EP1576147B1 - Bacterial strains delftia acidovorans mc1-s, production and use thereof for the production of the s enantiomers of 2-phenoxypropionic acid derivatives - Google Patents

Bacterial strains delftia acidovorans mc1-s, production and use thereof for the production of the s enantiomers of 2-phenoxypropionic acid derivatives Download PDF

Info

Publication number
EP1576147B1
EP1576147B1 EP03780150A EP03780150A EP1576147B1 EP 1576147 B1 EP1576147 B1 EP 1576147B1 EP 03780150 A EP03780150 A EP 03780150A EP 03780150 A EP03780150 A EP 03780150A EP 1576147 B1 EP1576147 B1 EP 1576147B1
Authority
EP
European Patent Office
Prior art keywords
delftia acidovorans
phenoxypropionic acid
enantiomers
culturing
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03780150A
Other languages
German (de)
French (fr)
Other versions
EP1576147A1 (en
Inventor
Roland Müller
Monika Neytschev
Cornelia Schumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum fuer Umweltforschung GmbH UFZ
Original Assignee
Helmholtz Zentrum fuer Umweltforschung GmbH UFZ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum fuer Umweltforschung GmbH UFZ filed Critical Helmholtz Zentrum fuer Umweltforschung GmbH UFZ
Publication of EP1576147A1 publication Critical patent/EP1576147A1/en
Application granted granted Critical
Publication of EP1576147B1 publication Critical patent/EP1576147B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/001Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by metabolizing one of the enantiomers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the invention relates to novel bacterial strains Delftia acidovorans MC1-S, processes for their preparation and their use for the production of high-purity S-enantiomers of 2-phenoxypropionic acid derivatives.
  • it relates to the bacterial strain Delftia acidovorans MC1-S DSM 15377 and its use.
  • Asymmetric syntheses are of great importance for future research and application, especially in the field of fine and biochemicals, the pharmaceutical and pesticides, the flavors and fragrances, etc., and thus for the national economy in general.
  • the wild-type Delftia acidovorans MC1 (Müller et al., 1999, Microbiol. Res. 154, 241) is known to be capable of complete degradation of racemic 2-phenoxypropionates, eg of (RS) -2,4-DP, (RS) -MCPP, (RS) -2- (m-chlorophenoxy) propionate or (RS) -2- (4-chlorophenoxy) propionate) (Müller and Babel 1999, Acta Biotechnol 19, 349, Müller et al 2001, Microbiol Res , 121).
  • the wild-type strain MC1 has two specific enzymes which are an essential component, namely the enzyme (R) -2,4-DP / ⁇ -ketoglutarate dioxygenase (RdpA) and the enzyme (S) -2,4-DP / ⁇ -ketoglutarate dioxygenase (SdpA).
  • RdpA the enzyme
  • SdpA the enzyme
  • Strain MC1 is considered to be stable and efficient against high herbicide concentrations ranging up to the solvent-related limit and may be 5-10 mM, depending on the pH. Other strains such as Alkaline Eutrophus (Ralstonia eutropha) JMP134, the also capable of degrading herbicides are considerably more unstable and their activity is severely limited even at concentrations of 0.5 mM herbicide (Müller et al., 1997, Appl. Microbiol., Biotechnol., 48, 648).
  • the reason for this is the loss of the activity for cleaving the ether bond, catalyzed by the substrate- and stereospecifically acting ⁇ -ketoglutarate-dependent dioxygenases in question, as RdpA (with specificity for R enantiomers) and SdpA (with specificity for S enantiomers) designated, viewed.
  • the loss of utilization activity affects the two genes responsible for the same, ie one usually receives double negative mutants.
  • the invention therefore an object of the invention to seek and provide organisms that are suitable for the recovery of high-purity S-enantiomers of 2-phenoxypropionic acid derivatives.
  • the object of the invention could be achieved by mutants of the strain Delftia acidovorans MC1.
  • These new bacterial strains, called MC1-S, are capable of S-enantiomers produce highly pure and express the activities for cleavage and utilization of R-enantiomers constitutively.
  • the bacterial strains MC1-S according to the invention are responsible for the complete degradation of the R- Enantiomers capable of forming water, CO 2 and hydrochloric acid and thus the high-purity production of the S-enantiomer.
  • the bacterial strains D. acidovorans MC1-S are stable to 2-phenoxypropionic acid derivatives and metabolically active up to the solubility concentration of the corresponding racemates at pH values up to 9.0.
  • strain MC1-S has been found, which was deposited on 17.12.2002 at the German Collection of Microorganisms and Cell Cultures GmbH under the number DSM 15377.
  • the production of the new strains MC1-S was carried out by cultivating the wild-type strain Delftia acidovorans MC1 with (2,4-dichlorophenoxy) acetic acid (2,4-D) as the selective substrate and as the sole source of carbon and energy.
  • 2,4-dichlorophenoxy) acetic acid (2,4-D) as the selective substrate and as the sole source of carbon and energy.
  • clones having a performance-stable form of herbicidal utilization activity with exclusive activity for R-enantiomers of (RS) -2-phenoxypropionic acid derivatives have been obtained, which are capable of producing highly pure the S-enantiomers of 2-phenoxypropionic acid derivatives. This is surprising since 2,4-D is rather poorly utilized by the wild strain MC1 and the substrate allows maximum growth rates of 0.05 h -1 .
  • the culture is carried out at flow rates in the range of greater than zero to 0.3 h -1 , preferably in a conventional nutrient medium.
  • further substrates serve as carbon and energy source, preferably succinate or pyruvate.
  • the flow rate is increased from 0.05 h -1 to 0.3 h -1 and kept constant over a longer period at the highest value. This process is repeated several times. Stationary 2,4-D concentration increased during the velocity gradient.
  • the growth characteristics of clones from this culture are monitored with (RS) -2,4-dichlorophenoxypropionic acid (2,4-DP) as a selective substrate. Strongly growing colonies are further propagated eg via liquid culture in complex medium and subsequently selected again.
  • the cultivation is preferably carried out at pH values of 8 to 9, preferably 8.5 and temperatures of 20 to 35 ° C, preferably 30 ° C, over a period of about 2 to 8 weeks.
  • Delftia acidovorans MC1 is continuously cultured at a flow rate (D) of 0.1 h -1 in the presence of 2,4-D and succinate over a period of 10 days. Subsequently, the flow rate is gradually increased to a rate of 0.24 h -1 with a ⁇ D of 0.06 h -1 and a time interval ⁇ t of 1.5 h and cultured for a further three days at this growth rate. Strongly growing colonies are selected, multiplied by liquid culture in complex medium and then cultivated again. This procedure is repeated up to three times. Clones of strong colonies are opened applied the selective substrates (R) -2,4-DP, (S) -2,4-DP and 2,4-D. Strong colonies over several passages are used for enzyme assays on RdpA and SdpA.
  • D flow rate
  • S selective substrates
  • bacterial strains MC1-S are surprisingly obtained and selected which show exclusive activity for utilization of the R-enantiomers. Obviously, they therefore have exclusive activity for the enzyme RdpA and are negative for SdpA. Clones that only have activity for SdpA were not found.
  • the bacterial strains according to the invention were propagated under non-selective conditions. In contrast to the wild-type strain MC1, they are genetically stable. Performance stability was observed over an observed range of 80 generations.
  • the strains MC1-S according to the invention are suitable for 100% cleavage of R-enantiomers.
  • D. acidovorans MC1-S can also be obtained by genetic modification of the wild-type D. acidovorans MC1, in particular using the genetically performance- stable mutants, by using the gene sdpA for the enzyme (S) -2,4-DP / ⁇ -ketoglutarate Dioxygenase (SdpA), which is specific for the cleavage of S enantiomers of phenoxypropionates, is switched off or eliminated.
  • rdpA which encodes the (R) -2,4-DP / ⁇ -ketoglutarate dioxygenase
  • Racemic 2-phenoxypropionic acid derivatives according to the invention are preferred 2- (2,4-dichlorophenoxy) propionic acid [(RS) -2,4-DP], 2- (4-chloro-2-methylphenoxy) propionic acid [(RS) -MCPP] and 2- (m-chlorophenoxy) propionic acid or 2- (4-chlorophenoxy) propionic acid.
  • racemic mixtures of corresponding 2-phenoxypropionates are used as starting substrates and as the sole source of carbon and energy. Possibly. the use of conventional nutrient media with another source of carbon and energy takes place.
  • the cultivation takes place continuously or discontinuously at pH values from 6.5 to 10.0, preferably between 8.0 and 9.5 and at temperatures between 15 ° C and 37 ° C, preferably at 20 ° C to about 30 ° C.
  • the biomass is separated and the respective non-metabolized enantiomer is obtained by acid precipitation and, if appropriate, after additional purification and washing steps.
  • the precipitation is preferably carried out with HCl at a pH of 1.5; the separation of the precipitated product is preferably carried out by centrifugation.
