EP1559254A1 - Sequence d'apprentissage pour la linearisation d'un amplificateur rf - Google Patents

Sequence d'apprentissage pour la linearisation d'un amplificateur rf

Info

Publication number
EP1559254A1
EP1559254A1 EP03780232A EP03780232A EP1559254A1 EP 1559254 A1 EP1559254 A1 EP 1559254A1 EP 03780232 A EP03780232 A EP 03780232A EP 03780232 A EP03780232 A EP 03780232A EP 1559254 A1 EP1559254 A1 EP 1559254A1
Authority
EP
European Patent Office
Prior art keywords
symbols
alphabet
linearization
training sequence
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03780232A
Other languages
German (de)
English (en)
Inventor
Sandrine Touchais
Xavier Checoury
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EADS Secure Networks SAS
Original Assignee
EADS Telecom SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Telecom SAS filed Critical EADS Telecom SAS
Publication of EP1559254A1 publication Critical patent/EP1559254A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • H04L27/367Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
    • H04L27/368Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion

Definitions

  • the present invention relates to the linearization of radio frequency (RF) power amplifiers. It finds applications, in particular, in the RF transmitters of mobile terminals of digital radiocommunication systems. It can also be applied in RF transmitters of base stations, in particular when this station is started for the first time.
  • RF radio frequency
  • the modulations used for a few years include a phase or frequency modulation component and an amplitude modulation component.
  • radio channels coexist in a specific frequency band allocated to the system.
  • Each radio channel is subdivided into logical channels by time division.
  • Time Slot in English
  • a group of symbols is called a burst or packet ("Burst” in English).
  • the power level transmitted in each radio channel does not interfere with communications in an adjacent radio channel.
  • specifications require that the power level of an RF signal transmitted in a determined radio channel is, in an adjacent radio channel, for example 60 dB (decibels) lower than the power level of the RF signal transmitted in said channel radio determined.
  • the RF transmitter must have a characteristic of the output power as a function of the input power, which is linear.
  • the radio frequency power amplifier (hereinafter RF amplifier) present in the RF transmitter has a linear characteristic with low output power but non-linear as soon as the power exceeds a certain threshold.
  • RF amplifier radio frequency power amplifier
  • the efficiency of the RF amplifier is all the better when we work in an area close to saturation, that is to say in non-linear regime.
  • Two of the most commonly used techniques are adaptive baseband predistortion and the Cartesian baseband loop.
  • the signal to be transmitted is generated in baseband in I and Q format. Furthermore, a coupler followed by a demodulator makes it possible to take part of the RF signal transmitted and to transpose it into band of base (downconversion), in I and Q format. This baseband signal is compared to the baseband signal to be transmitted. An error signal resulting from this comparison attacks a modulator, which ensures the transposition towards the field of radio frequencies (uplink conversion). The signal at the output of the modulator is amplified by an RF amplifier which delivers the transmitted RF signal.
  • the signal to be transmitted is generated in baseband, in I and Q format, and pre-distorted via a predistortion device. Then, this signal is transposed to the RF domain using an RF modulator. Then it is amplified in an RF amplifier. A coupler followed by an RF demodulator makes it possible to take part of the transmitted RF signal and to transpose it into baseband, in I, Q format. This demodulated signal in baseband is digitized and compared with the signal in baseband. to emit.
  • An adaptation of the predistortion coefficients, carried out during a learning phase of the predistortion device makes it possible to converge the signal in demodulated I and Q format towards the signal in I and Q format to be transmitted.
  • part of the signal transmitted is taken at the output of the RF amplifier in order to compare it with the signal to be transmitted. It follows that the linearity is not obtained immediately but only after a certain time, necessary for the convergence of the linearization device.
  • the signal emitted has, during a period corresponding to the learning phase of the linearization device, a spectrum widened by the non-corrected non-linearities. It may not respect the constraints on the spectrum of the signals transmitted. This remark certainly applies more to adaptive predistortion than to the Cartesian loop, even if the latter requires, to ensure its stability, initial adjustments of phase and amplitude levels comparable to learning.
  • the method disclosed in document WO 94/10765 is based on the transmission by the transmitters of the system of particular sequences, called linearization training sequences, during linearization learning phases. More particularly, training sequences are transmitted in isolation in time intervals forming a particular logical channel of the radio channels, which is dedicated only to linearization. As all the transmitters in the system transmit their respective training sequences at the same time, communications are not disturbed by interference between the radio channels which may possibly occur at this time. There is therefore no need to prevent interference between the radio channels of the system.
  • this method has several drawbacks. First of all, it requires prior synchronization of all the transmitters so that they transmit their respective linearization learning sequence in the logic channel dedicated to linearization. In addition, no data transmission can take place in the time slots of this logical channel. In addition, at the start of each transmission or in the event of a radio channel change, the transmitter is obliged to wait for the next time interval of the logical channel dedicated to linearization, unless the system becomes considerably more complex. This is why the temporal spacing between two time intervals of said logical channel cannot exceed the second, in order to guarantee a certain quality of service (QoS). This technique is therefore very detrimental to the spectral efficiency of the radiocommunication system. Finally, since no particular precaution is taken to avoid out-of-band emission during the linearization learning phases, this technique may cause interference to transmitters from other radiocommunication systems which do not conform to it.
  • QoS quality of service
  • Another method plans to use during the linearization learning phases a second modulator having a bit rate twice as low as the modulator normally used for the transmission of useful data.
  • This second modulator generates a signal which has the same amplitude modulation depth but a spectral width divided by two, compared to the signals transmitted outside the linearization learning phases. This makes it possible to avoid jamming the adjacent radio channels with the uncorrected non-linearity signals which are emitted during the linearization learning phases.
  • this method is quite complex to implement because it requires a second modulator, as well as associated filters or the use of adaptive filters.
  • This second modulator is used only during the linearization learning phases, that is to say for a very small fraction of the time. Indeed, when the amplifier was initially linearized, it suffices to correct any drifts in its characteristics. Linearization devices of the type mentioned in the introduction can do this during the transmission of useful data (at normal rate). The additional cost linked to this second corresponding modulator is therefore hardly justified.
  • a first aspect of the invention relates to a method for learning a device for linearization of a radiofrequency amplifier which is included in a radiofrequency transmitter of a first piece of equipment.
  • a radiocommunication system which transmitter is adapted to transmit bursts according to a determined frame structure, each burst comprising symbols belonging to a determined symbol alphabet.
  • the method comprises the steps of: a) generating a linearization training sequence comprising a determined number N of symbols, where N is a determined integer; b) transmitting the linearization training sequence by means of the radiofrequency transmitter, in at least some of the bursts emitted by the latter; c) comparing the linearization training sequence sent to the linearization training sequence generated in order to train said linearization device.
  • sub-alphabet means a part of the alphabet considered.
  • the sub-alphabet only includes a determined number M1 of these symbols (sub-alphabet M1-ar) where M and M1 are whole numbers such that M1 is less than M.
  • the M1 symbols of the sub-alphabet are chosen so as to give the RF signal which is transmitted a narrower spectrum than that given by the M symbols of the alphabet as a whole.
  • Said first equipment can be a mobile terminal or a base station of the radiocommunication system.
  • a second aspect of the invention relates to a device for learning a device for linearization of a radiofrequency amplifier which is included in a radiofrequency transmitter of a first item of equipment of a radiocommunication system, which transmitter is adapted for transmitting bursts according to a determined frame structure, each burst comprising symbols belonging to a determined symbol alphabet.
