used to replace a distinct interface between two layers of dissimilar materials with a region in which the two materials are mixed such that the overall concentration gradually changes from 100% of the first material to 100% of the second material. Thus, a step change in concentration may be replaced with a gradually sloping change in concentration. This approach is effective in reducing residual stresses, for example between layers of materials with large thermal expansion mismatches.
- The bond coat may be formed on the substrate, using any suitable process known in the art including, but not limited to, low pressure plasma spray, electron beam physical vapor deposition, diffusion processes and chemical vapor deposition processes. If desired, the bond coat may have an oxide scale on an outer surface, which oxide scale consists essentially of alumina. The thermal barrier coatings of the present invention may be bonded to the oxide scale using any suitable technique known in the art.
- If desired, a ceramic layer may be bonded to the thermal barrier coating. The additional ceramic material may be selected from the group consisting of materials which reduce oxygen diffusion, provide erosion and abrasion resistance, and/or provide optical emissivity of 0.7. Examples of high emissivity ceramic materials which can be used are alumina and mullite. High emissivity reduces the heat transfer across a thermal barrier coating by internal radiation (radiation of the thermal barrier coating material itself) due to the temperature difference between the hotter outer surface of the coating and the cooler interface between the coating and the TGO, thereby reducing the temperature of the TGO, thus the bondcoat, thus the ceramic. Thus, high emissivity increases the insulative properties of the TBC. The additional ceramic layer may be formed over an exterior surface of the thermal barrier coating.
- In some embodiments, the article may have an oxide scale on its surfaces and one of the thermal barrier coatings of the present invention may be applied directly over and bonded to the oxide scale using any suitable deposition technique known in the art including, but not limited to, diffusion processes, electron beam physical vapor deposition, and/or chemical vapor deposition techniques. The oxide scale may consist substantially of alumina.
- Although the thermal barrier coatings of the present invention were developed for application in gas turbine engines, the coatings have utility in other applications where high temperatures are encountered, such as furnaces and internal combustion engines.
Claims (17)
- A turbine component having a substrate formed from a ceramic material selected from the group consisting of a monolithic ceramic material and a composite ceramic material and a thermal barrier coating bonded to said substrate, said thermal barrier coating consisting of at least 15 mol% of at least one lanthanide sesquioxide and the balance consisting of ceria.
- A turbine component according to claim 1, wherein the ceria is present in an amount greater than 50 mol%.
- A turbine component according to claim 2, wherein the at least one lanthanide sesquioxide has a formula A2O3 where A is selected from the group consisting of La, Pr, Nd, Sm, Eu, Tb, and mixtures thereof.
- A turbine component according to claim 2 or 3, wherein said at least one lanthanide sesquioxide is present in a total amount in the range of 15 to 45 mol%.
- A turbine component according to claim 4, wherein said at least one lanthanide sesquioxide is present in a total amount of at least 25 mol%
- A turbine component according to claim 1, wherein said ceramic material is selected from the group of silicon nitride and self-reinforced silicon nitride.
- A turbine component according to claim 1, wherein said ceramic material is selected from the group consisting of a silicon carbide-silicon carbide material and a carbon-carbon material.
- A turbine component according to any preceding claim, further comprising at least one bond coat layer between said substrate and said thermal barrier coating, and said at least one bond coat layer providing coefficient of thermal expansion matching, oxidation resistance and corrosion resistance.
- A turbine component according to claim 8, wherein said at least one bond coat layer is formed from Ta2O5.
- A turbine component according to claim 8, wherein said at least one bond coat layer is formed from a rare-earth disilicate having the formula X2Si207 where X is selected from the group consisting of La, Nd, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
- A turbine component according to claim 8, wherein said at least one bond coat layer comprises Y2Si2O7.
- A turbine component according to claim 8, wherein said at least one bond coat layer comprises mullite.
- A turbine component according to claim 8, wherein said at least one bond coat layer comprises barium strontium alumino silicate.
