EP1570170B1 - Fuel-injection valve - Google Patents

Fuel-injection valve Download PDF

Info

Publication number
EP1570170B1
EP1570170B1 EP03812120.8A EP03812120A EP1570170B1 EP 1570170 B1 EP1570170 B1 EP 1570170B1 EP 03812120 A EP03812120 A EP 03812120A EP 1570170 B1 EP1570170 B1 EP 1570170B1
Authority
EP
European Patent Office
Prior art keywords
fuel injection
armature
injection valve
valve
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03812120.8A
Other languages
German (de)
French (fr)
Other versions
EP1570170A1 (en
Inventor
Manfred Roessler
Achim Degel
Rolf Keller
Markus Gesk
Guido Pilgram
Bernd Einwiller
Norbert Keim
Michael Lingner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1570170A1 publication Critical patent/EP1570170A1/en
Application granted granted Critical
Publication of EP1570170B1 publication Critical patent/EP1570170B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49231I.C. [internal combustion] engine making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49401Fluid pattern dispersing device making, e.g., ink jet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49405Valve or choke making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49405Valve or choke making
    • Y10T29/49412Valve or choke making with assembly, disassembly or composite article making
    • Y10T29/49425Valve or choke making with assembly, disassembly or composite article making including metallurgical bonding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49405Valve or choke making
    • Y10T29/49426Valve or choke making including metal shaping and diverse operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating

Definitions

  • the invention relates to a fuel injection valve according to the preamble of the main claim.
  • an electromagnetically actuated fuel injection valve is known, whose armature is characterized in that the inner pole facing armature stop surface is slightly wedge-shaped to minimize the hydraulic damping when opening the fuel injector and the hydraulic adhesion force after switching off the solenoid coil exciting current or completely. Further, by appropriate measures such as vapor deposition and nitriding, the abutment surface of the armature designed wear-resistant, so that the stop surface during the entire life of the fuel injection valve has the same size and the operation of the fuel injection valve is not affected.
  • document DE 35 01 973 A1 describes a fuel injector with a magnet assembly with a magnetizable ring as a solid component and a valve assembly with a movable component.
  • the valve By energizing the magnet assembly, the valve is opened, wherein the surface of the movable member is brought into abutment with the surface of the fixed component.
  • At least one abutment surface has to reduce the contact surface on a number of grooves or recesses, which are introduced by chipless material processing. These grooves or recesses have an angular shape in all the described embodiments. These recesses serve to reduce the amount of fuel present between the two abutment surfaces.
  • the adhesion between the abutment surfaces is reduced, so that less force must be used to pull the stop surfaces when closing the valve of the return spring.
  • the contact surfaces In order to reduce the abrasion and deformation on the contact surfaces by the continuous collision, the contact surfaces must be additionally hardened or coated with a particularly hard material. In order to obtain a reduced in their stop surface and simultaneously hardened contact surface, two separate manufacturing steps are necessary. This leads to a complex and costly production process. Also edged depressions make turbulence of fuel.
  • the WO 95/16125 also shows an electromagnetically operable fuel injection valve, in which at least one component, which in opening the valve in Plant is brought to a second component, having a stepped, ie edged surface, which in turn leads to turbulence.
  • the fuel injector according to the invention with the features of the main claim has the advantage that effectively protected by the design of the surface structure of the coating applied to the anchor, the armature stop surface and on the other hand, the hydraulic damping force is significantly reduced, whereby the fuel injection valve can be opened faster, resulting in more precise Metering times and quantities and a higher endurance limit results.
  • the coating has raised and recessed areas, the height difference between the areas being dimensioned so that the recessed areas still remain below the raised areas even after long operation.
  • the height difference is advantageously between 5 microns and 10 microns, which exceeds the normal removal after the break-in phase.
  • the coating is composed of one or more chromium layers.
  • FIGS. 2A and 2B An embodiment of an armature of a fuel injection valve according to the invention will be described in more detail, is intended to better understanding of the invention initially with reference to Fig. 1 an already known fuel injection valve will be briefly explained with respect to its essential components.
  • FIG. 1 illustrated embodiment of a fuel injection valve 1 is carried out in the form of a fuel injection valve 1 for fuel injection systems of mixture-compression, spark-ignition internal combustion engines.
  • the fuel injection valve 1 is suitable in particular for the direct injection of fuel into a combustion chamber, not shown, of an internal combustion engine.
  • the fuel injection valve 1 consists of a nozzle body 2, in which a valve needle 3 is arranged.
  • the valve needle 3 is operatively connected to a valve closing body 4 which cooperates with a valve seat body 6 arranged on a valve seat body 5 to form a sealing seat.
  • the fuel injection valve 1 in the exemplary embodiment is an inwardly opening fuel injection valve 1 which has an injection opening 7.
  • the nozzle body 2 is sealed by a seal 8 against an outer pole 9 of a magnetic coil 10.
  • the magnetic coil 10 is encapsulated in a coil housing 11 and wound on a bobbin 12, which rests against an inner pole 13 of the magnetic coil 10.
  • the inner pole 13 and the outer pole 9 are separated by a constriction 26 and connected to each other by a non-ferromagnetic connecting member 29.
  • the magnetic coil 10 is energized via a line 19 from a via an electrical plug contact 17 can be supplied with electric current.
  • the plug contact 17 is surrounded by a plastic casing 18, which may be molded on the inner
  • valve needle 3 is guided in a valve needle guide 14, which is designed disk-shaped.
  • armature 20 On the other side of the dial 15 is the armature 20. This is a non-positively connected via a first flange 21 with the valve needle 3 in connection, which is connected by a weld 22 with the first flange 21.
  • a return spring 23 On the first flange 21, a return spring 23 is supported, which is brought in the present design of the fuel injection valve 1 by a sleeve 24 to bias.
  • valve needle guide 14 in the armature 20 and on a guide element 36 extend fuel channels 30, 31 and 32.
  • the fuel is supplied via a central fuel supply 16 and filtered by a filter element 25.
  • the fuel injection valve 1 is opposed by a seal 28 a fuel distribution line not shown and sealed by a further seal 37 against a cylinder head, not shown.
  • annular damping element 33 On the discharge side of the armature 20, an annular damping element 33, which consists of an elastomer material, arranged. It rests on a second flange 34 which is non-positively connected to the valve needle 3 via a weld seam 35.
  • the armature 20 In the resting state of the fuel injection valve 1, the armature 20 is acted upon by the return spring 23 counter to its stroke direction so that the valve closing body 4 is held on the valve seat surface 6 in sealing engagement. Upon energization of the solenoid coil 10, this builds up a magnetic field, which moves the armature 20 against the spring force of the return spring 23 in the stroke direction, wherein the stroke is determined by a located in the rest position between the inner pole 12 and the armature 20 working gap 27.
  • the armature 20 takes the first flange 21, which is welded to the valve needle 3, also in the stroke direction with.
  • the valve closing body 4 communicating with the valve needle 3 lifts off from the valve seat surface 6, and the fuel guided via the fuel channels 30 to 32 is sprayed through the injection opening 7.
  • the armature 20 drops after sufficient degradation of the magnetic field by the pressure of the return spring 23 from the inner pole 13, whereby the valve connected to the needle 3 in communication first flange 21 moves against the stroke direction.
  • the valve needle 3 is thereby moved in the same direction, whereby the valve closing body 4 touches on the valve seat surface 6 and the fuel injection valve 1 is closed.
  • Fig. 2A shows in a highly schematic, fragmentary illustration of the inner pole 13 of the fuel injection valve 1 facing anchor stop surface 38.
  • the armature 20 can, as in the in Fig. 1 already be described in more detail fuel injection valve 1.
  • the anchor abutment surface 38 is provided with a coating 40 which, on the one hand, protects the anchor abutment surface 38 and a corresponding abutment surface 39 from wear on the inner pole 13 and, on the other hand, by means of its special surface structure 41 for a rapid outflow of the fuel when the armature 20 is energized when the magnet coil 10 is energized ensures and thus does not interfere with the opening process of the fuel injection valve 1.
  • the cavitation of the anchor stop surface 38 and the stop surface 39 of the inner pole 13 is reduced, since the fuel is not swirled.
  • the surface structure 41 in this case has raised and recessed areas 42, 43, which are achieved by a corresponding coating method.
  • chromium is used, which is applied in several layers on the anchor stop surface 38 of the armature 20. This results in dome-shaped raised areas 42, between which the recessed areas 43 are formed.
  • the area provided by the alternating raised and recessed areas 42, 43 as the anchor abutment surface 38 is expected to be smaller than a closed anchor abutment area 38 so that reduced hydraulic adhesion between the anchor abutment area 38 and the abutment area 39 of the mecanicpols 13 is observed.
  • the surface structure 41 becomes as shown in FIG Fig. 2B can be seen after an initial phase in continuous operation so far removed that sets a stable surface structure 41 with subsequent very low wear (shrinkage), which nevertheless still has the recessed serving as drainage areas 43.
  • the height difference which between the elevated and the Recessed areas 42, 43 before shrinking, lies between 5 and 10 microns and decreases according to the typical wear depths of about 4 to 5 microns.
  • the invention is not limited to the illustrated embodiment and also in a variety of other designs of fuel injection valves realized.
  • the coating 40 may, for. B. alternatively or additionally be provided on the abutment surface 39 of the inner pole 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Hauptanspruchs.The invention relates to a fuel injection valve according to the preamble of the main claim.

