EP1563129B1 - Process for the production of multicomponent fibers comprising a dissolvable starch component - Google Patents
Process for the production of multicomponent fibers comprising a dissolvable starch component Download PDFInfo
- Publication number
- EP1563129B1 EP1563129B1 EP02808137A EP02808137A EP1563129B1 EP 1563129 B1 EP1563129 B1 EP 1563129B1 EP 02808137 A EP02808137 A EP 02808137A EP 02808137 A EP02808137 A EP 02808137A EP 1563129 B1 EP1563129 B1 EP 1563129B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- starch
- fiber
- fibers
- dow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 title claims description 163
- 229920002472 Starch Polymers 0.000 title claims description 140
- 235000019698 starch Nutrition 0.000 title claims description 138
- 239000008107 starch Substances 0.000 title claims description 132
- 238000000034 method Methods 0.000 title claims description 53
- 230000008569 process Effects 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title description 4
- 229920001169 thermoplastic Polymers 0.000 claims description 39
- 239000002904 solvent Substances 0.000 claims description 35
- 238000009987 spinning Methods 0.000 claims description 29
- 229920001577 copolymer Polymers 0.000 claims description 24
- 239000000155 melt Substances 0.000 claims description 20
- 239000003795 chemical substances by application Substances 0.000 claims description 17
- 238000013329 compounding Methods 0.000 claims description 17
- 125000001931 aliphatic group Chemical group 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 10
- 229920000098 polyolefin Polymers 0.000 claims description 7
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 claims description 6
- SOWBFZRMHSNYGE-UHFFFAOYSA-N Monoamide-Oxalic acid Natural products NC(=O)C(O)=O SOWBFZRMHSNYGE-UHFFFAOYSA-N 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 5
- 229920006395 saturated elastomer Polymers 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 3
- 239000004014 plasticizer Substances 0.000 description 60
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 59
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 50
- 239000000203 mixture Substances 0.000 description 49
- 239000000463 material Substances 0.000 description 34
- 229920000642 polymer Polymers 0.000 description 32
- 229920003301 Primacore™ Polymers 0.000 description 30
- -1 polyethylene Polymers 0.000 description 29
- 235000011187 glycerol Nutrition 0.000 description 27
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 26
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 26
- 239000000600 sorbitol Substances 0.000 description 26
- 235000010356 sorbitol Nutrition 0.000 description 26
- 229920008262 Thermoplastic starch Polymers 0.000 description 17
- 239000004628 starch-based polymer Substances 0.000 description 17
- 239000000126 substance Substances 0.000 description 16
- 238000001125 extrusion Methods 0.000 description 14
- 238000002844 melting Methods 0.000 description 13
- 230000008018 melting Effects 0.000 description 13
- 210000001724 microfibril Anatomy 0.000 description 12
- 239000007787 solid Substances 0.000 description 11
- 238000002156 mixing Methods 0.000 description 10
- 229920000728 polyester Polymers 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 239000004743 Polypropylene Substances 0.000 description 8
- 229920001155 polypropylene Polymers 0.000 description 8
- 229920006226 ethylene-acrylic acid Polymers 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 229920002261 Corn starch Polymers 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical compound C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 description 6
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 229920002292 Nylon 6 Polymers 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 238000002074 melt spinning Methods 0.000 description 5
- 229920000747 poly(lactic acid) Polymers 0.000 description 5
- 239000004626 polylactic acid Substances 0.000 description 5
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 4
- 229930195725 Mannitol Natural products 0.000 description 4
- 239000006057 Non-nutritive feed additive Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000008120 corn starch Substances 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000000594 mannitol Substances 0.000 description 4
- 235000010355 mannitol Nutrition 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- 229920000856 Amylose Polymers 0.000 description 3
- 229920001634 Copolyester Polymers 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 241000839309 Thesea Species 0.000 description 3
- 229920002988 biodegradable polymer Polymers 0.000 description 3
- 239000004621 biodegradable polymer Substances 0.000 description 3
- 229920001400 block copolymer Polymers 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 235000019359 magnesium stearate Nutrition 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 229920001983 poloxamer Polymers 0.000 description 3
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920002961 polybutylene succinate Polymers 0.000 description 3
- 239000004631 polybutylene succinate Substances 0.000 description 3
- 229920001592 potato starch Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- 235000019759 Maize starch Nutrition 0.000 description 2
- 240000003183 Manihot esculenta Species 0.000 description 2
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 2
- 229920000881 Modified starch Polymers 0.000 description 2
- 239000004368 Modified starch Substances 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229920003232 aliphatic polyester Polymers 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000009960 carding Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 238000006266 etherification reaction Methods 0.000 description 2
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229960003574 milrinone Drugs 0.000 description 2
- VWUPWEAFIOQCGF-UHFFFAOYSA-N milrinone lactate Chemical compound [H+].CC(O)C([O-])=O.N1C(=O)C(C#N)=CC(C=2C=CN=CC=2)=C1C VWUPWEAFIOQCGF-UHFFFAOYSA-N 0.000 description 2
- 235000019426 modified starch Nutrition 0.000 description 2
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- CWEFIMQKSZFZNY-UHFFFAOYSA-N pentyl 2-[4-[[4-[4-[[4-[[4-(pentoxycarbonylamino)phenyl]methyl]phenyl]carbamoyloxy]butoxycarbonylamino]phenyl]methyl]phenyl]acetate Chemical compound C1=CC(CC(=O)OCCCCC)=CC=C1CC(C=C1)=CC=C1NC(=O)OCCCCOC(=O)NC(C=C1)=CC=C1CC1=CC=C(NC(=O)OCCCCC)C=C1 CWEFIMQKSZFZNY-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001987 poloxamine Polymers 0.000 description 2
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 2
- 229920000903 polyhydroxyalkanoate Polymers 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 239000012815 thermoplastic material Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229940100445 wheat starch Drugs 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- MRAKLTZPBIBWFH-ARJAWSKDSA-N (z)-2-ethenylbut-2-enedioic acid Chemical compound OC(=O)\C=C(\C=C)C(O)=O MRAKLTZPBIBWFH-ARJAWSKDSA-N 0.000 description 1
- AUMYCEAREPLZKC-ODZAUARKSA-N (z)-but-2-enedioic acid;prop-1-ene Chemical compound CC=C.OC(=O)\C=C/C(O)=O AUMYCEAREPLZKC-ODZAUARKSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 235000000378 Caryota urens Nutrition 0.000 description 1
- 240000000163 Cycas revoluta Species 0.000 description 1
- 235000008601 Cycas revoluta Nutrition 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- YTBSYETUWUMLBZ-UHFFFAOYSA-N D-Erythrose Natural products OCC(O)C(O)C=O YTBSYETUWUMLBZ-UHFFFAOYSA-N 0.000 description 1
- YTBSYETUWUMLBZ-IUYQGCFVSA-N D-erythrose Chemical compound OC[C@@H](O)[C@@H](O)C=O YTBSYETUWUMLBZ-IUYQGCFVSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- DKMROQRQHGEIOW-UHFFFAOYSA-N Diethyl succinate Chemical compound CCOC(=O)CCC(=O)OCC DKMROQRQHGEIOW-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 206010056474 Erythrosis Diseases 0.000 description 1
- 239000004716 Ethylene/acrylic acid copolymer Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 235000010804 Maranta arundinacea Nutrition 0.000 description 1
- 235000010103 Metroxylon rumphii Nutrition 0.000 description 1
- 240000002853 Nelumbo nucifera Species 0.000 description 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920003189 Nylon 4,6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 240000005893 Pteridium aquilinum Species 0.000 description 1
- 235000009936 Pteridium aquilinum Nutrition 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 1
- 229920002359 Tetronic® Polymers 0.000 description 1
- 244000145580 Thalia geniculata Species 0.000 description 1
- 235000012419 Thalia geniculata Nutrition 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001279 adipic acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 235000021120 animal protein Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical class [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- ULUQXUIXDRLUGI-ODZAUARKSA-N buta-1,3-diene;(z)-but-2-enedioic acid Chemical compound C=CC=C.OC(=O)\C=C/C(O)=O ULUQXUIXDRLUGI-ODZAUARKSA-N 0.000 description 1
- 150000004648 butanoic acid derivatives Chemical class 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical class OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229920006240 drawn fiber Polymers 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920005839 ecoflex® Polymers 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical class CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009986 fabric formation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- TZMQHOJDDMFGQX-UHFFFAOYSA-N hexane-1,1,1-triol Chemical compound CCCCCC(O)(O)O TZMQHOJDDMFGQX-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000003903 lactic acid esters Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000002649 leather substitute Substances 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- PGYPOBZJRVSMDS-UHFFFAOYSA-N loperamide hydrochloride Chemical class Cl.C=1C=CC=CC=1C(C=1C=CC=CC=1)(C(=O)N(C)C)CCN(CC1)CCC1(O)C1=CC=C(Cl)C=C1 PGYPOBZJRVSMDS-UHFFFAOYSA-N 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002888 oleic acid derivatives Chemical class 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical class OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001432 poly(L-lactide) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- QVKOLZOAOSNSHQ-UHFFFAOYSA-N prop-1-ene;prop-2-enoic acid Chemical compound CC=C.OC(=O)C=C QVKOLZOAOSNSHQ-UHFFFAOYSA-N 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 229940080818 propionamide Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 235000019710 soybean protein Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229940037312 stearamide Drugs 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 229920001862 ultra low molecular weight polyethylene Polymers 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/12—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/06—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/10—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/14—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/18—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from other substances
Definitions
- the present invention relates to a process for the production of fibers having a diameter of less than 200 microns comprising a first component comprising a thermoplastic polymer and a second component comprising thermoplastic starch wherein the second component is not encompassed by another component or components or if encompassed by another component or components then the second component encompasses a hollow core.