  • (RS) -2,4-DP, (RS) -MCPP and (RS) -2- (m-chlorophenoxy) propionic acid, (RS) -2- (RS) -2,4-DP are used as starting substrates for preparing highly pure S-enantiomers.
  • (4-chlorophenoxy) propionic acid to give pure (S) -2,4-DP, pure (S) -MCPP and pure (S) -2- (m-chlorophenoxy) propionic acid or (S) -2- (4 -Chlorophenoxy) propionic acid.
  • the fermentation is carried out according to known techniques, wherein the cultivation of the respective strain can be carried out continuously or discontinuously.
  • the process is completed only after a selected incubation time under aerobic conditions (preferably at least 1 hour).
  • the fermentation process according to the invention for obtaining pure S-enantiomers may also be carried out batchwise, wherein a growth step may be included in the production of the biomass using a usual nutrient medium with a carbon and energy source with a subsequent conditioning of the strain.
  • the strain is first cultured in a nutrient medium, preferably pyruvate, in a preferred amount of 2 to 5 g / l.
  • inoculum colonies are used after growth on one of the (RS) -2-phenoxypropionic acid derivatives.
  • the biomass is induced by addition of a (RS) -2-phenoxypropionic acid derivative (preferably 0.5 mM (RS) -2-phenoxypropionic acid derivative) and into a medium containing the biomass in one preferred concentration of 0.1 to 0.5 g / l with preferred pH values of 8 to 9.5 and the (RS) -2-phenoxypropionic acid derivative as a function of the temperature in a concentration of preferably 5 mM (at room temperature , 18-25 ° C) to 10 mM (at 30 ° C), transferred (mineral Medium as above).
  • the biomass can be used as a present suspension or after prior separation.
  • the bacterial strain can be grown continuously or discontinuously on a (RS) -2-phenoxypropionic acid derivative as sole carbon and energy source.
  • the biomass thus obtained is transferred to a medium, wherein the biomass is present in a preferred concentration of 0.1 to 0.5 g / l at a preferred pH of 8 to 9.5 and the medium is the (RS) -2 Phenoxypropionic acid derivative depending on the temperature in a concentration of preferably 5 mM (at room temperature) to 10 mM (at 30 ° C).
  • the treatment of the precipitated product is preferably carried out by optionally repeated washing with HCl (preferably 0.5 N HCl), drying, optionally repeated extraction and recrystallization in an ether, preferably in diethyl ether.
  • HCl preferably 0.5 N HCl
  • the concentration of the depleted R enantiomer had dropped to a value no longer detectable by HPLC over a period of 6 to 24 hours.
  • the yield of the R-enantiomer can in principle be assumed to be 100% and is only reduced by the losses incurred in the course of the work-up.
  • the particular strain may also be used to supplement and highly purify commercial S-enantiomeric products, i. eliminate interfering impurities by the corresponding R-enantiomer.
  • S-enantiomers of the respective phenoxyalkanoates are currently not on the market.
  • strains MC1-S according to the invention in particular the strain DSM 15377, can be used for the production of fine chemicals and open up new products.
  • the strains are in principle suitable for eliminating or depleting the unwanted enantiomer from racemic mixtures by productive degradation even on a bulk production scale and thus, for example, removing the R enantiomer which is not effective as a herbicide.
  • strain MC1-S DSM 15377 avoids the necessity of having to use enantiomeric precursors / compounds in the synthesis of the pure S-enantiomer, which in turn arise from special syntheses or purification processes and is therefore correspondingly cost-intensive. Instead, it can be put on a robust and cost-effective synthesis.
  • the strain Delftia acidovorans MC1 is suspended on a mineral medium of the following composition (in mg / l) NH 4 Cl, 760; KH 2 PO 4 , 340; K 2 HPO 4 , 485; CaCl 2 * 6 H 2 O, 27; MgSO 4 .7H 2 O, 71.2; FeSO 4 * 7H 2 O, 4.98; CuSO 4 .5H 2 O, 0.785; MnSO 4 * 4H 2 O, 0.81; ZnSO 4 .7H 2 O, 0.44; Na 2 MoO 4 .2H 2 O, 0.25) and 10 mM (RS) -2- (2,4-dichlorophenoxy) propionate [(RS) -2,4-DP] as the sole carbon and energy source.
  • a mineral medium of the following composition (in mg / l) NH 4 Cl, 760; KH 2 PO 4 , 340; K 2 HPO 4 , 485; CaCl 2 * 6 H 2 O
  • the inoculations were colonies grown on (RS) -2,4-DP agar plates.
  • Preference is given to pH values of 8.5 and temperatures of 30 ° C. Under these conditions, the steady state concentration of (R) -2,4-DP and (S) -2,4-DP, respectively, is small according to the kinetic parameters for growth.
  • the pH can be varied in the range of 7.0 to 9.0 without significantly affecting the growth.
  • D. acidovorans MC1 was continuously cultured at a flow rate (D) of 0.1 h -1 over a period of 10 days to 18 mM succinate and 6 mM 2,4-D. Subsequently, the flow rate was gradually increased to a rate of 0.24 h -1 with a ⁇ D of 0.06 h -1 and a time interval ⁇ t of 1.5 h, and cultured for another three days at this growth rate. Stationary 2,4-D concentration increased during the rate gradient from 0.35 mM to 2.7 mM. The growth characteristics of clones from this culture were monitored on agar plates with (RS) -2,4-DP as the selective substrate.
  • D flow rate
  • RS -2,4-DP
  • a mineral medium of the following composition (in mg / l) NH 4 Cl, 760; KH 2 PO 4 ,
  • Stationary substrate concentrations in the fermentation procedure were approximately 3.65 mM (S) -2,4-DP and 0.05 mM (R) -2,4-DP.
  • the fermenter effluent was collected under aseptic conditions or under unprotected conditions in a nitrogen atmosphere in portions and further treatment for at least 1 h at room temperature to decompose the remaining (R) -2,4-DP further aerated.
  • the biomass was separated by centrifugation and the supernatant was brought to pH 1.5 with 1N HCl.
  • the precipitated (S) -2,4-DP was also separated by centrifugation, the pellet washed twice with 0.5 N HCl and air or vacuum dried.
  • the total yield of (S) -2,4-DP after fermentation was about 100%, after the acid precipitation, the yield is reduced by the amount remaining corresponding to the solubility of the free acid in the aqueous phase.
  • the work-up of the entire acid precipitation or in solution remaining residue by lyophilization was taken up twice in diethyl ether and recrystallized and dried.
  • the product can be obtained without further process steps also directly by extraction with diethyl ether from the aqueous phase and worked up accordingly.
  • (R) -2,4-DP could no longer be detected by means of HPLC (detection limit ⁇ 0.5 ⁇ M).
  • Detection was carried out on a Shimadzu HPLC system under isocratic conditions at a mobile phase flow rate (40% acetonitrile in 60% phosphate solution 130 mM, pH 2.8) of 1 ml / min and a Nucleosil 5RP18 column (250/4) ( Knauer, Berlin) or using an enantioselective column (Nucleodex- ⁇ -PM 200/4, Macherey-Nagel, Düren) with 70% methanol in 30% NaH 2 PO 4 (50 mM, pH 3.0) as the mobile phase.
  • D. acidovorans MC1-S DSM 15377 was grown under discontinuous conditions on (RS) -2,4-DP as the sole C / E source.
  • the biomass was used either without further treatment or the biomass separated and in a concentration of 0.1 to 0.5 g / l in a medium (mineral as Example 1) with pH values of 9-9, 5 containing 5 mM (room temperature) to 10 mM (30 ° C) (RS) -2,4-DP.
  • the suspension was incubated under aerobic conditions correspondingly at room temperature or at 30 ° C.
  • the concentration of (R) -2,4-DP had fallen in a period of 6 to 24 h, depending on the biomass concentration on a no longer detectable by HPLC value.
  • the suspension was worked up according to the procedures shown in Example 2.
  • D. acidovorans MC1-S DSM 15377 was grown by batch method to 2 to 5 g / l Na pyruvate. Colonies of the strain selectively maintained on (RS) -2,4-DP agar plates served as the inoculum. After reaching the stationary phase, this biomass was induced by the addition of 0.5 mM (RS) -2,4-DP and then added to a medium which corresponds to the concentrations of biomass and (RS) -2,4- DP contained. After appropriate times, the concentration of (R) -2,4-DP had dropped to undetectable levels.
  • the biomass was grown as shown in Example 2 or 3 and washed with sterile medium prior to further use or cultured as shown in Example 4 and induced by addition of (RS) -2- (m-chlorophenoxypropionate and in both cases in a Add medium containing 5 mM (RS) -2- (m-chlorophenoxy) propionate, depending on the biomass concentration, added in a range of 0.1 to 0.5 g / l, the complete degradation of (R) -2- (m-chlorophenoxy) propionate up to HPLC no longer detectable within 6 to 24 h In all cases, pure S-enantiomeric products were obtained.
  • the biomass was grown as shown in Example 2 or 3 and washed with sterile medium prior to further use or cultured as shown in Example 4 and induced by the addition of (RS) -2- (4-chlorophenoxy) propionate and in both cases in a medium containing 5 mM (RS) -2- (4-chlorophenoxy) propionate.
  • RS -2- (4-chlorophenoxy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to novel bacterial strains Delftia acidovorans MC1-S, method for production and use thereof for the production of highly pure S enantiomers of 2-phenoxypropionic acid derivatives. The invention particularly relates to the bacterial strain Delftia acidovorans MC1-S DSM 15377 and use thereof.