Aus der EP 0 683 862 B1 ist ein elektromagnetisch betätigbares Brennstoffeinspritzventil bekannt, dessen Anker dadurch gekennzeichnet ist, daß die dem Innenpol zugewandte Ankeranschlagfläche geringfügig keilförmig ausgebildet ist, um die hydraulische Dämpfung beim Öffnen des Brennstoffeinspritzventils und die hydraulische Adhäsionskraft nach Abschaltung des die Magnetspule erregenden Stromes zu minimieren oder ganz zu unterbinden. Ferner ist durch geeignete Maßnahmen wie Bedampfen und Nitrieren die Anschlagfläche des Ankers verschleißfest gestaltet, so daß die Anschlagfläche während der gesamten Lebensdauer des Brennstoffeinspritzventils die gleiche Größe aufweist und die Funktionsweise des Brennstoffeinspritzventils nicht beeinträchtigt wird.From the EP 0 683 862 B1 is an electromagnetically actuated fuel injection valve is known, whose armature is characterized in that the inner pole facing armature stop surface is slightly wedge-shaped to minimize the hydraulic damping when opening the fuel injector and the hydraulic adhesion force after switching off the solenoid coil exciting current or completely. Further, by appropriate measures such as vapor deposition and nitriding, the abutment surface of the armature designed wear-resistant, so that the stop surface during the entire life of the fuel injection valve has the same size and the operation of the fuel injection valve is not affected.

