EP1562881B1 - Procédé pour éliminer de dépots dans un système de compresseur d'un réacteur de conversi de méthanol en oléfines - Google Patents

Procédé pour éliminer de dépots dans un système de compresseur d'un réacteur de conversi de méthanol en oléfines Download PDF

Info

Publication number
EP1562881B1
EP1562881B1 EP03755820A EP03755820A EP1562881B1 EP 1562881 B1 EP1562881 B1 EP 1562881B1 EP 03755820 A EP03755820 A EP 03755820A EP 03755820 A EP03755820 A EP 03755820A EP 1562881 B1 EP1562881 B1 EP 1562881B1
Authority
EP
European Patent Office
Prior art keywords
compressor
deposit
removal medium
contaminant
intercooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03755820A
Other languages
German (de)
English (en)
Other versions
EP1562881A2 (fr
Inventor
Keith H. Kuechler
David R. Lumgair, Jr.
Nicolas P. Coute
Paul N. Chisholm
Cor F. Van Egmond
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
ExxonMobil Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Chemical Patents Inc filed Critical ExxonMobil Chemical Patents Inc
Publication of EP1562881A2 publication Critical patent/EP1562881A2/fr
Application granted granted Critical
Publication of EP1562881B1 publication Critical patent/EP1562881B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/705Adding liquids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the present invention relates to a process and system for reducing compressor fouling. More particularly, the invention is directed to injecting a contaminant-removal medium into one or more compressors and/or intercoolers in a methanol to olefin separation system under conditions effective to remove contaminants from the internal surfaces thereof.
  • Light olefins defined herein as ethylene and propylene, serve as feeds for the production of numerous chemicals. Olefins traditionally are produced by petroleum cracking. Because of the limited supply and/or the high cost of petroleum sources, the cost of producing olefins from petroleum sources has increased steadily.
  • Alternative feedstocks for the production of light olefins include oxygenates.
  • OTO oxygenate to olefin
  • a feedstock containing an oxygenate is vaporized and introduced into a reactor.
  • oxygenates include alcohols such as methanol and ethanol, dimethyl ether, methyl ethyl ether, methyl formate, and dimethyl carbonate.
  • MTO methanol to olefin
  • the oxygenate-containing feedstock includes methanol.
  • the methanol contacts a catalyst, preferably a molecular sieve catalyst, under conditions effective to create an product effluent comprising desirable light olefins.
  • MTO separation systems typically include one or more compressor units or bodies, which are adapted to compress at least a portion of the product effluent.
  • the compressors have the dual purpose of facilitating the movement of the product effluent through the separation system as well as condensing out heavier less-desirable components from the product effluent.
  • Compressors such as centrifugal compressors are often formed of a body having one or more stages. Each stage has a respective inlet and outlet and usually includes one or more sections, each having an impeller and a diaphragm. In many instances, multiple bodies and stages are used. To reduce the power required to drive these multiple stages, intercoolers are often placed between them. An intercooler is a heat exchanger situated immediately downstream from a compressor. In some cases, intercoolers are also used between stages to reduce the power required for compression.
  • Compressor fouling may occur in compressors or intercoolers found in an MTO separation system. Fouling is the build up of a solid, e.g., crystal, or a layer of liquid hydrocarbon contaminants within a compressor or intercooler. For example, the liquid contaminants may form through polymerization within the compressor body. Compressor fouling in an MTO separation system is undesirable because as contaminants build up inside the compressor, imbalances may develop causing vibrations, compressor inefficiency and, ultimately, compressor failure. Contaminants also may solidify or condense in the compressor intercoolers. Fouling in compressor intercoolers is undesirable because heat transfer is impaired and flow rate is reduced.
  • the present invention is directed to a process for removing contaminants from a compressor in a methanol to olefin (MTO) separation system.
  • the process includes compressing an effluent in the compressor, the compressor having an inlet and an outlet and an inner compressor surface. The compressing occurs under conditions effective to form a contaminant on the inner compressor surface.
  • a contaminant-removal medium is injected into the compressor, and the contaminant-removal medium contacts the contaminant under conditions effective to remove the contaminant from the inner compressor surface thereby forming a mobile contaminant.
  • the mobile contaminant is then removed from the compressor.
  • Another embodiment of the invention is a process for compressing an effluent withdrawn from a MTO conversion apparatus.
  • the process comprises contacting a methanol-containiag feedstock with a catalyst under conditions effective to form a product effluent comprising light olefins. At least a portion of the product effluent is directed to a compressor having a compressor surface. The at least a portion of the product effluent is compressed in the compressor under conditions effective to form a deposit on the compressor surface. A deposit-removal medium contacts the deposit under conditions effective to remove the deposit from the compressor surface.
  • the invention is a process for removing contaminants from a compressor intercooler in a MTO separation system.
  • an effluent is compressed in a compressor to form a compressed effluent.
  • the compressed effluent is cooled in a compressor intercooler having an inner surface under conditions effective to form a contaminant on the inner surface.
  • a contaminant-removal medium is injected into the intercooler and contacts the contaminant under conditions effective to remove the contaminant from the inner surface thereby forming a mobile contaminant.
  • the mobile contaminant is then removed from the intercooler.
  • the invention is also directed to a process for removing contaminants from a compressor in a MTO separation system.
  • an effluent is compressed in a first compressor stage to form a compressed effluent.
  • the first compressor stage has a first inlet, a first outlet and a first inner compressor surface, and is in the compressor.
  • the compressing occurs under conditions effective to form a contaminant on the first inner compressor surface.
  • a contaminant-removal medium is injected into the first compressor stage and contacts the contaminant under conditions effective to remove the contaminant from the first inner compressor surface thereby forming a mobile contaminant.
  • the mobile contaminant is then removed from the first compressor stage.
  • this process also includes compressing the compressed effluent in a second compressor stage, the second compressor stage having a second inlet, a second outlet and a second inner compressor surface.
  • the first and second compressor stages may be in a single compressor body or in separate compressor bodies.
  • Fig. 1 is a flow diagram showing a process for reacting methanol to form a product effluent, which is directed to a Quench Tower and at least partially compressed;
  • Fig. 2 is a flow diagram showing a compressor and injection system for removing fouling contaminants contained therein.
  • This invention provides a process for removing contaminants that have accumulated on the internal surfaces of compressors and intercoolers in an MTO separation system. By removing these contaminants from the internal surfaces of one or more compressors or intercoolers in an MTO separation system, the efficiency and run time between off line cleanings of MTO separation system compressors can be increased and intercooler efficiency can be increased.
  • the process includes injecting a contaminant-removal medium into the compressor and contacting the contaminant-removal medium with the contaminant under conditions effective to form a mobile contaminant. The mobile contaminant is then removed from the compressor. The contaminant-removal medium can then be separated from the MTO product effluent through well-known separation techniques such as by distillation or by using a knockout or discharge drum.
  • the inventive process includes injecting the same or different contaminant-removal medium into an intercooler and contacting the contaminant-removal medium with the intercooler contaminant under conditions effective to form a mobile contaminant