  • the device comprises: a) means for generating a linearization training sequence comprising a determined number N of symbols, where N is a determined integer; b) means for transmitting the linearization training sequence by means of the transmitter in at least some of the bursts emitted by the latter; c) means for comparing the linearization training sequence transmitted with the linearization training sequence generated in order to drive said linearization device.
  • a third aspect of the invention relates to a mobile terminal of a radiocommunication system, comprising a radiofrequency transmitter having a radiofrequency amplifier and a device for linearizing the radiofrequency amplifier, which further comprises a device for learning the linearization device according to the second aspect.
  • a fourth aspect of the invention relates to a base station of a radiocommunication system comprising a radiofrequency transmitter having a radiofrequency amplifier and a device for linearizing the radiofrequency amplifier, which further comprises a device for learning the linearization device according to the third aspect.
  • a fifth aspect relates to a linearization training sequence intended to be transmitted by means of a radiofrequency transmitter of a mobile terminal or of a base station of a radiocommunication system, which transmitter is adapted to transmit bursts according to a determined frame structure.
  • the sequence comprises a determined number N of symbols, where N is a determined integer, these symbols belonging to a determined symbol alphabet.
  • the object of the invention is therefore achieved by using a particular training sequence which allows the transmitted RF signal to maintain, during the linearization learning phase, a spectral width compatible with the desired performances without any particular constraint on the instants. where this learning is carried out or on the complexity of the transmitter.
  • the bit rate during the linearization learning phase can be the same as that outside of this phase.
  • - Figure 1 is a block diagram of an example of mobile terminal according to the invention
  • - Figure 2 is a table illustrating an example of data modulation based on a quaternary symbol alphabet
  • FIG. 3 and FIG. 4 are graphs illustrating the effect of the choice of the symbols of the learning sequence on the spectrum of the corresponding RF signal respectively at the input and at the output of the RF amplifier;
  • - Figure 5 is a diagram illustrating an example of linearization training sequence according to the invention.
  • FIGS. 6 and Figure 7 are diagrams illustrating examples of bursts emitted by the mobile terminal, which can incorporate a linearization learning sequence according to the invention.
  • Figure 1 there is shown schematically the means of an example of a mobile terminal according to the invention.
  • a mobile terminal belongs, for example, to a radiocommunication system which also comprises a fixed network having base stations.
  • the terminal comprises a transmission chain 100, a reception chain 200, a control unit 300, a permanent memory 400, as well as an automatic gain control (AGC) device 500 associated with an RF receiver of the transmission chain. reception 200.
  • the transmission chain 100 comprises a useful data source 10, for example a speech coder delivering data encoding voice.
  • the source 10 is coupled to an M-ary data modulator 20 which provides baseband modulation of the data to be transmitted according to a modulation with M distinct states, where M is a determined integer.
  • the binary data it receives from the source 10 are translated by the modulator 20 into symbols belonging to an M-ary alphabet, that is to say comprising M distinct symbols.
  • the output of the modulator 20 is coupled to the input of a radiofrequency transmitter 30.
  • the transmitter 30 From the series of symbols received, the transmitter 30 produces an RF signal suitable for radio transmission via an antenna or a cable.
  • the output of the transmitter 30 is coupled to a transmit / receive antenna 40 via a switch 41.
  • the RF signal produced by the transmitter is transmitted on the radio channel associated with the transmitter.
  • the reception chain 200 comprises a radio frequency receiver 50 which is coupled to the antenna 40 via the switch 41, to receive an RF signal.
  • the receiver 50 transposes the RF domain to the baseband (downward conversion).
  • it includes a variable gain amplifier 59 which has the function of compensating for the variations in power on the antenna 40 (which can be rapid) so that the rest of the reception chain processes a signal having a power level substantially constant, which ensures good performance.
  • the reception chain 200 also includes an M-ary data demodulator 60, coupled to the receiver 50.
  • the data demodulator 60 provides in baseband the demodulation of the data of the received signal, that is to say the reverse operation of that provided by the modulator 20.
  • the reception chain 200 comprises a data consumer device 70, such as a speech decoder, which is coupled to the demodulator 60. This device receives as input the binary data delivered by the demodulator 60 .
  • the unit 300 is for example a microprocessor or a microcontroller which manages the mobile terminal. In particular, it controls the data modulator 20, the data demodulator 60, the transmitter 30 and the switch 41. It also generates signaling data which is supplied to the modulator 20 to be transmitted in logical channels of appropriate signage. Conversely, the unit 300 receives from the data demodulator 60 signaling data sent by the fixed network in appropriate logical signaling channels, in particular synchronization information and operating commands.
  • the memory 400 is for example a ROM memory (“Read Only Memory
  • the transmitter 30 comprises a radiofrequency power amplifier 31, a radiofrequency modulator 32 which transposes the baseband to the radiofrequency domain ( up conversion), a linearization device 33, a learning module 34 associated with the linearization device.
  • the output of the power amplifier 31 delivers the RF signal to be transmitted. This is why it is coupled to the antenna 40 via the switch 41.
  • the input of the power amplifier 31 receives a radiofrequency signal delivered by the output of the radiofrequency modulator 32.
  • the input of the latter is coupled to the output of the data modulator 20 to receive the series of symbols forming the baseband signal to be transmitted, through the linearization device 33.
  • the latter includes for example a predistortion device comprising a palette ("look-up table") which translates each value of the signal to be transmitted into a pre-distorted value.
  • the device 33 may also include means for controlling the amplitude of the signal at the output of the transmitter 30.
  • the learning module 34 teaches the linearization device 33 as a function of an input signal which reflects the RF signal delivered by the output of the power amplifier 31. To this end, the module 34 receives a part of this RF signal, which is taken at the output of the power amplifier 31 by means of a coupler 36. As necessary, the module 34 ensures the return to baseband of the RF signal thus taken. Although being shown entirely inside the transmitter 30, the module 34 can, at at least in part, be implemented by means belonging to the control unit 300, in particular software means.
  • the automatic gain control device 500 allows, under the control of the control unit 300 to dynamically vary the gain of the variable gain amplifier 59 of the RF receiver 50, as a function of information which is received from the fixed network, according to a process known in itself.
  • the base station of the fixed network with which the terminal communicates transmits at determined times a determined sequence, called CAG sequence. This sequence is known to and recognizable by the mobile terminal. It allows it to measure the power of the signal received from the base station and to deduce therefrom a gain control of the amplifier 59. This method is implemented in the mobile terminal by the device 500 under the control of the unit 300.
  • the transmitter 30 transmits a sequence of AGCs, to allow the dynamic control, by the base station, of the gain of a variable gain amplifier included in an RF receiver of the base station .
  • This sequence is known to and recognizable by the base station. She. allows the base station to measure the strength of the signal received from the mobile terminal and to deduce therefrom a gain control of the variable gain amplifier of the RF receiver of the base station.
  • the data modulator 20 applies a modulation called F4FM (from the English "Filtered 4-state Frequency Modulation”), which is a proprietary modulation but is being normalized with the TIA (Telecommunications Industry Association). It is a 4-state modulation or quaternary modulation, that is to say an M-ary modulation where M is here equal to 4.
  • F4FM from the English "Filtered 4-state Frequency Modulation”
  • TIA Transmissions Industry Association
  • Each symbol corresponds to two data bits.
  • the symbol alphabet is made up of four symbols denoted -3, -1, +1 and +3. We note ⁇ -3, -1, + 1, + 3 ⁇ this quaternary alphabet.