- A turbine component according to claim 8, wherein said at least one bond coat layer comprises yttrium aluminum garnet.
- A turbine component according to claim 8, wherein said at least one bond coat layer comprises ytterbium aluminium garnet.
- A turbine component according to claim 8, wherein said at least one bond coat layer comprises rare-earth aluminate garnets wherein the rare earth is selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, Lu, and mixtures thereof.
- A turbine component according to claim 8, wherein said bond coat is formed from a plurality of functionally graded layers.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/803,527 US7226672B2 (en) | 2002-08-21 | 2004-03-17 | Turbine components with thermal barrier coatings |
US803527 | 2004-03-17 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1577499A2 EP1577499A2 (en) | 2005-09-21 |
EP1577499A3 EP1577499A3 (en) | 2006-12-27 |
EP1577499B1 true EP1577499B1 (en) | 2009-06-24 |
Family
ID=34838920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05251604A Active EP1577499B1 (en) | 2004-03-17 | 2005-03-16 | Turbine components with thermal barrier coatings |
Country Status (12)
Country | Link |
---|---|
US (1) | US7226672B2 (en) |
EP (1) | EP1577499B1 (en) |
JP (1) | JP2005263625A (en) |
KR (1) | KR100736296B1 (en) |
CN (1) | CN1670337A (en) |
AT (1) | ATE434714T1 (en) |
CA (1) | CA2500753A1 (en) |
DE (1) | DE602005015049D1 (en) |
MX (1) | MXPA05002921A (en) |
PL (1) | PL373690A1 (en) |
RU (1) | RU2005107462A (en) |
SG (1) | SG115766A1 (en) |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6697130B2 (en) * | 2001-01-16 | 2004-02-24 | Visteon Global Technologies, Inc. | Flexible led backlighting circuit |
US20030112931A1 (en) * | 2001-12-19 | 2003-06-19 | Wendell Brown | Facilitating navigation of an interactive voice response (IVR) menu to establish a telephone connection |
US7306860B2 (en) * | 2004-07-30 | 2007-12-11 | Honeywell International, Inc. | Protective coating for oxide ceramic based composites |
US7413808B2 (en) | 2004-10-18 | 2008-08-19 | United Technologies Corporation | Thermal barrier coating |
US7476453B2 (en) * | 2004-12-06 | 2009-01-13 | General Electric Company | Low thermal conductivity thermal barrier coating system and method therefor |
US7429424B2 (en) * | 2004-12-06 | 2008-09-30 | General Electric Company | Sintering resistant, low conductivity, high stability thermal barrier coating/environmental barrier coating system for a ceramic-matrix composite (CMC) article to improve high temperature capability |
US7364807B2 (en) * | 2004-12-06 | 2008-04-29 | General Electric Company | Thermal barrier coating/environmental barrier coating system for a ceramic-matrix composite (CMC) article to improve high temperature capability |
US7326468B2 (en) * | 2005-01-21 | 2008-02-05 | General Electric Company | Thermal/environmental barrier coating for silicon-comprising materials |
US20060166019A1 (en) * | 2005-01-21 | 2006-07-27 | Irene Spitsberg | Thermal/environmental barrier coating for silicon-comprising materials |
US7115327B2 (en) | 2005-01-21 | 2006-10-03 | General Electric Company | Thermal/environmental barrier coating with transition layer for silicon-comprising materials |
US7115326B2 (en) * | 2005-01-21 | 2006-10-03 | General Electric Company | Thermal/environmental barrier coating with transition layer for silicon-comprising materials |
US7449254B2 (en) * | 2005-01-21 | 2008-11-11 | General Electric Company | Environmental barrier coating with physical barrier layer for silicon-comprising materials |
US7357994B2 (en) * | 2005-06-14 | 2008-04-15 | General Electric Company | Thermal/environmental barrier coating system for silicon-containing materials |