- Such fibers allow for removal of the second component by exposure to a solvent for the second component.
- Multicomponent fibers that include starch as a component are desirable since starch is a renewable raw material, of low cost, and is independent of petroleum products. It is important that fibers having starch as a component be processible on standard equipment and use existing technology.
- the present invention addresses this need for a removable fiber component that is environmentally friendly as well as providing good processing characteristics during manufacture.
- the present invention is directed to a process of producing a melt spinnable fiber having a diameter of less than 200 microns, comprising: compounding a first component comprising a thermoplastic polymer; compounding a second component comprising destructured starch having a molecular weight in the range from 10,000 g/mol to 5,000,000 g/mol and an agent selected from the group consisting of an acid substituted vinyl polymer, a polyolefin carboxylic acid copolymer, a polyhydroxyetherester, a polyhydroxyetheramide, a C8-C22 aliphatic saturated or unsaturated carboxylic acid, an aliphatic carboxyamide, and an aromatic carboxyamide; spinning the first component with the second component to form a fiber having a diameter of less than 200 microns, wherein the second component is not encompassed by another component or components or if encompassed by another component or components then the second component encompasses a hollow core; and contacting the fiber with a solvent for the second component, wherein the second component is removed
- the process further comprises physically manipulating the fiber prior to complete removal of the second component.
- the physical manipulation of the fiber consists of elongating the fiber or forming the fiber into a fabric.
- the configuration of the multicomponent fibers can be sheath-core, islands-in-the-sea, side-by-side, ribbon, segmented pie, for example, or various combination thereof.
- the second component is the sheath, and is removable by exposure to a second-component-removing solvent.
- the second component may encompass the hollow core.
- the fiber compositions are cost-effective and suitable for use in commercially available equipment, while possessing a significant amount of the total composition that is biodegradable, thus eliminating hazardous and non-environmentally friendly materials from such processes.
- the present invention is also directed toward making durable fibers for a woven, knitted or other suitable fabric making process.
- the present invention is also directed to nonwoven webs and disposable articles comprising said fibers.
- the specification contains a detailed description of (1) materials for the fibers of the present invention, (2) configuration of the fibers, (3) material properties of the fiber, (4) processes, and (5) articles.
- Suitable melting temperatures of the thermoplastic polymers are from about 60°C to about 300°C or, in some embodiments from about 80°C to about 250°C or from 100°C-215°C.
- Thermoplastic polymers having a melting temperature (Tm) above 250°C may be used if plasticizers or diluents or other polymers are used to lower the observed melting temperature, such that the melting temperature of the composition of the thermoplastic polymer-containing component is within the above ranges. It may be desired to use a thermoplastic polymer having a glass transition (Tg) temperature of less than 0°C.
- Tg glass transition
- the thermoplastic polymer component has rheological characteristics suitable for melt spinning.
- the molecular weight of the polymer should be sufficiently high to enable entanglement between polymer molecules and yet low enough to be melt spinnable.
- suitable thermoplastic polymers can have molecular weights about 1,000,000 g/mol or below and, in some embodiments from about 5,000 g/mol to about 800,000 g/mol, or from about 10,000 g/mol to about 700,000 g/mol or from about 20,000 g/mol to about 500,000 g/mol.
- thermoplastic polymers should be able to solidify fairly rapidly, preferably under extensional flow, as typically encountered in known processes for staple fibers (spin draw process), continuous filaments, or spunbond continuous filament processes, and desirably can form a thermally stable fiber structure.
- "Thermally stable fiber structure” as used herein is defined as not exhibiting significant melting or dimensional change at 25°C and ambient atmospheric pressure over a period of 24 hours at 50% relative humidity when the fibers are placed in the environment within five minutes of their formation. Dimensional changes in measured fiber diameter greater than 25% difference, using as a basis the corresponding, original fiber diameter measurement, would be considered significant. If the original fiber is not round, the shortest diameter should be used for the calculation. The shortest diameter should be used for the post-24 hour measurement also.
- Suitable thermoplastic polymers include polyolefins or polyolefin copolymers such as polyethylene or copolymers thereof, including low, high, linear low, or ultra low density polyethylene or copolymer thereof, polypropylene or copolymers thereof, including atactic polypropylene; polybutylene or copolymers thereof; polyamides or copolymers thereof, such as Nylon 6, Nylon 11, Nylon 12, Nylon 46, Nylon 66; polyesters or copolymers thereof, such as polyethylene terephalates; olefin carboxylic acid copolymers such as ethylene/acrylic acid copolymer, ethylene/maleic acid copolymer, ethylene/methacrylic acid copolymer, ethylene/vinyl acetate copolymers or combinations thereof; polyacrylates, polymethacrylates, and their copolymers such as poly(methyl methacrylates).
- thermoplastic polymers include polypropylene, polyethylene, polyamides, polyvinyl alcohol, ethylene vinyl alcohol, ethylene acrylic acid, polyolefin carboxylic acid copolymers, polyesters, and combinations thereof.
- Biodegradable thermoplastic polymers are also suitable for use herein.
- Biodegradable materials are susceptible to being assimilated by microorganisms such as molds, fungi, and bacteria when the biodegradable material is buried in the ground or otherwise comes in contact with the microorganisms including contact under environmental conditions conducive to the growth of the microorganisms.
- Suitable biodegradable polymers also include those biodegradable materials which are environmentally degradable using aerobic or anaerobic digestion procedures, or by virtue of being exposed to environmental elements such as sunlight, rain, moisture, wind, temperature, and the like.
- the biodegradable thermoplastic polymers can be used individually or as a combination of biodegradable or non-biodegradable polymers..