  • the mobile contaminant is then removed from the intercooler.
  • the contaminant-removal medium can then be separated from the MTO product effluent through well-known separation techniques such as by distillation or by using a knockout or discharge drum.
  • GC/FID Gas Chromatography and Flame Ionization Detection
  • GC/MS Gas Chromatography and Mass Spectrometry
  • a non-limiting list of potential fouling precursor compounds which may be present in the effluent stream, includes butadiene, pentadiene, naphthalene, cyclopentadiene, hexadiene, cyclohexadiene, C7+ dienes, styrene, C4+ styrenic compounds, and mixtures thereof.
  • a non-limiting list of potential fouling compounds, which also may be present in the effluent stream or which may be formed from one or more of the fouling precursor compounds includes methyl acetylene, hexamethyl benzene, durene, and mixtures thereof.
  • Fouling compounds or contaminants may form on one or more inner surfaces of a compressor or intercooler as an adherent, a residue, a film, a layer or a solid.
  • the invention provides for the injection of a contaminant-removal medium directly into one or more compressors and/or intercoolers.
  • the contaminant-removal medium is injected directly into one or more stages of a compressor body.
  • Each stage in a centrifugal compressor includes an inlet, an outlet and one or more impellers partially surrounded by one or more diaphragms or walls that form a labyrinth.
  • one or more holes are drilled into the outer wall of a compressor adjacent a compressor stage and an atomizing nozzle or other injection device is inserted therein and securely attached thereto, e.g., by brazing, welding, mechanical means, or other securing method.
  • the injection device is welded with a flange near the injection point to facilitate cleaning of the injection device.
  • the compressor or intercooler is manufactured having holes in its outer surface adapted for receiving an injection nozzle, thereby not necessitating drilling into the outer surface of the compressor or intercooler.
  • each stage includes at least one injection nozzle and more preferably at least two injection nozzles.
  • the contaminant-removal medium is injected directly where the majority of the fouling contaminants are formed.
  • each stage section, having an impeller and a diaphragm has one, two, or more than two contaminant-removal medium injection nozzles associated therewith.
  • one, two, or more than two holes are drilled in the side of the compressor inlet.
  • the contaminant-removal medium injection nozzles preferably are inserted in the hole(s) adjacent of the compressor inlet and secured thereto.
  • the contaminant-removal medium is injected through a nozzle that is adjacent the compressor inlet directly into the compressor inlet.
  • the contaminant-removal medium is injected into one or more compressor intercoolers.
  • Compressor intercoolers are heat exchangers located downstream of or between compressor bodies or stages. Ideally, the intercoolers are shell-and-tube type heat exchangers. In another embodiment, the intercoolers are plate-and-frame type heat exchangers. If the compression system includes a plurality of compressor bodies, it may be desirable to cool the compressed stream between compressor bodies in compressor intercoolers to facilitate condensation of the heavier products as well as to reduce the power required to drive the multiple bodies. As fouling contaminants have been found to form within these intercoolers, the injection of contaminant-removal medium into the inlet of the intercoolers reduces the occurrence of intercooler fouling.
  • intercoolers are formed of an outer shell, which houses a first medium, and an inner tube, which passes through the shell and which houses a second medium. As the second material flows through the tube, heat is transferred between the first and second mediums.
  • the contaminant-removal medium preferably is injected into the inlet head.
  • the process gas is in the shell side of the intercooler rather than the tube side of the intercooler, the contaminant-removal medium can be injected into the side of the intercooler as described above with respect to injecting contaminant-removal medium into the side of the one or more compressors.
  • each intercooler system is comprised of multiple parallel shells and often two or three banks of parallel shells in series.
  • the contaminant-removal medium removes the fouling contaminants from the inner surfaces of the compressor by friction, e.g., sufficient force of the atomized contaminant-removal medium entering the compressor to shear the fouling contaminants from the inner surfaces thereof.
  • the contaminant-removal medium may be any liquid that is easily separated from the desired product, e.g., light olefins, in downstream processing, as discussed below, and that provides an adequate shearing force against the contaminants that have formed on the interior surfaces of the compressors and/or intercoolers.
  • the contaminant-removal medium comprises an aromatic compound.
  • the contaminant-removal medium is a solution having at least 20 weight percent aromaticity, more preferably at least 50, at least 60, or at least 70 weight percent aromaticity, and most preferably at least 80 or at least 90 weight percent aromaticity based on the total weight of the contaminant removal medium.
  • the contaminant-removal medium preferably is a wash oil boiling between 120°F (48.9°C) and 800°F (426.7°C), preferably between 200°F (93.3°C) and 700°F (371.1°C), and most preferably between 400°F (204.4°C) and 600°F (315.5°C).
  • the contaminant-removal medium is selected from the group consisting of: single ring aromatics (preferably non-aliphatic), multi-ring aromatics, aromatic naphthas, aromatic gas oils, and mixtures thereof. Heavy aromatic naphtha products used in oil field drilling are particularly desirable wash oils.
  • the contaminant removal medium comprises water.
  • the contaminant-removal medium comprises substantially no sulfur, although sulfur contained in an aromatic ring or a C5+ compound is tolerable in limited quantities.
  • the contaminant-removal medium comprises less than 10000 wppm, preferably less than 100 wppm, more preferably less than 1 wppm, and most preferably an undetectable amount of sulfur, defined herein as less than 0.01 wppm sulfur.
  • Heavy aromatics are preferably injected into the compressor over light aromatics, which are vaporized by the heat of compression, thereby reducing or eliminating the ability of the light aromatics to remove contaminants from the inner surfaces of the compressor.
  • lighter aromatics containing single and double ring aromatics or mixtures of aromatics are used as the contaminant-removal medium provided the conditions at the injection point allow a portion of the injected wash oil to remain as a liquid.
  • the lighter aromatics are preferred for washing discharge or knockout drums, discussed below with reference to Fig. 2 , and the intercoolers.
  • the heavier wash oils are preferred for washing the compressors.
  • a heavy hydrocarbon stream from the separation system of the MTO reaction system is used as the contaminant-removal medium.
  • the contaminant-removal medium comprises a C4+ hydrocarbon fraction, a C5+ hydrocarbon fraction, or a C6+ hydrocarbon fraction.
  • the contaminant-removal medium can be provided as a byproduct of an MTO reaction system.
  • the contaminant-removal medium comprises at least a portion of a Quench Tower bottoms stream from an MTO separation system. It has been discovered that a heavy aromatic oil comprising aromatic compounds can be isolated from an MTO Quench Tower bottoms stream. This heavy aromatic oil is produced in the MTO reaction system and has desirable properties as a compressor or intercooler wash oil. The heavy aromatic oil will condense in the Quench Tower as well as in the first stage discharge or knockout drum, discussed below.
  • a bottom skim preferably is provided for decanting the oil off the top of the condensed water from the Quench Tower and/or discharge or knockout drum.
  • the skimmed oil is sent to a settling device such as a drum or any device that provides settling time and an interface from which to withdraw the oil.
  • the withdrawn heavy aromatic oil is then collected and stored in a separate tank where it could be used for injection, preferably intermittent injection, into the process gas compressor or intercooler.