Description

Die Erfindung betrifft neue Bakterienstämme Delftia acidovorans MC1-S, Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Produktion von hochreinen S-Enantiomeren von 2-Phenoxypropionsäure-Derivaten. Insbesondere betrifft sie den Bakterienstamm Delftia acidovorans MC1-S DSM 15377 sowie seine Verwendung.The invention relates to novel bacterial strains Delftia acidovorans MC1-S, processes for their preparation and their use for the production of high-purity S-enantiomers of 2-phenoxypropionic acid derivatives. In particular, it relates to the bacterial strain Delftia acidovorans MC1-S DSM 15377 and its use.

Asymmetrische Synthesen sind von großer Bedeutung für die künftige Forschung und Anwendung, insbesondere im Bereich der Fein- bzw. Biochemikalien, der Arznei- und Pflanzenschutzmittel, der Geschmacks- und Riechstoffe etc. und damit für die Volkswirtschaft überhaupt.Asymmetric syntheses are of great importance for future research and application, especially in the field of fine and biochemicals, the pharmaceutical and pesticides, the flavors and fragrances, etc., and thus for the national economy in general.

Für die Gewinnung optischer Antipoden aus racemischen Ausgangsverbindungen wurde in der Zeit, als α-Aryloxyalkylcarboxylate als Herbizide entdeckt und hinsichtlich ihrer enantiospezifischen Wirkung näher untersucht wurden, die selektive Kristallisation über optisch aktive Lösungsmittel als eine praktikable Methode zur Anreicherung entsprechender Enantiomere genutzt (Matell 1953, Arkiv Kemi 6, 355). Für die asymetrische Synthese von Enantiomeren hat sich der Austausch von primären bzw. sekundären Hydroxygruppen in Alkoholen R-OH durch H-X in Gegenwart von trivalenten Phosphorverbindungen und Azodicarboxylat-Derivaten als geeignet erwiesen (Mitsunobu 1967, Bull. Chem. Soc. Japan 40, 2380). Die Reaktion erfolgt unter milden Bedingungen und die Ausbeuten sind im wesentlichen gut. Bei dieser Reaktion erfolgt eine komplette Inversion der Konfiguration der enantiomeren alkoholischen Ausgangsverbindungen. Dieser Reaktionstyp hat sich durch Variation von R-OH (Mitsunobu et al. 1973, Bull. Chem. Soc. Japan 46, 2833) und H-X (Loibner und Zhibal 1976, Helv. Chim. Acta 59, 2100) als sehr variabel einsetzbar gezeigt. Auf diese Weise konnten unter Nutzung von 2,4-Dichlorphenol bzw. 4-Chlor-2-methylphenol und (R)- bzw. (S)-Allyllacetat in Gegenwart von Triphenylphosphin und Diethylazodicarboxylat enantiomere Phenoxypropionat-Verbindungen ((S)-2,4-DP und (R) -2,4-DP bzw. (S) -MCPP und (R) - MCPP) synthetisiert werden. Die enantiomere Selektivität der Reaktion (enantiomeric excess, ee) ist entsprechend hoch und bewegt sich bei Werten >90% (Zipper 1998; Diss. ETH Zürich No. 12543). Für viele Anwendungen genügt dieser ee. Für die Nutzung als Fein- bzw. Biochemikalien dagegen ist diese enantiomere Reinheit nicht ausreichend.For the extraction of optical antipodes from racemic starting materials, when α-aryloxyalkylcarboxylates were discovered as herbicides and investigated for their enantiospecific activity, selective crystallization via optically active solvents was used as a practical method for enriching corresponding enantiomers (Matell 1953, Arkiv Kemi 6, 355). For the asymmetric synthesis of enantiomers, the replacement of primary or secondary hydroxyl groups in alcohols R-OH by HX in the presence of trivalent phosphorus compounds and azodicarboxylate derivatives has proven suitable (Mitsunobu 1967, Bull. Chem. Soc. Japan 40, 2380). , The reaction is carried out under mild conditions and the yields are essentially good. In this reaction, a complete inversion of the configuration of the enantiomeric alcoholic occurs Starting compounds. This type of reaction has been shown to be highly variable by variation of R-OH (Mitsunobu et al., 1973, Bull. Chem. Soc., Japan, 46, 2833) and HX (Loibner and Zhibal, 1976, Helv. Chim. Acta 59, 2100) , In this way, using 2,4-dichlorophenol or 4-chloro-2-methylphenol and (R) - or (S) -allyl acetate in the presence of triphenylphosphine and diethyl azodicarboxylate, enantiomeric phenoxypropionate compounds ((S) -2, 4-DP and (R) -2,4-DP and (S) -MCPP and (R) -MCPP, respectively). The enantiomeric selectivity of the reaction ( enantiomeric excess, ee ) is correspondingly high and ranges at values> 90% (Zipper 1998, Diss. ETH Zurich No. 12543). For many applications, this ee is sufficient. For use as fine or biochemicals, however, this enantiomeric purity is not sufficient.

Der Wildtyp Delftia acidovorans MC1 (Müller et al. 1999, Microbiol. Res. 154, 241) ist bekanntermaßen zum kompletten Abbau von racemischen 2-Phenoxypropionaten befähigt, z.B. von (RS)-2,4-DP, (RS)-MCPP, (RS)-2-(m-Chlorphenoxy)propionat oder (RS)-2-(4-Chlorphenoxy)propionat) (Müller and Babel 1999, Acta Biotechnol. 19, 349; Müller et al. 2001, Microbiol. Res. 156, 121). Der Wildtyp-Stamm MC1 verfügt über zwei spezifische Enzyme, welche wesentlicher Bestandteil sind, nämlich das Enzym (R)-2,4-DP/α-Ketoglutarat-Dioxygenase (RdpA) und das Enzym (S)-2,4-DP/α-Ketoglutarat-Dioxygenase (SdpA). Über die Organisation der betreffenden Gene weiß man bislang nur, dass sie offensichtlich nicht auf einem Plasmid lokalisiert sind.The wild-type Delftia acidovorans MC1 (Müller et al., 1999, Microbiol. Res. 154, 241) is known to be capable of complete degradation of racemic 2-phenoxypropionates, eg of (RS) -2,4-DP, (RS) -MCPP, (RS) -2- (m-chlorophenoxy) propionate or (RS) -2- (4-chlorophenoxy) propionate) (Müller and Babel 1999, Acta Biotechnol 19, 349, Müller et al 2001, Microbiol Res , 121). The wild-type strain MC1 has two specific enzymes which are an essential component, namely the enzyme (R) -2,4-DP / α-ketoglutarate dioxygenase (RdpA) and the enzyme (S) -2,4-DP / α-ketoglutarate dioxygenase (SdpA). Up to now, the organization of the genes in question is only known to be localized on a plasmid.

Der Stamm MC1 gilt als stabil und leistungsaktiv gegenüber hohen Herbizidkonzentrationen, die bis zur lösungsmittelbedingten Grenze reichen und in Abhängigkeit vom pH-Wert Werte von 5 bis 10 mM betragen können. Andere Stämme wie Alkaligenes eutrophus (Ralstonia eutropha) JMP134, die ebenfalls zum Herbizidabbau in der Lage sind, sind wesentlich instabiler und schon bei Konzentrationen von 0,5 mM Herbizid in ihrer Aktivität stark eingeschränkt (Müller et al. 1997, Appl. Microbiol. Biotechnol. 48, 648).Strain MC1 is considered to be stable and efficient against high herbicide concentrations ranging up to the solvent-related limit and may be 5-10 mM, depending on the pH. Other strains such as Alkaline Eutrophus (Ralstonia eutropha) JMP134, the also capable of degrading herbicides are considerably more unstable and their activity is severely limited even at concentrations of 0.5 mM herbicide (Müller et al., 1997, Appl. Microbiol., Biotechnol., 48, 648).

Wenn der Stamm Delftia acidovorans MC1 auch leistungsaktiv gegenüber hohen Herbizidkonzentrationen ist, zeichnet er sich andererseits als Wildtyp durch eine extreme genetische Instabilität für die Verwertung von Phenoxyalkansäuren aus. Unter nicht selektiven Bedingungen führt die Kultivierung des Wildtyps Delftia acidovorans MC1 innerhalb von 5-10 Generationen zu einem Totalverlust der Fähigkeit zur Verwertung von (2,4-Dichlorphenoxy)essigsäure (2,4-D) und 2-(2,4-Dichlorphenoxy)propionsäure [(RS)-2,4-DP]. Als Ursache wird der Verlust der Aktivität zur Spaltung der Etherbindung, katalysiert durch die in Rede stehenden substrat- und stereospezifisch wirkenden α-Ketoglutarat-abhängigen Dioxygenasen, als RdpA (mit Spezifität für R-Enantiomere) und SdpA (mit Spezifität für S-Enantiomere) bezeichnet, angesehen. Der Verlust der Verwertungsaktivität betrifft die beiden dafür zuständigen Gene gleichermaßen, d.h. man erhält in der Regel doppelt negative Mutanten.When the strain Delftia acidovorans MC1 is also active against high concentrations of herbicide, on the other hand it is characterized as a wild type by an extreme genetic instability for the utilization of phenoxyalkanoic acids. Under non-selective conditions, culturing the wild-type Delftia acidovorans MC1 within 5-10 generations results in a total loss of the ability to utilize (2,4-dichlorophenoxy) acetic acid (2,4-D) and 2- (2,4-dichlorophenoxy ) Propionic acid [(RS) -2,4-DP]. The reason for this is the loss of the activity for cleaving the ether bond, catalyzed by the substrate- and stereospecifically acting α-ketoglutarate-dependent dioxygenases in question, as RdpA (with specificity for R enantiomers) and SdpA (with specificity for S enantiomers) designated, viewed. The loss of utilization activity affects the two genes responsible for the same, ie one usually receives double negative mutants.

Bislang konnten keine Organismen nachgewiesen werden, die sich zur Racemat-Spaltung und Herstellung von reinen Enantiomeren von 2-Phenoxypropionsäure-Derivaten eignen.So far, no organisms have been detected, which are suitable for racemate resolution and preparation of pure enantiomers of 2-phenoxypropionic acid derivatives.

Der Erfindung lag deshalb die Aufgabe zugrunde, Organismen zu suchen und bereitzustellen, die zur Gewinnung von hochreinen S-Enantiomeren von 2-Phenoxypropionsäure-Derivaten geeignet sind.The invention therefore an object of the invention to seek and provide organisms that are suitable for the recovery of high-purity S-enantiomers of 2-phenoxypropionic acid derivatives.

Die Aufgabe der Erfindung konnte durch Mutanten des Stammes Delftia acidovorans MC1 gelöst werden. Diese neuen Bakterienstämme, genannt MC1-S, sind in der Lage S-Enantiomere hochrein zu produzieren und exprimieren die Aktivitäten zur Spaltung und Verwertung der R-Enantiomeren konstitutiv. Nach Induktion der Chlorphenol-Hydroxylase und Bildung der entsprechenden Catechole und nach Induktion der Enzyme des modifizierten ortho-Wegs (Abbau über den an sich bekannten Chlorcatechol-Weg der Bakterien mittels ringspaltender Dioxygenasen) sind die erfindungsgemäßen Bakterienstämme MC1-S zum vollständigen Abbau der R-Enantiomeren unter Bildung von Wasser, CO2 und Salzsäure befähigt und damit zur hochreinen Produktion des S-Enantiomeren.The object of the invention could be achieved by mutants of the strain Delftia acidovorans MC1. These new bacterial strains, called MC1-S, are capable of S-enantiomers produce highly pure and express the activities for cleavage and utilization of R-enantiomers constitutively. After induction of the chlorophenol hydroxylase and formation of the corresponding catechols and after induction of the enzymes of the modified ortho pathway (degradation via the known chlorocatechol pathway of the bacteria by means of ring-cleaving dioxygenases), the bacterial strains MC1-S according to the invention are responsible for the complete degradation of the R- Enantiomers capable of forming water, CO 2 and hydrochloric acid and thus the high-purity production of the S-enantiomer.

Die Bakterienstämme D. acidovorans MC1-S sind stabil gegenüber 2-Phenoxypropionsäure-Derivaten und stoffwechselaktiv bis zur Löslichkeitskonzentration der entsprechenden Racemate bei pH-Werten bis 9,0.The bacterial strains D. acidovorans MC1-S are stable to 2-phenoxypropionic acid derivatives and metabolically active up to the solubility concentration of the corresponding racemates at pH values up to 9.0.

Als besonders bevorzugt zur Produktion von S-Enantiomeren von 2-Phenoxypropionsäure-Derivaten hat sich der Stamm MC1-S erwiesen, der am 17.12.2002 bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH unter der Nummer DSM 15377 hinterlegt wurde.Particularly preferred for the production of S-enantiomers of 2-phenoxypropionic acid derivatives, the strain MC1-S has been found, which was deposited on 17.12.2002 at the German Collection of Microorganisms and Cell Cultures GmbH under the number DSM 15377.