- Biodegradable polymers include polyesters containing aliphatic components.
- the polyesters are ester polycondensates containing aliphatic constituents and poly(hydroxycarboxylic) acid.
- the ester polycondensates include diacids/diol aliphatic polyesters such as polybutylene succinate, polybutylene succinate co-adipate, aliphatic/aromatic polyesters or copolyester such as terpolymers made of butylenes diol, adipic acid and terephtalic acid.
- the poly(hydroxycarboxylic) acids include lactic acid based homopolymers and copolymers, polyhydroxybutyrate (PHB), or other polyhydroxyalkanoate homopolymers and copolymers.
- PHB polyhydroxybutyrate
- Such polyhydroxyalkanoates include copolymers of PHB with higher chain length monomers, such as C6 - C12, and higher.
- An example of a suitable commercially available poly lactic acid is NATUREWORKS from Cargill Dow and LACEA from Mitsui Chemical.
- An example of a suitable commercially available diacid/diol aliphatic polyester is the polybutylene succinate/adipate copolymers sold as BIONOLLE 1000 and BIONOLLE 3000 from the Showa High Polymer Company, Ltd. (Tokyo, Japan).
- An example of a suitable commercially available aliphatic/aromatic copolyester is the poly(tetramethylene adipate-co-terephthalate) sold as EASTAR BIO Copolyester from Eastman Chemical or ECOFLEX from BASF.
- thermoplastic polymer component can contain a single polymer species or a blend of two or more non-starch thermoplastic polymers. Additionally, other materials can be present in the thermoplastic polymer component. Typically, thermoplastic polymers are present in an amount of from about 51% to 100%, preferably from about 60% to about 95%, more preferably from about 70% to about 90%, by total weight of the thermoplastic polymer component.
- Second Component Material Thermoplastic Starch
- the starch used in the present invention is thermoplastic, destructured starch.
- destructurized starch is used to mean starch that is no longer in its naturally occurring granular structure.
- thermoplastic starch or “TPS” is used to mean starch with a plasticizer for improving its thermoplastic flow properties so that it may be able to be spun into fibers.
- Natural starch does not melt or flow like conventional thermoplastic polymers. Since natural starch generally has a granular structure, it needs to be "destructurized”, or “destructured”, before it can be melt processed and spun like a thermoplastic material. Without intending to be bound by theory, the granular structure of starch is characterized by granules comprising an structure of discrete amylopectin and amylose regions in a starch granule. This granular structure is broken down during destructurization, which can be followed by observing a volume expansion of the starch component in the presence of the solvent or plasticizer.
- Starch undergoing destructuring in the presence of the solvent or plasticizer also typically has an increase in viscosity versus non-destructured starch with the solvent or plasticizer.
- the resulting destructurized starch can be in gelatinized form or, upon drying and or annealing, in crystalline form, however once broken down the natural granular structure-of starch will not, in general, return. It is desirable that the starch be fully destructured such that no lumps impacting the fiber spinning process are present.
- the destructuring agent used to destructure the starch may remain with the starch during further processing, or may be transient, in that it is removed such that it does not remain in the fiber spun with the starch.
- Starch can be destructured in a variety of different ways.
- the starch can be destructurized with a solvent.
- starch can be destructurized by subjecting a mixture of the starch and solvent to heat, which can be under pressurized conditions and shear, to gelatinize the starch, leading to destructurization.
- Solvents can also act as plasticizers and may be desirably retained in the composition to perform as a plasticizer during later processing.
- plasticizing agents that can act as solvents to destructure starch are described herein. These include the low molecular weight or monomeric plasticizers, such as but not limited to hydroxyl-containing plasticizers, including but not limited to the polyols, e.g. polyols such as mannitol, sorbitol, and glycerin.
- Water also can act as a solvent for starch, and can be used to destructurize the starch by dissolving it in water.
- plasticizer For starch to flow and be melt spinnable like a conventional thermoplastic polymer, it should have plasticizer present. If the destructuring agent is removed, it is the nature of the starch to in general remain destructured, however a plasticizer should be added to or otherwise included in the starch component to impart thermoplastic properties to the starch component in order to facilitate fiber spinning. Thus, the plasticizer present during spinning may be the same one used to destructure the starch. Alternately, especially when the destructuring agent is transient as described above, a separate or additional plasticizer may be added to the starch. Such additional plasticizer can be added prior to, during, or after the starch is destructured, as long as it remains in the starch for the fiber spinning step.
- Suitable naturally occurring starches can include, but are not limited to, corn starch, potato starch, sweet potato starch, wheat starch, sago palm starch, tapioca starch, rice starch, soybean starch, arrow root starch, bracken starch, lotus starch, cassava starch, waxy maize starch, high amylose corn starch, and commercial amylose powder. Blends of starch may also be used. Though all starches are useful herein, the present invention is most commonly practiced with natural starches derived from agricultural sources, which offer the advantages of being abundant in supply, easily replenishable and inexpensive in price. Naturally occurring starches, particularly corn starch, wheat starch, potato starch and waxy maize starch, are the preferred starch polymers of choice due to their economy and availability.
- Modified starch may also be used. Modified starch is defined as non-substituted, or substituted, starch that has had its native molecular weight characteristics changed (i.e. the molecular weight is changed but no other changes are necessarily made to the starch).
- Molecular weight can be modified, preferably reduced, by any technique numerous of which are well known in the art. These include, for example, chemical modifications of starch by, for example, acid or alkali hydrolysis, acid reduction, oxidative reduction, enzymatic reduction, physical/mechanical degradation (e.g., via the thermomechanical energy input of the processing equipment), or combinations thereof.
- the thermomechanical method and the oxidation method offer an additional advantage when carried out in situ .
- the exact chemical nature of the starch and molecular weight reduction method is not critical as long as the average molecular weight is provided at the desired level or range. Such techniques can also reduce molecular weight distribution.
- Natural, unmodified starch generally has a very high average molecular weight and a broad molecular weight distribution (e.g. natural corn starch has an average molecular weight of up to about 60,000,000 grams/mole (g/mol)). It is desirable to reduce the molecular weight of the starch for use in the present invention. Molecular weight reduction can be obtained by any technique known in the art, including those discussed above. Ranges of molecular weight for destructured starch or starch blends added to the melt are from 10,000 g/mol to 5,000,000 g/mol, and preferably from 20,000 g/mol to 3,000,000 g/mol.
- substituted starch can be used.
- Chemical modifications of starch to provide substituted starch include, but are not limited to, etherification and esterification.
- etherification and esterification For example, methyl, ethyl, or propyl (or larger aliphatic groups) can be substituted onto the starch using conventional etherification and esterification techniques as well known in the art.
- Such substitution can be done when the starch is in natural, granular form or after it has been destructured.
- Substitution can reduce the rate of biodegradability of the starch, but can also reduce the time, temperature, shear, and/or pressure conditions for destructurization.
- the degree of substitution of the chemically substituted starch is typically, but not necessarily, from about 0.01 to about 3.0, and can also be from about 0.01 to about 0.06.
- the Thermoplastic starch comprises from about 51% to about 100%, preferably from about 60% to about 95%, more preferably from about 70% to about 90% by weight of the thermoplastic starch component.
- the ratio of the starch component to the thermoplastic polymer will determine the percent of thermoplastic starch in the bicomponent fiber component.
- the weight of starch in the composition includes starch and its naturally occurring bound water content.
- bound water means the water found naturally occurring in starch and before mixing of starch with other components to make the composition of the present invention.
- free water means the water that is added in making the composition of the present invention. A person of ordinary skill in the art would recognize that once the components are mixed in a composition, water can no longer be distinguished by its origin. Natural starch typically has a bound water content of about 5% to about 16% by weight of starch.