  • the heavy aromatic oil can be separated from the other components in the Quench Tower bottoms stream through a well-known separation technique, e.g., distillation, and advantageously recycled to one or more compressors or intercoolers as the contaminant-removal medium.
  • the flow rate of the contaminant-removal medium into a given compressor or intercooler may vary based on a variety of factors such as product fraction flow rate through the compressor(s) and operating temperatures.
  • a portion of the contaminant-removal medium may vaporize as it is injected into the compressors. Vaporization is undesirable as the contaminant-removal properties of the contaminant-removal medium are reduced if the medium is in the vapor phase.
  • the injection rate of the contaminant-removal medium preferably is selected so that at least a portion of the contaminant-removal medium is in the liquid phase after it is injected into the compressors, thereby providing a contaminant wash within the compressor volume.
  • the vibrations of one or more of the compressors are monitored either by a vibration detection device or by less sophisticated means, e.g., an individual feeling the outer surface of the compressor or listening for vibrational noises.
  • the contaminant-removal medium is intermittently injected into the compressor on an as-needed basis. The intermittent compressing preferably is responsive to a determination in the monitoring that the vibration in the compressor has exceeded a predetermined vibration ceiling.
  • the contaminant-removal medium injection system can inject contaminant-removal medium into the compressor or intercooler at prescheduled intervals.
  • the interval between injections may vary based on a number of factors.
  • the contaminant-removal medium is injected into the initial compressor, which receives the overhead stream from a Quench Tower, or into an intercooler, at a rate of at least one injection every two months, at least one injection per month, at least one injection per week, at least two injections per week, or at least one injection per day.
  • the interval between injections is 12 hours, 6 hours, 3 hours or 1 hour.
  • a timer is implemented to cause the contaminant-removal medium injection apparatus to inject the contaminant-removal medium into the compressor or intercooler at predetermined intervals.
  • the injection system continuously injects contaminant-removal medium into the one or more compressors and/or intercoolers.
  • intermittent injections since the injections reduce compressor capacity, the loads on the wash oil separation equipment, and wash oil costs.
  • each injection period e.g., the duration of each infection
  • the contaminant-removal medium is injected into one or more compressors and/or intercoolers for at least 6 hours, more preferably for at least 10 hours, and most preferably for at least 14 hours.
  • each injection period can be from 1 to 24 hours, more preferably from 5 to 14 hours, and most preferably from 8 to 14 hours.
  • the contaminant-removal medium Prior to injection into the one or more compressors and/or intercoolers, the contaminant-removal medium is preferably stored in a contaminant-removal medium storage tank which is in fluid communication with a pump that pumps the contaminant-removal medium to one or more stages or sections of the compressor(s), to the inlet of the compressor, and/or to one or more intercoolers.
  • FIG. 1 illustrates one MTO separation system implementing compressors in accordance with the present invention.
  • a heated methanol-containing feedstock 100 is directed to a reactor 102.
  • the methanol contacts a catalyst, preferably a molecular sieve catalyst, under conditions effective to convert the methanol to a product effluent comprising light olefins, which exits the reactor through oxygenate conversion product effluent line 104 and, after optionally being cooled in one or more heat exchangers, not shown, is directed to Quench Tower 106.
  • the product effluent contacts directly with a quench medium, e.g., water, at an initial temperature over a series of suitable contacting devices.
  • a quench medium e.g., water
  • the amount of quench medium needed in Quench Tower 106 is dictated by a number of factors, including, but not necessarily limited to the composition of the quench medium, the temperature of quench medium recycle introduced to the Quench Tower through recycle line 110, and desired temperature differences and pressure differences between the various streams.
  • the gaseous products are separated as overhead or light product fraction stream 112.
  • the heavy product fraction stream 108 which exits from the bottom of the Quench Tower 106 at an exiting temperature, comprises the bulk of byproduct water, a portion of the unreacted oxygenate feedstock (except those oxygenates that are gaseous under the quenching conditions), a small portion of the oxygenate conversion byproducts, particularly heavy hydrocarbons (C5+), and usually the bulk of the quench medium.
  • a preferred quench medium is water, which is for all intents and purposes indistinguishable from byproduct water. This eliminates the need for steps to separate the quench medium from byproduct water in the heavy product fraction.
  • a quench medium other than water is used and this quench material is substantially in a liquid form under quenching conditions
  • heavy product fraction 108, or any, or all of the several fraction into which the heavy product fraction is divided may be processed to separate the quench medium from byproduct water.
  • the quench medium is a high boiling hydrocarbon such as diesel fuel or similar stream, it is immiscible with byproduct water.
  • Such a quench medium is separated by a properly designed weir system in the bottom of Quench Tower 106, or in a drum separator or other separation device at many different points of the process in the present invention. Further, if any heavy hydrocarbons (C 5 +) are formed in the oxygenate conversion reaction, they also may be removed from byproduct water in stream 108 or other points in the process in substantially the same manner as or along with the removal of the quench medium. If the quench medium is a relatively light material, which is substantially gaseous under the quenching conditions, and hence being present in substantial quantities in the light product fraction, such a quench medium can be separated in downstream olefin recovery processes encompassing the entire oxygenate conversion and olefin recovery and purification process.
  • Light product fraction stream 112 is directed to one or more compressor bodies 114, wherein the light product fraction is compressed or pressurized.
  • compressor fouling is particularly an issue in the initial stages of the first compressor body that receives the overhead stream from the Quench Tower. That is, compressor fouling is particularly a problem in the first stage of the first compressor body that the light product fraction 112 enters. Compressor fouling is not as significant of a problem in subsequent compressor stages.
  • the compression ratios of the one or more compressor bodies can vary widely as disclosed, for example, by U.S. Patent No. 6,441,261 to Kuechler et al. , the entirety of which is incorporated herein by reference.
  • At least a portion of the cooled olefin product stream from an MTO separation system is compressed in one or more compressors comprising one to four stages with cooling of the material between the stages (intercooling), wherein each of the compressors preferably has a compression ratio of between about 1.4 and about 6.0, desirably between about 1.7 and about 4.0, and, more desirably, between about 2.0 and about 3.5.
  • compression ratio is meant the value of the absolute pressure at the outlet of a given stage of the compression system divided by the absolute pressure at the inlet of that same stage.
  • Compression system inlet pressures preferably range from about 2 psig (13.8 kPag) to about 50 psig (344.7 kPag), more preferably between about 5 psig (34.5 kPag) to about 20 psig (137.9 kPag).
  • the compressed product is preferably directed to one or more intercoolers and discharge drums (see Fig. 2 ) for initial product separation.
  • Compressed product fraction 116 exits the one or more compressor bodies 114 and is directed to a separation unit 118, which may include one or more separation units, e.g., distillation towers, splitters, wash units, etc.
  • separation unit 118 byproducts and generally undesirable components, e.g., oxygenate contaminants, from the compressed product fraction 116 are removed through one or more bottoms streams, illustrated in Fig. 1 generally as line 122.