Nachteilig an dem aus der EP 0 683 862 B1 bekannten Brennstoffeinspritzventil ist vor allem die trotz der optimierten Ankeranschlagfläche nach wie vor vorhandene hydraulische Dämpfungskraft im Arbeitsspalt beim Anziehen des Ankers. Wird ein Erregerstrom an die Magnetspule angelegt, bewegt sich der Anker in Richtung des Innenpols und verdrängt dabei den zwischen dem Innenpol und dem Anker vorhandenen Brennstoff. Aufgrund von Reibungs- und Trägheitseffekten kommt es dabei zum Aufbau eines lokalen Druckfeldes, welches auf der Ankeranschlagfläche eine hydraulische Kraft erzeugt, die gegen die Bewegungsrichtung des Ankers wirkt. Dadurch verlängern sich die Öffnungs- und Zumeßzeiten des Brennstoffeinspritzventils.A disadvantage of the from the EP 0 683 862 B1 Known fuel injector is mainly despite the optimized anchor stop surface still existing hydraulic damping force in the working gap when tightening the armature. Is an excitation current to the solenoid Applied, the armature moves in the direction of the inner pole, displacing the existing between the inner pole and the armature fuel. Due to frictional and inertial effects, a local pressure field is created which generates a hydraulic force on the armature stop surface, which acts against the direction of movement of the armature. This lengthens the opening and metering times of the fuel injection valve.

Dokument DE 35 01 973 A1 beschreibt ein Brennstoffeinspritzventil mit einer Magnetanordnung mit einem magnetisierbaren Ring als festem Bauteil und eine Ventilanordnung mit einem beweglichen Bauteil. Durch Bestromen der Magnetanordnung wird das Ventil geöffnet, wobei die Oberfläche des beweglichen Bauteils mit der Oberfläche des festen Bauteils in Anlage gebracht wird. Wenigstens eine Anlageoberfläche weist zur Verringerung der Anlagefläche eine Anzahl von Rillen oder Vertiefungen auf, die durch spanlose Materialbearbeitung eingebracht sind. Diese Rillen oder Vertiefungen weisen in allen beschriebenen Ausführungsformen eine eckige Form auf. Diese Vertiefungen dienen dazu, die Menge von Brennstoff, die zwischen den beiden Anschlagflächen vorhanden ist, zu verringern. Dadurch wird die Adhäsion zwischen den Anschlagflächen verringert, sodass weniger Kraft zum Auseinanderziehen der Anschlagflächen beim Schließen des Ventils von der Rückstellfeder aufgewendet werden muss. Um den Abrieb und die Verformung an den Anlageflächen durch das stetige Aufeinanderstoßen zu verringern, müssen die Anlageflächen zusätzlich gehärtet oder mit einem besonders harten Material beschichtet werden. Um eine in ihrer Anschlagfläche verringerte und gleichzeitig gehärtete Anlagefläche zu erhalten, sind zwei getrennte Herstellungsschritte notwendig. Dies führt zu einem aufwändigen und kostenintensiven Herstellungsprozess. Auch erzeugen die kantigen Vertiefungen Verwirbelungen des Brennstoffes.document DE 35 01 973 A1 describes a fuel injector with a magnet assembly with a magnetizable ring as a solid component and a valve assembly with a movable component. By energizing the magnet assembly, the valve is opened, wherein the surface of the movable member is brought into abutment with the surface of the fixed component. At least one abutment surface has to reduce the contact surface on a number of grooves or recesses, which are introduced by chipless material processing. These grooves or recesses have an angular shape in all the described embodiments. These recesses serve to reduce the amount of fuel present between the two abutment surfaces. As a result, the adhesion between the abutment surfaces is reduced, so that less force must be used to pull the stop surfaces when closing the valve of the return spring. In order to reduce the abrasion and deformation on the contact surfaces by the continuous collision, the contact surfaces must be additionally hardened or coated with a particularly hard material. In order to obtain a reduced in their stop surface and simultaneously hardened contact surface, two separate manufacturing steps are necessary. This leads to a complex and costly production process. Also edged depressions make turbulence of fuel.

Die WO 95/16125 zeigt ebenfalls ein elektromagnetisch betätigbares Brennstoffeinspritzventil, bei dem wenigstens ein Bauteil, das beim Öffnen des Ventils in Anlage mit einem zweiten Bauteil gebracht wird, eine gestufte, d.h. kantige Oberfläche aufweist, was wiederum zu Verwirbelungen führt.The WO 95/16125 also shows an electromagnetically operable fuel injection valve, in which at least one component, which in opening the valve in Plant is brought to a second component, having a stepped, ie edged surface, which in turn leads to turbulence.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Brennstoffeinspritzventil mit den Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß durch die Gestaltung der Oberflächenstruktur der auf den Anker aufgebrachten Beschichtung einerseits die Ankeranschlagfläche effektiv geschützt und andererseits die hydraulische Dämpfungskraft erheblich herabgesetzt wird, wodurch das Brennstoffeinspritzventil schneller geöffnet werden kann, was in präziseren Zumeßzeiten und -mengen sowie einer höheren Dauerlauffestigkeit resultiert.The fuel injector according to the invention with the features of the main claim has the advantage that effectively protected by the design of the surface structure of the coating applied to the anchor, the armature stop surface and on the other hand, the hydraulic damping force is significantly reduced, whereby the fuel injection valve can be opened faster, resulting in more precise Metering times and quantities and a higher endurance limit results.

Von Vorteil ist insbesondere, daß die Beschichtung erhöhte und vertiefte Bereiche aufweist, wobei die Höhendifferenz zwischen den Bereichen so bemessen ist, daß die vertieften Bereiche auch nach langem Betrieb noch unterhalb der erhöhten Bereiche verbleiben.In particular, it is advantageous that the coating has raised and recessed areas, the height difference between the areas being dimensioned so that the recessed areas still remain below the raised areas even after long operation.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Brennstoffeinspritzventils möglich.The measures listed in the dependent claims advantageous refinements and improvements of the main claim fuel injector are possible.