Die Erzeugung der neuen Stämme MC1-S erfolgte durch Kultivierung des Wildtyp-Stammes Delftia acidovorans MC1 mit (2,4-Dichlorphenoxy)essigsäure (2,4-D) als selektivem Substrat und als alleiniger Kohlenstoff- und Energiequelle. Es wurden überraschend Klone mit leistungsstabiler Ausprägung der Herbizidverwertungsaktivität mit ausschließlicher Aktivität für R-Enantiomere von (RS)-2-Phenoxypropionsäure-Derivaten erhalten, die in der Lage sind, die S-Enantiomeren der 2-Phenoxypropionsäure-Derivate hochrein zu produzieren. Das ist insofern überraschend, da 2,4-D vom Wildstamm MC1 eher schlecht verwertet wird und das Substrat maximale Wachstumsraten von 0,05 h-1 zulässt.The production of the new strains MC1-S was carried out by cultivating the wild-type strain Delftia acidovorans MC1 with (2,4-dichlorophenoxy) acetic acid (2,4-D) as the selective substrate and as the sole source of carbon and energy. Surprisingly, clones having a performance-stable form of herbicidal utilization activity with exclusive activity for R-enantiomers of (RS) -2-phenoxypropionic acid derivatives have been obtained, which are capable of producing highly pure the S-enantiomers of 2-phenoxypropionic acid derivatives. This is surprising since 2,4-D is rather poorly utilized by the wild strain MC1 and the substrate allows maximum growth rates of 0.05 h -1 .

In einer bevorzugten Ausführungsvariante erfolgt die Kultivierung bei Durchflussraten im Bereich von größer Null bis 0,3 h-1, vorzugsweise in einem an sich üblichen Nährmedium. Neben 2,4-D dienen gegebenfalls weitere Substrate als Kohlenstoff- und Energiequelle, vorzugsweise Succinat oder Pyruvat.In a preferred embodiment, the culture is carried out at flow rates in the range of greater than zero to 0.3 h -1 , preferably in a conventional nutrient medium. In addition to 2,4-D optionally further substrates serve as carbon and energy source, preferably succinate or pyruvate.

In definierten zeitlichen Abständen wird die Durchflussrate von 0,05 h-1 auf 0,3 h-1 gesteigert und über einen längeren Zeitraum auf dem höchsten Wert konstant gehalten. Dieser Vorgang wird mehrmals wiederholt. Die stationäre 2,4-D-Konzentration stieg während des Geschwindigkeitsgradienten an. Die Wachstumseigenschaften von Klonen aus dieser Kultur werden mit (RS)-2,4-Dichlorphenoxypropionsäure (2,4-DP) als selektivem Substrat verfolgt. Stark wachsende Kolonien werden z.B. über Flüssigkultur in Komplexmedium weiter vermehrt und anschließend erneut selektiert.At defined time intervals, the flow rate is increased from 0.05 h -1 to 0.3 h -1 and kept constant over a longer period at the highest value. This process is repeated several times. Stationary 2,4-D concentration increased during the velocity gradient. The growth characteristics of clones from this culture are monitored with (RS) -2,4-dichlorophenoxypropionic acid (2,4-DP) as a selective substrate. Strongly growing colonies are further propagated eg via liquid culture in complex medium and subsequently selected again.

Die Kultivierung erfolgt bevorzugt bei pH-Werten von 8 bis 9, vorzugsweise 8,5 und Temperaturen von 20 bis 35°C, vorzugsweise 30°C, über einen Zeitraum von ca. 2 bis 8 Wochen.The cultivation is preferably carried out at pH values of 8 to 9, preferably 8.5 and temperatures of 20 to 35 ° C, preferably 30 ° C, over a period of about 2 to 8 weeks.

Besonders bevorzugt wird Delftia acidovorans MC1 bei einer Durchflussrate (D) von 0,1 h-1 in Gegenwart von 2,4-D und Succinat über einen Zeitraum von 10 Tagen kontinuierlich kultiviert. Anschließend wird die Durchflussrate mit einem ΔD von 0,06 h-1 und einem Zeitintervall Δt von 1,5 h schrittweise auf eine Rate von 0,24 h-1 gesteigert und weitere drei Tage bei dieser Wachstumsgeschwindigkeit kultiviert. Stark wachsende Kolonien werden selektiert, über Flüssigkultur in Komplexmedium vermehrt und anschließend erneut kultiviert. Diese Prozedur wird bis zu dreimal wiederholt. Klone von stark gewachsenen Kolonien werden auf die selektiven Substrate (R)-2,4-DP, (S)-2,4-DP und 2,4-D aufgebracht. Über mehrere Passagen stark wachsende Kolonien werden für Enzymtests auf RdpA und SdpA verwendet. More preferably, Delftia acidovorans MC1 is continuously cultured at a flow rate (D) of 0.1 h -1 in the presence of 2,4-D and succinate over a period of 10 days. Subsequently, the flow rate is gradually increased to a rate of 0.24 h -1 with a ΔD of 0.06 h -1 and a time interval Δt of 1.5 h and cultured for a further three days at this growth rate. Strongly growing colonies are selected, multiplied by liquid culture in complex medium and then cultivated again. This procedure is repeated up to three times. Clones of strong colonies are opened applied the selective substrates (R) -2,4-DP, (S) -2,4-DP and 2,4-D. Strong colonies over several passages are used for enzyme assays on RdpA and SdpA.

Neben Klonen, die nach wie vor Aktivität für (RS)-Derivate zeigen, werden überraschend Bakterienstämme MC1-S erhalten und selektiert, die ausschließliche Aktivität zur Verwertung der R-Enantiomeren zeigen. Offensichtlich besitzen sie demzufolge ausschließliche Aktivität für das Enzym RdpA und sind SdpA negativ. Klone, die ausschließlich Aktivität für SdpA besitzen, wurden nicht gefunden.In addition to clones which still show activity for (RS) -derivatives, bacterial strains MC1-S are surprisingly obtained and selected which show exclusive activity for utilization of the R-enantiomers. Obviously, they therefore have exclusive activity for the enzyme RdpA and are negative for SdpA. Clones that only have activity for SdpA were not found.

Zum Nachweis der Stabilität der Leistung wurden die erfindungsgemäßen Bakterienstämme unter nicht selektiven Bedingungen vermehrt. Im Unterschied zum Wildtyp-Stamm MC1 sind sie genetisch stabil. Über eine beobachtete Spanne von 80 Generationen konnte Leistungsstabilität beobachtet werden. Die erfindungsgemäßen Stämme MC1-S sind zur 100%igen Spaltung von R-Enantiomeren geeignet.To demonstrate the stability of the performance, the bacterial strains according to the invention were propagated under non-selective conditions. In contrast to the wild-type strain MC1, they are genetically stable. Performance stability was observed over an observed range of 80 generations. The strains MC1-S according to the invention are suitable for 100% cleavage of R-enantiomers.

Die Klone mit Aktivität für (RS)-Derivate erwiesen sich als genetisch leistungsstabile Mutanten. Erfingungsgemäße Stämme D. acidovorans MC1-S können auch durch genetische Veränderung des Wildtyps D. acidovorans MC1, insbesondere unter Nutzung der genetisch leistungsstabilen Mutanten erhalten werden, indem das Gen sdpA für das Enzym (S)-2,4-DP/ α-Ketoglutarat-Dioxygenase (SdpA), das spezifisch für die Spaltung von S-Enantiomeren der Phenoxypropionate ist, abgeschaltet bzw. eliminiert wird. Durch eine eventuelle zusätzliche Vervielfältigung (Gendosis-Effekt) von rdpA, das die (R)-2,4-DP/α-Ketoglutarat-Dioxygenase codiert, kann eine Steigerung der Enzymmenge RdpA erreicht werden.The clones with activity for (RS) derivatives proved to be genetically engineered mutants. Strains according to the invention D. acidovorans MC1-S can also be obtained by genetic modification of the wild-type D. acidovorans MC1, in particular using the genetically performance- stable mutants, by using the gene sdpA for the enzyme (S) -2,4-DP / α-ketoglutarate Dioxygenase (SdpA), which is specific for the cleavage of S enantiomers of phenoxypropionates, is switched off or eliminated. By an additional amplification (gene dosage effect) of rdpA, which encodes the (R) -2,4-DP / α-ketoglutarate dioxygenase, an increase in the amount of enzyme RdpA can be achieved.

Racemische 2-Phenoxypropionsäure-Derivate im Sinne der Erfindung sind bevorzugt
2-(2,4-Dichlorphenoxy)propionsäure [(RS)-2,4-DP],
2-(4-Chlor-2-methylphenoxy)propionsäure [(RS)-MCPP] und
2-(m-Chlorphenoxy)propionsäure bzw.
2-(4-Chlorphenoxy)propionsäure.
Racemic 2-phenoxypropionic acid derivatives according to the invention are preferred
2- (2,4-dichlorophenoxy) propionic acid [(RS) -2,4-DP],
2- (4-chloro-2-methylphenoxy) propionic acid [(RS) -MCPP] and
2- (m-chlorophenoxy) propionic acid or
2- (4-chlorophenoxy) propionic acid.

Zur erfindungsgemäßen Gewinnung hochreiner S-Enantiomere von (RS)-2-Phenoxypropionsäure-Derivaten unter Verwendung der Stämme D. acidovorans MC1-S werden racemische Gemische von entsprechenden 2-Phenoxypropionaten als Ausgangssubstrate und als alleinige Kohlenstoff- und Energiequelle eingesetzt. Ggf. erfolgt die Nutzung an sich üblicher Nährmedien mit einer weiteren Kohlenstoff- und Energiequelle. Die Kultivierung erfolgt kontinuierlich oder diskontinuierlich bei pH-Werten von 6,5 bis 10,0, vorzugsweise zwischen 8,0 und 9,5 und bei Temperaturen zwischen 15°C und 37°C, vorzugsweise bei 20°C bis ca. 30°C. Die Biomasse wird abgetrennt und das jeweils nicht metabolisierte Enantiomer durch Säurefällung und ggf. nach zusätzlichen Reinigungs- und Waschschritten, gewonnen. Die Fällung erfolgt bevorzugt mit HCl bei einem pH Wert von 1,5; die Abtrennung des Fällungsproduktes erfolgt vorzugsweise durch Zentrifugation.To obtain highly pure S-enantiomers of (RS) -2-phenoxypropionic acid derivatives using the strains D. acidovorans MC1-S according to the invention, racemic mixtures of corresponding 2-phenoxypropionates are used as starting substrates and as the sole source of carbon and energy. Possibly. the use of conventional nutrient media with another source of carbon and energy takes place. The cultivation takes place continuously or discontinuously at pH values from 6.5 to 10.0, preferably between 8.0 and 9.5 and at temperatures between 15 ° C and 37 ° C, preferably at 20 ° C to about 30 ° C. The biomass is separated and the respective non-metabolized enantiomer is obtained by acid precipitation and, if appropriate, after additional purification and washing steps. The precipitation is preferably carried out with HCl at a pH of 1.5; the separation of the precipitated product is preferably carried out by centrifugation.