  • Overhead stream 124 comprising substantially pure ethylene and/or propylene is then optionally directed to one or more secondary compressors 132, which form a final condensed product stream.
  • compressor fouling is not a significant problem in these secondary compressors, although the injection of a contaminant-removal medium in these one or more compressors or other MTO separation system compressors is within the scope of the present invention.
  • Fig. 2 illustrates a contaminant-removal medium injection system in accordance with one embodiment of the present invention.
  • Light product fraction stream 112 from Fig. 1 is shown entering compressor 114 via compressor inlet 254.
  • Fig. 2 illustrates a centrifugal compressor, although any of a variety of compressors may be implemented in accordance with the present invention.
  • axle 224 spins about its longitudinal axis causing compressor wheels or impellers 226 to spin about the axis and compress stream 112.
  • Compressed stream 232 then exits the compressor through outlet 230.
  • the operation of centrifugal compressors is well known in the art and will not be described in further detail herein.
  • any number of stages or sections may be implemented in a given compressor body.
  • an MTO compressor may include 2, 3, 4 or more stages in a given compressor body, each stage having from 1 to 7 sections.
  • any number of compressor bodies, in series or in parallel, can be implemented in accordance with the present invention.
  • fewer than 4 or 3 compressor bodies are implemented between the Quench Tower 106 and separation system 118.
  • a typical contaminant removal system illustrated in Fig. 2 , includes a contaminant-removal tank 202, which holds the contaminant-removal medium.
  • the tank 202 includes an outlet line 204 through which the contaminant-removal medium exits the tank.
  • Line 204 is directed to pump 206 that pumps the contaminant-removal medium through pressurized line 208 and line 212.
  • Pump 206 in one embodiment, is a positive displacement pump.
  • a wash oil screen e.g., 80 mesh screen, is used on the discharge of the pump to trap foreign matter.
  • a first portion of the contaminant-removal medium can be directed through line 212 back to the tank via a pressure control valve 210.
  • This valve 210 controls the operating pressure of the system.
  • the second portion of the flow is directed to line 208 where optionally the total flow to the injection system is controlled by a flow control device, not shown, located in line 208.
  • the flow control device in line 208 can a ball valve, needle valve, gate valve, plug valve, block valve, slide valve or any other control device known to be suitable for control of fluids at the rates and pressures required by the compressor and auxiliaries.
  • a second portion of contaminant-removal medium from line 208 is directed through line 214 and is divided between individual section introduction lines 216, which direct the contaminant-removal medium preferably to each of the sections of the compressor body 114.
  • the contaminant-removal medium is directed through a single individual section introduction line and only to the first section of a compressor stage.
  • the contaminant-removal medium is directed through a single individual section introduction line and only to the second section of the compressor stage.
  • the contaminant-removal medium in another embodiment, is directed through a single individual section introduction line to any one or more of the third through tenth (or more) sections of the compressor stage. More preferably, however, the contaminant-removal medium is directed to each of the sections of a given compressor stage, as shown in Fig. 2 , wherein the contaminant-removal medium is directed to each of the four sections in the compressor stage shown in compressor body 114.
  • the contaminant-removal medium is directed to fewer than all of the sections of a given compressor stage, it is preferred that the contaminant-removal medium is directed to the first section, more preferably to the first and second sections, more preferably to the first through third sections, and so on, incrementally to however many sections exist in a given compressor stage.
  • the contaminant-removal medium is directed to fewer than all of the stages of a given compressor system (which may include one or more compressor bodies), it is preferred that the contaminant-removal medium is directed at least to the first stage, more preferably at least to the first and second stages, more preferably at least to the first through third stages, and so on, incrementally to however many stages exist.
  • Each of lines 216 preferably includes a flow control device 218, as described above.
  • a portion of the contaminant-removal medium in line 214 is directed through line 256 to one or more additional compressors, not shown, in the MTO compressor system.
  • Line 256 also preferably includes a flow control device, not shown.
  • at least a portion of the contaminant-removal medium in line 214 optionally is directed through line 246 to the compressor inlet 254.
  • line 246 may enter the side of the inlet 254 through a hole as shown in Fig. 2 , or line 246 can feed the contaminant-removal medium directly into inlet 254, as described above.
  • contaminant-removal medium is injected into stream 112 prior to introduction into inlet 254.
  • Line 246 also preferably includes a flow control device 244.
  • the compressed stream 232 can be directed to an intercooler 234 via intercooler inlet 252.
  • the contaminant-removal medium also may be directed to the compressor intercooler 234 as shown by line 248, which optionally includes a flow control device 250.
  • Line 248 can be directed to intercooler inlet 252 as shown in Fig. 2 , or to the interior of the intercooler 234 via a nozzle placed in a hole provided in the side of intercooler 234.
  • compressed stream 232 is cooled by a cooling medium.
  • the compressed stream 232 optionally contacts the contaminant-removal medium under conditions effective to remove fouling contaminants from the interior surfaces thereof and thereby forming a mobile contaminant that is easily removed from the intercooler through cooled stream 236 that exits the intercooler 234 and enters a separation unit 238, such as a discharge drum or knockout drum, for further processing.
  • Separation unit 238 separates the cooled stream 236 into compressed product fraction 116 comprising light olefins, which optionally is directed to one or more additional compressor bodies and/or intercoolers as well as to separation system 118 for further processing as shown in Fig.
  • a condensed stream 242 which preferably includes the contaminant-removal medium as well as any contaminants dissolved therein and/or removed thereby.
  • the condensed stream 242, or a portion thereof, optionally is redirected to the Quench Tower 106 where it can serve as the quench medium.
  • the injection system illustrated in Fig. 2 is one non-limiting embodiment of the present invention, and many other possible injection system configurations exist in accordance with the present invention.
  • the present contaminant removal process is particularly suited for use in compressors and/or intercoolers in an MTO separation system.
  • the conditions in the MTO reactor including the pressure, temperature, weight hourly space velocity (WHSV), etc., are conducive to converting the methanol to light olefins, as discussed in more detail hereinafter.
  • WHSV weight hourly space velocity
  • molecular sieve catalysts have been used to convert oxygenate compounds to light olefins.
  • Silicoaluminophosphate (SAPO) molecular sieve catalysts are particularly desirable in such a conversion process, because they are highly selective in the formation of ethylene and propylene.
  • the feedstock preferably contains one or more aliphatic-containing compounds that include alcohols, amines, carbonyl compounds for example aldehydes, ketones and carboxylic acids, ethers, halides, mercaptans, sulfides, and the like, and mixtures thereof.
  • the aliphatic moiety of the aliphatic-containing compounds typically contains from 1 to about 50 carbon atoms, preferably from 1 to 20 carbon atoms, more preferably from 1 to 10 carbon atoms, and most preferably from 1 to 4 carbon atoms.
  • Non-limiting examples of aliphatic-containing compounds include: alcohols such as methanol and ethanol, alkyl-mercaptans such as methyl mercaptan and ethyl mercaptan, alkyl-sulfides such as methyl sulfide, alkylamines such as methyl amine, alkyl-ethers such as dimethyl ether, diethyl ether and methylethyl ether, alkyl-halides such as methyl chloride and ethyl chloride, alkyl ketones such as dimethyl ketone, formaldehydes, and various acids such as acetic acid.