- An agent is present in the second component in combination with the starch that allows control of the rate of starch release and thereby, the amount of starch released when the multicomponent fiber is placed in a solvent such as water, for example.
- the agents include:acid substituted vinyl polymers such as ethylene acrylic acid which is commercially available as PRIMACOR from Dow Chemical Co.
- polyolefin carboxylic acid copolymers such as ethylene acrylic acid copolymer, ethylene maleic acid copolymer, ethylene methacrylic acid copolymer, ethylene acrylic acid copolymers, and combinations thereof; a polyhydroxyetherester; a polyhydroxyetheramide such as the BLOX series of epoxy-based thermoplastic resins from Dow Chemical Co.; aliphatic or aromatic carboxyamides having a melting temperature above room temperature (25°C) and below the upper processing temperature of thermoplastic starch of about 300°C and a minimum boiling point temperature greater than 150°C; and aliphatic saturated or unsaturated C8-C22 carboxylic acids such as caprylic, oleic, palmitic, stearic, linoleic, linolenic, ricinoleic, erucic acids, or the corresponding fatty acid alcohols or amides of the fatty acids listed above, in particular, mono-,di-, or triglycerides of the said
- Suitable aliphatic or aromatic carboxyamides are stearamide, benzamide, or propionamide, for example.
- ethylene acrylic acid (BAA), a polyhydroxyetherester (PHEE), a polyhydroxyetheramide (PHEA), or a combination thereof is an agent present in the second component for controlling the rate of starch removal.
- Such an agent is present in an amount of about 1% up to 50% by weight of the second component and, in alternative embodiments, 2, 5, 10, 15, 20, 25, 30, 35, or 40% of the weight of the second component. In general, a greater amount of agent slows the rate of starch removal.
- plasticizers can be used In the present invention to destructurize the starch and enable the starch to flow, i.e. create a thermoplastic starch.
- a plasticizer may be used as a destructuring agent for starch. That plasticizer may remain in the destructured starch component to function as a plasticizer for the thermoplastic starch, or may be removed and substituted with a different plasticizer in the thermoplastic starch component.
- the plasticizers may also improve the flexibility of the final products, which is believed to be due to the lovering of the glass transition temperature of the composition.
- thermoplastic polymer component may be present to lower the polymer's melting temperature, modify flexibility of the final product, or improve overall compatibility with the thermoplastic starch blend. Furthermore, thermoplastic polymers with higher melting temperatures may be used if plasticizers or diluents are present which suppress the melting temperature of the polymer.
- the plasticizers should be substantially compatible with the polymeric components of the present invention with which they are intermixed.
- substantially compatible means when heated to a temperature above the softening and/or the melting temperature of the composition, the plasticizer is capable of forming a homogeneous mixture with polymer present in the component in which it is intermixed.
- the plasticizers herein can include monomeric compounds and polymers.
- the polymeric plasticizers will typically have a molecular weight less than 500,000g/mol.
- Polymeric plasticizers can include block copolymers and random copolymers, including terpolymers thereof.
- the plasticizer has a low molecular weight plasticizer, for example a molecular weight of about 20,000 g/mol or less, or about 5,000 g/mol or less, or about 1,000 g/mol or less.
- the plasticizers may be used alone or more than one plasticizer may be used in any particular component of the present invention.
- the plasticizer can be, for example, an organic compound having at least one hydroxyl group, including polyols having two or more hydroxyls.
- useful hydroxyl plasticizers include sugars such as glucose, sucrose, fructose, raffinose, maltodextrose, galactose, xylose, maltose, lactose, mannose erythrose, and pentaerythritol; sugar alcohols such as erythritol, xylitol, malitol, mannitol and sorbitol; polyols such as glycerol (glycerin), ethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, hexane triol, and the like, and polymers thereof; and mixtures thereof.
- Suitable plasticizers especially include glycerine, mannitol, and sorbitol.
- hydroxyl polymeric plasticizers such as poloxomers (polyoxyethylene /polyoxypropylene block copolymers) and poloxamines (polyoxyethylene/polyoxypropylene block copolymers of ethylene diamine). These copolymers are available as PLURONIC® from BASF Corp., Parsippany, NJ. Suitable poloxamers and poloxamines are available as SYNPERONIC® from ICI Chemicals, Wilmington, DE, or as TETRONIC® from BASF Corp., Parsippany, NJ. Also suitable for use are hydroxy-containing polymers such as polyvinyl alcohol, ethylene vinyl alcohol, and copolymers and blends thereof.
- hydrogen bond forming organic compounds including those which do not have hydroxyl group, including urea and urea derivatives; anhydrides of sugar alcohols such as sorbitan; animal proteins such as gelatin; vegetable proteins such as sunflower protein, soybean proteins, cotton seed proteins; and mixtures thereof.
- plasticizers are phthalate esters, dimethyl and diethylsuccinate and related esters, glycerol triacetate, glycerol mono and diacetates, glycerol mono, di, and tripropionates, butanoates, stearates, lactic acid esters, citric acid esters, adipic acid esters, stearic acid esters, oleic acid esters, and other father acid esters which are biodegradable.
- Aliphatic acids such as ethylene acrylic acid, ethylene maleic acid, butadiene acrylic acid, butadiene maleic acid, propylene acrylic acid, propylene maleic acid, and other hydrocarbon based acids are further examples of plasticizers.
- thermoplastic polymers such as with polyamides and polyesters
- the starch plasticizer must be carefully chosen so that its vaporization temperature is above the processing temperature of the multicomponent fiber.
- Plasticizers may be blended together to produce vaporization temperatures above either one alone, commonly referred to as boiling point elevation.
- a good example of a high boiling point starch plasticizer would be glycerol, which has a vaporization temperature of 290°C.
- the amount of plasticizer is dependent upon the molecular weight and amount of starch and the affinity of the plasticizer for the starch or thermoplastic polymer. An amount that effectively plasticizes the starch can be used.
- the plasticizer should sufficiently plasticize the starch component so that it can be processed effectively to form fibers.
- the amount of plasticizer increases with increasing molecular weight of starch.
- the plasticizer can be present in an amount of from about 2% to about 70%, and can also be from about 5% to about 55%, or from about 10% to about 50% of the component into which it is intermixed.
- a polymer incorporated into the starch component that functions as a plasticizer for the starch shall be counted as part of the plasticizer constituent of that component of the present invention.
- Plasticizer is optional for the thermoplastic polymer components in the present invention and can be used at any effective levels, including the ranges above, and amounts below 2% are also included.
- ingredients may be incorporated into the first or second component compositions.
- These optional ingredients may be present in quantities of 49% or less, or in alternative embodiments, from about 0.1% to about 30%, or from about 0.1% to about 10% by weight of the component.
- the optional materials may be used to modify the processability and/or to modify physical properties such as elasticity, tensile strength and modulus of the final product.
- Other benefits include, but are not limited to, stability including oxidative stability, brightness, color, flexibility, resiliency, workability, processing aids, viscosity modifiers, and odor control.
- Optional ingredients include nucleating agents, salts, slip agents, crystallization accelerators or retarders, odor masking agents, cross-linking agents, emulsifiers, surfactants, cyclodextrins, lubricants, other processing aids, optical brighteners, antioxidants, flame retardants, dyes, pigments, fillers, proteins and their alkali salts, waxes, tackifying resins, extenders, wet-strength resins, or mixtures thereof.
- Processing aids include magnesium stearate or, particularly in the starch component, ethylene acrylic acid, commercially available from Dow Chemical Co. as PRIMACOR.
- the multiconstituent, multicomponent fibers of the present invention may be in several different configurations as long as the second component is not encompassed by another component or components or if encompassed by another component or components then the second component encompasses a hollow core.