Der Höhenunterschied liegt dabei vorteilhafterweise zwischen 5 µm und 10 µm, was den normalen Abtrag nach der Einlaufphase übersteigt.The height difference is advantageously between 5 microns and 10 microns, which exceeds the normal removal after the break-in phase.

Vorteilhafterweise ist die Beschichtung aus einer oder mehreren Chromschichten aufgebaut.Advantageously, the coating is composed of one or more chromium layers.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

Fig. 1
einen axialen Schnitt durch ein Brennstoffeinspritzventil gemäß dem Stand der Technik,
Fig. 2A
einen stark schematisierten, vergrößerten Ausschnitt aus einem Ausführungsbeispiel eines neubeschichteten Ankers eines erfindungsgemäßen Brennstoffeinspritzventils; und
Fig. 2B
einen stark schematisierten, vergrößerten Ausschnitt aus dem in Fig. 2A dargestellten Ausführungsbeispiel des Ankers nach einer längeren Laufphase.
An embodiment of the invention is shown in simplified form in the drawing and explained in more detail in the following description. Show it:
Fig. 1
an axial section through a fuel injection valve according to the prior art,
Fig. 2A
a highly schematic, enlarged detail of an embodiment of a re-coated armature of a fuel injection valve according to the invention; and
Fig. 2B
a highly schematized, enlarged section of the in Fig. 2A illustrated embodiment of the armature after a longer running phase.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Bevor anhand der Fig. 2A und 2B ein Ausführungsbeispiel eines Ankers eines erfindungsgemäßen Brennstoffeinspritzventils näher beschrieben wird, soll zum besseren Verständnis der Erfindung zunächst anhand von Fig. 1 ein bereits bekanntes Brennstoffeinspritzventil bezüglich seiner wesentlichen Bauteile kurz erläutert werden.Before using the FIGS. 2A and 2B An embodiment of an armature of a fuel injection valve according to the invention will be described in more detail, is intended to better understanding of the invention initially with reference to Fig. 1 an already known fuel injection valve will be briefly explained with respect to its essential components.

Ein in Fig. 1 dargestelltes Ausführungsbeispiel eines Brennstoffeinspritzventils 1 ist in der Form eines Brennstoffeinspritzventils 1 für Brennstoffeinspritzanlagen von gemischverdichtenden, fremdgezündeten Brennkraftmaschinen ausgeführt. Das Brennstoffeinspritzventil 1 eignet sich insbesondere zum direkten Einspritzen von Brennstoff in einen nicht dargestellten Brennraum einer Brennkraftmaschine.An in Fig. 1 illustrated embodiment of a fuel injection valve 1 is carried out in the form of a fuel injection valve 1 for fuel injection systems of mixture-compression, spark-ignition internal combustion engines. The fuel injection valve 1 is suitable in particular for the direct injection of fuel into a combustion chamber, not shown, of an internal combustion engine.

Das Brennstoffeinspritzventil 1 besteht aus einem Düsenkörper 2, in welchem eine Ventilnadel 3 angeordnet ist. Die Ventilnadel 3 steht mit einem Ventilschließkörper 4 in Wirkverbindung, der mit einer auf einem Ventilsitzkörper 5 angeordneten Ventilsitzfläche 6 zu einem Dichtsitz zusammenwirkt. Bei dem Brennstoffeinspritzventil 1 handelt es sich im Ausführungsbeispiel um ein nach innen öffnendes Brennstoffeinspritzventil 1, welches über eine Abspritzöffnung 7 verfügt. Der Düsenkörper 2 ist durch eine Dichtung 8 gegen einen Außenpol 9 einer Magnetspule 10 abgedichtet. Die Magnetspule 10 ist in einem Spulengehäuse 11 gekapselt und auf einen Spulenträger 12 gewickelt, welcher an einem Innenpol 13 der Magnetspule 10 anliegt. Der Innenpol 13 und der Außenpol 9 sind durch eine Verengung 26 voneinander getrennt und miteinander durch ein nicht ferromagnetisches Verbindungsbauteil 29 verbunden. Die Magnetspule 10 wird über eine Leitung 19 von einem über einen elektrischen Steckkontakt 17 zuführbaren elektrischen Strom erregt. Der Steckkontakt 17 ist von einer Kunststoffummantelung 18 umgeben, die am Innenpol 13 angespritzt sein kann.The fuel injection valve 1 consists of a nozzle body 2, in which a valve needle 3 is arranged. The valve needle 3 is operatively connected to a valve closing body 4 which cooperates with a valve seat body 6 arranged on a valve seat body 5 to form a sealing seat. The fuel injection valve 1 in the exemplary embodiment is an inwardly opening fuel injection valve 1 which has an injection opening 7. The nozzle body 2 is sealed by a seal 8 against an outer pole 9 of a magnetic coil 10. The magnetic coil 10 is encapsulated in a coil housing 11 and wound on a bobbin 12, which rests against an inner pole 13 of the magnetic coil 10. The inner pole 13 and the outer pole 9 are separated by a constriction 26 and connected to each other by a non-ferromagnetic connecting member 29. The magnetic coil 10 is energized via a line 19 from a via an electrical plug contact 17 can be supplied with electric current. The plug contact 17 is surrounded by a plastic casing 18, which may be molded on the inner pole 13.