US20070292624A1 (en) * | 2005-06-28 | 2007-12-20 | General Electric Company | Low conductivity, thermal barrier coating system for ceramic matrix composite (CMC) articles |
US7579085B2 (en) * | 2005-08-19 | 2009-08-25 | General Electric Company | Coated silicon comprising material for protection against environmental corrosion |
US7740960B1 (en) * | 2005-08-26 | 2010-06-22 | The United States Of America As Represented By The Secretary Of The Army | Multifunctionally graded environmental barrier coatings for silicon-base ceramic components |
JP4468286B2 (en) * | 2005-10-21 | 2010-05-26 | 三菱重工業株式会社 | Exhaust turbocharger |
EP1996341B1 (en) * | 2006-02-20 | 2018-09-26 | Kang N. Lee | Article including enviromental barrier coating system |
BRPI0712506A2 (en) * | 2006-05-26 | 2012-08-28 | Praxair Technology Inc | high purity yttria stabilized zirconia powder, thermally sprayed coating of a high purity yttria stabilized zirconia powder, thermal barrier coating for a substrate, process for producing a thermal barrier coating, thermal spray process , and, article coated with a thermal barrier coating |
EP1862568A1 (en) * | 2006-05-30 | 2007-12-05 | Siemens Aktiengesellschaft | Thermal barrier coating with tungsten-bronze structure |
US7534290B2 (en) * | 2006-06-06 | 2009-05-19 | Skyworks Solutions, Inc. | Corrosion resistant thermal barrier coating material |
US7776459B2 (en) * | 2006-08-18 | 2010-08-17 | United Technologies Corporation | High sodium containing thermal barrier coating |
KR100798478B1 (en) * | 2006-08-31 | 2008-01-28 | 한양대학교 산학협력단 | Thermal barrier coated materials, method of preparation thereof, and method of coating using them |
JP5129500B2 (en) * | 2007-04-13 | 2013-01-30 | 三菱重工業株式会社 | Heat resistant material and method for manufacturing and repairing the same |
WO2009027922A2 (en) * | 2007-08-27 | 2009-03-05 | Koninklijke Philips Electronics N.V. | Electric lamp |
US8062759B2 (en) * | 2007-12-27 | 2011-11-22 | General Electric Company | Thermal barrier coating systems including a rare earth aluminate layer for improved resistance to CMAS infiltration and coated articles |
KR101442834B1 (en) * | 2007-12-27 | 2014-09-29 | 두산인프라코어 주식회사 | Method for insulation coating on exhaust manifold and exhaust manifold having insulation coating |
US20090169752A1 (en) * | 2007-12-27 | 2009-07-02 | Ming Fu | Method for Improving Resistance to CMAS Infiltration |
US8931429B2 (en) * | 2008-05-05 | 2015-01-13 | United Technologies Corporation | Impingement part cooling |
US8062775B2 (en) * | 2008-12-16 | 2011-11-22 | General Electric Company | Wetting resistant materials and articles made therewith |
US8273470B2 (en) * | 2008-12-19 | 2012-09-25 | General Electric Company | Environmental barrier coatings providing CMAS mitigation capability for ceramic substrate components |
FR2940278B1 (en) * | 2008-12-24 | 2011-05-06 | Snecma Propulsion Solide | ENVIRONMENTAL BARRIER FOR REFRACTORY SUBSTRATE CONTAINING SILICON |
US8722202B2 (en) * | 2008-12-31 | 2014-05-13 | General Electric Company | Method and system for enhancing heat transfer of turbine engine components |
FR2948690B1 (en) * | 2009-07-30 | 2013-03-08 | Snecma | PIECE COMPRISING A SUBSTRATE CARRYING A CERAMIC COATING LAYER |
WO2011085376A1 (en) | 2010-01-11 | 2011-07-14 | Rolls-Royce Corporation | Features for mitigating thermal or mechanical stress on an environmental barrier coating |
US8481117B2 (en) * | 2010-03-08 | 2013-07-09 | United Technologies Corporation | Method for applying a thermal barrier coating |
RU2447039C1 (en) * | 2010-10-05 | 2012-04-10 | Российская Федерация в лице Министерства промышленности и торговли Российской Федерации (Минпромторг России) | Ceramic composite material |
