EP1564513A1 - Kühlschrank mit Verdichter mit Variabler Geschwindigkeit und Verfahren zur regelung Variabeler Kühlleistung Dafür - Google Patents

Kühlschrank mit Verdichter mit Variabler Geschwindigkeit und Verfahren zur regelung Variabeler Kühlleistung Dafür Download PDF

Info

Publication number
EP1564513A1
EP1564513A1 EP04003144A EP04003144A EP1564513A1 EP 1564513 A1 EP1564513 A1 EP 1564513A1 EP 04003144 A EP04003144 A EP 04003144A EP 04003144 A EP04003144 A EP 04003144A EP 1564513 A1 EP1564513 A1 EP 1564513A1
Authority
EP
European Patent Office
Prior art keywords
compressor
temperature
cooling capacity
refrigerator
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04003144A
Other languages
English (en)
French (fr)
Inventor
Alessandro Boer
Raffaele Paganini
Rocco Petrigliano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whirlpool Corp
Original Assignee
Whirlpool Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whirlpool Corp filed Critical Whirlpool Corp
Priority to EP04003144A priority Critical patent/EP1564513A1/de
Priority to EP04008721A priority patent/EP1564514A1/de
Priority to US10/597,906 priority patent/US20070227161A1/en
Priority to BRPI0507595-5A priority patent/BRPI0507595A/pt
Priority to NZ549102A priority patent/NZ549102A/en
Priority to PCT/EP2005/050590 priority patent/WO2005078366A1/en
Priority to AU2005212639A priority patent/AU2005212639B9/en
Publication of EP1564513A1 publication Critical patent/EP1564513A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/28Quick cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/04Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/02Sensors detecting door opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Definitions