Die Ventilnadel 3 ist in einer Ventilnadelführung 14 geführt, welche scheibenförmig ausgeführt ist. Zur Hubeinstellung dient eine zugepaarte Einstellscheibe 15. An der anderen Seite der Einstellscheibe 15 befindet sich der Anker 20. Dieser steht über einen ersten Flansch 21 kraftschlüssig mit der Ventilnadel 3 in Verbindung, welche durch eine Schweißnaht 22 mit dem ersten Flansch 21 verbunden ist. Auf dem ersten Flansch 21 stützt sich eine Rückstellfeder 23 ab, welche in der vorliegenden Bauform des Brennstoffeinspritzventils 1 durch eine Hülse 24 auf Vorspannung gebracht wird.The valve needle 3 is guided in a valve needle guide 14, which is designed disk-shaped. On the other side of the dial 15 is the armature 20. This is a non-positively connected via a first flange 21 with the valve needle 3 in connection, which is connected by a weld 22 with the first flange 21. On the first flange 21, a return spring 23 is supported, which is brought in the present design of the fuel injection valve 1 by a sleeve 24 to bias.

In der Ventilnadelführung 14, im Anker 20 und an einem Führungselement 36 verlaufen Brennstoffkanäle 30, 31 und 32. Der Brennstoff wird über eine zentrale Brennstoffzufuhr 16 zugeführt und durch ein Filterelement 25 gefiltert. Das Brennstoffeinspritzventil 1 ist durch eine Dichtung 28 gegen eine nicht weiter dargestellte Brennstoffverteilerleitung und durch eine weitere Dichtung 37 gegen einen nicht weiter dargestellten Zylinderkopf abgedichtet.In the valve needle guide 14, in the armature 20 and on a guide element 36 extend fuel channels 30, 31 and 32. The fuel is supplied via a central fuel supply 16 and filtered by a filter element 25. The fuel injection valve 1 is opposed by a seal 28 a fuel distribution line not shown and sealed by a further seal 37 against a cylinder head, not shown.

An der abspritzseitigen Seite des Ankers 20 ist ein ringförmiges Dämpfungselement 33, welches aus einem Elastomerwerkstoff besteht, angeordnet. Es liegt auf einem zweiten Flansch 34 auf, welcher über eine Schweißnaht 35 kraftschlüssig mit der Ventilnadel 3 verbunden ist.On the discharge side of the armature 20, an annular damping element 33, which consists of an elastomer material, arranged. It rests on a second flange 34 which is non-positively connected to the valve needle 3 via a weld seam 35.

Im Ruhezustand des Brennstoffeinspritzventils 1 wird der Anker 20 von der Rückstellfeder 23 entgegen seiner Hubrichtung so beaufschlagt, daß der Ventilschließkörper 4 an der Ventilsitzfläche 6 in dichtender Anlage gehalten wird. Bei Erregung der Magnetspule 10 baut diese ein Magnetfeld auf, welches den Anker 20 entgegen der Federkraft der Rückstellfeder 23 in Hubrichtung bewegt, wobei der Hub durch einen in der Ruhestellung zwischen dem Innenpol 12 und dem Anker 20 befindlichen Arbeitsspalt 27 vorgegeben ist. Der Anker 20 nimmt den ersten Flansch 21, welcher mit der Ventilnadel 3 verschweißt ist, ebenfalls in Hubrichtung mit. Der mit der Ventilnadel 3 in Verbindung stehende Ventilschließkörper 4 hebt von der Ventilsitzfläche 6 ab, und der über die Brennstoffkanäle 30 bis 32 geführte Brennstoff wird durch die Abspritzöffnung 7 abgespritzt.In the resting state of the fuel injection valve 1, the armature 20 is acted upon by the return spring 23 counter to its stroke direction so that the valve closing body 4 is held on the valve seat surface 6 in sealing engagement. Upon energization of the solenoid coil 10, this builds up a magnetic field, which moves the armature 20 against the spring force of the return spring 23 in the stroke direction, wherein the stroke is determined by a located in the rest position between the inner pole 12 and the armature 20 working gap 27. The armature 20 takes the first flange 21, which is welded to the valve needle 3, also in the stroke direction with. The valve closing body 4 communicating with the valve needle 3 lifts off from the valve seat surface 6, and the fuel guided via the fuel channels 30 to 32 is sprayed through the injection opening 7.

Wird der Spulenstrom abgeschaltet, fällt der Anker 20 nach genügendem Abbau des Magnetfeldes durch den Druck der Rückstellfeder 23 vom Innenpol 13 ab, wodurch sich der mit der Ventilnadel 3 in Verbindung stehende erste Flansch 21 entgegen der Hubrichtung bewegt. Die Ventilnadel 3 wird dadurch in die gleiche Richtung bewegt, wodurch der Ventilschließkörper 4 auf der Ventilsitzfläche 6 aufsetzt und das Brennstoffeinspritzventil 1 geschlossen wird.If the coil current is turned off, the armature 20 drops after sufficient degradation of the magnetic field by the pressure of the return spring 23 from the inner pole 13, whereby the valve connected to the needle 3 in communication first flange 21 moves against the stroke direction. The valve needle 3 is thereby moved in the same direction, whereby the valve closing body 4 touches on the valve seat surface 6 and the fuel injection valve 1 is closed.

Fig. 2A zeigt in einer stark schematisierten, ausschnittsweisen Darstellung eine dem Innenpol 13 des Brennstoffeinspritzventils 1 zugewandte Ankeranschlagfläche 38. Der Anker 20 kann dabei wie in dem in Fig. 1 bereits näher beschriebenen Brennstoffeinspritzventil 1 ausgebildet sein. Fig. 2A shows in a highly schematic, fragmentary illustration of the inner pole 13 of the fuel injection valve 1 facing anchor stop surface 38. The armature 20 can, as in the in Fig. 1 already be described in more detail fuel injection valve 1.