In besonders bevorzugten Varianten der Erfindung werden zur Herstellung hochreiner S-Enantiomerer als Ausgangssubstrate (RS)-2,4-DP, (RS)-MCPP und (RS)-2-(m-Chlorphenoxy) propionsäure, (RS)-2-(4-Chlorphenoxy)propionsäure eingesetzt, wodurch reines (S)-2,4-DP, reines (S)-MCPP und reine (S)-2-(m-Chlorphenoxy)propionsäure bzw. (S)-2-(4-Chlorphenoxy) propionsäure gewonnen werden.In particularly preferred variants of the invention, (RS) -2,4-DP, (RS) -MCPP and (RS) -2- (m-chlorophenoxy) propionic acid, (RS) -2- (RS) -2,4-DP, are used as starting substrates for preparing highly pure S-enantiomers. (4-chlorophenoxy) propionic acid to give pure (S) -2,4-DP, pure (S) -MCPP and pure (S) -2- (m-chlorophenoxy) propionic acid or (S) -2- (4 -Chlorophenoxy) propionic acid.

Die Fermentation erfolgt nach an sich bekannten Techniken, wobei die Kultivierung des jeweiligen Stammes kontinuierlich oder diskontinuierlich durchgeführt werden kann.The fermentation is carried out according to known techniques, wherein the cultivation of the respective strain can be carried out continuously or discontinuously.

Das kontinuierliche Fermentationsverfahren ist dadurch gekennzeichnet, dass man den jeweiligen erfindungsgemäßen Bakterienstamm bei bevorzugten Durchflussraten von D = 0,05 h-1 bis 0,20 h-1, besonders bevorzugt bei einer Durchflussrate von 0,06 h-1 bis 0,15 h-1, und einem bevorzugten pH-Wert zwischen 8,0 und 9,5 und einer bevorzugten Temperatur von Raumtemperatur bis ca. 30°C in Gegenwart des jeweiligen (RS)-2-Phenoxypropionsäure-Derivates als alleiniger Kohlenstoff- und Energiequelle und bevorzugt in Gegenwart eines mineralischen Mediums kultiviert. Vorzugsweise wird zur Gewährleistung einer vollständigen Umsetzung der R-Enantiomeren im Fermenterablauf erst nach einer gewählten Inkubationszeit unter aeroben Bedingungen (bevorzugt mindestens 1 Stunde) das Verfahren abgeschlossen.The continuous fermentation process is characterized in that the respective bacterial strain according to the invention at preferred flow rates of D = 0.05 h -1 to 0.20 h -1 , more preferably at a flow rate of 0.06 h -1 to 0.15 h -1 , and a preferred pH between 8.0 and 9.5 and a preferred temperature from room temperature to about 30 ° C in the presence of the respective (RS) -2-Phenoxypropionsäure derivative as the sole carbon and energy source and preferred cultured in the presence of a mineral medium. Preferably, to ensure complete conversion of the R-enantiomers in the fermenter effluent, the process is completed only after a selected incubation time under aerobic conditions (preferably at least 1 hour).

Das erfindungsgemäße Fermentationsverfahren zur Gewinnung von reinen S-Enantiomeren kann auch diskontinuierlich erfolgen, wobei in die Erzeugung der Biomasse ein Wachstumsschritt unter Nutzung eines an sich üblichen Nährmediums mit einer Kohlenstoff- und Energiequelle mit einer anschließenden Konditionierung des Stammes eingeschlossen sein kann. Dazu wird der Stamm zuerst in einem Nährmedium, vorzugsweise Pyruvat, in einer bevorzugten Menge von 2 bis 5 g/l, kultiviert. Als Inokulum werden Kolonien nach Wachstum auf einem der (RS)-2-Phenoxypropionsäure-Derivate eingesetzt. Das heißt, nach Erreichen der stationären Phase wird die Biomasse durch Zugabe eines (RS)-2-Phenoxypropionsäure-Derivates (vorzugsweise 0,5 mM (RS)-2-Phenoxypropionsäure-Derivat) induziert und in ein Medium, das die Biomasse in einer bevorzugten Konzentration von 0,1 bis 0,5 g/l mit bevorzugten pH-Werten von 8 bis 9,5 und das (RS)-2-Phenoxypropionsäure-Derivat in Abhängigkeit von der Temperatur in einer Konzentration von vorzugsweise 5 mM (bei Raumtemperatur, 18-25°C) bis 10 mM (bei 30°C) enthält, überführt (mineralisches Medium wie oben). Dabei kann die Biomasse als vorliegende Suspension oder nach vorheriger Antrennung eingesetzt werden.The fermentation process according to the invention for obtaining pure S-enantiomers may also be carried out batchwise, wherein a growth step may be included in the production of the biomass using a usual nutrient medium with a carbon and energy source with a subsequent conditioning of the strain. For this purpose, the strain is first cultured in a nutrient medium, preferably pyruvate, in a preferred amount of 2 to 5 g / l. As inoculum colonies are used after growth on one of the (RS) -2-phenoxypropionic acid derivatives. That is, after reaching the stationary phase, the biomass is induced by addition of a (RS) -2-phenoxypropionic acid derivative (preferably 0.5 mM (RS) -2-phenoxypropionic acid derivative) and into a medium containing the biomass in one preferred concentration of 0.1 to 0.5 g / l with preferred pH values of 8 to 9.5 and the (RS) -2-phenoxypropionic acid derivative as a function of the temperature in a concentration of preferably 5 mM (at room temperature , 18-25 ° C) to 10 mM (at 30 ° C), transferred (mineral Medium as above). In this case, the biomass can be used as a present suspension or after prior separation.

In einer alternativen bevorzugten Ausführungsvariante der Kultivierung kann der Bakterienstamm kontinuierlich oder diskontinuierlich auf einem (RS)-2-Phenoxypropionsäure-Derivat als alleiniger Kohlenstoff- und Energiequelle angezogen werden. Die so gewonnene Biomasse wird in ein Medium überführt, wobei die Biomasse in einer bevorzugten Konzentration von 0,1 bis 0,5 g/l bei einem bevorzugten pH-Wert von 8 bis 9,5 vorliegt und das Medium das (RS)-2-Phenoxypropionsäure-Derivat in Abhängigkeit von der Temperatur in einer Konzentration von vorzugsweise 5 mM (bei Raumtemperatur) bis 10 mM (bei 30°C) enthält.In an alternative preferred embodiment of the cultivation, the bacterial strain can be grown continuously or discontinuously on a (RS) -2-phenoxypropionic acid derivative as sole carbon and energy source. The biomass thus obtained is transferred to a medium, wherein the biomass is present in a preferred concentration of 0.1 to 0.5 g / l at a preferred pH of 8 to 9.5 and the medium is the (RS) -2 Phenoxypropionic acid derivative depending on the temperature in a concentration of preferably 5 mM (at room temperature) to 10 mM (at 30 ° C).

Die Aufbereitung des Fällungsproduktes (des S-Enantiomeren) erfolgt vorzugsweise durch ggf. mehrfaches Waschen mit HCl (bevorzugt 0,5 n HCl), Trocknung, ggf. mehrfaches Extrahieren und Umkristallisieren in einem Ether, bevorzugt in Diethylether.The treatment of the precipitated product (the S-enantiomer) is preferably carried out by optionally repeated washing with HCl (preferably 0.5 N HCl), drying, optionally repeated extraction and recrystallization in an ether, preferably in diethyl ether.

Unter diesen Bedingungen erfolgt eine quantitative Degradation des R-Enantiomeren unter Wandlung in bakterielle Biomasse, Kohlendioxid, HCl und Wärme und das Zurückbleiben des nicht verstoffwechselten S-Enantiomeren.Under these conditions, a quantitative degradation of the R-enantiomer takes place with conversion into bacterial biomass, carbon dioxide, HCl and heat and the remaining of the non-metabolized S-enantiomer.

Die Konzentration des abgereicherten R-Enantiomeren war in Abhängigkeit von der Biomassekonzentration in einem Zeitraum von 6 bis 24 Stunden auf einen über HPLC nicht mehr nachweisbaren Wert abgesunken. Die Ausbeute des R-Enantiomeren kann prinzipiell mit 100% angenommen werden und reduziert sich nur um die im Zuge der Aufarbeitung anfallenden Verluste.Depending on the biomass concentration, the concentration of the depleted R enantiomer had dropped to a value no longer detectable by HPLC over a period of 6 to 24 hours. The yield of the R-enantiomer can in principle be assumed to be 100% and is only reduced by the losses incurred in the course of the work-up.

Neben der Gewinnung des reinen S-Enantiomeren kann der jeweilige Stamm auch angewandt werden, um kommerzielle S-Enantiomere Produkte aufzubessern und hochzureinigen, d.h. störende Verunreinigungen durch das entsprechende R-Enantiomer zu eliminieren. S-Enantiomere der betreffenden Phenoxyalkanoate sind derzeit nicht auf dem Markt.In addition to recovering the pure S-enantiomer, the particular strain may also be used to supplement and highly purify commercial S-enantiomeric products, i. eliminate interfering impurities by the corresponding R-enantiomer. S-enantiomers of the respective phenoxyalkanoates are currently not on the market.

Die erfindungsgemäßen Stämme MC1-S, insbesondere der Stamm DSM 15377, sind zur Produktion von Feinchemikalien einsetzbar und erschließen neue Produkte. Die Stämme sind darüber hinaus prinzipiell geeignet, das nicht gewünschte Enantiomer aus racemischen Gemischen durch produktiven Abbau auch im bulk production Maßstab zu eliminieren bzw. abzureichern und somit z.B. das als Herbizid nicht wirksame R-Enantiomer zu entfernen.The strains MC1-S according to the invention, in particular the strain DSM 15377, can be used for the production of fine chemicals and open up new products. In addition, the strains are in principle suitable for eliminating or depleting the unwanted enantiomer from racemic mixtures by productive degradation even on a bulk production scale and thus, for example, removing the R enantiomer which is not effective as a herbicide.