  • the present invention relates to a refrigerator comprising a compressor having a variable cooling capacity and control means for controlling such compressor in response to the temperature inside the refrigerator, as well as to a method for automatically speeding up the cooling time of the food stored in a refrigerator without user interaction and with limited energy consumption.
  • a refrigerator comprising a compressor having a variable cooling capacity and control means for controlling such compressor in response to the temperature inside the refrigerator, as well as to a method for automatically speeding up the cooling time of the food stored in a refrigerator without user interaction and with limited energy consumption.
  • refrigerator as used in the description and in the appended claims we mean any kind of domestic refrigerator and freezer.
  • compressor having variable cooling capacity we mean all kind of compressors having the possibility of changing the output, either by changing displacement of the compressor (for instance with the so called free piston compressor) or by changing the speed of the compressor (in case of fixed displacement) either continuously or stepwise. In general, modern freezers and refrigerators have a fast freezing or fast cooling feature.
  • This feature must be activated by the user and consists in keeping the compressor running at its maximum cooling capacity for an appropriate fixed time (i.e. 24 hours).
  • Such a known technique guarantees the maximum cooling speed and is suitable for the fast cooling of large amounts of food.
  • the amount of food is not very large, it leads to unnecessary food over-cooling and energy waste.
  • the user often forgets to activate the function or he doesn't consider the amount of food large enough to manually activate the function. As a consequence in these cases, the cooling process is relatively slow.
  • the present invention provides a control algorithm able to estimate the amount of warm food inserted into the refrigerator or freezer. On the basis of this estimation, the algorithm automatically tunes the compressor response in order to speed-up the cooling process without wasting any energy for unnecessary over-cooling.
  • figure 1 shows a typical and well-known temperature trend inside a freezer when the user puts a quantity of warm food inside the cavity.
  • the probe temperature rapidly increases its detected value.
  • the temperature starts going down thanks to the traditional temperature control action, based on a consequent increase of the cooling capacity of the compressor (in the example the speed of the variable speed compressor increases from 1500 rpm to 4000 rpm). The higher is the amount of warm food inside the freezer, the slower the probe temperature tends to go down.
  • the refrigerator control system receiving inputs from the probe temperature inside the freezer and possibly inputs related to the working condition of the compressor, can estimate the amount of warm food (warm thermal mass) by correlating the behavior (for instance the slope) of the probe temperature with the actual compressor capacity.
  • the food cooling speed is then increased by increasing the compressor capacity proportionally to the estimated warm thermal mass and substantially independently on the actual temperature reached by the probe after such compressor capacity has been increased.
  • Figures 2a and 2b show two ways of warm food recoveries: the first one (fig. 2.a) is the result obtained by a traditional control (no warm food estimation and no fast freezing activated by the user), the second one is obtained by a control that implements the method according to the invention.
  • the known control doesn't perform any probe "under-cooling”: as the temperature probe reaches the cut-off temperature, the compressor is shut down but the food is not yet completely cooled.
  • the proposed algorithm performs an appropriate probe "under-cooling” by running the compressor at high speed and for a time depending on the previous estimation of the amount of food loaded into the freezer. Also the speed at which the compressor runs may be set by the control system on the basis of the above estimation.
  • the compressor may be shut down when the package is completely cooled.
  • the probe "under-cooling”, in which the usual control based on cut-off temperature is "overruled”, is represented by the area named A2 in the figure 2b.
  • a possible technique for estimating the amount of warm food and to carry out an appropriated probe "under-cooling” is based on the estimation of the A1 area, i.e. the integral of the curve representing the increase of temperature above a steady state average temperature Tg.
  • A1 is the probe temperature area caused by the warm package insertion
  • the parameter k may depend on the type of appliance. Furthermore, on the same appliance, this parameter may be constant or changed with the working conditions (i.e. external temperature, temperature set by the user etc), and fuzzy logic may be used for this purpose.
  • An alternative technique consists in having an area A2 based on time derivative of the probe temperature, i.e. with A2 in inverse proportion to such derivative: the lower is the derivative, the higher must be A2.
  • control techniques can be carried out by a temperature control algorithm based on the PID (Proportional-derivative-integral) technique.