- Constituent as used herein, is defined as meaning the chemical species of matter or the material.
- Multiconstituent as used herein, is defined to mean a fiber or component thereof containing more than one chemical species or material.
- the fibers will be multicomponent in configuration prior to removal of a second component.
- Component as used herein, is defined as a separate part of the fiber that has a spatial relationship to another part of the fiber.
- multicomponent is defined as a fiber having more than one separate part in spatial relationship to one another.
- multicomponent includes bicomponent, which is defined as a fiber having two separate parts in a spatial relationship to one another at the exit from the extrusion equipment.
- the different components of multicomponent fibers are arranged in substantially distinct regions across the cross-section of the fiber and extend continuously along the length of the fiber.
- the multicomponent fibers may have two, three, four or more components, as long as the second component is not encompassed by another component or components or if encompassed by another component or components then the second component encompasses a hollow core. Accordingly, reference to a first component and a second component is not meant to exclude other components, unless otherwise expressly indicated.
- the drawings provide reference to a component, x, y, z, and w, for example.
- Components z and w may be third and fourth components and may comprise another thermoplastic polymer or thermoplastic blend, for example that provides enhanced physical properties beyond the combination of a first and second component.
- the second component comprising the thermoplastic starch surrounds the first component such as in, for example, a sheath-core configuration where the sheath is the second component and the core is the first component.
- the second component comprising the thermoplastic starch surrounds the first component such as in, for example, an islands-in-a-sea configuration where the islands are the first component and the sea is the second component.
- Fig. 1A - Fig. 9 provide schematic drawings illustrating cross-sectional views of various configurations of multicomponent fibers.
- a combination of one or more configurations is also an aspect of the present invention.
- a configuration where the second component is not encompassed by another component or components allows the second component to be exposed to a solvent when the fiber is placed in the solvent.
- the second component is y; in Fig. 1E-Fig. 1H , Fig. 2A, Fig. 2B, Fig. 3 , F ig. 4A-Fig.
- the second component is either x or y; in Fig. 6 , the second component is either x, y, or z; in Fig. 7 , the second component is z; in Fig. 8 , the second component is wither x, y, z, or w; or in Fig. 9 , the second component is x.
- a configuration where the second component is encompassed by another component or components and the second component encompasses a hollow core also allows the second component to be exposed to a solvent when the fiber is placed in the solvent since, in such a configuration, solvent may reach the hollow core.
- the second component may be x or y.
- solvent has access to the hollow core and starch may be removed from component x by the solvent.
- the weight ratio of the second component to the first component can be from about 5:95 to about 95:5. In alternate embodiments, the ratio is from about 10:90 to about 65:35 or from about 15:85 to about 50:50.
- the fibers of the present invention may also be splittable fibers. Splitting may occur by a mechanical, thermodynamic, hydrodynamic or chemical means during or after the removal of the second component or by fluid induced distortion.
- a plurality of microfibrils may also result from the present invention.
- the microfibrils are very fine fibers contained within a multi-constituent monocomponent or multicomponent fiber.
- the plurality of polymer microfibrils have a cable-like morphological structure and longitudinally extend within the fiber, which is along the fiber axis.
- the microfibrils may be continuous or discontinuous.
- Microfibrils are formed in the present invention as a result of the removal of the second component in a solvent.
- the thermoplastic polymer is present in a sufficient amount to generate a co-continuous phase morphology such that the polymer microfibrils may form.
- microfibrils are typically from about 0.1 micrometers to about 10 micrometers in diameter while the fiber typically has a diameter of from about (10 times the microfibril) 10 micrometers to about 50 micrometers.
- the molecular weight of the thermoplastic polymer must be high enough to induce sufficient entanglement to form microfibrils. In some embodiments, the molecular weight is from about 10,000 to less than 500,000 g/mol.
- microfibrils may be used in nonwoven articles that are desired to be extra soft and/or have better barrier properties.
- the diameter of the fiber of the present invention is less than about 200 micrometers (microns), and alternate embodiments can be less than about 100 microns, less than about 50 microns, or less than 30 microns. In one embodiment hereof, the fibers have a diameter of from about 5 microns to about 25 microns. Fiber diameter is controlled by factors well known in the fiber spinning art including, for example, spinning speed and mass through-put in addition to the process set forth herein.
- the fibers produced in the present invention may be environmentally degradable depending upon the amount of starch that is present, the polymer used, and the specific configuration of the fiber. "Environmentally degradable” is defined being biodegradable, disintegratable, dispersible, flushable, or compostable or a combination thereof. In the present invention, the fibers, nonwoven webs, and articles may be environmentally degradable.
- the fibers described herein are typically used to make disposable nonwoven articles.
- the articles are commonly flushable.
- flushable refers to materials which are capable of dissolving, dispersing, disintegrating, and/or decomposing in a septic disposal system such as a toilet to provide clearance when flushed down the toilet without clogging the toilet or any other sewage drainage pipe.
- the fibers and resulting articles may also be aqueous responsive.
- aqueous responsive means that when placed in water or flushed, an observable and measurable change will result. Typical observations include noting that the article swells, pulls apart, dissolves, or observing a general weakened structure.
- the fibers of the present invention can have low brittleness and have high toughness, for example a toughness of about 2MPa or greater. Toughness is defined as the area under the stress-strain curve.
- Extensibility or elongation is measured by elongation to break. Extensibility or elongation is defined as being capable of elongating under an applied force, but not necessarily recovering. Elongation to break is measured as the distance the fiber can be stretched until failure. It has also been found that the fibers of the present invention can be highly extensible.
- the elongation to break of single fibers are tested according to ASTM standard D3822 except a strain rate of 200 %/min is used. Testing is performed on an MATS Synergie 400 tensile testing machine with a 10 N load cell and pneumatic grips. Tests are conducted at a rate of 0.084 cm/s (2 inches/minute) on samples with a 2.5 cm (1-inch) gage length. Samples are pulled to break. Peak stress and % elongation at break are recorded and averaged for 10 specimens.
- Nonwoven products produced from multicomponent fibers can also exhibit desirable mechanical properties, particularly, strength, flexibility, softness, and absorbency. Measures of strength include dry and/or wet tensile strength. Flexibility is related to stiffness and can attribute to softness. Softness is generally described as a physiologically perceived attribute which is related to both flexibility and texture. Absorbency relates to the products' ability to take up fluids as well as the capacity to retain them.
- the first step in producing a multi-component fiber can be a compounding or mixing step.
- the raw materials are heated, typically under shear.
- the shearing in the presence of heat can result in a homogeneous melt with proper selection of the composition.
- the melt is then placed in an extruder where fibers are formed.
- a collection of fibers is combined together using heat, pressure, chemical binder, mechanical entanglement, and combinations thereof resulting in the formation of a nonwoven web.
- the nonwoven is then assembled into an article.
- the objective of the compounding step is to produce a homogeneous melt composition for each component of the fibers.
- the melt composition is homogeneous, meaning that a uniform distribution of ingredients in the melt is present.
- the resultant melt composition(s) should be essentially free of water to spin fibers. Essentially free is defined as not creating substantial problems, such as causing bubbles to form which may ultimately break the fiber while spinning.
- the free water content of the melt composition can be about 1% or less, about 0.5% or less, or about 0.15% of less.
- the total water content includes the bound and free water.
- the total water content (including bound water and free water) is about 1% or less.
- the starch or polymers may need to be dried before processed and/or a vacuum is applied during processing to remove any free water.
- the thermoplastic starch, or other components hereof can be dried at elevated temperatures, such as about 60°C, before spinning.