Die Verwendung der Stämme, insbesondere des Stammes MC1-S DSM 15377, vermeidet die Notwendigkeit, enantiomere Vorstufen/Verbindungen bei der Synthese des reinen S-Enantiomeren einsetzen zu müssen, die ihrerseits wieder aus speziellen Synthesen bzw. Reinigungsverfahren hervorgehen und damit entsprechend kostenintensiv sind. Statt dessen kann auf eine robuste und kostengünstige Synthese gesetzt werden.The use of the strains, in particular strain MC1-S DSM 15377, avoids the necessity of having to use enantiomeric precursors / compounds in the synthesis of the pure S-enantiomer, which in turn arise from special syntheses or purification processes and is therefore correspondingly cost-intensive. Instead, it can be put on a robust and cost-effective synthesis.

Anschließend wird die Erfindung an Ausführungsbeispielen näher erläutert.Subsequently, the invention will be explained in more detail with reference to exemplary embodiments.

Beispiel 1example 1 a) Kultivierung des Wildtyp-Stammes MC1a) Cultivation of the wild-type strain MC1

Der Stamm Delftia acidovorans MC1 wird auf einem mineralischen Medium folgender Zusammensetzung (in mg/l) NH4Cl, 760; KH2PO4, 340; K2HPO4, 485; CaCl2 * 6 H2O, 27; MgSO4 * 7 H2O, 71.2; FeSO4 * 7 H2O, 4.98; CuSO4 * 5 H2O, 0.785; MnSO4 * 4 H2O , 0.81; ZnSO4 * 7 H2O, 0.44; Na2MoO4 * 2 H2O , 0.25) und 10 mM (RS)-2-(2,4-Dichlorphenoxy)propionate [(RS)-2,4-DP] als alleiniger Kohlenstoff- und Energiequelle kultiviert. Als Inokulation dienten auf (RS)-2,4-DP-Agarplatten gewachsene Kolonien. Die kontinuierliche Kultivierung erfolgte nach einer batch-Phase auf 2 mM (RS)-2,4-DP mit Durchflußraten im Bereich von D = 0.05 h-1 bis D = 0.14 h-1. Bevorzugt werden pH-Werte von 8,5 und Temperaturen von 30°C. Unter diesen Bedingungen ist die stationäre Konzentration von (R)-2,4-DP bzw. (S)-2,4-DP entsprechend der kinetischen Parameter für das Wachstum gering. Der pH-Wert kann im Bereich von 7,0 bis 9,0 variiert werden, ohne das Wachstum deutlich zu beeinflussen.The strain Delftia acidovorans MC1 is suspended on a mineral medium of the following composition (in mg / l) NH 4 Cl, 760; KH 2 PO 4 , 340; K 2 HPO 4 , 485; CaCl 2 * 6 H 2 O, 27; MgSO 4 .7H 2 O, 71.2; FeSO 4 * 7H 2 O, 4.98; CuSO 4 .5H 2 O, 0.785; MnSO 4 * 4H 2 O, 0.81; ZnSO 4 .7H 2 O, 0.44; Na 2 MoO 4 .2H 2 O, 0.25) and 10 mM (RS) -2- (2,4-dichlorophenoxy) propionate [(RS) -2,4-DP] as the sole carbon and energy source. The inoculations were colonies grown on (RS) -2,4-DP agar plates. The continuous cultivation was carried out after a batch phase to 2 mM (RS) -2,4-DP with flow rates in the range of D = 0.05 h -1 to D = 0.14 h -1 . Preference is given to pH values of 8.5 and temperatures of 30 ° C. Under these conditions, the steady state concentration of (R) -2,4-DP and (S) -2,4-DP, respectively, is small according to the kinetic parameters for growth. The pH can be varied in the range of 7.0 to 9.0 without significantly affecting the growth.

b) Gewinnung von MC1-S-Stämmenb) Recovery of MC1-S strains

D. acidovorans MC1 wurde bei einer Durchflussrate (D) von 0,1 h-1 über einen Zeitraum von 10 Tagen kontinuierlich auf 18 mM Succinat und 6 mM 2,4-D kultiviert. Anschließend wurde die Durchflussrate mit einem ΔD von 0,06 h-1 und einem Zeitintervall Δt von 1,5 h schrittweise auf eine Rate von 0,24 h-1 gesteigert und weitere drei Tage bei dieser Wachstumsgeschwindigkeit kultiviert. Die stationäre 2,4-D Konzentration stieg während des Geschwindigkeitsgradienten von 0,35 mM auf 2,7 mM an. Die Wachstumseigenschaften von Klonen aus dieser Kultur wurden über Agarplatten mit (RS)-2,4-DP als selektivem Substrat verfolgt. Stark wachsende Kolonien wurden selektiert, über Flüssigkultur in Komplexmedium vermehrt und anschließend auf Selektivplatten erneut kultiviert. Diese Prozedur wurde bis zu dreimal wiederholt. Klone von stark gewachsenen Kolonien wurden auf Agarplatten mit den selektiven Substrate (R)-2,4-DP, (S)-2,4-DP und 2,4-D aufgebracht. Davon wurden jeweils einzelne Klone von stark gewachsenen Kolonien auf Agarplatten mit den betreffenden Substraten über weitere Passagen auf Agarplatten mit (R)-2,4-DP, (S)-2,4-DP und 2,4-D als selektivem Substrat vermehrt. Am Ende der Prozedur wurden auf den einzelnen Substraten mit als stark wachsend ausgewählte Kolonien, die sich über mehrere Passagen als solche erwiesen hatten, Enzymtests auf RdpA und SdpA durchgeführt; Klone mit ausschließlicher Aktivität für RdpA (SdpA negativ) wurden selektiert. Als bevorzugter Stamm hat sich der unter DSM 15377 hinterlegte Stamm MC1-S erwiesen. D. acidovorans MC1 was continuously cultured at a flow rate (D) of 0.1 h -1 over a period of 10 days to 18 mM succinate and 6 mM 2,4-D. Subsequently, the flow rate was gradually increased to a rate of 0.24 h -1 with a ΔD of 0.06 h -1 and a time interval Δt of 1.5 h, and cultured for another three days at this growth rate. Stationary 2,4-D concentration increased during the rate gradient from 0.35 mM to 2.7 mM. The growth characteristics of clones from this culture were monitored on agar plates with (RS) -2,4-DP as the selective substrate. Strongly growing colonies were selected, multiplied by liquid culture in complex medium and then cultured again on selective plates. This procedure was repeated up to three times. Clones from heavily grown colonies were plated on agar plates containing the selective substrates (R) -2,4-DP, (S) -2,4-DP and 2,4-D. Of these, individual clones of strongly grown colonies on agar plates with the respective substrates were further passages on agar plates with (R) -2,4-DP, (S) -2,4-DP and 2,4-D as a selective substrate increased. At the end of the procedure, enzyme assays for RdpA and SdpA were performed on the individual substrates with colonies selected to grow vigorously over several passages as such. Clones with exclusive activity for RdpA (SdpA negative) were selected. The preferred strain is the strain MC1-S deposited under DSM 15377.

Beispiel 2Example 2 Produktion von S-2,4-DPProduction of S-2,4-DP

Der Stamm Delftia acidovorans MC1-S DSM 15377 wurde bei einer Durchflußrate von D=0.075 h-1 auf einem mineralischen Medium folgender Zusammensetzung (in mg/l) NH4Cl, 760; KH2PO4, 340; K2HPO4, 485; CaCl2 * 6 H2O 27; MgSO4 * 7 H2O, 71.2; FeSO4 * 7 H2O 4.98; CuSO4 * 5 H2O 0.785; MnSO4 * 4 H2O 0.81; ZnSO4 * 7 H2O 0.44; Na2MoO4 * 2 H2O , 0.25) und 7,5 mM (RS)-2-(2,4-Dichlorphenoxy)propionate [(RS)-2,4-DP] als alleiniger Kohlenstoff- und Energiequelle bei pH 8,5 kontinuierlich kultiviert. Die stationären Substratkonzentrationen im Fermentationsablauf betrugen rund 3,65 mM (S)-2,4-DP und 0,05 mM (R)-2,4-DP. Der Fermenterablauf wurde unter aseptischen Bedingungen bzw. unter ungeschützten Bedingungen in einer Stickstoffatmosphäre in Portionen gesammelt und eine weitere Behandlung für mindestens 1 h bei Raumtemperatur zum Abbau des restlichen (R)-2,4-DP weiter belüftet. Die Biomasse wurde mittels Zentrifugation abgetrennt und der Überstand mit 1n HCl auf pH 1,5 gebracht. Das gefällte (S)-2,4-DP wurde ebenfalls mittels Zentrifugation abgetrennt, das Pellet 2 mal mit 0,5n HCl gewaschen und luft- bzw. vakuumgetrocknet. Die Gesamtausbeute an (S)-2,4-DP nach der Fermentation betrug ca. 100%, nach der Säure-Fällung reduziert sich die Ausbeute um die entsprechend der Löslichkeit der freien Säure in der wäßrigen Phase verbleibende Menge. Alternativ erfolgte die Aufarbeitung der gesamten Säure-Fällung oder des in Lösung verbleibenden Restes durch Lyophilisierung. Für eine weitere Reinigung wurde das Präzipitat bzw. der Trockenrückstand 2 mal in Diethylether aufgenommen und umkristallisiert und getrocknet. Das Produkt kann ohne andere Verfahrensschritte auch direkt durch Extraktion mit Diethylether aus der wäßrigen Phase gewonnen und entsprechend aufgearbeitet werden.
In den so gewonnenen Präparationen konnte (R)-2,4-DP mittels HPLC nicht mehr nachgewiesen werden (Detektionsgrenze < 0,5 µM). Der Nachweis erfolgte an einer Shimadzu-HPLC Anlage unter isokratischen Bedingungen bei einer Flußrate der mobilen Phase (40% Acetonitril in 60 % Phosphatlösung 130 mM, pH 2,8) von 1 ml/min und einer Nucleosil 5RP18 Säule (250/4) (Knauer, Berlin) bzw. unter Nutzung einer enantioselektiven Säule (Nucleodex-α-PM 200/4; Macherey-Nagel, Düren) mit 70% Methanol in 30% NaH2PO4 (50 mM, pH 3,0) als mobiler Phase.
The strain Delftia acidovorans MC1-S DSM 15377 was at a flow rate of D = 0.075 h -1 on a mineral medium of the following composition (in mg / l) NH 4 Cl, 760; KH 2 PO 4 , 340; K 2 HPO 4 , 485; CaCl 2 * 6H 2 O 27; MgSO 4 .7H 2 O, 71.2; FeSO 4 * 7H 2 O 4.98; CuSO 4 .5H 2 O 0.785; MnSO 4 * 4H 2 O 0.81; ZnSO 4 .7H 2 O 0.44; Na 2 MoO 4 * 2 H 2 O, 0.25) and 7.5 mM (RS) -2- (2,4-dichlorophenoxy) propionate [(RS) -2,4-DP] as sole carbon and energy source at pH 8.5 continuously cultivated. Stationary substrate concentrations in the fermentation procedure were approximately 3.65 mM (S) -2,4-DP and 0.05 mM (R) -2,4-DP. The fermenter effluent was collected under aseptic conditions or under unprotected conditions in a nitrogen atmosphere in portions and further treatment for at least 1 h at room temperature to decompose the remaining (R) -2,4-DP further aerated. The biomass was separated by centrifugation and the supernatant was brought to pH 1.5 with 1N HCl. The precipitated (S) -2,4-DP was also separated by centrifugation, the pellet washed twice with 0.5 N HCl and air or vacuum dried. The total yield of (S) -2,4-DP after fermentation was about 100%, after the acid precipitation, the yield is reduced by the amount remaining corresponding to the solubility of the free acid in the aqueous phase. Alternatively, the work-up of the entire acid precipitation or in solution remaining residue by lyophilization. For further purification, the precipitate or the dry residue was taken up twice in diethyl ether and recrystallized and dried. The product can be obtained without further process steps also directly by extraction with diethyl ether from the aqueous phase and worked up accordingly.
In the preparations thus obtained, (R) -2,4-DP could no longer be detected by means of HPLC (detection limit <0.5 μ M). Detection was carried out on a Shimadzu HPLC system under isocratic conditions at a mobile phase flow rate (40% acetonitrile in 60% phosphate solution 130 mM, pH 2.8) of 1 ml / min and a Nucleosil 5RP18 column (250/4) ( Knauer, Berlin) or using an enantioselective column (Nucleodex-α-PM 200/4, Macherey-Nagel, Düren) with 70% methanol in 30% NaH 2 PO 4 (50 mM, pH 3.0) as the mobile phase.