US9783459B2 (en) * | 2012-08-20 | 2017-10-10 | Ceramtec Gmbh | Zirconium oxide-based composite material |
CN103047852A (en) * | 2012-12-17 | 2013-04-17 | 吴江市金平华纺织有限公司 | Drying cylinder for dyeing machine |
US20160153288A1 (en) * | 2013-03-15 | 2016-06-02 | General Electric Company | Recession resistant ceramic matrix composites and environmental barrier coatings |
US10040094B2 (en) * | 2013-03-15 | 2018-08-07 | Rolls-Royce Corporation | Coating interface |
US20160160664A1 (en) * | 2013-03-15 | 2016-06-09 | General Electric Company | Recession resistant ceramic matrix composites and environmental barrier coatings |
CN103225062B (en) * | 2013-05-16 | 2014-12-17 | 国网浙江龙游县供电公司 | ZrO2 thermal barrier coating prepared by electron-beam physical vapor desorption |
CN103243300B (en) * | 2013-05-16 | 2015-03-25 | 无为县特种电缆产业技术研究院 | Method for preparing ZrO2 thermal barrier coating by electron beam physical vapor deposition |
DE102013214563A1 (en) * | 2013-07-25 | 2015-01-29 | Robert Bosch Gmbh | Functional element for use in high-temperature applications |
US10363584B2 (en) | 2013-08-30 | 2019-07-30 | General Electric Company | Methods for removing barrier coatings, bondcoat and oxide layers from ceramic matrix composites |
US20150247245A1 (en) * | 2013-09-30 | 2015-09-03 | Honeywell International Inc. | Protective coating systems for gas turbine engine applications and methods for fabricating the same |
US11479846B2 (en) | 2014-01-07 | 2022-10-25 | Honeywell International Inc. | Thermal barrier coatings for turbine engine components |
EP3243809B1 (en) | 2015-02-09 | 2019-04-10 | Mitsubishi Heavy Industries Aero Engines, Ltd. | Coated member and method for producing coated member |
CA2976182C (en) * | 2015-02-09 | 2020-02-18 | Mitsubishi Heavy Industries Aero Engines, Ltd. | Coated member, coating material, and method of manufacturing coated member |
US10472972B2 (en) * | 2015-12-01 | 2019-11-12 | General Electric Company | Thermal management of CMC articles having film holes |
WO2017218759A1 (en) * | 2016-06-15 | 2017-12-21 | The Penn State Research Foundation | Thermal barrier coatings |
FR3061710B1 (en) * | 2017-01-06 | 2019-05-31 | Safran Ceramics | PART COMPRISING A SUBSTRATE AND AN ENVIRONMENTAL BARRIER |
FR3061711B1 (en) | 2017-01-06 | 2019-05-31 | Safran Ceramics | PART COMPRISING A SUBSTRATE AND AN ENVIRONMENTAL BARRIER |
US11066339B2 (en) | 2017-06-08 | 2021-07-20 | General Electric Company | Article for high temperature service |
DE102017005800A1 (en) * | 2017-06-21 | 2018-12-27 | H.C. Starck Surface Technology and Ceramic Powders GmbH | Zirconia powder for thermal spraying |
DE102018203895A1 (en) * | 2018-03-14 | 2019-09-19 | Siemens Aktiengesellschaft | Ceramic material, layer and layer system |
DE102018204498A1 (en) * | 2018-03-23 | 2019-09-26 | Siemens Aktiengesellschaft | Ceramic material based on zirconium oxide with other oxides |
US11668198B2 (en) | 2018-08-03 | 2023-06-06 | Raytheon Technologies Corporation | Fiber-reinforced self-healing environmental barrier coating |
US10934220B2 (en) | 2018-08-16 | 2021-03-02 | Raytheon Technologies Corporation | Chemical and topological surface modification to enhance coating adhesion and compatibility |
US11505506B2 (en) | 2018-08-16 | 2022-11-22 | Raytheon Technologies Corporation | Self-healing environmental barrier coating |
US11535571B2 (en) | 2018-08-16 | 2022-12-27 | Raytheon Technologies Corporation | Environmental barrier coating for enhanced resistance to attack by molten silicate deposits |
DE102018215223A1 (en) * | 2018-09-07 | 2020-03-12 | Siemens Aktiengesellschaft | Ceramic material based on zirconium oxide with additional oxides and layer system |