Die Ankeranschlagfläche 38 ist erfindungsgemäß mit einer Beschichtung 40 versehen, welche einerseits die Ankeranschlagfläche 38 sowie eine entsprechende Anschlagfläche 39 am Innenpol 13 vor Verschleiß schützt und andererseits durch ihre spezielle Oberflächenstruktur 41 für ein zügiges Abfließen des Brennstoffs beim Anziehen des Ankers 20 bei Bestromung der Magnetspule 10 sorgt und damit den Öffnungsvorgang des Brennstoffeinspritzventils 1 nicht stört. Zudem wird die Kavitation der Ankeranschlagfläche 38 sowie der Anschlagfläche 39 des Innenpols 13 verringert, da der Brennstoff nicht verwirbelt wird.According to the invention, the anchor abutment surface 38 is provided with a coating 40 which, on the one hand, protects the anchor abutment surface 38 and a corresponding abutment surface 39 from wear on the inner pole 13 and, on the other hand, by means of its special surface structure 41 for a rapid outflow of the fuel when the armature 20 is energized when the magnet coil 10 is energized ensures and thus does not interfere with the opening process of the fuel injection valve 1. In addition, the cavitation of the anchor stop surface 38 and the stop surface 39 of the inner pole 13 is reduced, since the fuel is not swirled.

Die Oberflächenstruktur 41 weist dabei erhöhte und vertiefte Bereiche 42, 43 auf, welche durch ein entsprechendes Beschichtungsverfahren erzielt werden. Bevorzugt wird für die Beschichtung 40 Chrom verwendet, welches in mehreren Schichten auf die Ankeranschlagfläche 38 des Ankers 20 aufgebracht wird. Dadurch ergeben sich kalottenförmig erhabene Bereiche 42, zwischen welchen die vertieften Bereiche 43 ausgebildet sind.The surface structure 41 in this case has raised and recessed areas 42, 43, which are achieved by a corresponding coating method. Preferably, for the coating 40 chromium is used, which is applied in several layers on the anchor stop surface 38 of the armature 20. This results in dome-shaped raised areas 42, between which the recessed areas 43 are formed.

Die Fläche, welche durch die wechselnden erhabenen und vertieften Bereiche 42, 43 als Ankeranschlagfläche 38 zur Verfügung steht, ist erwartungsgemäß kleiner als eine geschlossene Ankeranschlagfläche 38, so daß beim Schließen des Brennstoffeinspritzventils 1 ein verringertes hydraulisches Kleben zwischen der Ankeranschlagfläche 38 und der Anschlagfläche 39 des Innenpols 13 zu beobachten ist.The area provided by the alternating raised and recessed areas 42, 43 as the anchor abutment surface 38 is expected to be smaller than a closed anchor abutment area 38 so that reduced hydraulic adhesion between the anchor abutment area 38 and the abutment area 39 of the Innenpols 13 is observed.

Andererseits wird die Oberflächenstruktur 41, wie aus Fig. 2B ersichtlich, nach einer Anfangsphase im Dauerbetrieb so weit abgetragen, daß sich eine stabile Oberflächenstruktur 41 mit nachfolgend sehr geringem Verschleiß einstellt (Einlaufen), welche trotzdem nach wie vor über die vertieften, als Entwässerung dienenden Bereiche 43 verfügt. Der Höhenunterschied, welcher zwischen den erhöhten und den vertieften Bereichen 42, 43 vor dem Einlaufen besteht, liegt dabei zwischen 5 und 10 µm und verringert sich gemäß den typischen Verschleißtiefen von ca. 4 bis 5 µm. Dadurch ist eine effektive Entwässerung der Ankeranschlagfläche 38 und zugleich eine große Kontaktfläche zwischen Ankeranschlagfläche 38 und Anschlagfläche 39 des Innenpols 13 gewährleistet.On the other hand, the surface structure 41 becomes as shown in FIG Fig. 2B can be seen after an initial phase in continuous operation so far removed that sets a stable surface structure 41 with subsequent very low wear (shrinkage), which nevertheless still has the recessed serving as drainage areas 43. The height difference, which between the elevated and the Recessed areas 42, 43 before shrinking, lies between 5 and 10 microns and decreases according to the typical wear depths of about 4 to 5 microns. As a result, an effective drainage of the anchor stop surface 38 and at the same time a large contact surface between the anchor stop surface 38 and abutment surface 39 of the inner pole 13 is ensured.

Die Erfindung ist nicht auf das dargestellte Ausführungsbeispiel beschränkt und auch bei einer Vielzahl anderer Bauweisen von Brennstoffeinspritzventilen realisierbar. Die Beschichtung 40 kann z. B. alternativ oder zusätzlich auch an der Anschlagfläche 39 des Innenpols 13 vorgesehen sein.The invention is not limited to the illustrated embodiment and also in a variety of other designs of fuel injection valves realized. The coating 40 may, for. B. alternatively or additionally be provided on the abutment surface 39 of the inner pole 13.

Claims (5)

  1. Fuel injection valve (1) for fuel injection systems of internal combustion engines, having a magnet coil (10), having an armature (20) which is loaded in a closing direction by a restoring spring (33), and having a valve needle (3) which is connected in non-positively locking fashion to the armature (20), on which valve needle there is formed a valve closing body (4) which, together with a valve seat surface (6), forms a sealing seat, wherein the armature (20) abuts by way of an armature abutment surface (38) against an abutment surface (39) of an inner pole (13) of the magnet coil (10), and the armature abutment surface (38) and/or the abutment surface (39) are/is provided with a coating (40), wherein the coating (40) has a surface structure (41) with elevated regions (42) and recessed regions (43),
    characterized
    in that the elevated regions (42) are of spherical cap-like form.
  2. Fuel injection valve according to Claim 1,
    characterized
    in that a height difference between the elevated and recessed regions (42, 43) is dimensioned so as to be greater than an extent to which the elevated regions (42) are abraded under loading.
  3. Fuel injection valve according to Claim 2,
    characterized
    in that the height difference is between 5 µm and 10 µm.
  4. Fuel injection valve according to one of Claims 1 to 3,
    characterized
    in that the coating (40) is composed of chromium.
  5. Fuel injection valve according to Claim 4,
    characterized
    in that the coating (40) is constructed from multiple chromium layers.
EP03812120.8A 2002-12-04 2003-07-02 Fuel-injection valve Expired - Lifetime EP1570170B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10256662A DE10256662A1 (en) 2002-12-04 2002-12-04 Fuel injector
DE10256662 2002-12-04
PCT/DE2003/002211 WO2004051072A1 (en) 2002-12-04 2003-07-02 Fuel-injection valve