Beispiel 3Example 3 Produktion von S-2,4-DPProduction of S-2,4-DP

D. acidovorans MC1-S DSM 15377 wurde unter diskontinuierlichen bzw. kontinuierlichen Bedingungen auf (RS)-2,4-DP als alleiniger C/E-Quelle angezogen. Für die weiteren Verfahrensschritte wurde die Biomasse entweder ohne weitere Behandlung eingesetzt bzw. die Biomasse abgetrennt und in einer Konzentration von 0,1 bis 0,5 g/l in ein Medium (mineralisch wie Beispiel 1) mit pH-Werten von 9-9,5 gegeben, welches 5 mM (Raumtemperatur) bis 10 mM (30°C) (RS)-2,4-DP enthielt. Die Suspension wurde unter aeroben Bedingungen entsprechend bei Raumtemperatur bzw. bei 30°C inkubiert. Die Konzentration an (R)-2,4-DP war in einem Zeitraum von 6 bis 24 h in Abhängigkeit von der Biomassekonzentration auf einen über HPLC nicht mehr nachweisbaren Wert abgesunken. Die Suspension wurde nach den in Beispiel 2 aufgezeigten Verfahren aufgearbeitet. D. acidovorans MC1-S DSM 15377 was grown under discontinuous conditions on (RS) -2,4-DP as the sole C / E source. For the further process steps, the biomass was used either without further treatment or the biomass separated and in a concentration of 0.1 to 0.5 g / l in a medium (mineral as Example 1) with pH values of 9-9, 5 containing 5 mM (room temperature) to 10 mM (30 ° C) (RS) -2,4-DP. The suspension was incubated under aerobic conditions correspondingly at room temperature or at 30 ° C. The concentration of (R) -2,4-DP had fallen in a period of 6 to 24 h, depending on the biomass concentration on a no longer detectable by HPLC value. The suspension was worked up according to the procedures shown in Example 2.

Beispiel 4Example 4 Produktion von S-2,4-DPProduction of S-2,4-DP

D. acidovorans MC1-S DSM 15377 wurde nach einem Batch-Verfahren auf 2 bis 5 g/l Na-Pyruvat angezogen. Als Inokulum dienten Kolonien des auf (RS)-2,4-DP-Agarplatten selektiv gehaltenen Stammes. Nach Erreichen der stationären Phase wurde diese Biomasse durch Zugabe von 0,5 mM (RS)-2,4-DP induziert und dann in ein Medium gegeben, welches die in Beispiel 3 angegebenen Konzentrationen an Biomasse und (RS)-2,4-DP enthielt. Nach entsprechenden Zeiten war die Konzentration an (R)-2,4-DP auf nicht mehr nachweisbare Werte abgesunken. D. acidovorans MC1-S DSM 15377 was grown by batch method to 2 to 5 g / l Na pyruvate. Colonies of the strain selectively maintained on (RS) -2,4-DP agar plates served as the inoculum. After reaching the stationary phase, this biomass was induced by the addition of 0.5 mM (RS) -2,4-DP and then added to a medium which corresponds to the concentrations of biomass and (RS) -2,4- DP contained. After appropriate times, the concentration of (R) -2,4-DP had dropped to undetectable levels.

Beispiel 5Example 5 Produktion von S-MCPPProduction of S-MCPP

Der Stamm MC1-S DSM 15377 wurde wie in Beispiel 2 bei einem D=0,075 h-1 kontinuierlich auf 7,5 mM (RS)-2-(4-Chlor-2-Methylphenoxy)propionat [(RS)-MCPP] kultiviert, der Fermenterablauf unter aseptischen Bedingungen bzw. unter ungeschützten Bedingungen in einer Stickstoffatmosphäre in Portionen steril gesammelt und für 0,25 Stunden aerob bei Raumtemperatur inkubiert oder auf (RS)-MCPP kultivierte Biomasse wurde wie in Beispiel 3 angegeben zur Darstellung von (S)-MCPP in einem diskontinuierlichen Verfahren eingesetzt. Die Kultivierung kann auch auf Pyruvat und anschließender Induktion durch (RS)-MCPP erfolgen wie prinzipiell in Beispiel 4 gezeigt. Entsprechend der Biomassekonzentration wurden in allen Fällen (S)-MCPP Produkte mit über HPLC nicht mehr nachweisbaren Konzentrationen an (R)-MCPP erhalten (Det-ektionsgrenze < 0,5 µM). Die weitere Aufarbeitung des Produktes erfolgte wie in Beispiel 1 für (S)-2,4-DP gezeigt.Strain MC1-S DSM 15377 was cultured continuously as in Example 2 at D = 0.075 h -1 to 7.5 mM (RS) -2- (4-chloro-2-methylphenoxy) propionate [(RS) -MCPP] the fermenter effluent was aseptically collected under aseptic conditions or under unprotected conditions in a nitrogen atmosphere in portions and incubated aerobically for 0.25 hours at room temperature or on (RS) -MCPP cultured biomass was as shown in Example 3 to represent (S) - MCPP used in a batch process. The cultivation can also be carried out on pyruvate and subsequent induction by (RS) -MCPP as shown in principle in Example 4. According to the biomass concentration, in all cases (S) -MCPP products were obtained with concentrations of (R) -MCPP no longer detectable by HPLC (detection limit <0.5 μM). The further work-up of the product was carried out as shown in Example 1 for (S) -2,4-DP.

Beispiel 6Example 6 Produktion von (S)-2-(m-Chlorphenoxy)propionatProduction of (S) -2- (m-chlorophenoxy) propionate

Die Biomasse wurde wie in Beispiel 2 oder 3 gezeigt angezogen und vor dem weiteren Einsatz mit sterilem Medium gewaschen bzw. wie in Beispiel 4 gezeigt kultiviert und durch Zugabe von (RS)-2-(m-Chlorphenoxypropionat induziert und in beiden Fällen dann in ein Medium mit 5 mM (RS)-2-(m-Chlorphenoxy)propionat gegeben. In Abhängigkeit von der Biomassekonzentration, zugegeben in einem Bereich von 0,1 bis 0,5 g/l erfolgt der komplette Abbau von (R)-2-(m-Chlorphenoxy)propionat bis auf über HPLC nicht mehr nachweisbare Grenzen innerhalb von 6 bis 24 h. In allen Fällen wurden reine S-enantiomere Produkte erhalten.The biomass was grown as shown in Example 2 or 3 and washed with sterile medium prior to further use or cultured as shown in Example 4 and induced by addition of (RS) -2- (m-chlorophenoxypropionate and in both cases in a Add medium containing 5 mM (RS) -2- (m-chlorophenoxy) propionate, depending on the biomass concentration, added in a range of 0.1 to 0.5 g / l, the complete degradation of (R) -2- (m-chlorophenoxy) propionate up to HPLC no longer detectable within 6 to 24 h In all cases, pure S-enantiomeric products were obtained.

Beispiel 7Example 7 Produktion von (S)-2-(4-Chlorphenoxy)propionatProduction of (S) -2- (4-chlorophenoxy) propionate

Die Biomasse wurde wie in Beispiel 2 oder 3 gezeigt angezogen und vor dem weiteren Einsatz mit sterilem Medium gewaschen bzw. wie in Beispiel 4 gezeigt kultiviert und durch Zugabe von (RS)-2-(4-Chlorphenoxy)propionat induziert und in beiden Fällen dann in ein Medium mit 5 mM (RS)-2-(4-Chlorphenoxy)propionat gegeben. In Abhängigkeit von der Biomassekonzentration, zugegeben in einem Bereich von 0,1 bis 0,5 g/l erfolgt der komplette Abbau von (R)-2-(4-Chlorphenoxy)propionat bis auf über HPLC nicht mehr nachweisbare Grenzen innerhalb von 6 bis 24 h. In allen Fällen wurden reine S-enantiomere Produkte erhalten.The biomass was grown as shown in Example 2 or 3 and washed with sterile medium prior to further use or cultured as shown in Example 4 and induced by the addition of (RS) -2- (4-chlorophenoxy) propionate and in both cases in a medium containing 5 mM (RS) -2- (4-chlorophenoxy) propionate. Depending on the biomass concentration, added in a range of 0.1 to 0.5 g / l, the complete degradation of (R) -2- (4-chlorophenoxy) propionate takes place up to beyond HPLC no longer detectable limits within 6 to 24 hours. In all cases, pure S-enantiomeric products were obtained.