  • alcohols such as methanol and ethanol
  • alkyl-mercaptans such as methyl mercaptan and ethyl mercaptan
  • alkyl-sulfides such as methyl sulfide
  • alkylamines such as methyl amine
  • alkyl-ethers such as dimethyl ether, dieth
  • the feedstock contains one or more oxygenates, more specifically, one or more organic compound(s) containing at least one oxygen atom.
  • the oxygenate in the feedstock is one or more alcohol(s), preferably aliphatic alcohol(s) where the aliphatic moiety of the alcohol(s) has from 1 to 20 carbon atoms, preferably from 1 to 10 carbon atoms, and most preferably from 1 to 4 carbon atoms.
  • the alcohols useful as feedstock in the process of the invention include lower straight and branched chain aliphatic alcohols and their unsaturated counterparts.
  • Non-limiting examples of oxygenates include methanol, ethanol, n-propanol, isopropanol, methyl ethyl ether, dimethyl ether, diethyl ether, di-isopropyl ether, formaldehyde, dimethyl carbonate, dimethyl ketone, acetic acid, and mixtures thereof.
  • the feedstock is selected from one or more of methanol, ethanol, dimethyl ether, diethyl ether or a combination thereof, more preferably methanol and dimethyl ether, and most preferably methanol.
  • the various feedstocks discussed above is converted primarily into one or more olefin(s).
  • the olefin(s) or olefin monomer(s) produced from the feedstock typically have from 2 to 30 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, still more preferably 2 to 4 carbons atoms, and most preferably ethylene an/or propylene.
  • Non-limiting examples of olefin monomer(s) include ethylene, propylene, butene-1, pentene-1, 4-methyl-pentene-1, hexene-1, octene-1 and decene-1, preferably ethylene, propylene, butene-1, pentene-1, 4-methyl-pentene-1, hexene-1, octene-1 and isomers thereof.
  • Other olefin monomer(s) include unsaturated monomers, diolefins having 4 to 18 carbon atoms, conjugated or nonconjugated dienes, polyenes, vinyl monomers and cyclic olefins.
  • the feedstock preferably of one or more oxygenates
  • a molecular sieve catalyst composition into olefin(s) having 2 to 6 carbons atoms, preferably 2 to 4 carbon atoms.
  • the olefin(s), alone or combination are converted from a feedstock containing an oxygenate, preferably an alcohol, most preferably methanol, to the preferred olefin(s) ethylene and/or propylene.
  • GTO gas-to-olefins
  • MTO methanol-to-olefins
  • the feedstock in one embodiment, contains one or more diluents, typically used to reduce the concentration of the feedstock.
  • the diluents are generally non-reactive to the feedstock or molecular sieve catalyst composition.
  • Non-limiting examples of diluents include helium, argon, nitrogen, carbon monoxide, carbon dioxide, water, essentially non-reactive paraffins (especially alkanes such as methane, ethane, and propane), essentially non-reactive aromatic compounds, and mixtures thereof.
  • the most preferred diluents are water and nitrogen, with water being particularly preferred.
  • the feedstock does not contain any diluent.
  • the diluent may be used either in a liquid or a vapor form, or a combination thereof.
  • the diluent is either added directly to a feedstock entering into a reactor or added directly into a reactor, or added with a molecular sieve catalyst composition.
  • the amount of diluent in the feedstock is in the range of from about 1 to about 99 mole percent based on the total number of moles of the feedstock and diluent, preferably from about 1 to 80 mole percent, more preferably from about 5 to about 50, most preferably from about 5 to about 25.
  • other hydrocarbons are added to a feedstock either directly or indirectly, and include olefin(s), paraffin(s), aromatic(s) (see for example U.S. Patent No. 4,677,242 , addition of aromatics) or mixtures thereof, preferably propylene, butylene, pentylene, and other hydrocarbons having 4 or more carbon atoms, or mixtures thereof.
  • the process for converting a feedstock, especially a feedstock containing one or more oxygenates, in the presence of a molecular sieve catalyst composition of the invention is carried out in a reaction process in a reactor, where the process is a fixed bed process, a fluidized bed process (includes a turbulent bed process), preferably a continuous fluidized bed process, and most preferably a continuous high velocity fluidized bed process.
  • a fluidized bed process includes a turbulent bed process
  • preferably a continuous fluidized bed process preferably a continuous high velocity fluidized bed process.
  • the reaction processes can take place in a variety of catalytic reactors such as hybrid reactors that have a dense bed or fixed bed reaction zones and/or fast fluidized bed reaction zones coupled together, circulating fluidized bed reactors, riser reactors, and the like.
  • Suitable conventional reactor types are described in for example U.S. Patent No. 4,076,796 , U.S. Patent No. 6,287,522 (dual riser), and Fluidization Engineering, D. Kunii and O. Levenspiel, Robert E. Krieger Publishing Company, New York, New York 1977 , which are all herein fully incorporated by reference.
  • the preferred reactor type are riser reactors generally described in Riser Reactor, Fluidization and Fluid-Particle Systems, pages 48 to 59, F.A. Zenz and D.F.
  • the amount of fresh feedstock fed separately or jointly with a vapor feedstock, to a reactor system is in the range of from 0.1 weight percent to about 85 weight percent, preferably from about 1 weight percent to about 75 weight percent, more preferably from about 5 weight percent to about 65 weight percent based on the total weight of the feedstock including any diluent contained therein.
  • the liquid and vapor feedstocks are preferably the same composition, or contain varying proportions of the same or different feedstock with the same or different diluent.
  • the conversion temperature employed in the conversion process, specifically within the reactor system, is in the range of from about 392°F (200°C) to about 1832°F (1000°C), preferably from about 482°F (250°C) to about 1472°F (800°C), more preferably from about 482°F (250°C) to about 1382°F (750°C), yet more preferably from about 572°F (300°C) to about 1202°F (650°C), yet even more preferably from about 662°F (350°C) to about 1112°F (600°C) most preferably from about 662°F (350°C) to about 1022°F (550°C).
  • the conversion pressure employed in the conversion process varies over a wide range including autogenous pressure.
  • the conversion pressure is based on the partial pressure of the feedstock exclusive of any diluent therein.
  • the conversion pressure employed in the process is in the range of from about 0.1 kPaa to about 5 MPaa, preferably from about 5 kPaa to about 1 MPaa, and most preferably from about 20 kPaa to about 500 kPaa.
  • the weight hourly space velocity (WHSV), particularly in a process for converting a feedstock containing one or more oxygenates in the presence of a molecular sieve catalyst composition within a reaction zone, is defined as the total weight of the feedstock excluding any diluents to the reaction zone per hour per weight of molecular sieve in the molecular sieve catalyst composition in the reaction zone.
  • the WHSV is maintained at a level sufficient to keep the catalyst composition in a fluidized state within a reactor.
  • the WHSV ranges from about 1 hr -1 to about 5000 hr -1 , preferably from about 2 hr -1 to about 3000 hr -1 , more preferably from about 5 hr -1 to about 1500 hr -1 , and most preferably from about 10 hr -1 to about 1000 hr -1 .
  • the WHSV is greater than 20 hr -1 , preferably the WHSV for conversion of a feedstock containing methanol, dimethyl ether, or both, is in the range of from about 20 hr -1 to about 300 hr -1 .
  • the superficial gas velocity (SGV) of the feedstock including diluent and reaction products within the reactor system is preferably sufficient to fluidize the molecular sieve catalyst composition within a reaction zone in the reactor.
  • the SGV in the process, particularly within the reactor system, more particularly within the riser reactor(s), is at least 0.1 meter per second (m/sec), preferably greater than 0.5 m/sec, more preferably greater than 1 m/sec, even more preferably greater than 2 m/sec, yet even more preferably greater than 3 m/sec, and most preferably greater than 4 m/sec.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Claims (28)