Publications (2)

Publication Number Publication Date
EP1570170A1 EP1570170A1 (en) 2005-09-07
EP1570170B1 true EP1570170B1 (en) 2014-04-16

Family

ID=32318943

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03812120.8A Expired - Lifetime EP1570170B1 (en) 2002-12-04 2003-07-02 Fuel-injection valve

Country Status (6)

Country Link
US (2) US8020789B2 (en)
EP (1) EP1570170B1 (en)
JP (1) JP2006509140A (en)
CN (1) CN100432418C (en)
DE (1) DE10256662A1 (en)
WO (1) WO2004051072A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022727A (en) * 2004-07-08 2006-01-26 Aisan Ind Co Ltd Fuel injection valve
DE102008042593A1 (en) * 2008-10-02 2010-04-08 Robert Bosch Gmbh Fuel injector and surface treatment methods
US8523090B2 (en) * 2009-12-23 2013-09-03 Caterpillar Inc. Fuel injection systems and armature housings
DE102010064105A1 (en) * 2010-12-23 2012-01-19 Robert Bosch Gmbh Valve for injecting fuel
JP2012246789A (en) * 2011-05-25 2012-12-13 Denso Corp Fuel injection valve
DE102011089999A1 (en) * 2011-12-27 2013-06-27 Robert Bosch Gmbh Solenoid valve, in particular quantity control valve of a high-pressure fuel pump
US9228550B2 (en) 2013-03-11 2016-01-05 Stanadyne Llc Common rail injector with regulated pressure chamber
US10883465B2 (en) * 2015-12-24 2021-01-05 Hitachi Automotive Systems, Ltd. Solenoid valve and method for manufacturing the same
DE102017218224A1 (en) * 2017-10-12 2019-04-18 Robert Bosch Gmbh Valve for metering a fluid, in particular fuel injection valve
DE102017218764A1 (en) * 2017-10-20 2019-04-25 Robert Bosch Gmbh Solenoid valve for controlling fluids
DE102019214259A1 (en) * 2019-09-19 2021-03-25 Robert Bosch Gmbh Valve for metering a fluid