CN110627495B (en) * | 2019-09-23 | 2021-09-03 | 航天材料及工艺研究所 | Low-thermal-conductivity high-entropy aluminate ceramic and preparation method thereof |
US20220195606A1 (en) * | 2020-12-23 | 2022-06-23 | Raytheon Technologies Corporation | Method for metal vapor infiltration of cmc parts and articles containing the same |
WO2024102173A2 (en) * | 2022-07-01 | 2024-05-16 | University Of Maryland, College Park | Ultrafast high temperature sintering (uhs) systems and methods for fabricating environmental-thermal barrier coatings |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3634113A (en) * | 1968-10-30 | 1972-01-11 | Larry L Fehrenbacher | Stabilized zirconium dioxide and hafnium dioxide compositions |
US3957500A (en) * | 1971-06-29 | 1976-05-18 | Magnesium Elektron Limited | Stabilised zirconia and a process for the preparation thereof |
US4535033A (en) * | 1983-08-16 | 1985-08-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Thermal barrier coating system |
JPS62207885A (en) * | 1986-03-07 | 1987-09-12 | Toshiba Corp | High temperature heat resistant member |
US4939107A (en) * | 1988-09-19 | 1990-07-03 | Corning Incorporated | Transformation toughened ceramic alloys |
US5059095A (en) * | 1989-10-30 | 1991-10-22 | The Perkin-Elmer Corporation | Turbine rotor blade tip coated with alumina-zirconia ceramic |
US5288205A (en) * | 1990-09-26 | 1994-02-22 | The United States Of America As Represented By The Secretary Of The Navy | India-stabilized zirconia coating for composites |
WO1993021364A2 (en) * | 1992-04-13 | 1993-10-28 | Allied-Signal Inc. | Epitaxially strengthened single crystal aluminum garnet reinforcement fibers |
US5304519A (en) | 1992-10-28 | 1994-04-19 | Praxair S.T. Technology, Inc. | Powder feed composition for forming a refraction oxide coating, process used and article so produced |
AU3640195A (en) * | 1994-09-23 | 1996-04-09 | Alsimag Technical Ceramics, Inc. | Improved stabilized zirconia |
WO1997001436A1 (en) | 1995-06-26 | 1997-01-16 | General Electric Company | Protected thermal barrier coating composite with multiple coatings |
DE69700448T2 (en) | 1996-06-13 | 2000-01-13 | Tosoh Corp., Shinnanyo | Vapor deposition material |
GB9617267D0 (en) * | 1996-08-16 | 1996-09-25 | Rolls Royce Plc | A metallic article having a thermal barrier coating and a method of application thereof |
US5780178A (en) * | 1996-10-31 | 1998-07-14 | The United States Of America As Represented By The Secretary Of The Navy | Scandia, yttria-stabilized zirconia for ultra-high temperature thermal barrier coatings |
US6258467B1 (en) * | 2000-08-17 | 2001-07-10 | Siemens Westinghouse Power Corporation | Thermal barrier coating having high phase stability |
US6117560A (en) * | 1996-12-12 | 2000-09-12 | United Technologies Corporation | Thermal barrier coating systems and materials |
US6177200B1 (en) * | 1996-12-12 | 2001-01-23 | United Technologies Corporation | Thermal barrier coating systems and materials |
US6924040B2 (en) * | 1996-12-12 | 2005-08-02 | United Technologies Corporation | Thermal barrier coating systems and materials |
DE19743904C2 (en) * | 1997-10-04 | 2001-12-13 | Deutsch Zentr Luft & Raumfahrt | Thermal insulation layers on single-crystalline and polycrystalline metal substrates with an improved crystallographic relationship between layer and substrate |
US5863668A (en) * | 1997-10-29 | 1999-01-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Controlled thermal expansion coat for thermal barrier coatings |
DE19807163C1 (en) | 1998-02-20 | 1999-10-28 | Rainer Gadow | Thermal insulating material and method for producing such |