  • PID Proportional-derivative-integral
  • the compressor cooling capacity u(t) (in general the compressor speed) will depend on the error temperature e(t) according to the following formula:
  • e(t) Tprobe-Target
  • Ti the integral time
  • Td the derivative time
  • Kp is a predetermined parameter
  • the integral component plays the main role in adapting the cooling capacity to the amount of warm food. In fact it is proportional to the area of the error e(t) along the time axes. During a recovery, this area is significantly affected by the amount of warm food: the higher is the amount of warm food, the longer e(t) tends to be "high” (>0) with a consequent increasing of its area (see area A1 in fig 2a ,2b). This condition leads to a progressive increasing of the compressor capacity u(t). Furthermore, the integrative component guarantees an appropriate probe "under-cooling" to compensate the positive area caused by the insertion of the warm food.
  • the integral time Ti, the derivative time Td and the predetermined parameter Kp are adjusted according to data related to opening door switch (i.e. according to frequency and/or time of door aperture) or, if such data are not available, from a sudden rising temperature detection to speed up the food cooling time.
  • Such adjustment can act together or replacing the well known "anti wind-up" technique in which the integrative part of the temperature error may or not be saturated to a predetermined value.
  • Figure 3 shows the capability of the control algorithm to adapt the compressor response to the warm thermal mass. In particular it is shown the reaction to the insertion of high, medium and small food quantities . In each of these three conditions the control gives a compressor capacity increase that is proportional to the warm thermal mass. As a consequence of the increased cooling capacity, the temperature probe is proportionally "under-cooled” as well. In particular figure 3 highlights the different probe under-cooling for each warm food quantity (see the different "under-cooling" areas A 1 , A 2 , A 3 ).
  • one of the main characteristics of the control algorithm according to the present invention consists in the fact that the compressor switch-off is not based on a predetermined cut-off temperature (or a set of predetermined cut-off temperatures): the compressor is switched off on the basis of the estimated amount of warm food that the user has put inside the freezer cavity. In the example shown in fig. 3, the compressor was switched off at different temperatures T off1 , T off2 , T off3 .
  • the main advantages of the present invention are as follows.
  • the algorithm adapts the compressor response to the warm thermal mass avoiding any waste of energy for unnecessary over-cooling.
  • fig. 4a shows the effects of the traditional fast freezing function manually activated by the user: in this case a medium load quantity of warm food has been inserted into the freezer.
  • the traditional fast freezing function keeps the compressor running at its maximum capacity for 24 hours with a consequent under cooling of the food with a consequent waste of energy.
  • Figure 4b shows the automatic fast freezing performed by the method according to the present invention in the same working condition of figure 4b: without any user interaction the same amount of warm food is rapidly recovered without unnecessary food "under-cooling".
  • Figure 5 shows the comparison between the energy consumption in the two above cases.
  • the method according to the invention is completely automatic, this means that the user is not required to activate any function. So the risk of a slow temperature recovery, when the user forgets to activate the fast freezing function present in known refrigerators, is avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
EP04003144A 2004-02-12 2004-02-12 Kühlschrank mit Verdichter mit Variabler Geschwindigkeit und Verfahren zur regelung Variabeler Kühlleistung Dafür Withdrawn EP1564513A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP04003144A EP1564513A1 (de) 2004-02-12 2004-02-12 Kühlschrank mit Verdichter mit Variabler Geschwindigkeit und Verfahren zur regelung Variabeler Kühlleistung Dafür
EP04008721A EP1564514A1 (de) 2004-02-12 2004-04-13 Kühlschrank und Verfahren zur Regelung Variabeler Kühlleistung Dafür
US10/597,906 US20070227161A1 (en) 2004-02-12 2005-02-10 Refrigerator and a Method for Controlling Variable Cooling Capacity Thereof
BRPI0507595-5A BRPI0507595A (pt) 2004-02-12 2005-02-10 refrigerador, método para controlar a capacidade de resfriamento variável de um compressor em um refrigerador, e, método para controlar o estado de um compressor ligado/desligado
NZ549102A NZ549102A (en) 2004-02-12 2005-02-10 A refrigerator and a method for controlling variable cooling capacity thereof
PCT/EP2005/050590 WO2005078366A1 (en) 2004-02-12 2005-02-10 A refrigerator and a method for controlling variable cooling capacity thereof
AU2005212639A AU2005212639B9 (en) 2004-02-12 2005-02-10 A refrigerator and a method for controlling variable cooling capacity thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04003144A EP1564513A1 (de) 2004-02-12 2004-02-12 Kühlschrank mit Verdichter mit Variabler Geschwindigkeit und Verfahren zur regelung Variabeler Kühlleistung Dafür