  1. Procédé permettant de comprimer un effluent soutiré d'un appareil de conversion de méthanol en oléfine, lequel procédé comprend les étapes consistant à :
    (a) mettre en contact une charge d'alimentation contenant du méthanol avec un catalyseur dans des conditions efficaces pour former un effluent de produit comprenant des oléfines légères ;
    (b) diriger au moins une partie de l'effluent de produit vers un compresseur présentant une surface de compresseur ;
    (c) comprimer ladite au moins une partie de l'effluent de produit dans le compresseur dans des conditions efficaces pour former un premier dépôt sur la surface du compresseur ; et
    (d) mettre en contact un milieu d'élimination du dépôt avec le premier dépôt dans des conditions efficaces pour éliminer le premier dépôt de la surface du compresseur.
  2. Procédé selon la revendication 1, comprenant en outre l'étape consistant à :
    (e) éliminer le premier dépôt du compresseur.
  3. Procédé selon les revendications 1 ou 2, comprenant en outre les étapes consistant à :
    (f) refroidir l'effluent comprimé dans un refroidisseur intermédiaire du compresseur présentant une surface interne du refroidisseur intermédiaire dans des conditions efficaces pour former un deuxième dépôt sur la surface du refroidisseur intermédiaire ;
    (g) injecter le milieu d'élimination du dépôt dans le refroidisseur intermédiaire ;
    mettre en contact le milieu d'élimination du dépôt avec le deuxième dépôt dans des conditions efficaces pour éliminer le deuxième dépôt de la surface du refroidisseur intermédiaire ; et
    (h) éliminer le deuxième dépôt du refroidisseur intermédiaire.
  4. Procédé selon l'une quelconque des revendications précédentes, dans lequel le premier dépôt est un contaminant.
  5. Procédé selon la revendication 3, dans lequel le deuxième dépôt est un contaminant.
  6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le milieu d'élimination du dépôt comprend de l'eau.
  7. Procédé selon l'une quelconque des revendications précédentes, dans lequel le milieu d'élimination du dépôt ne contient pratiquement pas de soufre.
  8. Procédé selon l'une quelconque des revendications précédentes, dans lequel le milieu d'élimination du dépôt comprend au moins une partie d'un courant de queues d'une tour de trempe, dans lequel la tour de trempe fait partie d'un système de séparation d'une conversion de méthanol en oléfine.
  9. Procédé selon l'une quelconque des revendications précédentes, dans lequel le milieu d'élimination du dépôt est injecté en continu dans le compresseur.
  10. Procédé selon l'une quelconque des revendications précédentes, dans lequel le milieu d'élimination du dépôt est injecté par intermittence dans le compresseur.
  11. Procédé selon l'une quelconque des revendications précédentes, dans lequel le compresseur comprend une pluralité d'étages, chaque étage comportant une entrée d'étage respective et une sortie d'étage respective.
  12. Procédé selon l'une quelconque des revendications précédentes, dans lequel le procédé comprend en outre l'étape consistant à :
    (i) injecter le milieu d'élimination du dépôt dans un refroidisseur intermédiaire du compresseur.
  13. Procédé selon l'une quelconque des revendications précédentes, dans lequel le milieu d'élimination du dépôt se mélange avec l'effluent de produit après l'injection, le procédé comprenant en outre l'étape consistant à :
    (j) séparer le milieu d'élimination du dépôt de l'effluent de produit.
  14. Procédé selon l'une quelconque des revendications précédentes, dans lequel le compresseur comprend une entrée du compresseur et une sortie du compresseur, et dans lequel le milieu d'élimination du dépôt est injecté dans l'entrée du compresseur.
  15. Procédé selon l'une quelconque des revendications précédentes, dans lequel le dépôt comprend un composé aromatique.
  16. Procédé selon l'une quelconque des revendications précédentes, dans lequel le compresseur est un compresseur à écoulement continu.
  17. Procédé selon la revendication 16, dans lequel le compresseur à écoulement continu est un compresseur à écoulement axial.
  18. Procédé selon la revendication 16, dans lequel le compresseur à écoulement continu est un compresseur à vis.
  19. Procédé selon la revendication 16, dans lequel le compresseur à écoulement continu est un compresseur centrifuge.
  20. Procédé selon la revendication 19, dans lequel le milieu d'élimination du dépôt comprend au moins un composé aromatique.
  21. Procédé selon la revendication 20, dans lequel le compresseur à écoulement continu comprend au moins un étage de compression, l'étage de compression, au nombre d'au moins un, comprenant une pluralité de sections, et dans lequel l'injection comprend le fait d'injecter le milieu d'élimination du dépôt dans la pluralité de sections de l'étage de compression, au nombre d'au moins un.
  22. Procédé selon la revendication 19, dans lequel le milieu d'élimination du dépôt comprend au moins 50 pour cent en poids de constituants aromatiques par rapport au poids total du milieu d'élimination du dépôt.
  23. Procédé selon la revendication 22, dans lequel le milieu d'élimination du dépôt comprend au moins 70 pour cent en poids de composés aromatiques par rapport au poids total du milieu d'élimination du dépôt.
  24. Procédé selon la revendication 23, dans lequel le milieu d'élimination du dépôt comprend au moins 90 pour cent en poids de composés aromatiques par rapport au poids total du milieu d'élimination du dépôt.
  25. Procédé selon l'une quelconque des revendications précédentes, dans lequel le dépôt provoque une vibration dans le compresseur, le procédé comprenant en outre l'étape consistant à :
    (e) surveiller la vibration.
  26. Procédé selon la revendication 25, dans lequel l'injection est effectuée par intermittence et en réponse à une détermination, lors de la surveillance, que la vibration dans le compresseur a dépassé un plafond de vibration prédéterminé.
  27. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'effluent comprend un hydrocarbure choisi dans le groupe constitué par le butadiène, le pentadiène, le cyclopentadiène, l'hexadiène, le cyclohexadiène, les diènes en C7+, le styrène, les composés styréniques en C4+, et leurs mélanges.
  28. Procédé selon l'une quelconque des revendications précédentes, dans lequel le milieu d'élimination du dépôt comprend une fraction d'hydrocarbures en Cs+.
EP03755820A 2002-10-28 2003-09-12 Procédé pour éliminer de dépots dans un système de compresseur d'un réacteur de conversi de méthanol en oléfines Expired - Lifetime EP1562881B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US280368 2002-10-28
US10/280,368 US7007701B2 (en) 2002-10-28 2002-10-28 Processor for removing contaminants from a compressor in a methanol to olefin separation system
PCT/US2003/028720 WO2004040039A2 (fr) 2002-10-28 2003-09-12 Procede et dispositif pour limiter l'encrassement du compresseur d'un systeme de compresseur