  • the RF signal has a spectrum of determined width.
  • the symbols denoted -1 and +1 form a sub-alphabet which, when used alone for the generation of the signal to be transmitted, gives the corresponding RF signal a spectrum of reduced width compared to said determined width.
  • ⁇ -1, + 1 ⁇ this sub-alphabet we denote ⁇ -1, + 1 ⁇ this sub-alphabet.
  • the radio frequency modulator 32 transposes the signal to be transmitted on a carrier frequency to approximately 400 MHz (megahertz) or approximately 800 MHz, in a radio channel of width equal for example to 8 kHz (kilohertz).
  • the different radio channels of the system are spaced by. example of 12.5 kHz.
  • Each radio channel is subdivided into logical traffic or signaling channels by time division. In each time interval, a burst is emitted according to a determined frame structure which it is not useful to detail here.
  • the learning method of the device 33 comprises a step consisting in generating a learning sequence comprising a determined number N of symbols, where N is an integer. This step is carried out by the data modulator 20 under the control of the control unit 300. For this purpose, the unit 300 reads a corresponding sequence of 2 x N bits in the memory 400. Then, still under the control of the unit 300, the learning sequence is transmitted by means of the transmitter 30 in at least some of the bursts transmitted by the latter, according to the frame structure of the system.
  • the learning device 34 then obtains the transmitted learning sequence and compares it to the generated learning sequence, and consequently performs actions such as adaptations of predistortion coefficients or others of the linearization device 33, according to an algorithm determined learning.
  • This algorithm can be adaptive. We speak of training to designate these operations.
  • the spectrum of a burst emitted in a determined radio channel has been represented, outside of the learning phase, in three different cases. In the first case, corresponding to curve 1, only the symbols of the sub-alphabet ⁇ -1, + 1 ⁇ are used.
  • the sequence which gives such a spectrum is obtained by simulation or by measurement of the entire emission chain. It may be, as in the example considered here, that this sequence implies that the amplitude modulation depth is also reduced. It may even be that this reduction has harmful effects on the results of the linearization algorithm and thus the sequence chosen is not suitable. This is why, it may be necessary to add a constraint on the amplitude modulation depth as regards the choice of the training sequence, in order to obtain a compromise between the spectral broadening due to the non- linearity of the power amplifier (to minimize) and the amplitude modulation depth induced by this sequence (to maximize). These constraints are variable depending on the power amplifier used in the transmission chain.
  • One possible method for choosing this sequence is to carry out a numerical optimization on the choice of N symbols of the sequence.
  • the emission chain is taken with all its faults without particular linearization.
  • This sequence is generally short (of the order of ten symbols), the optimization can be an exhaustive search for the N symbols making it possible to respect the constraints which one wishes at the same time on the spectral width and on the depth amplitude modulation.
  • N1 symbols sent first by selecting them inside the sub-alphabet ⁇ -1, + 1 ⁇
  • N1 and N2 are whole numbers less than N such that N1 and N2 is less than or equal to N.
  • N1 + N2 N.
  • N1 + N2 can be less than
  • N which makes it possible to provide other symbols sent between said N1 symbols sent first and said N2 symbols sent last, producing intermediate effects in terms of spectral width and amplitude modulation depth. It may be noted that for any modulation, it is possible to find a signal sequence of fixed length N whose characteristics meet constraints imposed in terms of spectral width, depth of amplitude modulation, and / or others.
  • FIG. 5 illustrates an example of a learning sequence according to the principles presented above.
  • the complete symbol alphabet is the quaternary alphabet ⁇ -3, -1, +1, + 3 ⁇ of the F4FM modulation.
  • M is equal to 4.
  • M1 is equal to 2
  • the sub-alphabet giving the RF signal a reduced spectrum being ⁇ -1, + 1 ⁇ , N is equal to 10, N1 is equal to 6, and N2 is equal to 4.
  • the N1 symbols transmitted first are for example the symbols +1, -1, +1, -1, +1, and -1, successively and in this order.
  • the signal transmitted then has a spectrum of minimum width, but the depth of amplitude modulation remains limited since all the symbols of the quaternary alphabet are not used.
  • the N2 symbols sent last are for example the symbols -3, +1, +3, and -3, successively and in this order.
  • the complete sequence is therefore formed of the symbols +1, -1, +1, -1, +1, -1, -3, +1, +3, and -3 successively and in this order.
  • Learning phases can be carried out periodically or otherwise. Other constraints may have to be taken into account after the initial learning phase, when it is just appropriate to correct drifts in the transmitter.
  • the learning sequence can therefore evolve both in content and in length.
  • the number N is therefore not necessarily fixed from one transmission of the learning sequence to another. If an increase in the size of the sequence poses problems (for example if the frame structure is not very flexible), one can fix the size N of the sequence and just modify its content according to the evolution of the constraints on the system. .
  • the diagram in Figure 6 illustrates an example of a burst.
  • the burst has a duration equal to 20 ms. It firstly includes a ramp up 51 ("ramping-up" in English) of 625 ⁇ s, comprising five stuffing symbols, to ensure the ramp-up.
  • stuffing symbols it is meant that the binary data transmitted in this climb ramp are stuffing bits, that is to say, for example, a sequence of 0s.
  • It then comprises a synchronization data sequence 52 whose duration is equal to approximately 5 ms.
  • a useful data sequence 53 The useful data can be voice coding data and more generally traffic data, or signaling data depending on whether the burst is emitted on a logical traffic channel or a channel.
  • the learning sequence can replace the useful data of the bursts within which it is transmitted.
  • the linearization sequence may occupy the place that only part of the useful data of a salvo. This feature allows you to quickly send useful data to the rest of the burst without having to wait for the next time interval.
  • FIG. 7 shows an example of such an isolated frame comprising, before the synchronization sequence 52, a CAG sequence referenced 55 which is transmitted by a first device (mobile terminal or base station) to allow dynamic control, by a second device base station or mobile terminal respectively with which the first device communicates, of the transmit power of its receiver (see above).
  • sequence 52 and sequence 55 only last from 1 to 3 ms each.
  • the other parts of the burst are unchanged with respect to the burst in FIG. 6.
  • the useful data sequence 53 can however be shorter than in the case of a normal burst according to FIG. 6.
  • part of these isolated bursts is used to allow the learning device 34 of the radiofrequency transmitter 32 to execute a learning algorithm for the linearization device 33.
  • the linearization sequence is for example included in the above-mentioned CAG sequence. It is thus possible to use the time necessary for the transmission of the learning sequence for other purposes such as for example the adjustment of the AGC on reception, according to the method which was mentioned above with regard to the diagram of Figure 1.
  • the value of the symbols of the AGC sequence is not subject to any constraint (the AGC sequence must simply be known to the fixed network). There is therefore complete freedom to choose the symbols of the sequence, or at least part of the symbols of the sequence, so that these symbols form a satisfactory learning sequence.
  • the recurrence of the AGC sequence is adapted to the needs of learning the linearization device 33.
  • the AGC sequence like the learning sequence are preferably transmitted at the start of the frame, then during a change of logical channel, during a change of RF frequency and / or during a change of power level. This is why it is particularly advantageous to combine these sequences (these sequences forming only one and only sequence, or one of them being included in the other), and to issue them preferably as indicated below. above.
  • the AGC sequence is located as close as possible to the ramp-up of the signal, for example, just following this ramp.
  • the linearization device can be learned as quickly as possible and thus disturb the transmission for the shortest possible time.
  • the length of the training sequence is such that it does not occupy too large a portion of the burst in order to keep a maximum of symbols for the dissemination of information. helpful. This duration obviously depends on the precision sought for the learning algorithm but a compromise between precision and duration is often necessary in order to keep a maximum of useful information in the burst. A reasonable compromise is reached when it represents approximately 5% of the total duration of the salvo.
  • the duration of a learning sequence of N 10 symbols is thus equal to 1.25 ms or 6.25% of the total frame time.