US5985470A (en) * | 1998-03-16 | 1999-11-16 | General Electric Company | Thermal/environmental barrier coating system for silicon-based materials |
US6333090B1 (en) * | 1998-04-10 | 2001-12-25 | Dlr Deutsches Zentrum Fur Luft-Und Raumfahrt E.V. | Ceramic heat-insulating layers with club-structure |
US6187453B1 (en) * | 1998-07-17 | 2001-02-13 | United Technologies Corporation | Article having a durable ceramic coating |
US6410148B1 (en) | 1999-04-15 | 2002-06-25 | General Electric Co. | Silicon based substrate with environmental/ thermal barrier layer |
US6582779B2 (en) * | 1999-08-11 | 2003-06-24 | Alliedsignal, Inc. | Silicon nitride components with protective coating |
FR2798654B1 (en) * | 1999-09-16 | 2001-10-19 | Snecma | LOW THERMAL CONDUCTIVITY THERMAL BARRIER COMPOSITION, SUPERALLOY MECHANICAL PART PROTECTED BY A CERAMIC COATING HAVING SUCH A COMPOSITION, AND METHOD FOR PRODUCING THE CERAMIC COATING |
ES2384236T3 (en) * | 2000-12-08 | 2012-07-02 | Sulzer Metco (Us) Inc. | Improved thermal barrier coating and pre-alloyed stabilized zirconia powder |
US6812176B1 (en) * | 2001-01-22 | 2004-11-02 | Ohio Aerospace Institute | Low conductivity and sintering-resistant thermal barrier coatings |
US6586115B2 (en) | 2001-04-12 | 2003-07-01 | General Electric Company | Yttria-stabilized zirconia with reduced thermal conductivity |
US6607852B2 (en) * | 2001-06-27 | 2003-08-19 | General Electric Company | Environmental/thermal barrier coating system with silica diffusion barrier layer |
US6558814B2 (en) * | 2001-08-03 | 2003-05-06 | General Electric Company | Low thermal conductivity thermal barrier coating system and method therefor |
US6887588B2 (en) | 2001-09-21 | 2005-05-03 | General Electric Company | Article protected by thermal barrier coating having a sintering inhibitor, and its fabrication |
US6682821B2 (en) * | 2001-12-28 | 2004-01-27 | Kyocera Corporation | Corrosion-resistant ceramics |
US6759151B1 (en) * | 2002-05-22 | 2004-07-06 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Multilayer article characterized by low coefficient of thermal expansion outer layer |
US6733908B1 (en) * | 2002-07-08 | 2004-05-11 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Multilayer article having stabilized zirconia outer layer and chemical barrier layer |
US6929852B2 (en) * | 2002-08-08 | 2005-08-16 | Siemens Westinghouse Power Corporation | Protective overlayer for ceramics |
US6730422B2 (en) * | 2002-08-21 | 2004-05-04 | United Technologies Corporation | Thermal barrier coatings with low thermal conductivity |
PL361760A1 (en) * | 2002-08-21 | 2004-02-23 | United Technologies Corporation | Heat barrier forming coat featuring low thermal conductivity |
US6844075B1 (en) * | 2003-10-06 | 2005-01-18 | General Electric Company | Environmental barrier coating |
-
2004
- 2004-03-17 US US10/803,527 patent/US7226672B2/en not_active Expired - Lifetime
-
2005
- 2005-03-07 KR KR1020050018481A patent/KR100736296B1/en not_active IP Right Cessation
- 2005-03-14 CA CA002500753A patent/CA2500753A1/en not_active Abandoned
- 2005-03-15 PL PL05373690A patent/PL373690A1/en not_active Application Discontinuation
- 2005-03-16 EP EP05251604A patent/EP1577499B1/en active Active
- 2005-03-16 AT AT05251604T patent/ATE434714T1/en not_active IP Right Cessation
- 2005-03-16 SG SG200501609A patent/SG115766A1/en unknown
- 2005-03-16 DE DE602005015049T patent/DE602005015049D1/en active Active
- 2005-03-16 JP JP2005074171A patent/JP2005263625A/en active Pending
- 2005-03-16 CN CNA2005100641444A patent/CN1670337A/en active Pending
- 2005-03-16 MX MXPA05002921A patent/MXPA05002921A/en unknown