- the drying temperature is determined by the chemical nature of a component's constituents. Therefore, different compositions can use different drying temperatures which can range from 20°C to 150°C and are, in general, below the melting temperature of the polymer. Drying of the components may be in series or as discrete steps combined with spinning., such as those known in the art.
- any method known in the art or suitable for the purposes hereof can be used to combine the ingredients of the components of the present invention.
- Such techniques will include heat, mixing, and pressure.
- the particular order or mixing, temperatures, mixing speeds or time, and equipment can be varied, as will be understood by those skilled in the art, however temperature should be controlled such that the starch does not significantly degrade.
- the resulting melt should be homogeneous.
- a suitable method of mixing for a starch and plasticizer blend is as follows:
- a suitable mixing device is a multiple mixing zone twin screw extruder with multiple injection points.
- the multiple injection points can be used to add the destructurized starch and the polymer.
- a twin screw batch mixer or a single screw extrusion system can also be used. As long as sufficient mixing and heating occurs, the particular equipment used is not critical.
- An alternative method for compounding the materials comprises adding the plasticizer, starch, and polymer to an extrusion system where they are mixed in progressively increasing temperatures.
- the first three zones may be heated to 90°, 120°, and 130° C, and the last three zones will be heated above the melting point of the polymer. This procedure results in minimal thermal degradation of the starch and for the starch to be fully destructured before intimate mixing with the thermoplastic materials.
- thermoplastic starch An example of compounding destructured thermoplastic starch would be to use a Werner &Pfleiderer 30 mm diameter 40:1 length to diameter ratio co-rotating twin-screw extruder set at 250RPM with the first two heat zones set at 50°C and the remaining five heating zones set 150°C. A vacuum is attached between the penultimate and last heat section pulling a vacuum of 10 atm.
- Starch powder and plasticizer e.g., sorbitol
- Processing aids can be added along with the starch or plasticizer. For example, magnesium stearate can be added at a level of 0 - 1 %, by weight, of the thermoplastic starch component.
- the fibers of the present invention can be made by melt spinning. Melt spinning is differentiated from other spinning, such as wet or dry spinning from solution, where in such alternate methods a solvent is present in the melt and is eliminated by volatilizing or diffusing it out of the extrudate.
- Spinning temperatures for the melts can range from about 105°C to about 300°C, and in some embodiments can be from about 130°C to about 230°C.
- the processing temperature is determined by the chemical nature, molecular weights and concentration of each component.
- Fiber spinning speeds of about 10 meters/minute or greater can be used. In some embodiments hereof, the fiber spinning speed is from about 100 to about 7,000 meters/minute, or from about 300 to about 3,000 meters/minute, or from about 500 to about 2,000 meters/minute.
- the fiber may be made by fiber spinning processes characterized by a high draw down ratio.
- the draw down ratio is defined as the ratio of the fiber at its maximum diameter (which is typically occurs immediately after exiting the capillary of the spinneret in a conventional spinning process) to the final diameter of the formed fiber.
- the fiber draw down ratio via either staple, spunbond, or meltblown process will typically be 1.5 or greater , and can be about 5 or greater , about 10 or greater, or about 12 or greater.
- Continuous fibers can be produced through, for example, spunbond methods or meltblowing processes. Alternately, non-continuous (staple fibers) fibers can be produced according to conventional staple fiber processes as are well known in the art. The various methods of fiber manufacturing can also be combined to produce a combination technique, as will be understood by those skilled in the art.
- the fibers spun can be collected subsequent for formation using conventional godet winding systems or through air drag attenuation devices. If the godet system is used, the fibers can be further oriented through post extrusion drawing at temperatures from about 50° to about 200° C. The drawn fibers may then be crimped and/or cut to form non-continuous fibers (staple fibers) used in a carding, airlaid, or fluidlaid process.
- residual water levels typically be 1%, by weight of the fiber, or less, alternately 0.5% or less, or 0.15% or less to be present in the various components.
- Bicomponent melt spinning equipment is described in US Patent 5,162,074 and is commercially available from, for example, Hills, Inc. located in Melbourne, Florida USA.
- Suitable spinnert capillaries for use in spinning to make bicomponent fibers include, for example, capillaries with a length-to diameter ration of about 4 and a diameter of about 0.35 mm, although other capillary dimensions can be used.
- the process of spinning fibers and compounding of the components can be done in-line, with compounding , drying and spinning as part of a continuous process and can be the preferred process execution.
- the residence time of each component in the spinline can have special significance when a high melting temperatures thermoplastic polymer is chosen to be spun with destructured starch.
- Spinning equipment can be designed to minimize the exposure of the destructured starch component to high process temperature by minimizing the time and volume of destructured starch exposed in the spinneret.
- the polymer supply lines to the spinneret can be sealed and separated until introduction into the bicomponent pack.
- the at least two components can be introduced and processed in their separate extruders at different temperatures until introduced into the spinneret.
- the destructured starch component extruder profile may be 80°C, 150°C and 150°C in the first three zones of a three heater zone extruder with a starch composition similar to B3 of Example 1.
- the transfer lines and melt pump heater temperatures will also be 150°C for the starch component.
- the polypropylene component extruder temperature profile would be 180°C, 230°C and 230°C in the first three zones of a three heater zone extruder.
- the transfer lines and melt pump are heated to 230°C. In this case the spinneret temperature can range from 180°C to 230°C.
- the second component can be removed by exposure of the multicomponent fiber to a solvent in which the second component is removable.
- the solvent is water, however, any solvent in which the second component is removed when the fiber is placed in the solvent is contemplated.
- a further example of such a solvent is glycerine.
- the fibers having the starch removed may be used in nonwoven articles that are desired to be extra soft and/or have better barrier properties. Additionally, because starch is an inexpensive material, the starch and polymer fibers with the starch removed will be a more cost-effective fiber.
- the starch component can also be removed by a combination technique where mechanical or hydrodynamic methods can be used to remove the starch in isolation, in series or in combination with a solvent
- the rate of stanch removal can be measured by weight loss of the fibers versus time exposed to solvent for the second component.
- the fibers are removed and dried in the oven for 15 minutes at 115°C.
- the fibers are then removed from the oven and allowed to cool in an open atmosphere at room temperature for 30 minutes before weighing.
- Fibers are handled during second component removal or after second component removal.
- handling include thermodynamic annealing, elongation, contraction splitting, and fabric formation.
- the present invention is a process of producing a melt spinnable fiber having a diameter of less than 200 microns, the process comprising compounding a first component comprising a thermoplastic polymer, compounding a second component comprising destructured starch, spinning the first component with the second component to form a fiber having a diameter of less than 200 microns, wherein the second component is not encompassed by another component or components or if encompassed by another component or components thon the second component encompasses a hollow core and contacting the fiber with a solvent for the second component wherein the second component is removed from the fiber by exposure to the solvent.
- the compounding of the second component further includes an agent selected from the group consisting of an acid substituted vinyl polymer, a polyolefin carboxylic acid copolymer, a polyhydroxyetherester, a polyhydroxyetheramide, a C8-C22 aliphatic saturated or unsaturated carboxylic acid, an aliphatic carboxyamide, and an aromatic carboxyamide, wherein the second component is removed from the fiber by exposure to the solvent at a rate that is slower than that of a fiber lacking the agent.
- a process that further comprises physically manipulating the fiber prior to complete removal of then second component or after removal of the second component are also aspects of the present invention.
- the fibers hereof may be used for any purposes for which fibers are conventionally used. This includes, without limitation, incorporation into nonwoven substrates.
- the fibers hereof may be converted to nonwovens by any suitable methods known in the art.
- Continuous fibers can be formed into a web using industry standard spunbond or meltblown type technologies while staple fibers can be formed into a web using industry standard carding, airlaid, or wetlaid technologies.