Abstract

Une séquence d'apprentissage de linéarisation est destinée à être émise au moyen d'un émetteur radiofréquence qui est compris dans un terminal mobile ou une station de base d'un système de radiocommunications, et qui est adapté pour émettre des salves selon une structure de trame déterminée. La séquence comprend un nombre déterminé N de symboles, où N est un nombre entier déterminé, ces symboles appartenant à un alphabet de symboles déterminé. Au moins un nombre déterminé N1 de symboles de la séquence transmis en premier, où N1 est un nombre entier déterminé inférieur ou égal à N, appartiennent à un sous-alphabet de symboles compris dans l'alphabet de symboles. Ce sous-alphabet de symboles est constitué de symboles qui, isolément ou en combinaison, donnent à la salve dans laquelle la séquence est émise un spectre plus étroit que l'alphabet de symboles dans son ensemble.

Description

SÉQUENCE D' APPRENTISSAGE POUR LA LINÉARISATION D' UN AMPLIFICATEUR RF
La présente invention concerne la linéarisation des amplificateurs de puissance radiofréquence (RF). Elle trouve des applications, en particulier, dans les émetteurs RF des terminaux mobiles des systèmes de radiocommunications numériques. Elle peut aussi s'appliquer dans les émetteurs RF des stations de base en particulier lors du premier démarrage d'une telle station.
Dans les systèmes de radiocommunication numériques actuels, on cherche à transmettre des informations avec un débit maximal dans une bande de fréquence RF donnée qui est affectée à un canal de transmission (ci-après canal radio). Pour ce faire, les modulations utilisées depuis quelques années comportent une composante de modulation de phase ou de fréquence et une composante de modulation d'amplitude.
De plus, des canaux radio coexistent dans une bande de fréquence déterminée allouée au système. Chaque canal radio est subdivisé en canaux logiques par division de temps. Dans chaque intervalle de temps ("Time Slot" en anglais), il est émis un groupe de symboles appelé salve ou paquet ("Burst" en anglais).
Il est nécessaire de veiller à ce que, à chaque instant, le niveau de puissance émis dans chaque canal radio ne brouille pas les communications dans un canal radio adjacent. Ainsi, des spécifications imposent que le niveau de puissance d'un signal RF émis dans un canal radio déterminé soit, dans un canal radio adjacent, inférieur par exemple de 60 dB (décibels), au niveau de puissance du signal RF émis dans ledit canal radio déterminé.
Il s'avère donc nécessaire que le spectre du signal à émettre, qui résulte notamment du type de la modulation employée et du débit binaire, ne soit pas déformé par l'émetteur RF. En particulier, il faut que l'émetteur RF présente une caractéristique de la puissance de sortie en fonction de la puissance d'entrée, qui soit linéaire.
Toutefois, l'amplificateur de puissance radiofréquence (ci-après amplificateur RF) présent dans l'émetteur RF a une caractéristique linéaire à faible puissance de sortie mais non linéaire dès que la puissance dépasse un certain seuil. On sait aussi que le rendement de l'amplificateur RF est d'autant meilleur que l'on travaille dans une zone proche de la saturation c'est-à-dire en régime non linéaire. Ainsi la nécessité de linéarité et la nécessité de rendement élevé (pour économiser la charge de la batterie) obligent à utiliser des techniques de linéarisation pour corriger les non-linéarités de l'amplificateur RF. Deux des techniques les plus couramment employées sont la prédistorsion adaptative en bande de base et la boucle cartésienne en bande de base.
Dans la technique de la boucle cartésienne, le signal à émettre est généré en bande de base au format I et Q. Par ailleurs, un coupleur suivi d'un démodulateur permettent de prélever une partie du signal RF émis et de le transposer en bande de base (conversion descendante), au format I et Q. Ce signal en bande de base est comparé au signal en bande de base à émettre. Un signal d'erreur résultant de cette comparaison attaque un modulateur, qui assure la transposition vers le domaine des radiofréquences (conversion montante). Le signal en sortie du modulateur est amplifié par un amplificateur RF qui délivre le signal RF émis.
Dans la technique de prédistorsion adaptative en bande de base, le signal à émettre est généré en bande de base, en format I et Q, et pré-distordu via un dispositif de prédistorsion. Puis, ce signal est transposé vers le domaine RF grâce à un modulateur RF. Ensuite, il est amplifié dans un amplificateur RF. Un coupleur suivi d'un démodulateur RF permettent de prélever une partie du signal RF émis et de le transposer en bande de base, au format I, Q. Ce signal démodulé en bande de base est numérisé et comparé avec le signal en bande de base à émettre. Une adaptation des coefficients de prédistorsion, réalisée pendant une phase d'apprentissage du dispositif de prédistorsion, permet de faire converger le signal au format I et Q démodulé vers le signal au format I et Q à émettre.
Dans ces deux techniques, une partie du signal émis est prélevée en sortie de l'amplificateur RF afin de le comparer au signal à émettre. Il en résulte que la linéarité n'est pas obtenue immédiatement mais seulement après un certain temps, nécessaire à la convergence du dispositif de linéarisation. Le signal émis a, durant une période correspondant à la phase d'apprentissage du dispositif de linéarisation, un spectre élargi par les non-linéarités non corrigées. Il peut ne pas respecter les contraintes sur le spectre des signaux émis. Cette remarque s'applique certes plus à la prédistorsion adaptative qu'à la boucle cartésienne, même si cette dernière nécessite, pour assurer sa stabilité, des ajustements initiaux de phase et de niveaux d'amplitude assimilable à un apprentissage.
Plusieurs méthodes ont été proposées dans l'art antérieur pour remédier à ce problème.
La méthode divulguée dans le document WO 94/10765, repose sur l'émission par les émetteurs du système de séquences particulières, dites séquences d'apprentissage de linéarisation, pendant des phases d'apprentissage de linéarisation. Plus particulièrement, des séquences d'apprentissage sont émises de façon isolée dans des intervalles de temps formant un canal logique particulier des canaux radio, qui est dédié uniquement à la linéarisation. Comme tous les émetteurs du système émettent leur séquence d'apprentissage respective en même temps, les communications ne sont pas perturbées par les interférences entre les canaux radio qui peuvent éventuellement se produire à ce moment. Il n'est donc pas nécessaire d'empêcher les interférences entre les canaux radio du système.
Cependant cette méthode présente plusieurs inconvénients. Tout d'abord, elle nécessite une synchronisation préalable de tous les émetteurs pour que ceux-ci émettent leur séquence d'apprentissage de linéarisation respective dans le canal logique dédié à la linéarisation. De plus, aucune transmission de données ne peut avoir lieu dans les intervalles de temps de ce canal logique. En outre, au début de chaque émission ou en cas de changement de canal radio, l'émetteur est obligé d'attendre l'intervalle de temps suivant du canal logique dédié à la linéarisation, à moins de complexifier considérablement le système. C'est pourquoi l'espacement temporel entre deux intervalles de temps dudit canal logique ne peut dépasser la seconde, afin de garantir une certaine qualité de service (QoS). Cette technique est donc très préjudiciable à l'efficacité spectrale du système de radiocommunication. Enfin, puisqu'aucune précaution particulière n'est prise pour éviter l'émission hors bande pendant les phases d'apprentissage de linéarisation, cette technique peut générer des interférences pour les émetteurs des autres systèmes de radiocommunications, qui ne s'y conforment pas.
Une autre méthode, divulguée dans le document US 5,748,678, prévoit d'utiliser pendant les phases d'apprentissage de linéarisation un second modulateur ayant un débit deux fois moindre que le modulateur normalement utilisé pour la transmission de données utiles. Ce second modulateur génère un signal qui possède, la même profondeur de modulation d'amplitude mais une largeur spectrale divisée par deux, par rapport aux signaux émis en dehors des phases d'apprentissage de linéarisation. Ceci permet d'éviter de brouiller les canaux radio adjacents par les signaux non corrigés des non-linéarités qui sont émis durant les phases d'apprentissage de linéarisation.
Cependant cette méthode est assez complexe à mettre en œuvre car elle nécessite un second modulateur, ainsi que des filtres associés ou l'utilisation de filtres adaptatifs. Ce second modulateur sert uniquement durant les phases d'apprentissage de linéarisation, c'est-à-dire pendant une très faible fraction du temps. En effet, lorsque l'amplificateur a été linéarisé initialement, il suffit de corriger d'éventuelles dérives de ses caractéristiques. Les dispositifs de linéarisation du type évoqué en introduction peuvent s'en charger au cours de la transmission de données utiles (au débit normal). Le surcoût lié à ce second modulateur correspondant est donc peu justifié.
Afin de pallier les inconvénients de l'art antérieur précité, un premier aspect de l'invention concerne un procédé d'apprentissage d'un dispositif de linéarisation d'un amplificateur radiofréquence qui est compris dans un émetteur radiofréquence d'un premier équipement d'un système de radiocommunications, lequel émetteur est adapté pour émettre des salves selon une structure de trame déterminée, chaque salve comprenant des symboles appartenant à un alphabet de symboles déterminé. Le procédé comprend les étapes consistant à : a) générer une séquence d'apprentissage de linéarisation comprenant un nombre déterminé N de symboles, où N est un nombre entier déterminé ; b) émettre la séquence d'apprentissage de linéarisation au moyen de l'émetteur radiofréquence, dans certaines au moins des salves émises par celui-ci ; c) comparer la séquence d'apprentissage de linéarisation émise à la séquence d'apprentissage de linéarisation générée afin d'entraîner ledit dispositif de linéarisation.