Publications (1)

Publication Number Publication Date
EP1564513A1 true EP1564513A1 (de) 2005-08-17

Family

ID=34684676

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04003144A Withdrawn EP1564513A1 (de) 2004-02-12 2004-02-12 Kühlschrank mit Verdichter mit Variabler Geschwindigkeit und Verfahren zur regelung Variabeler Kühlleistung Dafür

Country Status (1)

Country Link
EP (1) EP1564513A1 (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095571A1 (ja) 2005-03-08 2006-09-14 Hoshizaki Denki Kabushiki Kaisha 冷却貯蔵庫
EP1772691A1 (de) * 2005-10-10 2007-04-11 Whirlpool Corporation Verfahren zur Kühlung von Getränken in einem Gefrierfach und ein solches Verfahren verwendender Kühlschrank
EP1927818A1 (de) * 2006-11-30 2008-06-04 Whirlpool Corporation Methode zum gesteuerten Schnelleinfrieren in einem Kühlgerät und Kühlgerät zur Durchführung dieser Methode
US20130091873A1 (en) * 2011-10-13 2013-04-18 Thermo King Corporation Auto configuration of refrigeration systems in cold chain
RU2517224C2 (ru) * 2009-03-19 2014-05-27 Бсх Бош Унд Сименс Хаусгерете Гмбх Холодильный аппарат и способ охлаждения холодильного аппарата
US9080805B2 (en) 2006-05-15 2015-07-14 Hoshizaki Denki Kabushiki Kaisha Cooling storage cabinet with dual evaporators and an inverter compressor
US9140477B2 (en) 2012-05-21 2015-09-22 Whirlpool Corporation Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption
US9140479B2 (en) 2012-05-21 2015-09-22 Whirlpool Corporation Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption
US9140478B2 (en) 2012-05-21 2015-09-22 Whirlpool Corporation Synchronous temperature rate control for refrigeration with reduced energy consumption
WO2015189009A1 (de) 2014-06-11 2015-12-17 BSH Hausgeräte GmbH Kältegerät
RU2578055C2 (ru) * 2011-05-04 2016-03-20 Бсх Хаусгерете Гмбх Одноконтурный холодильный аппарат
US10203127B2 (en) 2016-04-29 2019-02-12 Trane International Inc. Time-constrained control of an HVAC system
EP3661807A4 (de) * 2017-08-01 2021-05-05 LG Electronics Inc. Fahrzeug, kühlschrank für fahrzeug und steuerverfahren für einen kühlschrank für ein fahrzeug
US11466925B2 (en) 2017-08-16 2022-10-11 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11536415B2 (en) 2017-08-01 2022-12-27 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11624550B2 (en) 2017-08-01 2023-04-11 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
WO2023078608A1 (de) * 2021-11-05 2023-05-11 BSH Hausgeräte GmbH Betreiben einer temperaturzone in einem superkühlmodus
US11725768B2 (en) 2017-08-01 2023-08-15 Lg Electronics Inc. Vacuum adiabatic body, refrigerating or warming apparatus, and method for manufacturing vacuum adiabatic body
US11774167B2 (en) 2017-08-01 2023-10-03 Lg Electronics Inc. Vacuum adiabatic body and refrigerator