- Typical bonding methods include: calendar (pressure and heat), thru-air heat, mechanical entanglement, hydrodynamic entanglement, needle punching, and chemical bonding and/or resin bonding.
- the calendar, thru-air heat, and chemical bonding are the preferred bonding methods for the starch and polymer multicomponent fibers. Thermally bondable fibers are required for the pressurized heat and thru-air heat bonding methods.
- the fibers of the present invention may also be bonded or combined with other synthetic or natural fibers to make nonwoven articles.
- the synthetic or natural fibers may be blended together in the forming process or used in discrete layers.
- Suitable synthetic fibers include fibers made from polypropylene, polyethylene, polyester, polyacrylates, and copolymers thereof and mixtures thereof.
- Natural fibers include cellulosic fibers and derivatives thereof. Suitable cellulosic fibers include those derived from any tree or vegetation, including hardwood fibers, softwood fibers, hemp, and cotton. Also included are fibers made from processed natural cellulosic resources such as rayon.
- Nonwoven articles are defined as articles that contains greater than 15% of a plurality of fibers that are continuous or non-continuous and physically and/or chemically attached to one another.
- the nonwoven may be combined with additional nonwovens or films to produce a layered product used either by itself or as a component in a complex combination of other materials, such as a baby diaper or feminine care pad.
- Preferred articles are disposable, nonwoven articles. The resultant products may find use in one of many different uses.
- Preferred articles of the present invention include disposable nonwovens for hygiene and medical applications. Hygiene applications include such items as wipes; diapers, particularly the top sheet or back sheet; and feminine pads or products, particularly the top sheet.
- the starches for use in the examples below are STARDRI 1, STARDRI 100, ETHYLEX 2015, or ETHYLEX 2035, all from Staley Chemical Company.
- the latter Staley materials are substituted starches.
- the ethylene acrylic acid (EAA) is PRIMACORE 59801 from Dow Chemical.
- the polypropylene (PP) resin is Basell PROFAX PH-835.
- the polyethylene (PE) is ASPUN 6811A from Dow Chemical.
- the poly(L) lactic acid is BIOMER L9000 (Biomer).
- the polyethylene succinate (PES) is BIONOLLE 1020 from Showa High Polymer (Tokyo, Japan).
- the polyester is F61HC or 9663 from Eastman Chemical.
- the glycerine is from Dow Chemical Company, Kosher Grade BU OPTIM* Glycerine 99.7%.
- the sorbitol is from Archer-Daniels-Midland Co. (ADM), Crystalline NF/FCC 177440-2S.
- ADM Archer-Daniels-Midland Co.
- Crystalline NF/FCC 177440-2S Other polymers having similar chemical compositions that differ in molecular weight, molecular weight distribution, and/or comonomer or defect level can also be used.
- Example 1 Thermoplastic starch compositions (TPS'S) are prepared according to the following formulations of Table 1.
- material 1 represents starch
- material 2 represents a plasticizer
- material 3 represents a non-starch thermoplastic polymer.
- Table 1 Composition (by parts) Composition Material 1 Material 2 Material 3 Material 1 Material 2 Material 3 B1 Staley STARDRI 1 ADM sorbitol Dow PRIMACORE 5980I 60 40 B2 Staley STARDRI 1 ADM sorbitol Dow PRIMACORE 5980I 60 40 5 B3 Staley STARDRI 1 ADM sorbitol Dow PRIMACORE 5980I 60 40 10 B4 Staley STARDRI 1 ADM sorbitol Dow PRIMACORE 5980I 60 40 15 ⁇ B5 Staley STARDRI 1 ADM sorbitol Dow PRIMACORE 5980I 60 40 25 B6 Staley STARDRI 1 Dow Glycerine Dow PRIMACORE 5980I 60
- the above materials can be prepared in a Wemer &Pfleiderer 30 mm diameter 40:1 length to diameter ratio co-rotating twin-screw extruder (although 50mm Baker and Perkins 25:1 1 and 40:1 twin screw systems have been used) set at 250RPM with the first two heat zones set at 50°C and the remaining zones to 150°C. A vacuum is attached between the penultimate and last heat section pulling a vacuum of 10atm.
- the starch powder and sorbitol are individually fed into the feed throat, preferably using mass-loss feeders. Magnesium stearate is preferably added also at 0-1wt%.
- the glycerine is injected after the first two heat zones via a heated liquid injection system.
- the total mass through-put is typically set to 25lbs/hour, although rates ranging from 5-751bs/hour have been used.
- the compounded material is extruded onto an air quench conveyor table and pelletized. Before spinning the TPS compositions, they are typically dried, if needed after compounding, to moisture levels below 1wt% for the best spinning. The most preferred moisture content is below 0.15wt%.
- Example 2 The TPS composition B1 is melt spun with Basell PROFAX PH-835 using an hollow segmented pie bicomponent pattern such as exemplified in Fig. 2B .
- the melt extrusion temperature is 210°C.
- the ratio of components ranges from 10:90 to 50:50.
- the as-spun filaments are placed in water and the TPS immediately dissolves in room temperature water.
- Example 3 The TPS composition B1 is melt spun with Basell PROFAX PH-835 using an islands-in-a-sea bicomponent pattern such as exemplified in Fig. 5A or Fig. 5B where the sea component comprises the TPS.
- the melt extrusion temperature is 210°C.
- the ratio of components ranges from 30:70 to 80:20.
- the as-spun filaments are placed in water and the TPS immediately dissolves in room temperature water.
- Example 4 The TPS composition By is melt spun with Basell PROFAX PH-835 using a solid sheath/core such as exemplified in Fig. 1A or Fig. 1B with a TPS sheath.
- the melt extrusion temperature is 210°C.
- the ratio of components ranges from 10:90 to 50:50.
- the as-spun filaments are placed in water and the TPS immediately dissolves in room temperature water.
- Example 5 The TPS composition B4 is melt spun with Basell PROFAX PH-835 using an hollow segmented pie bicomponent pattern such as exemplified in Fig. 2B .
- the melt extrusion temperature is 210°C.
- the ratio of components ranges from 10:90 to 50:50.
- the as-spun filaments are placed in water and the TPS gradually dissolves in room temperature water over about 15-60 minute time frame. The use of hot water makes it dissolve faster.
- Example 6 The TPS composition B4 is melt spun with Basell PROFAX PH-835 using an islands-in-a-sea bicomponent pattern such as exemplified in Fig. 5A or Fig. 5B where the sea component comprises the TPS.
- the melt extrusion temperature is 210°C.
- the ratio of components ranges from 30:70 to 80:20.
- the as-spun filaments are placed in water and the TPS gradually dissolves in room temperature water over about 15-60 minute time frame. The use of hot water makes it dissolve faster.
- Example 7 The TPS composition B4 is melt spun with Basell PROFAX PH-835 using a solid sheath/core such as exemplified in Fig. 1A or Fig. 1B with a TPS sheath.
- the melt extrusion temperature is 210°C.
- the ratio of components ranges from 10:90 to 50:50.
- the as-spun filaments are placed in water and the TPS gradually dissolves in room temperature water over about 15-60 minute time frame. The use of hot water makes it dissolve faster.
- Example 8 The TPS composition B5 is melt spun with Basell PROFAX PH-835 using an hollow segmented pie bicomponent pattern such as exemplified in Fig. 2B .
- the melt extrusion temperature is 210°C.
- the ratio of components ranges from 10:90 to 50:50.
- the as-spun filaments are placed in water and are relatively stable in room temperature water over a period of several hours. Over a period of several days they can dissolve in water. The use of boiling water makes it dissolve faster.