Avantageusement, au moins un nombre déterminé N1 de symboles de la séquence d'apprentissage de linéarisation transmis en premier, où N1 est un nombre entier déterminé inférieur ou égal à N, appartiennent à un sous- alphabet de symboles compris dans ledit alphabet de symboles, ledit sous- alphabet de symboles étant constitué de symboles qui, isolément ou en combinaison, donnent à la salve un spectre plus étroit que ledit alphabet de symboles dans son ensemble.
Par sous-alphabet, on entend une partie de l'alphabet considéré. Dit autrement, si l'alphabet comprend un nombre déterminé M de symboles (alphabet M-aire), le sous-alphabet ne comprend qu'un nombre déterminé M1 de ces symboles (sous-alphabet M1-aire) où M et M1 sont des nombres entiers tels que M1 est inférieur à M. Les M1 symboles du sous-alphabet sont choisis de manière à donner au signal RF qui est émis un spectre plus étroit que celui donné par les M symboles de l'alphabet dans son ensemble.
Ledit premier équipement peut être un terminal mobile ou une station de base du système de radiocommunications. Un deuxième aspect de l'invention concerne un dispositif d'apprentissage d'un dispositif de linéarisation d'un amplificateur radiofréquence qui est compris dans un émetteur radiofréquence d'un premier équipement d'un système de radiocommunications, lequel émetteur est adapté pour émettre des salves selon une structure de trame déterminée, chaque salve comprenant des symboles appartenant à un alphabet de symboles déterminé. Le dispositif comprend : a) des moyens pour générer une séquence d'apprentissage de linéarisation comprenant un nombre déterminé N de symboles, où N est un nombre entier déterminé ; b) des moyens pour émettre la séquence d'apprentissage de linéarisation au moyen de l'émetteur dans certaines au moins des salves émises par celui-ci ; c) des moyens pour comparer la séquence d'apprentissage de linéarisation émise à la séquence d'apprentissage de linéarisation générée afin d'entraîner ledit dispositif de linéarisation.
Avantageusement, au moins un nombre déterminé N1 de symboles de la séquence d'apprentissage de linéarisation transmis en premier, où N1 est un nombre entier déterminé inférieur ou égal à N, appartiennent à un sous- alphabet de symboles compris dans ledit alphabet de symboles, ledit sous- alphabet de symboles étant constitué de symboles qui, isolément ou en combinaison, donnent à la salve un spectre plus étroit que ledit alphabet de symboles dans son ensemble.
Un troisième aspect de l'invention concerne un terminal mobile d'un système de radiocommunications, comprenant un émetteur radiofréquence ayant un amplificateur radiofréquence et un dispositif de linéarisation de l'amplificateur radiofréquence, qui comprend en outre un dispositif d'apprentissage du dispositif de linéarisation selon le deuxième aspect.
Un quatrième aspect de l'invention concerne une station de base d'un système de radiocommunications comprenant un émetteur radiofréquence ayant un amplificateur radiofréquence et un dispositif de linéarisation de l'amplificateur radiofréquence, qui comprend en outre un dispositif d'apprentissage du dispositif de linéarisation selon le troisième aspect.
Un cinquième aspect concerne une séquence d'apprentissage de linéarisation destinée à être émise au moyen d'un émetteur radiofréquence d'un terminal mobile ou d'une station de base d'un système de radiocommunications, lequel émetteur est adapté pour émettre des salves selon une structure de trame déterminée. La séquence comprend un nombre déterminé N de symboles, où N est un nombre entier déterminé, ces symboles appartenant à un alphabet de symboles déterminé.
Avantageusement, au moins un nombre déterminé N1 de symboles de la séquence d'apprentissage de linéarisation transmis en premier, où N1 est un nombre entier déterminé inférieur ou égal à N, appartiennent à un sous- alphabet de symboles compris dans ledit alphabet de symboles, ledit sous- alphabet de symboles étant constitué de symboles qui, isolément ou en combinaison, donnent à la salve dans laquelle la séquence d'apprentissage de linéarisation est émise un spectre plus étroit que ledit alphabet de symboles dans son ensemble.
L'objet de l'invention est donc atteint en utilisant une séquence d'apprentissage particulière qui permet au signal RF émis de conserver, pendant la phase d'apprentissage de linéarisation, une largeur spectrale compatible avec les performances recherchées sans contrainte particulière sur les instants où cet apprentissage est réalisé ni sur la complexité de l'émetteur. Le débit binaire pendant la phase d'apprentissage de linéarisation peut être le même que celui en dehors de cette phase. D'autres caractéristiques et avantages de l'invention apparaîtront encore à la lecture de la description qui va suivre. Celle-ci est purement illustrative et doit être lue en regard des dessins annexés sur lesquels :
- la figure 1 est un schéma synoptique d'un exemple de terminal mobile selon l'invention ; - la figure 2 est un tableau illustrant un exemple de modulation de données basée sur un alphabet de symboles quaternaire ;
- la figure 3 et la figure 4 sont des graphes illustrant l'effet du choix des symboles de la séquence d'apprentissage sur le spectre du signal RF correspondant respectivement en entrée et en sortie de l'amplificateur RF ; - la figure 5 est un schéma illustrant un exemple de séquence d'apprentissage de linéarisation selon l'invention ;
- la figure 6 et la figure 7 sont des schémas illustrant des exemples de salves émises par le terminal mobile, pouvant incorporer une séquence d'apprentissage de linéarisation selon l'invention. A la figure 1 , on a représenté schématiquement les moyens d'un exemple de terminal mobile selon l'invention. Un tel terminal mobile appartient par exemple à un système de radiocommunications qui comprend par ailleurs un réseau fixe ayant des stations de base.
Le terminal comprend une chaîne d'émission 100, une chaîne de réception 200, une unité de commande 300, une mémoire permanente 400, ainsi qu'un dispositif 500 de commande automatique de gain (CAG) associé à un récepteur RF de la chaîne de réception 200. La chaîne d'émission 100 comprend une source de données utiles 10, par exemple un codeur de parole délivrant des données codant de la voix. La source 10 est couplée à un modulateur de données M-aire 20 qui assure la modulation en bande de base des données à émettre selon une modulation à M états distincts, où M est un nombre entier déterminé. Les données binaires qu'il reçoit de la source 10 sont traduites par le modulateur 20 en des symboles appartenant à un alphabet M-aire c'est-à-dire comprenant M symboles distincts. La sortie du modulateur 20 est couplée à l'entrée d'un émetteur radiofréquence 30. A partir de la suite des symboles reçus, l'émetteur 30 produit un signal RF convenant pour l'émission radioélectrique via une antenne ou un câble. La sortie de l'émetteur 30 est couplée à une antenne d'émission/réception 40 via un commutateur 41. Ainsi le signal RF produit par l'émetteur est émis sur le canal radio associé à l'émetteur.
La chaîne de réception 200 comprend un récepteur radiofréquence 50 qui est couplé à l'antenne 40 via le commutateur 41 , pour recevoir un signal RF. Le récepteur 50 assure la transposition du domaine RF vers la bande de base (conversion descendante). A cet effet, il comprend un amplificateur à gain variable 59 qui a pour fonction de compenser les variations de puissance sur l'antenne 40 (qui peuvent être rapides) afin que le reste de la chaîne de réception traite un signal ayant un niveau de puissance sensiblement constant, ce qui assure de bonnes performances. La chaîne de réception 200 comprend aussi un démodulateur de données M-aire 60, couplé au récepteur 50. Le démodulateur de données 60 assure en bande de base la démodulation des données du signal reçu c'est-à-dire l'opération inverse de celle assurée par le modulateur 20. Enfin, la chaîne de réception 200 comprend un dispositif consommateur de données 70, tel qu'un décodeur de parole, qui est couplé au démodulateur 60. Ce dispositif reçoit en entrée les données binaires délivrées par le démodulateur 60.
L'unité 300 est par exemple un microprocesseur ou un microcontrôleur qui assure la gestion du terminal mobile. Notamment, elle commande le modulateur de données 20, le démodulateur de données 60, l'émetteur 30 et le commutateur 41. Elle génère aussi des données de signalisation qui sont fournies au modulateur 20 pour être émises dans des canaux logiques de signalisation appropriés. A l'inverse, l'unité 300 reçoit du démodulateur de données 60 des données de signalisation envoyées par le réseau fixe dans des canaux logiques de signalisation appropriés, notamment des informations de synchronisation et des commandes de fonctionnement. La mémoire 400, est par exemple une mémoire ROM (« Read Only
Memory »), EPROM (« Electrically Programable ROM ») ou Flash-EPROM, dans laquelle sont stockées des données qui sont utilisées pour le fonctionnement du terminal mobile. Ces données comprennent notamment une séquence d'apprentissage de linéarisation sur laquelle on reviendra plus loin. On va maintenant décrire en détail un exemple de réalisation de l'émetteur 30. Dans cet exemple, l'émetteur 30 comprend un amplificateur de puissance radiofréquence 31 , un modulateur radiofréquence 32 qui assure la transposition de la bande de base vers le domaine radiofréquence (conversion montante), un dispositif de linéarisation 33, un module d'apprentissage 34 associé au dispositif de linéarisation.