- 2005-03-17 RU RU2005107462/06A patent/RU2005107462A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
MXPA05002921A (en) | 2005-09-21 |
PL373690A1 (en) | 2005-09-19 |
US7226672B2 (en) | 2007-06-05 |
EP1577499A3 (en) | 2006-12-27 |
CA2500753A1 (en) | 2005-09-17 |
SG115766A1 (en) | 2005-10-28 |
US20040175597A1 (en) | 2004-09-09 |
JP2005263625A (en) | 2005-09-29 |
ATE434714T1 (en) | 2009-07-15 |
RU2005107462A (en) | 2006-08-27 |
KR100736296B1 (en) | 2007-07-06 |
KR20060043438A (en) | 2006-05-15 |
CN1670337A (en) | 2005-09-21 |
DE602005015049D1 (en) | 2009-08-06 |
EP1577499A2 (en) | 2005-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1577499B1 (en) | Turbine components with thermal barrier coatings | |
EP1953267B1 (en) | Thermal barrier coatings with low thermal conductivity comprising lanthanide sesquioxides | |
US7429424B2 (en) | Sintering resistant, low conductivity, high stability thermal barrier coating/environmental barrier coating system for a ceramic-matrix composite (CMC) article to improve high temperature capability | |
US7115326B2 (en) | Thermal/environmental barrier coating with transition layer for silicon-comprising materials | |
US6558814B2 (en) | Low thermal conductivity thermal barrier coating system and method therefor | |
EP2189504B1 (en) | Reinforced oxide coatings | |
JP4927387B2 (en) | Thermal / environmental barrier coatings for silicon-containing materials | |
US7449254B2 (en) | Environmental barrier coating with physical barrier layer for silicon-comprising materials | |
US7115327B2 (en) | Thermal/environmental barrier coating with transition layer for silicon-comprising materials | |
US20080292803A1 (en) | Low conductivity, thermal barrier coating system for ceramic matrix composite (CMC) articles | |
EP1400610A1 (en) | Thermal barrier coatings with low thermal conductivity comprising lanthanide sesquioxides | |
WO2014204480A1 (en) | Environmental barrier coating bond coat systems | |
Lee | Multilayer Article Characterized by Low Coefficient of Thermal Expansion Outer Layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
17P | Request for examination filed |
Effective date: 20070618 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20080328 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602005015049 Country of ref document: DE Date of ref document: 20090806 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090924 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091024 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091024 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090924 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20100325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090925 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100316 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091225 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090624 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: 10 FARM SPRINGS ROAD, FARMINGTON, CT 06032 (US) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20170227 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005015049 Country of ref document: DE Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005015049 Country of ref document: DE Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602005015049 Country of ref document: DE Owner name: UNITED TECHNOLOGIES CORP. (N.D.GES.D. STAATES , US Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP., HARTFORD, CONN., US |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200218 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005015049 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211001 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240220 Year of fee payment: 20 |