- Example 9 The TPS composition B5 is melt spun with Basell PROFAX PH-835 using an islands-in-a-sea bicomponent pattern such as exemplified in Fig. 5A or Fig. 5B where the sea component comprises the TPS.
- the melt extrusion temperature is 210°C.
- the ratio of components ranges from 30:70 to 80:20.
- the as-spun filaments are placed in water and are relatively stable in room temperature water over a period of several hours. Over a period of several days they can dissolve in water. The use of boiling water makes it dissolve faster.
- Example 10 The TPS composition B5 is melt spun with Basell PROFAX PH-835 using a solid sheath/core such as exemplified in Fig. 1A or Fig. 1B with a TPS sheath.
- the melt extrusion temperature is 210°C.
- the ratio of components ranges from 10:90 to 50:50.
- the as-spun filaments are placed in water and are relatively stable in room temperature water over a period of several hours. Over a period of several days they can dissolve in water. The use of boiling water makes it dissolve faster.
- Examples 11-30 Further bicomponent fibers can be produced according to Table 2.
- Table 2 Example # TPS Composition Ratio Range Extrusion Temperature (°C) Bicomponent Configuration Polymer 11 Basell PROFAX PH-835 B1-B22 70:30 to 10:90 190-220 Islands-in-a-Sea 12 Basell PROFAX PH-835 B1-B22 70:30 to 10:90 190-220 Hollow Segmented Pie 13 Basell PROFAX PH-835 B1-B22 70:30 to 10:90 190-220 Segmented Pie 14 Basell PROFAX PH-835 B1-B22 90:10 to 10:90 190-220 Sheath/Core 15 Dow ASPUN 6811A B1-B22 70:30 to 10:90 170-200 Islands-in-a-Sea 16 Dow ASPUN 6811A B1-B22 70:30 to 10:90 170-200 Hollow Segmented Pie 17 Dow ASPUN 6811A B1-B22 70:30 to 10:90
- Examples 31-38 Still further bicomponent fibers can be produced according to Table Table 3 31 F61HCPET B6.B10:B25-B29 70:30 to 10:90 240-280 hlands-in-a-Sea 32 F61HC PET B6-B10;B25-B29 70:30 to 10:90 240-280 Hollow Segmented Pie 33 F61HC PBT B6-H10:B25-B29 70:30 to 10:90 240-280 Segmented Pie 34 F61HC PBT B6-B10:B25- B29 90:10 to 10:90 240-280 Sheath/Core 35 Polyamide 6 B6-B10:B25- B29 70:30 to 10:90 240-280 Islands-in-a-Sea 36 Polyamide 6 B6-B10:B25- B29 70:30 to 10:90 240-280 Hollow Segmented Pie 37 Polyamide 6 B6-B10:B25- B29 70:30 to 10:90 240-280 Hollow Segmented Pie 37 Polyamide 6 B
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Nonwoven Fabrics (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Multicomponent Fibers (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2002/036593 WO2004044288A1 (en) | 2002-11-14 | 2002-11-14 | Multicomponent fibers comprising a dissolvable starch component, processes therefor, and fibers therefrom |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1563129A1 EP1563129A1 (en) | 2005-08-17 |
EP1563129B1 true EP1563129B1 (en) | 2009-07-15 |
Family
ID=32311655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02808137A Expired - Lifetime EP1563129B1 (en) | 2002-11-14 | 2002-11-14 | Process for the production of multicomponent fibers comprising a dissolvable starch component |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1563129B1 (ja) |
JP (1) | JP4181549B2 (ja) |
AU (1) | AU2002368339A1 (ja) |
CA (1) | CA2505164A1 (ja) |
DE (1) | DE60233002D1 (ja) |
WO (1) | WO2004044288A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7238423B2 (en) | 2004-12-20 | 2007-07-03 | Kimberly-Clark Worldwide, Inc. | Multicomponent fiber including elastic elements |
DE102005029597A1 (de) * | 2005-06-15 | 2006-12-28 | Kelheim Fibres Gmbh | In Wasser auflösbares bzw. zersetzbares Faser- und/oder Polymermaterial |
US20130089747A1 (en) | 2011-05-20 | 2013-04-11 | William Maxwell Allen, Jr. | Fibers of Polymer-Wax Compositions |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4136694C2 (de) * | 1991-11-07 | 1996-10-10 | Inventa Ag | Stärkefaser oder Stärke-modifizierte Faser, Verfahren zu ihrer Herstellung sowie ihre Verwendung |
US5814404A (en) * | 1994-06-03 | 1998-09-29 | Minnesota Mining And Manufacturing Company | Degradable multilayer melt blown microfibers |
CN1083020C (zh) * | 1995-02-14 | 2002-04-17 | 智索股份有限公司 | 可生物降解的纤维和非织造布 |
-
2002
- 2002-11-14 JP JP2004551377A patent/JP4181549B2/ja not_active Expired - Fee Related
- 2002-11-14 WO PCT/US2002/036593 patent/WO2004044288A1/en active Application Filing
- 2002-11-14 CA CA002505164A patent/CA2505164A1/en not_active Abandoned
- 2002-11-14 EP EP02808137A patent/EP1563129B1/en not_active Expired - Lifetime
- 2002-11-14 DE DE60233002T patent/DE60233002D1/de not_active Expired - Lifetime
- 2002-11-14 AU AU2002368339A patent/AU2002368339A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JP2006505711A (ja) | 2006-02-16 |
CA2505164A1 (en) | 2004-05-27 |
AU2002368339A1 (en) | 2004-06-03 |
WO2004044288A1 (en) | 2004-05-27 |
EP1563129A1 (en) | 2005-08-17 |
JP4181549B2 (ja) | 2008-11-19 |
DE60233002D1 (de) | 2009-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9925706B2 (en) | Process of producing a melt-spinnable fiber using thermoplastic polymer and destructured starch | |
US6783854B2 (en) | Bicomponent fibers comprising a thermoplastic polymer surrounding a starch rich core | |
EP1560954B1 (en) | Compositions and processes for reducing water solubility of a starch component in a multicomponent fiber | |
US6743506B2 (en) | High elongation splittable multicomponent fibers comprising starch and polymers | |
US6746766B2 (en) | Multicomponent fibers comprising starch and polymers | |
US6818295B2 (en) | Fibers comprising starch and polymers | |
US6623854B2 (en) | High elongation multicomponent fibers comprising starch and polymers | |
EP1563129B1 (en) | Process for the production of multicomponent fibers comprising a dissolvable starch component | |
EP1560955B1 (en) | Bicomponent fibers comprising a thermoplastic polymer surrounding a starch rich core | |
EP1560957B1 (en) | High elongation splittable multicomponent fibers comprising starch and polymers | |
JP4100516B2 (ja) | デンプン及びポリマーを含む高伸長多成分繊維 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050429 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MARIA AUTRAN, JEAN-PHILIPPE Inventor name: NODA, ISAO Inventor name: MACKEY, LARRY, NEIL Inventor name: PHAN, DEAN, VAN Inventor name: BOND, ERIC, BRYAN Inventor name: O'DONNEL, HUGH, JOSEPH |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20061204 |
|
RTI1 | Title (correction) |
Free format text: PROCESS FOR THE PRODUCTION OF MULTICOMPONENT FIBERS COMPRISING A DISSOLVABLE STARCH COMPONENT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60233002 Country of ref document: DE Date of ref document: 20090827 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090715 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090715 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091026 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091115 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090715 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090715 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090715 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090715 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090715 |
|
26N | No opposition filed |
Effective date: 20100416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091016 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091130 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091130 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090715 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20141201 Year of fee payment: 13 Ref country code: GB Payment date: 20141027 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20141111 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60233002 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20151114 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20151201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151114 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160601 |