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2385904A1 (en) * 1977-03-28 1978-10-27 Promeyrat Casteilla Tech Nle M ALTERNATIVE PISTON WITH SELF-ADAPTABLE HEAD SURROUND FOR THE FUNDAMENTAL IMPROVEMENT OF THE THERMAL ENGINE, AND OTHER MACHINES WITH ALTERNATIVE PISTONS
US4245789A (en) * 1979-05-03 1981-01-20 General Motors Corporation Electromagnetic fuel injector
DE3230844A1 (en) * 1982-08-19 1984-02-23 Robert Bosch Gmbh, 7000 Stuttgart ELECTROMAGNETICALLY ACTUABLE VALVE
JPS60153467A (en) 1984-01-23 1985-08-12 Nippon Denso Co Ltd Electromagnetic fuel injection valve
DE3501973A1 (en) * 1984-01-23 1985-07-25 Nippondenso Co., Ltd., Kariya, Aichi Fuel injection nozzle
DE3408012A1 (en) * 1984-03-05 1985-09-05 Gerhard Dipl.-Ing. Warren Mich. Mesenich ELECTROMAGNETIC INJECTION VALVE
DE3834445A1 (en) * 1988-10-10 1990-04-12 Mesenich Gerhard ELECTROMAGNETIC INJECTION VALVE WITH TIP ANCHOR
US5085402A (en) * 1990-08-10 1992-02-04 The Lee Company High speed solenoid valve actuator
US5226975A (en) * 1991-03-20 1993-07-13 Cummins Engine Company, Inc. Plasma nitride chromium plated coating method
DE4131535A1 (en) * 1991-09-21 1993-03-25 Bosch Gmbh Robert ELECTROMAGNETICALLY OPERATED INJECTION VALVE
IT1250845B (en) * 1991-10-11 1995-04-21 Weber Srl ELECTROMAGNETICALLY OPERATED FUEL DOSING AND PULVERIZING VALVE FOR AN ENDOTHERMAL MOTOR FEEDING DEVICE
EP0683861B1 (en) * 1993-12-09 1998-03-04 Robert Bosch Gmbh Electromagnetic valve
CN1049951C (en) * 1993-12-09 2000-03-01 罗伯特·博施有限公司 Electromagnetic valve
JPH1047199A (en) * 1996-07-31 1998-02-17 Mitsubishi Electric Corp Fuel injection valve for cylinder injection of fuel
DE19639117A1 (en) * 1996-09-24 1998-03-26 Bosch Gmbh Robert Fuel injector
JP3145322B2 (en) * 1996-11-29 2001-03-12 トヨタ自動車株式会社 Fuel injection valve for in-cylinder internal combustion engine
DE19902527B4 (en) * 1999-01-22 2009-06-04 Hydro Aluminium Deutschland Gmbh Printing plate support and method for producing a printing plate support or an offset printing plate
DE19960605A1 (en) * 1999-12-16 2001-07-19 Bosch Gmbh Robert Fuel injector
JP2001267725A (en) * 2000-03-16 2001-09-28 Matsushita Electric Ind Co Ltd Method for manufacturing ceramic thick film printed circuit board
TW515064B (en) * 2000-03-23 2002-12-21 Seiko Epson Corp Semiconductor device and its manufacturing method, circuit board and electronic machine
DE10036811A1 (en) * 2000-07-28 2002-02-07 Bosch Gmbh Robert Fuel injector
US6607143B2 (en) * 2000-12-29 2003-08-19 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a lift set sleeve
US6499668B2 (en) * 2000-12-29 2002-12-31 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6708906B2 (en) * 2000-12-29 2004-03-23 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and dynamic adjustment assembly
KR20020093920A (en) * 2001-02-16 2002-12-16 닛폰 이타가라스 가부시키가이샤 Irregular film and method of manufacturing the film
DE10109410A1 (en) * 2001-02-28 2002-09-05 Bosch Gmbh Robert Fuel injector
DE10124748A1 (en) * 2001-05-21 2003-02-27 Bosch Gmbh Robert Fuel injector
DE10131201A1 (en) * 2001-06-28 2003-01-16 Bosch Gmbh Robert Solenoid valve for controlling an injection valve of an internal combustion engine
JP2003185051A (en) * 2001-12-13 2003-07-03 Denso Corp Electromagnetic valve device and manufacturing method thereof
US6592947B1 (en) * 2002-04-12 2003-07-15 Ford Global Technologies, Llc Method for selective control of corrosion using kinetic spraying
JP3925283B2 (en) * 2002-04-16 2007-06-06 セイコーエプソン株式会社 Method for manufacturing electronic device, method for manufacturing electronic device
US20050175777A1 (en) * 2002-05-27 2005-08-11 Koninkilijke Phillips Electronics N.V. Method of providing a substrate surface with a patterned layer
US6858333B2 (en) * 2002-10-09 2005-02-22 Kennametal Inc. Tool with wear resistant low friction coating and method of making the same
US6688578B1 (en) * 2003-01-08 2004-02-10 Robert Bosch Gmbh Electromagnetic actuator for a fuel injector having an integral magnetic core and injector valve body
WO2005061878A2 (en) * 2003-12-19 2005-07-07 Siemens Vdo Automotive Corporation Polymeric bodied fuel injectors and method of manufacturing the polymeric bodied fuel injectors
US7389952B2 (en) * 2004-08-04 2008-06-24 Continental Automotive Systems Us, Inc. Deep pocket seat assembly in modular fuel injector with unitary filter and O-ring retainer assembly and methods
US7422160B2 (en) * 2004-08-05 2008-09-09 Siemens Vdo Automotive Corporation Deep pocket seat assembly in modular fuel injector having axial contact terminals and methods
US8906515B2 (en) * 2009-06-02 2014-12-09 Integran Technologies, Inc. Metal-clad polymer article
US8196600B1 (en) * 2010-12-27 2012-06-12 General Electric Company High-temperature jointed assemblies and wear-resistant coating systems therefor

Also Published As

Publication number Publication date
EP1570170A1 (en) 2005-09-07
DE10256662A1 (en) 2004-06-17
US8020789B2 (en) 2011-09-20
US20060151639A1 (en) 2006-07-13
WO2004051072A1 (en) 2004-06-17
CN100432418C (en) 2008-11-12
US8656591B2 (en) 2014-02-25
US20110305823A1 (en) 2011-12-15
JP2006509140A (en) 2006-03-16
CN1714235A (en) 2005-12-28

Similar Documents

Publication Publication Date Title
DE112006001605B4 (en) Electromagnetic actuator and method for controlling fluid flow
WO1995016126A1 (en) Electromagnetic valve
DE102018130740A1 (en) Valve assembly having an electric actuator with stepped armature
EP1570170B1 (en) Fuel-injection valve
WO1995016125A1 (en) Electromagnetic valve
EP1576278A1 (en) Fuel injection valve
WO2002073027A1 (en) Fuel injection valve
WO2002012709A1 (en) Fuel injection valve
DE102010064097A1 (en) Electromagnetically actuatable valve e.g. fuel injection valve of internal combustion engine, has movable valve needle with lower stopper comprising top stop face with elevations and depressions on which armature rests
DE19731506C2 (en) Fuel injector
EP1395746B1 (en) Fuel injection valve
WO2001044652A1 (en) Fuel injection valve
EP1402175B1 (en) Fuel injection valve
EP1481157B1 (en) Fuel injection valve
DE3501973A1 (en) Fuel injection nozzle
DE102014226367A1 (en) Fuel injector
WO2002033244A1 (en) Fuel injection valve
EP1430217B1 (en) Fuel injection valve
DE10063261B4 (en) Fuel injector
EP1309790B1 (en) Fuel injection valve
EP2643619A1 (en) Valve device having a movement element which is cylindrical at least in sections
WO2003062629A1 (en) Solenoid valve and method for producing the same
EP3423717B1 (en) Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve
EP1358404B1 (en) Fuel injection valve
DE102018219342A1 (en) Valve for metering a fluid, in particular fuel injection valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20080717

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140116

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315022

Country of ref document: DE

Effective date: 20140528

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315022

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315022

Country of ref document: DE

Effective date: 20150119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170724

Year of fee payment: 15

Ref country code: IT

Payment date: 20170721

Year of fee payment: 15

Ref country code: FR

Payment date: 20170720

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180702

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200924

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50315022

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201