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4662185A (en) * 1985-03-04 1987-05-05 Hitachi, Ltd. System of controlling refrigerator temperature
JPH04161775A (ja) * 1990-10-26 1992-06-05 Sharp Corp 冷凍冷蔵庫
JPH04187968A (ja) * 1990-11-22 1992-07-06 Matsushita Refrig Co Ltd 冷蔵庫の急冷制御装置
JPH04187970A (ja) * 1990-11-21 1992-07-06 Matsushita Refrig Co Ltd 冷蔵庫の急冷制御装置
JPH04254179A (ja) * 1991-02-05 1992-09-09 Matsushita Refrig Co Ltd 冷凍冷蔵庫の制御装置
US5255530A (en) * 1992-11-09 1993-10-26 Whirlpool Corporation System of two zone refrigerator temperature control
US5555736A (en) * 1994-01-11 1996-09-17 York International Corporation Refrigeration system and method
US5586444A (en) * 1995-04-25 1996-12-24 Tyler Refrigeration Control for commercial refrigeration system
US5711159A (en) * 1994-09-07 1998-01-27 General Electric Company Energy-efficient refrigerator control system
DE19700544A1 (de) * 1997-01-10 1998-07-16 Aeg Hausgeraete Gmbh Verfahren zur Einstellung der Temperatur eines Kühl- und/oder Gefriergeräts sowie Kühl- und/oder Gefriergerät
US6216478B1 (en) * 1998-12-09 2001-04-17 Lg Electronics Inc. Operation speed change system and method for refrigerator
WO2003025480A1 (en) * 2001-09-21 2003-03-27 Arçelik A.S. Refrigerator control method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4662185A (en) * 1985-03-04 1987-05-05 Hitachi, Ltd. System of controlling refrigerator temperature
JPH04161775A (ja) * 1990-10-26 1992-06-05 Sharp Corp 冷凍冷蔵庫
JPH04187970A (ja) * 1990-11-21 1992-07-06 Matsushita Refrig Co Ltd 冷蔵庫の急冷制御装置
JPH04187968A (ja) * 1990-11-22 1992-07-06 Matsushita Refrig Co Ltd 冷蔵庫の急冷制御装置
JPH04254179A (ja) * 1991-02-05 1992-09-09 Matsushita Refrig Co Ltd 冷凍冷蔵庫の制御装置
US5255530A (en) * 1992-11-09 1993-10-26 Whirlpool Corporation System of two zone refrigerator temperature control
US5555736A (en) * 1994-01-11 1996-09-17 York International Corporation Refrigeration system and method
US5711159A (en) * 1994-09-07 1998-01-27 General Electric Company Energy-efficient refrigerator control system
US5586444A (en) * 1995-04-25 1996-12-24 Tyler Refrigeration Control for commercial refrigeration system
DE19700544A1 (de) * 1997-01-10 1998-07-16 Aeg Hausgeraete Gmbh Verfahren zur Einstellung der Temperatur eines Kühl- und/oder Gefriergeräts sowie Kühl- und/oder Gefriergerät
US6216478B1 (en) * 1998-12-09 2001-04-17 Lg Electronics Inc. Operation speed change system and method for refrigerator
WO2003025480A1 (en) * 2001-09-21 2003-03-27 Arçelik A.S. Refrigerator control method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 456 (M - 1314) 22 September 1992 (1992-09-22) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 507 (M - 1327) 20 October 1992 (1992-10-20) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 031 (M - 1356) 21 January 1993 (1993-01-21) *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1857752A1 (de) * 2005-03-08 2007-11-21 Hoshizaki Denki Kabushiki Kaisha Kühler und kühlschrank
EP1857752A4 (de) * 2005-03-08 2009-12-16 Hoshizaki Electric Co Ltd Kühler und kühlschrank
US7775058B2 (en) 2005-03-08 2010-08-17 Hoshizaki Denki Kabushiki Kaisha Cooler and refrigerator
WO2006095571A1 (ja) 2005-03-08 2006-09-14 Hoshizaki Denki Kabushiki Kaisha 冷却貯蔵庫
EP1772691A1 (de) * 2005-10-10 2007-04-11 Whirlpool Corporation Verfahren zur Kühlung von Getränken in einem Gefrierfach und ein solches Verfahren verwendender Kühlschrank
US7866170B2 (en) 2005-10-10 2011-01-11 Whirlpool Corporation Method for cooling drinks and beverages in a freezer and refrigerator using such method
US9080805B2 (en) 2006-05-15 2015-07-14 Hoshizaki Denki Kabushiki Kaisha Cooling storage cabinet with dual evaporators and an inverter compressor
EP1927818A1 (de) * 2006-11-30 2008-06-04 Whirlpool Corporation Methode zum gesteuerten Schnelleinfrieren in einem Kühlgerät und Kühlgerät zur Durchführung dieser Methode
RU2517224C2 (ru) * 2009-03-19 2014-05-27 Бсх Бош Унд Сименс Хаусгерете Гмбх Холодильный аппарат и способ охлаждения холодильного аппарата
RU2578055C2 (ru) * 2011-05-04 2016-03-20 Бсх Хаусгерете Гмбх Одноконтурный холодильный аппарат
US9384458B2 (en) * 2011-10-13 2016-07-05 Thermo King Corporation Auto configuration of refrigeration systems in cold chain
US20130091873A1 (en) * 2011-10-13 2013-04-18 Thermo King Corporation Auto configuration of refrigeration systems in cold chain
US9140477B2 (en) 2012-05-21 2015-09-22 Whirlpool Corporation Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption
US9140479B2 (en) 2012-05-21 2015-09-22 Whirlpool Corporation Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption
US9140478B2 (en) 2012-05-21 2015-09-22 Whirlpool Corporation Synchronous temperature rate control for refrigeration with reduced energy consumption
US9810472B2 (en) 2012-05-21 2017-11-07 Whirlpool Corporation Synchronous temperature rate control for refrigeration with reduced energy consumption
DE102014211095A1 (de) 2014-06-11 2015-12-17 BSH Hausgeräte GmbH Kältegerät
WO2015189009A1 (de) 2014-06-11 2015-12-17 BSH Hausgeräte GmbH Kältegerät
US10203127B2 (en) 2016-04-29 2019-02-12 Trane International Inc. Time-constrained control of an HVAC system
US10852020B2 (en) 2016-04-29 2020-12-01 Trane International Inc. Time-constrained control of an HVAC system
EP4101692A1 (de) * 2017-08-01 2022-12-14 LG Electronics Inc. Fahrzeug, kühlschrank für fahrzeug und steuerverfahren für einen kühlschrank für ein fahrzeug
US11260727B2 (en) 2017-08-01 2022-03-01 Lg Electronics Inc. Vehicle, refrigerator for vehicle, and controlling method for refrigerator for vehicle
EP3661807A4 (de) * 2017-08-01 2021-05-05 LG Electronics Inc. Fahrzeug, kühlschrank für fahrzeug und steuerverfahren für einen kühlschrank für ein fahrzeug
US11536415B2 (en) 2017-08-01 2022-12-27 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11624550B2 (en) 2017-08-01 2023-04-11 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11725768B2 (en) 2017-08-01 2023-08-15 Lg Electronics Inc. Vacuum adiabatic body, refrigerating or warming apparatus, and method for manufacturing vacuum adiabatic body
US11774167B2 (en) 2017-08-01 2023-10-03 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11807075B2 (en) 2017-08-01 2023-11-07 Lg Electronics Inc. Vehicle, refrigerator for vehicle, and controlling method for refrigerator for vehicle
US11466925B2 (en) 2017-08-16 2022-10-11 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11781802B2 (en) 2017-08-16 2023-10-10 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
WO2023078608A1 (de) * 2021-11-05 2023-05-11 BSH Hausgeräte GmbH Betreiben einer temperaturzone in einem superkühlmodus