La sortie de l'amplificateur de puissance 31 délivre le signal RF à émettre. C'est pourquoi elle est couplée à l'antenne 40 via le commutateur 41. L'entrée de l'amplificateur de puissance 31 reçoit un signal radiofréquence délivré par la sortie du modulateur radiofréquence 32. L'entrée de celui-ci est couplée à la sortie du modulateur de données 20 pour recevoir la suite des symboles formant le signal en bande de base à émettre, à travers le dispositif de linéarisation 33. Ce dernier comprend par exemple un dispositif de prédistorsion comprenant une palette (« look-up table » en anglais) qui traduit chaque valeur du signal à émettre en une valeur pré-distordue. En variante ou en complément, le dispositif 33 peut aussi comprendre des moyens d'asservissement en amplitude du signal en sortie de l'émetteur 30.
Le module d'apprentissage 34 réalise l'apprentissage du dispositif de linéarisation 33 en fonction d'un signal d'entrée qui reflète le signal RF délivré par la sortie de l'amplificateur de puissance 31. A cet effet, le module 34 reçoit une partie de ce signal RF, qui est prélevée en sortie de l'amplificateur de puissance 31 au moyen d'un coupleur 36. En tant que de besoin, le module 34 assure le retour en bande de base du signal RF ainsi prélevé. Bien qu'étant représenté entièrement à l'intérieur de l'émetteur 30, le module 34 peut, au moins en partie, être mis en œuvre par des moyens appartenant à l'unité de commande 300, notamment des moyens logiciels.
Enfin, le dispositif de commande automatique de gain 500 permet, sous la commande de l'unité de commande 300 de faire varier dynamiquement le gain de l'amplificateur à gain variable 59 du récepteur RF 50, en fonction d'informations qui sont reçues du réseau fixe, selon un procédé connu en lui- même. En vertu de ce procédé, la station de base du réseau fixe avec laquelle le terminal communique, émet à des instants déterminés une séquence déterminée, appelée séquence de CAG. Cette séquence est connue de et reconnaissable par le terminal mobile. Elle lui permet de mesurer la puissance du signal reçu de la station de base et d'en déduire une commande du gain de l'amplificateur 59. Ce procédé est mis en œuvre dans le terminal mobile par le dispositif 500 sous la commande de l'unité 300.
Selon un procédé symétrique, il est prévu que l'émetteur 30 émette une séquence de CAG, pour permettre la commande dynamique, par la station de base, du gain d'un amplificateur à gain variable compris dans un récepteur RF de la station de base. Cette séquence est connue de et reconnaissable par la station de base. Elle. permet à la station de base de mesurer la puissance du signal reçu du terminal mobile et d'en déduire une commande du gain de l'amplificateur à gain variable du récepteur RF de la station de base.
Dans un exemple de mise en œuvre de l'invention, le modulateur de données 20 applique une modulation dite F4FM (de l'anglais "Filtered 4-state Frequency Modulation"), qui est une modulation propriétaire mais est en cours de normalisation auprès de la TIA (Télécommunications Industry Association). C'est une modulation à 4 états ou modulation quaternaire, c'est-à-dire une modulation M-aire où M est ici égal à 4. Lorsque le débit du modulateur 20 est égal à 8 kilo-symboles/s, la transmission de 8 symboles dure 1 ms (milliseconde). Dit autrement, la transmission d'un symbole dure 125 μs (microseconde). Le tableau de la figure 2 donne la correspondance entre données binaires et symboles, qui est appliquée par la modulation F4FM. Chaque symbole correspond à deux bits de données. L'alphabet de symboles est composé de quatre symboles notés -3, -1 , +1 et +3. On note {-3,-1 ,+1 ,+3} cet alphabet quaternaire. Lorsqu'un signal à émettre est généré à partir des symboles de cet alphabet, le signal RF a un spectre de largeur déterminée. Parmi ces symboles, les symboles notés -1 et +1 forment un sous-alphabet qui, lorsqu'il est seul utilisé pour la génération du signal à émettre, donne au signal RF correspondant un spectre de largeur réduite par rapport à ladite largeur déterminée. On note {-1 ,+1} ce sous-alphabet. C'est un sous-alphabet M1-aire, avec M1 =2, dont tous les symboles appartiennent à l'alphabet complet {-3,-1 ,+1 ,+3}. D'après une caractéristique de la modulation F4FM, les symboles du sous-alphabet {-1 ,+1} sont aussi ceux qui induisent la profondeur de modulation d'amplitude la plus faible.
Le modulateur radiofréquence 32 assure la transposition du signal à émettre sur une fréquence porteuse à environ 400 MHz (mégahertz) ou environ 800 MHz, dans un canal radio de largeur égale par exemple à 8 kHz (kilohertz). Les différents canaux radio du système sont espacés par. exemple de 12,5 kHz. Chaque canal radio est subdivisé en canaux logiques de trafic ou de signalisation par division de temps. Dans chaque intervalle de temps, il est émis une salve selon une structure de trame déterminée qu'il n'est pas utile de détailler ici.
On va maintenant décrire le fonctionnement du terminal mobile pendant une phase d'apprentissage, par le dispositif 34, du dispositif de linéarisation 33. Bien que cela ne soit pas mentionné à chaque fois dans ce qui suit, il est bien entendu que les termes "phase d'apprentissage" et les termes "séquence d'apprentissage" se rapportent à l'apprentissage du dispositif de linéarisation 33 effectué par le dispositif d'apprentissage 34 sous la commande de l'unité 300.
Le procédé d'apprentissage du dispositif 33 comprend une étape consistant à générer une séquence d'apprentissage comportant un nombre N déterminé de symboles, où N est un nombre entier. Cette étape est réalisée par le modulateur de données 20 sous la commande de l'unité de commande 300. A cet effet, l'unité 300 lit une séquence correspondante de 2 x N bits dans la mémoire 400. Ensuite, toujours sous la commande de l'unité 300, la séquence d'apprentissage est émise au moyen de l'émetteur 30 dans certaines au moins des salves émises par celui-ci, selon la structure de trame du système.
Le dispositif d'apprentissage 34 obtient alors la séquence d'apprentissage émise et la compare à la séquence d'apprentissage générée, et effectue en conséquence des actions telles que des adaptations de coefficients de prédistorsion ou autres du dispositif de linéarisation 33, selon un algorithme d'apprentissage déterminé. Cet algorithme peut être adaptatif. On parle d'entraînement pour désigner ces opérations. Sur le graphe de la figure 3, on a représenté le spectre d'une salve émise dans un canal radio déterminé, en dehors de la phase d'apprentissage, dans trois cas différents. Dans le premier cas, correspondant à la courbe 1 , seuls les symboles du sous-alphabet {-1 ,+1} sont utilisés. Dans le deuxième cas, correspondant à la courbe 2, une majorité des symboles utilisés appartiennent au sous-alphabet {-1 ,+1}, les autres appartenant à l'alphabet {- 3,-1 ,+1+3} exclu du sous-alphabet {-1 ,+1} (c'est-à-dire au sous-alphabet {-3, +3} formé des symboles -3 et +3). Enfin, dans le troisième cas, correspondant à la courbe 3, les symboles sont répartis sensiblement uniformément dans l'alphabet complet {-3,-1 ,+1+3}. On observe que le spectre est d'autant plus étroit que le nombre des symboles qui appartiennent au sous-alphabet {-1 ,+1} est élevé. Dans chaque cas, le spectre est centré sur la fréquence centrale Fo du canal radio.
Sur le graphe de la figure 4, les mêmes courbes correspondent à des mesures effectuées en sortie de l'amplificateur de puissance 31 non linéarisé, c'est-à-dire par exemple au début de la phase d'apprentissage. L'observation ci-dessus est toujours valable. En outre, on observe également, en comparant les deux figures, que dans chaque cas le spectre est plus large à la figure 4 qu'à la figure 3. Ceci provient des non-linéarités de l'émetteur radiofréquence 30, notamment de l'amplificateur de puissance 31. Cet élargissement du spectre peut impliquer le brouillage des canaux radio adjacents, pendant la phase d'apprentissage.
Il en résulte que, pour respecter les contraintes spectrales pendant la phase d'apprentissage, une première partie au moins de la séquence d'apprentissage est avantageusement générée à partir du sous-alphabet {- 1 ,+1}. De cette manière, le signal RF correspondant présente un spectre de largeur minimale. Lorsque le système est bien dimensionné, ceci permet de ne pas perturber les canaux radio adjacents pendant la phase d'apprentissage et notamment pendant le laps de temps initial où l'algorithme d'apprentissage n'a pas encore convergé.
La séquence qui donne un tel spectre est obtenue par simulation ou par mesure de toute la chaîne d'émission. Il se peut, comme dans l'exemple considéré ici, que cette séquence implique que la profondeur de modulation d'amplitude soit également réduite. Il se peut même que cette réduction ait des effets néfastes sur les résultats de l'algorithme de linéarisation et qu'ainsi la séquence choisie ne convienne pas. C'est pourquoi, il peut être nécessaire d'ajouter une contrainte sur la profondeur de modulation d'amplitude en ce qui concerne le choix de la séquence d'apprentissage, afin d'obtenir un compromis entre l'élargissement spectral dû aux non-linéarités de l'amplificateur de puissance (à minimiser) et la profondeur de modulation d'amplitude induite par cette séquence (à maximiser). Ces contraintes sont variables en fonction de l'amplificateur de puissance utilisé dans la chaîne d'émission. Une méthode possible permettant de choisir cette séquence est de se livrer à une optimisation numérique sur le choix de N symboles de la séquence. La chaîne d'émission est prise avec tous ses défauts sans linéarisation particulière. Cette séquence étant généralement courte (de l'ordre d'une dizaine de symboles), l'optimisation peut être une recherche exhaustive des N symboles permettant de respecter les contraintes que l'on souhaite à la fois sur la largeur spectrale et sur la profondeur de modulation d'amplitude.