Claims (19)

  1. A method of obtaining bacterial strains Delftia acidovorans MC1-S suitable for the production of high-purity S-enantiomers of (RS)-2-phenoxypropionic acid derivatives,
    characterized in that
    the wild type strain Delftia acidovorans MC1 is cultured on 2,4-D ((2,4-dichlorophenoxy)acetic acid) as the only source of carbon and energy, and clones solely active on R-enantiomers of (RS)-2-phenoxypropionic acid derivatives are selected.
  2. The method according to claim 1,
    characterized in that
    culturing is effected at flow rates in a range of from greater than zero to 0.3 h-1.
  3. The method according to claim 1 or 2,
    characterized in that
    at least one additional source of carbon and energy is present for culturing, preferably succinate or pyruvate.
  4. The method according to any of claims 1 to 3,
    characterized in that
    culturing is effected in a nutrient medium.
  5. The method according to any of claims 1 to 4,
    characterized in that
    the flow rate is increased from 0.05 h-1 to 0.3 h-1 at well-defined time intervals, subsequently kept constant at the maximum value for a prolonged period of time, strongly growing clones are selected, and this operation is repeated several times.
  6. The method according to any of claims 1 to 5,
    characterized in that
    maximum growth rate is achieved at a flow rate of from 0.2 to 0.3 h-1, especially at 0.24 h-1.
  7. The method according to any of claims 1 to 6,
    characterized in that
    culturing is effected continuously for a period of from 2 to 8 weeks at a pH of from 8 to 9, preferably 8.5, and at a temperature of from 20 to 35°C, preferably 30°C.
  8. The method according to claim 7,
    characterized in that
    culturing with 2,4-D and succinate is effected for a period of 10 days at a flow rate (D) of 0.1 h-1, the flow rate is subsequently increased to 0.24 h-1 at a ΔD of 0.06 h-1 and a time interval Δt of 1.5 h, the culture then is kept constant for 3 days, strongly growing colonies are selected, further grown in complex medium and selectively re-cultured with 2,4-D and succinate, and this operation is repeated up to three times.
  9. Bacterial strains Delftia acidovorans MC1-S, solely producing the S-enantiomers of (RS)-2-phenoxypropionic acid derivatives, said strains being produced using a method according to any of claims 1 to 8.
  10. Modified bacterial strains Delftia acidovorans MC1-S, wherein the gene for the enzyme (S)-2,4-DP/α-ketoglutarate dioxygenase (SdpA) is switched off or eliminated.
  11. The bacterial strain Delftia acidovorans MC1-S DSM 15377.
  12. Use of a bacterial strain Delftia acidovorans MC1-S according to any of claims 9 to 11 in the production of high-purity S-enantiomers of (RS)-2-phenoxypropionic acid derivatives, wherein culturing of the respective strain is effected continuously or discontinuously at pH values between 6.5 and 10 and temperatures between 15 and 37°C, the biomass is removed, and the pure S-enantiomer is precipitated from the supernatant or obtained by extraction.
  13. The use according to claim 12,
    characterized in that
    the bacterial strain Delftia acidovorans MC1-S is cultured continuously at flow rates D of from 0.05 h-1 to 0.20 h-1, pH values between 8 and 9.5 and temperatures between 20 and 30°C on an (RS)-2-phenoxypropionic acid derivative as the only source of carbon and energy, the biomass is removed subsequent to an incubation time, and the remaining non-metabolized (S)-2-phenoxypropionic acid derivative is obtained from the aqueous supernatant by acid precipitation.
  14. The use according to claim 12,
    characterized in that
    the bacterial strain Delftia acidovorans MC1-S is cultured discontinuously on a per se known nutrient medium, treated with a relevant (RS)-2-phenoxypropionic acid derivative as inoculum, and thereafter, the suspension thus generated, without further treatment, or the biomass, after separation, is transferred at a concentration of from 0.1 to 0.5 g/l at a pH value of 8 to 9.5 into a medium containing said (RS)-2-phenoxypropionic acid derivative at a concentration of from 5 mM to 10 mM, and culturing is effected until the R-enantiomer is completely depleted.
  15. The use according to claim 14,
    characterized in that
    the per se known mineral nutrient medium and preferably pyruvate as source of carbon and energy in an amount of from 2 to 5 g/l are used.
  16. The use according to claim 12,
    characterized in that
    the bacterial strain Delftia acidovorans MC1-S is pre-cultured continuously or discontinuously on an (RS)-2-phenoxypropionic acid derivative, the biomass thus obtained is transferred at a concentration of from 0.1 to 0.5 g/l at a pH value of 8 to 9.5 into a medium containing said (RS)-2-phenoxypropionic acid derivative at a concentration of from 5 mM to 10 mM, and culturing is effected until the R-enantiomer is completely depleted.
  17. The use according to any of claims 12 to 16,
    characterized in that
    (RS)-2-(2,4-dichlorophenoxy)propionic acid [(RS)-2,4-DP], (RS)-2-(4-chloro-2-methylphenoxy)propionic acid [(RS)-MCPP], (RS)-2-(m-chlorophenoxy)propionic acid and (RS)-2-(4-chlorophenoxy)propionic acid are used as (RS)-2-phenoxypropionic acid derivatives.
  18. Use of a bacterial strain Delftia acidovorans MC1-S according to any of claims 9 to 11 for improving and purifying commercial S-enantiomer products.
  19. Use of a bacterial strain Delftia acidovorans MC1-S according to any of claims 9 to 11 for eliminating or depleting an R-enantiomer from racemic mixtures by productive degradation on a bulk production scale.
EP03780150A 2002-12-18 2003-12-12 Bacterial strains delftia acidovorans mc1-s, production and use thereof for the production of the s enantiomers of 2-phenoxypropionic acid derivatives Expired - Lifetime EP1576147B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10260457A DE10260457A1 (en) 2002-12-18 2002-12-18 Mutants of the Delftia acidovorans MC1 bacterial strain and their use in the production of high-purity S enantiomers of 2-phenoxypropionic acid derivatives
DE10260457 2002-12-18
PCT/EP2003/014152 WO2004055172A1 (en) 2002-12-18 2003-12-12 Bacterial strains delftia acidovorans mc1-s, production and use thereof for the production of the s enantiomers of 2-phenoxypropionic acid derivatives

Publications (2)

Publication Number Publication Date
EP1576147A1 EP1576147A1 (en) 2005-09-21
EP1576147B1 true EP1576147B1 (en) 2006-05-24

Family

ID=32519284

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03780150A Expired - Lifetime EP1576147B1 (en) 2002-12-18 2003-12-12 Bacterial strains delftia acidovorans mc1-s, production and use thereof for the production of the s enantiomers of 2-phenoxypropionic acid derivatives

Country Status (5)

Country Link
EP (1) EP1576147B1 (en)
AT (1) ATE327320T1 (en)
AU (1) AU2003288252A1 (en)
DE (2) DE10260457A1 (en)
WO (1) WO2004055172A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348717C (en) * 2005-10-26 2007-11-14 广东緑百多生物科技有限公司 Method for cultivating acide eating Darfot bacteria using combustible gas sensor fermentation
CN101327975B (en) * 2008-07-31 2011-09-28 东北大学 Method for preparing microorganism flocculant
CN110373120A (en) * 2019-07-25 2019-10-25 周口师范学院 A kind of novel gel expansion water shutoff agent and preparation method thereof

Also Published As

Publication number Publication date
ATE327320T1 (en) 2006-06-15
WO2004055172A1 (en) 2004-07-01
DE50303520D1 (en) 2006-06-29
DE10260457A1 (en) 2004-07-15
AU2003288252A1 (en) 2004-07-09
EP1576147A1 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
JP4359349B2 (en) Production method of vanillin
US4480034A (en) Continuous fermentation process and bioconversion-product recovery
EP0205215B1 (en) Process for the preparation of 2-arylpropionic acids
CA1198071A (en) Stabilization of a mutant microorganism population
US4968612A (en) Continuous fermentation process for aromatic hydrocarbon bioconversion
EP1576147B1 (en) Bacterial strains delftia acidovorans mc1-s, production and use thereof for the production of the s enantiomers of 2-phenoxypropionic acid derivatives
EP1576194B1 (en) Bacterial strains of delftia acidovorans mc1-r, their production and their use in the production of the r enantiomers of 2-phenoxypropionic acid derivatives
EP0502525B1 (en) Biotechnological process for the production of S-(+)-2,2-dimethylcyclopropanecarboxamide and R-(-)-2,2-dimethylcyclopropanecarboxylic acid
EP0274146B1 (en) Process for the preparation of 2-arylpropionic acids
US4833078A (en) Semi-continuous fermentation process for aromatic hydrocarbon bioconversion
DE69737696T2 (en) PROCESS FOR THE PREPARATION OF ALPHA HYDROXYLIC ACIDS WITH THE HELP OF MICROORGANISM AND NEW MICROORGANISM.
DE69223516T2 (en) SEPARATION OF ARYLALKANIC ACIDS
EP0583687B1 (en) Method for the preparation of substituted methoxyphenols and microorganisms therefore
DE102006039189B4 (en) Enantioselective preparation of aliphatic acyclic esters and ketones
JP2816422B2 (en) Method for producing 5-aminolevulinic acid by microorganism
US5037759A (en) Process for the preparation of substituted phenoxy propanoic acids
JPH04234991A (en) New microorganism
JPH01104195A (en) Method for producing 2-aryloxy- propionic acid
DE60303644T2 (en) Process for the preparation of 3-hydroxycyclohexanone
JPH0473999B2 (en)
JP2002253295A (en) Method for producing (r)-1,2-propanediol by microbial culturing method
US4956285A (en) Process for the preparation of S-2,2-R1,R2 -1,3 -dioxolane-4-methanols
US4666841A (en) Production of picolinic acid and pyridine products
JP4042557B2 (en) Process for producing optically active tetrahydrofuran-2-carboxylic acid and its ester
WO2000012745A1 (en) Method for preparing (2r)-piperidine derivatives

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT CH DE LI

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50303520

Country of ref document: DE

Date of ref document: 20060629

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: HELMHOLTZ-ZENTRUM FUER UMWELTFORSCHUNG GMBH - UFZ

Free format text: UFZ-UMWELTFORSCHUNGSZENTRUM LEIPZIG-HALLE GMBH#PERMOSERSTRASSE 15#04318 LEIPZIG (DE) -TRANSFER TO- HELMHOLTZ-ZENTRUM FUER UMWELTFORSCHUNG GMBH - UFZ#PERMOSERSTRASSE 15#04318 LEIPZIG (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20081222

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110225

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50303520

Country of ref document: DE

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703