Similar Documents

Publication Publication Date Title
EP1564513A1 (de) Kühlschrank mit Verdichter mit Variabler Geschwindigkeit und Verfahren zur regelung Variabeler Kühlleistung Dafür
AU2005212639B2 (en) A refrigerator and a method for controlling variable cooling capacity thereof
US7055338B2 (en) Refrigerator
US7895851B2 (en) Method for controlling humidity in a domestic refrigerator, and refrigerator adapted to carry out such method
EP2136167A1 (de) Kühlspeicherkammer und betriebsverfahren dafür
EP3457059B1 (de) Kühlschrank und steuerungsverfahren dafür
KR20090103233A (ko) 냉장고 및 그 제상제어방법
CN110332758B (zh) 冰箱的制冷控制方法与装置
KR102529103B1 (ko) 냉장고 및 그의 제어방법
KR20200001713A (ko) 냉장고의 제어방법
CN114518012B (zh) 冰箱控制方法及冰箱
CN112728861B (zh) 冰箱控制方法、装置、冰箱控制设备及存储介质
KR102457188B1 (ko) 냉장고의 제어방법
CN113790570B (zh) 冰箱化霜控制方法以及冰箱
CN109724355B (zh) 单系统风直冷冰箱、其控温方法和装置
RU2555829C2 (ru) Способ управления холодильным аппаратом
CN114791191B (zh) 冰箱及其化霜控制方法、装置、计算机可读存储介质
CN114294890B (zh) 一种冰箱及其制冰控制方法
CN113865218B (zh) 化霜前预冷时间的调节方法、制冷设备、存储介质
KR20040057156A (ko) 냉장고의 제상제어방법
US20230408186A1 (en) Refrigerator and method for controlling same
CN114777379A (zh) 一种冰箱及冰箱控制方法
CN113048709B (zh) 冰箱及其控制方法
KR20070051530A (ko) 냉장고의 팬 제어방법
KR100207090B1 (ko) 냉장고의 압축기 제어방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060218