Il est aussi possible de prévoir une évolution de la valeur de la profondeur de modulation d'amplitude au cours de la phase d'apprentissage (entre le début et la fin de la séquence d'apprentissage), dans le cas où l'algorithme d'apprentissage est adaptatif. En effet, les perturbations engendrées par l'élargissement spectral du signal diminuent au fur et à mesure de la convergence de l'algorithme, et il devient alors possible de relâcher un peu la contrainte spectrale pour augmenter la profondeur de modulation d'amplitude du signal RF émis. Dans un exemple, si l'on a choisi les N1 symboles émis en premier en les sélectionnant à l'intérieur du sous-alphabet {-1 ,+1}, on peut choisir les N2 symboles émis en dernier de telle manière que certains au moins d'entre eux appartiennent à l'alphabet de symboles {-3,-1 ,+1 , +3} exclu ledit sous-alphabet de symboles {-1 ,+1}, c'est-à-dire au sous-alphabet complémentaire {-3 ,+3}, où N1 et N2 sont des nombres entiers inférieurs à N tels que N1 et N2 soit inférieur ou égal à N. Lors de l'émission de ces N2 autres symboles, c'est-à- dire après avoir fait fonctionner l'algorithme d'apprentissage du dispositif de linéarisation 33 sur les N1 symboles émis en premier, la chaîne d'émission est déjà linéarisée de manière approximative. La linéarisation n'est certes pas totale mais permet alors d'utiliser d'autres symboles générant un signal RF de plus grande excursion d'amplitude tout en respectant les contraintes de largeur spectrale.
De préférence, on peut faire en sorte qu'une majorité voire la totalité de ces N2 autres symboles appartienne au sous-alphabet {-3,+3} qui, selon une propriété de la modulation F4FM, produisent une profondeur de modulation d'amplitude plus importante. Dans le cas d'une autre modulation, il peut être préférable de tendre vers une distribution sensiblement uniforme des symboles dans l'alphabet complet. Dans un exemple, N1+N2=N. Bien entendu, N1+N2 peut être inférieur à
N, ce qui permet de prévoir d'autres symboles émis entre lesdits N1 symboles émis en premier et lesdits N2 symboles émis en dernier, en produisant des effets intermédiaires en terme de largeur spectrale et de profondeur de modulation d'amplitude. On peut noter que pour toute modulation, il est possible de trouver une séquence de signal de longueur N fixée dont les caractéristiques répondent à des contraintes imposées en terme de largeur spectrale, de profondeur de modulation d'amplitude, et/ou autres.
On peut aussi noter que la convergence des algorithmes connus d'apprentissage des dispositifs de linéarisation est assez rapide. Il s'ensuit qu'une recherche exhaustive de la séquence optimale par simulation sur ordinateur peut être effectuée sans problème. Le schéma de la figure 5 illustre un exemple de séquence d'apprentissage selon les principes présentés ci-dessus. Dans cet exemple, l'alphabet de symboles complet est l'alphabet quaternaire {-3,-1 , +1 ,+3} de la modulation F4FM. Dit autrement, M est égal à 4. Par ailleurs, M1 est égal à 2, le sous-alphabet donnant au signal RF un spectre réduit étant {-1 ,+1}, N est égal à 10, N1 est égal à 6, et N2 est égal à 4. Les N1 symboles émis en premiers sont par exemple les symboles +1 , -1 , +1 , -1 , +1 , et -1 , successivement et dans cet ordre. Le signal émis a alors un spectre de largeur minimale, mais la profondeur de modulation d'amplitude reste limitée puisque tous les symboles de l'alphabet quaternaire ne sont pas utilisés. Afin de tenir compte de la profondeur de modulation d'amplitude réelle d'une séquence de données utiles, pour la convergence de l'algorithme d'apprentissage, il suffit d'élargir légèrement le spectre sur la fin de la séquence d'apprentissage et de choisir par exemple les N2 symboles émis en dernier dans l'alphabet complet. Les N2 symboles émis en dernier sont par exemple les symboles -3, +1 , +3, et -3, successivement et dans cet ordre. Dans cet exemple, la séquence complète est donc formée des symboles +1 , -1 , +1 , -1 , +1, -1 , -3, +1 , +3, et -3 successivement et dans cet ordre.
Des phases d'apprentissage peuvent être effectuées de façon périodique ou autre. D'autres contraintes peuvent devoir être prises en compte après la phase d'apprentissage initiale, lorsqu'il convient juste de corriger des dérives de l'émetteur. La séquence d'apprentissage peut donc, évoluer tant en contenu qu'en longueur. Le nombre N n'est donc pas forcément fixé d'une émission de la séquence d'apprentissage à une autre. Si une augmentation de la taille de la séquence pose des problèmes (par exemple si la structure de trame est peu flexible), on peut fixer la taille N de la séquence et juste modifier son contenu en fonction de l'évolution des contraintes sur le système.
Le schéma de la figure 6 illustre un exemple de salve. Dans cet exemple, la salve a une durée égale à 20 ms. Elle comprend tout d'abord une rampe de montée 51 ("ramping-up" en anglais) de 625 μs, comprenant cinq symboles de bourrage, pour assurer la montée en puissance. Par symboles de bourrage, on entend que les données binaires transmises dans cette rampe de montée sont des bits de bourrage c'est-à-dire, par exemple, une suite de 0. Elle comprend ensuite une séquence de données de synchronisation 52 dont la durée est égale à 5 ms environ. Ensuite, elle comprend une séquence de données utiles 53. Les données utiles peuvent être des données codant de la voix et plus généralement des données de trafic, ou des données de signalisation selon que la salve est émise sur un canal logique de trafic ou un canal logique de signalisation, respectivement. Elle comprend enfin une rampe de descente 54, ayant à nouveau cinq symboles de bourrage pour la descente en puissance. Eventuellement, un temps de garde est en outre prévu après l'émission d'une salve, afin de garantir le retour à la réception de l'émetteur. Selon un premier mode de mise en œuvre, la séquence d'apprentissage peut remplacer les données utiles des salves à l'intérieur desquelles elle est émise.
Afin ne pas trop complexifier la structure de trame, et notamment d'éviter de réserver un intervalle de temps spécifique pour l'apprentissage du dispositif de linéarisation 33, la séquence de linéarisation peut n'occuper la place que d'une partie des données utiles d'une salve. Cette caractéristique permet de pouvoir émettre rapidement des données utiles dans le reste de la salve sans devoir attendre l'intervalle de temps suivant.
D'autres modes de mise en œuvre sont envisageables. En effet, dans toute structure de trame il est prévu d'émettre des salves isolées, notamment à chaque changement de canal logique (se produisant notamment à chaque retournement, c'est-à-dire passage d'une phase de réception à une phase d'émission du terminal), à chaque changement de fréquence RF (lorsqu'une fonctionnalité de saut de fréquence est mise en œuvre par le système), à chaque changement de palier de puissance d'émission, ou encore dans d'autres cas particuliers qu'il serait trop long de détailler ici.
La figure 7 montre un exemple de telle trame isolée comprenant, avant la séquence de synchronisation 52, une séquence de CAG référencée 55 qui est émise par un premier équipement (terminal mobile ou station de base) pour permettre la commande dynamique, par un second équipement respectivement station de base ou terminal mobile avec lequel le premier équipement communique, de la puissance d'émission de son récepteur (voir plus haut). Dans cet exemple, la séquence 52 et la séquence 55 ne durent que de 1 à 3 ms chacune. Les autres parties de la salve sont inchangées par rapport à la salve de la figure 6. La séquence de données utiles 53 peut toutefois être plus courte que dans le cas d'une salve normale selon la figure 6.
Selon un mode de mise en œuvre particulièrement avantageux, on utilise une partie de ces salves isolées pour permettre au dispositif d'apprentissage 34 de l'émetteur radiofréquence 32 d'exécuter un algorithme d'apprentissage du dispositif de linéarisation 33. Dans l'exemple de la figure 7, la séquence de linéarisation est par exemple comprise dans la séquence de CAG précitée. II est ainsi possible d'utiliser le temps nécessaire à l'émission de la séquence d'apprentissage à d'autres fins comme par exemple le réglage de la CAG en réception, selon le procédé qui a été évoqué plus haut en regard du schéma de la figure 1. Avantageusement, la valeur des symboles de la séquence de CAG n'est soumise à aucune contrainte (la séquence de CAG doit simplement être connue du réseau fixe). Il y a donc toute liberté pour choisir les symboles de la séquence, ou du moins une partie des symboles de la séquence, de manière que ces symboles forment une séquence d'apprentissage satisfaisante.
Selon un autre avantage, la récurrence de la séquence de CAG est adaptée aux besoins de l'apprentissage du dispositif de linéarisation 33. En effet, la séquence de CAG comme la séquence d'apprentissage sont de préférence émises en début de trame, puis lors d'un changement de canal logique, lors d'un changement de fréquence RF et/ou lors d'un changement de palier de puissance. C'est pourquoi il est particulièrement avantageux de combiner ces séquences (ces séquences ne formant qu'une seule et unique séquence, ou l'une d'elles étant incluse dans l'autre), et de les émettre de préférence comme indiqué ci-dessus.
Selon un autre avantage, la séquence de CAG se situe au plus près de la rampe de montée en puissance du signal, par exemple, juste à la suite de cette rampe. De cette manière, l'apprentissage du dispositif de linéarisation peut être réalisé au plus vite et ainsi perturber la transmission le moins longtemps possible. Dans tous les modes de mise en œuvre, il est préférable que la longueur de la séquence d'apprentissage soit telle qu'elle n'occupe pas une trop grande portion de la salve afin de garder un maximum de symboles pour la diffusion d'informations utiles. Cette durée dépend évidemment de la précision recherchée pour l'algorithme d'apprentissage mais un compromis entre précision et durée s'avère souvent nécessaire afin de conserver un maximum d'informations utiles dans la salve. Un compromis raisonnable est atteint lorsqu'elle représente environ 5% de la durée totale de la salve. Dans le cas d'une salve de 20 ms transmise à un taux binaire de 8 ksymboles/s, la durée d'une séquence d'apprentissage de N=10 symboles est ainsi égale à 1 ,25 ms soit 6,25% de la durée totale de la trame.