Publications (2)

Publication Number Publication Date
EP1562881A2 EP1562881A2 (fr) 2005-08-17
EP1562881B1 true EP1562881B1 (fr) 2012-01-25

Family

ID=32106915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03755820A Expired - Lifetime EP1562881B1 (fr) 2002-10-28 2003-09-12 Procédé pour éliminer de dépots dans un système de compresseur d'un réacteur de conversi de méthanol en oléfines

Country Status (7)

Country Link
US (2) US7007701B2 (fr)
EP (1) EP1562881B1 (fr)
CN (1) CN1325447C (fr)
AT (1) ATE542787T1 (fr)
AU (1) AU2003273320A1 (fr)
EA (1) EA009255B1 (fr)
WO (1) WO2004040039A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12129232B2 (en) 2018-07-13 2024-10-29 Bl Technologies, Inc. Anti-fouling dispersant composition and method of use

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2082010A4 (fr) * 2006-09-28 2014-12-03 Uop Llc Procédé de production d'oléfines améliorée
JP5262155B2 (ja) * 2008-02-06 2013-08-14 株式会社Ihi ターボ圧縮機及び冷凍機
WO2015063216A1 (fr) 2013-10-31 2015-05-07 Shell Internationale Research Maatschappij B.V. Procédé de conversion de composés oxygénés en oléfines
US9452957B2 (en) * 2014-06-24 2016-09-27 Uop Llc Options to reduce fouling in MTO downstream recovery
EP3026101A1 (fr) 2014-11-26 2016-06-01 Borealis AG Huile de lavage destinée à être utilisée comme agent antisalissure dans des compresseurs de gaz
US9864823B2 (en) 2015-03-30 2018-01-09 Uop Llc Cleansing system for a feed composition based on environmental factors
US10545487B2 (en) 2016-09-16 2020-01-28 Uop Llc Interactive diagnostic system and method for managing process model analysis
GB2596490B (en) * 2017-01-17 2022-09-28 Equinor Energy As Gas compressor cleaning
GB2558662B (en) * 2017-01-17 2021-11-24 Equinor Energy As Gas compressor cleaning
US10678272B2 (en) 2017-03-27 2020-06-09 Uop Llc Early prediction and detection of slide valve sticking in petrochemical plants or refineries
US10754359B2 (en) 2017-03-27 2020-08-25 Uop Llc Operating slide valves in petrochemical plants or refineries
US10794401B2 (en) * 2017-03-28 2020-10-06 Uop Llc Reactor loop fouling monitor for rotating equipment in a petrochemical plant or refinery
US11396002B2 (en) 2017-03-28 2022-07-26 Uop Llc Detecting and correcting problems in liquid lifting in heat exchangers
US10816947B2 (en) 2017-03-28 2020-10-27 Uop Llc Early surge detection of rotating equipment in a petrochemical plant or refinery
US10844290B2 (en) 2017-03-28 2020-11-24 Uop Llc Rotating equipment in a petrochemical plant or refinery
US10670027B2 (en) 2017-03-28 2020-06-02 Uop Llc Determining quality of gas for rotating equipment in a petrochemical plant or refinery
US11037376B2 (en) 2017-03-28 2021-06-15 Uop Llc Sensor location for rotating equipment in a petrochemical plant or refinery
US10962302B2 (en) 2017-03-28 2021-03-30 Uop Llc Heat exchangers in a petrochemical plant or refinery
US10670353B2 (en) 2017-03-28 2020-06-02 Uop Llc Detecting and correcting cross-leakage in heat exchangers in a petrochemical plant or refinery
US10752845B2 (en) 2017-03-28 2020-08-25 Uop Llc Using molecular weight and invariant mapping to determine performance of rotating equipment in a petrochemical plant or refinery
US11130111B2 (en) 2017-03-28 2021-09-28 Uop Llc Air-cooled heat exchangers
US10752844B2 (en) 2017-03-28 2020-08-25 Uop Llc Rotating equipment in a petrochemical plant or refinery
US10663238B2 (en) 2017-03-28 2020-05-26 Uop Llc Detecting and correcting maldistribution in heat exchangers in a petrochemical plant or refinery
US10794644B2 (en) 2017-03-28 2020-10-06 Uop Llc Detecting and correcting thermal stresses in heat exchangers in a petrochemical plant or refinery
US10695711B2 (en) 2017-04-28 2020-06-30 Uop Llc Remote monitoring of adsorber process units
US20180314274A1 (en) 2017-04-28 2018-11-01 Atlas Copco Comptec, Llc Gas processing and management system for switching between operating modes
US10913905B2 (en) 2017-06-19 2021-02-09 Uop Llc Catalyst cycle length prediction using eigen analysis
US11365886B2 (en) 2017-06-19 2022-06-21 Uop Llc Remote monitoring of fired heaters
US10739798B2 (en) 2017-06-20 2020-08-11 Uop Llc Incipient temperature excursion mitigation and control
US11130692B2 (en) 2017-06-28 2021-09-28 Uop Llc Process and apparatus for dosing nutrients to a bioreactor
US10994240B2 (en) 2017-09-18 2021-05-04 Uop Llc Remote monitoring of pressure swing adsorption units
US11194317B2 (en) 2017-10-02 2021-12-07 Uop Llc Remote monitoring of chloride treaters using a process simulator based chloride distribution estimate
US11676061B2 (en) 2017-10-05 2023-06-13 Honeywell International Inc. Harnessing machine learning and data analytics for a real time predictive model for a FCC pre-treatment unit
US11105787B2 (en) 2017-10-20 2021-08-31 Honeywell International Inc. System and method to optimize crude oil distillation or other processing by inline analysis of crude oil properties
US10901403B2 (en) 2018-02-20 2021-01-26 Uop Llc Developing linear process models using reactor kinetic equations
US10734098B2 (en) 2018-03-30 2020-08-04 Uop Llc Catalytic dehydrogenation catalyst health index
US10646792B2 (en) 2018-08-10 2020-05-12 Uop Llc Processes for separating an MTO effluent
US10953377B2 (en) 2018-12-10 2021-03-23 Uop Llc Delta temperature control of catalytic dehydrogenation process reactors

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US644869A (en) * 1899-06-19 1900-03-06 William Newell Wave-power motor.
JPS4926241A (fr) 1972-07-12 1974-03-08
DE2524540C2 (de) 1975-06-03 1986-04-24 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Durchführung endothermer Prozesse
RO81748A2 (fr) 1982-01-22 1983-06-01 Combinatul Petrochimic,Ro Procede pour l'elimination des depots de polymere dans les installations de rectification
US4677242A (en) 1982-10-04 1987-06-30 Union Carbide Corporation Production of light olefins
JPS622783A (ja) 1985-06-28 1987-01-08 Toshiba Corp Agc回路
SU1719112A1 (ru) 1988-08-01 1992-03-15 Предприятие П/Я А-1748 Способ очистки технологического оборудовани от полимерных отложений
US5952538A (en) 1996-12-31 1999-09-14 Exxon Chemical Patents Inc. Use of short contact time in oxygenate conversion
US6051746A (en) 1997-06-18 2000-04-18 Exxon Chemical Patents Inc. Oxygenate conversions using modified small pore molecular sieve catalysts
US6552240B1 (en) 1997-07-03 2003-04-22 Exxonmobil Chemical Patents Inc. Method for converting oxygenates to olefins
US6046373A (en) 1998-04-29 2000-04-04 Exxon Chemical Patents Inc. Catalytic conversion of oxygenates to olefins
US6121504A (en) 1998-04-29 2000-09-19 Exxon Chemical Patents Inc. Process for converting oxygenates to olefins with direct product quenching for heat recovery
US5944982A (en) 1998-10-05 1999-08-31 Uop Llc Method for high severity cracking
US6166282A (en) 1999-08-20 2000-12-26 Uop Llc Fast-fluidized bed reactor for MTO process
US6303841B1 (en) 1999-10-04 2001-10-16 Uop Llc Process for producing ethylene
US6441261B1 (en) 2000-07-28 2002-08-27 Exxonmobil Chemical Patents Inc. High pressure oxygenate conversion process via diluent co-feed
US7208648B2 (en) * 2003-06-25 2007-04-24 Exxonmobil Chemical Patents Inc. Minimizing corrosion in a methanol-to-olefin effluent processing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12129232B2 (en) 2018-07-13 2024-10-29 Bl Technologies, Inc. Anti-fouling dispersant composition and method of use

Also Published As

Publication number Publication date
EA200500602A1 (ru) 2005-12-29
US7007701B2 (en) 2006-03-07
US7114507B2 (en) 2006-10-03
US20060096617A1 (en) 2006-05-11
EA009255B1 (ru) 2007-12-28
AU2003273320A8 (en) 2004-05-25
EP1562881A2 (fr) 2005-08-17
CN1325447C (zh) 2007-07-11
AU2003273320A1 (en) 2004-05-25
CN1694857A (zh) 2005-11-09
US20040079392A1 (en) 2004-04-29
WO2004040039A2 (fr) 2004-05-13
ATE542787T1 (de) 2012-02-15
WO2004040039A3 (fr) 2004-06-17

Similar Documents

Publication Publication Date Title
EP1562881B1 (fr) Procédé pour éliminer de dépots dans un système de compresseur d'un réacteur de conversi de méthanol en oléfines
US7622626B2 (en) Purge gas streams to stagnant zones within oxygenate-to-olefin reactor
US8603399B2 (en) Integrated oxygenate conversion and product cracking
CN106458794B (zh) 制备二甲苯的方法
CN101802138A (zh) 制备烃的方法和装置
JP2008081417A (ja) プロピレンの製造方法
WO2004029009A1 (fr) Procede de manipulation d'un catalyseur provenant d'une reaction de conversion de composes oxygenes en olefines
US20090325783A1 (en) Oto quench tower catalyst recovery system utilizing a low temperature fluidized drying chamber
US20080161616A1 (en) Oxygenate to olefin processing with product water utilization
RU2375338C2 (ru) Способ получения легких олефинов из кислородсодержащих соединений и установка для его осуществления
US9828305B2 (en) Processes for the preparation of an olefinic product
US7141711B2 (en) Catalyst fines handling process
US7273961B2 (en) Quench process
US20150291484A1 (en) Processes for the preparation of an olefinic product
RU2385312C2 (ru) Способ превращения кислородсодержащих соединений в олефины и устройство для его осуществления
EP1814832B1 (fr) Cyclones externes au niveau d'un deuxieme etage pour procede de production d'olefines
US7271306B2 (en) Heat recovery from the effluent stream of an oxygenate-to-olefin process
US20100087693A1 (en) Integrated Oxygenate Conversion and Product Cracking

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050519

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: VAN EGMOND, COR, F.

Inventor name: CHISHOLM, PAUL, N.

Inventor name: COUTE, NICOLAS, P.

Inventor name: LUMGAIR, DAVID, R., JR.

Inventor name: KUECHLER, KEITH, H.

17Q First examination report despatched

Effective date: 20090925

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VAN EGMOND, COR, F.

Inventor name: CHISHOLM, PAUL, N.

Inventor name: COUTE, NICOLAS, P.

Inventor name: LUMGAIR, DAVID, R., JR.

Inventor name: KUECHLER, KEITH, H.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 542787

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60339838

Country of ref document: DE

Effective date: 20120315

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120426

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120525

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 542787

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60339838

Country of ref document: DE

Effective date: 20121026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120912

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120912

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220926

Year of fee payment: 20

Ref country code: DE

Payment date: 20220530

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20220926

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230518

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60339838

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20230911

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20230912