Claims

REVENDICATIONS
1. Procédé d'apprentissage d'un dispositif de linéarisation d'un amplificateur radiofréquence (31 ) qui est compris dans un émetteur radiofréquence (30) d'un premier équipement (figure 1 ) d'un système de radiocommunications, lequel émetteur est adapté pour émettre des salves selon une structure de trame déterminée, chaque salve comprenant des symboles appartenant à un alphabet de symboles déterminé, le procédé comprenant les étapes consistant à : a) générer une séquence d'apprentissage de linéarisation (figure 5) comprenant un nombre déterminé N de symboles, où N est un nombre entier déterminé ; b) émettre la séquence d'apprentissage de linéarisation au moyen de l'émetteur dans certaines au moins des salves émises par celui-ci ; c) comparer la séquence d'apprentissage de linéarisation émise à la séquence d'apprentissage de linéarisation générée afin d'entraîner ledit dispositif de linéarisation, caractérisé en ce que au moins un nombre déterminé N1 de symboles de la séquence d'apprentissage de linéarisation transmis en premier, où N1 est un nombre entier déterminé inférieur ou égal à N, appartiennent à un sous- alphabet de symboles compris dans ledit alphabet de symboles, ledit sous- alphabet de symboles étant constitué de symboles qui, isolément ou en combinaison, donnent à la salve un spectre plus étroit que ledit alphabet de symboles dans son ensemble.
2. Procédé selon la revendication 1 , suivant lequel la séquence d'apprentissage de linéarisation comprend un nombre déterminé N2 d'autres symboles émis en dernier dont certains au moins appartiennent à l'alphabet de symboles exclu ledit sous-alphabet de symboles, ou N2 est un nombre entier inférieur à N.
3. Procédé selon la revendication 2, suivant lequel une majorité ou la totalité desdits N2 autres symboles émis en dernier appartiennent à l'alphabet de symboles exclu ledit sous-alphabet de symboles.
4. Procédé selon la revendication 2 ou la revendication 3, suivant lequel N1+N2=N.
5. Procédé selon l'une quelconque des revendications précédentes, suivant lequel le nombre N est fixé.
6. Procédé selon l'une quelconque des revendications précédentes, suivant lequel la séquence d'apprentissage de linéarisation n'occupe qu'une partie seulement de la salve dans laquelle elle est émise.
7. Procédé selon la revendication 6, suivant lequel la séquence d'apprentissage de linéarisation occupe environ 5% de la durée de la salve dans laquelle elle est émise.
8. Procédé selon l'une quelconque des revendications précédentes, suivant lequel la séquence d'apprentissage de linéarisation est émise en début de trame.
9. Procédé selon l'une quelconque des revendications précédentes, suivant lequel la séquence d'apprentissage de linéarisation est émise en outre lors d'un changement de canal logique, d'un changement de fréquence et/ou d'un changement de palier de puissance du terminal mobile.
10. Procédé selon l'une quelconque des revendications précédentes, suivant lequel la séquence d'apprentissage est comprise dans ou comprend une séquence de symboles prévue en outre pour permettre la commande dynamique du gain d'un amplificateur à gain variable d'un récepteur radiofréquence d'un second équipement du système de radiocommunication avec lequel ledit premier équipement communique.
11. Dispositif d'apprentissage d'un dispositif de linéarisation (33) d'un amplificateur radiofréquence (31 ) d'un émetteur radiofréquence (30) qui est compris dans un premier équipement (figure 1) d'un système de radiocommunications, lequel émetteur est adapté pour émettre des salves selon une structure de trame déterminée, chaque salve comprenant des symboles appartenant à un alphabet de symboles déterminé, le dispositif comprenant : a) des moyens (300,10,20) pour générer une séquence d'apprentissage de linéarisation (Figure 5) comprenant un nombre déterminé N de symboles, où N est un nombre entier déterminé ; b) des moyens (300,30) pour émettre la séquence d'apprentissage de linéarisation au moyen de l'émetteur dans certaines au moins des salves émises par celui-ci ; c) des moyens (300,34) pour comparer la séquence d'apprentissage de linéarisation émise à la séquence d'apprentissage de linéarisation générée afin d'entraîner ledit dispositif de linéarisation, caractérisé en ce que au moins un nombre déterminé . N1 de symboles de la séquence d'apprentissage de linéarisation transmis en premier, où N1 est un nombre entier déterminé inférieur ou égal à N, appartiennent à un sous- alphabet de symboles compris dans ledit alphabet de symboles, ledit sous- alphabet de symboles étant constitué de symboles qui, isolément ou en combinaison, donnent à la salve un spectre plus étroit que ledit alphabet de symboles dans son ensemble.
12. Dispositif selon la revendication 11 , dans lequel la séquence d'apprentissage de linéarisation comprend un nombre déterminé N2 d'autres symboles émis en dernier dont certains au moins appartiennent à l'alphabet de symboles exclu ledit sous-alphabet de symboles, ou N2 est un nombre entier inférieur à N.
13. Dispositif selon la revendication 12, dans lequel une majorité ou la totalité desdits N2 autres symboles émis en dernier appartiennent à l'alphabet de symboles exclu ledit sous-alphabet de symboles.
14. Dispositif selon la revendication 12 ou la revendication 13, dans lequel N1 +N2=N.
15. Dispositif selon l'une quelconque des revendications 11 à 14, dans lequel le nombre N est fixé.
16. Dispositif selon l'une quelconque des revendications 11 à 15, dans lequel la séquence d'apprentissage de linéarisation n'occupe qu'une partie seulement de la salve dans laquelle elle est émise.
17. Dispositif selon la revendication 16, dans lequel la séquence d'apprentissage de linéarisation occupe environ 5% de la durée de la salve dans laquelle elle est émise.
18. Dispositif selon l'une quelconque des revendications 11 à 17, dans lequel lesdits moyens pour émettre sont adaptés pour émettre la séquence d'apprentissage de linéarisation en début de trame.
19. Dispositif selon l'une quelconque des revendications 11 à 18, dans lequel lesdits moyens pour émettre sont adaptés pour émettre la séquence d'apprentissage de linéarisation lors d'un changement de canal logique, d'un changement de fréquence et/ou d'un changement de palier de puissance du terminal mobile.
20. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la séquence d'apprentissage est comprise dans ou comprend une séquence de symboles prévue en outre pour permettre la commande dynamique du gain d'un amplificateur à gain variable d'un récepteur radiofréquence d'un second équipement du système de radiocommunications avec lequel ledit premier équipement communique.
21. Terminal mobile d'un système de radiocommunications, comprenant un émetteur radiofréquence (30) ayant un amplificateur radiofréquence et un dispositif de linéarisation (33) de l'amplificateur radiofréquence, caractérisé en ce qu'il comprend en outre un dispositif d'apprentissage du dispositif de linéarisation selon l'une quelconque des revendications 11 à 20.
22. Station de base d'un système de radiocommunications comprenant un émetteur radiofréquence ayant un amplificateur radiofréquence et un dispositif de linéarisation de l'amplificateur radiofréquence, caractérisé en ce qu'elle comprend en outre un dispositif d'apprentissage du dispositif de linéarisation selon l'une quelconque des revendications 11 à 20.
23. Séquence d'apprentissage de linéarisation (figure 5) destinée à être émise au moyen d'un émetteur radiofréquence (30) d'un terminal mobile
(figure 1) ou d'une station de base d'un système de radiocommunications lequel émetteur est adapté pour émettre des salves selon une structure de trame déterminée, la séquence d'apprentissage de linéarisation comprenant un nombre déterminé N de symboles, où N est un nombre entier déterminé, ces symboles appartenant à un alphabet de symboles déterminé, caractérisé en ce que au moins un nombre déterminé N1 de symboles de la séquence d'apprentissage de linéarisation transmis en premier, où N1 est un nombre entier déterminé inférieur ou égal à N, appartiennent à un sous-alphabet de symboles compris dans ledit alphabet de symboles, ledit sous-alphabet de symboles étant constitué de symboles qui, isolément ou en combinaison, donnent à la salve dans laquelle la séquence d'apprentissage de linéarisation est émise un spectre plus étroit que ledit alphabet de symboles dans son ensemble.
24. Séquence selon la revendication 23 comprenant en outre un nombre déterminé N2 d'autres symboles émis en dernier, dont certains au moins appartiennent à l'alphabet de symboles exclu ledit sous-alphabet de symboles, ou N2 est un nombre entier inférieur à N.
25. Séquence selon la revendication 24, dans laquelle une majorité ou la totalité desdits N2 autres symboles émis en dernier appartiennent à l'alphabet de symboles exclu ledit sous-alphabet de symboles.
26. Séquence selon la revendication 24 ou la revendication 25, dans laquelle N1+N2=N.
27. Séquence selon l'une quelconque des revendications 23 à 26, dans laquelle le nombre N est fixé.
28. Séquence selon l'une quelconque des revendications 23 à 27, dans laquelle l'alphabet de symboles est l'alphabet {-3,-1 ,+1 ,+3} des symboles de la modulation dite F4FM.
29. Séquence selon la revendication 28, dans laquelle les N1 symboles transmis en premier appartiennent au sous-alphabet {-1 ,+1}.
30. Séquence selon la revendication 24 et l'une des revendications 28 et 29, dans laquelle les N2 symboles transmis en dernier appartiennent en majorité voire en totalité au sous-alphabet {-3,+3}.
EP03780232A 2002-11-05 2003-10-24 Sequence d'apprentissage pour la linearisation d'un amplificateur rf Withdrawn EP1559254A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0213817 2002-11-05
FR0213817A FR2846812B1 (fr) 2002-11-05 2002-11-05 Perfectionnement aux procedes et dispositifs d'apprentissage d'un dispositif de linearisation d'un amplificateur rf
PCT/FR2003/003134 WO2004045179A1 (fr) 2002-11-05 2003-10-24 Sequence d'apprentissage pour la linearisation d'un amplificateur rf

Publications (1)

Publication Number Publication Date
EP1559254A1 true EP1559254A1 (fr) 2005-08-03

Family

ID=32104451

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03780232A Withdrawn EP1559254A1 (fr) 2002-11-05 2003-10-24 Sequence d'apprentissage pour la linearisation d'un amplificateur rf

Country Status (6)

Country Link
US (1) US7593477B2 (fr)
EP (1) EP1559254A1 (fr)
AU (1) AU2003289713A1 (fr)
CA (1) CA2504477A1 (fr)
FR (1) FR2846812B1 (fr)
WO (1) WO2004045179A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846813B1 (fr) * 2002-11-05 2005-01-28 Eads Defence & Security Ntwk Procede et dispositif d'apprentissage d'un dispositif de linearisation d'un amplificateur rf, et terminal mobile incorporant un tel dispositif
MX2011001783A (es) * 2008-08-18 2011-04-05 Research In Motion Ltd Sistemas, dispositivos y métodos para transmision y recepción de secuencias de entrenamiento.
DE102014213857B4 (de) * 2014-07-16 2016-03-03 Siemens Aktiengesellschaft Gerät mit MR-Spule

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291277A (en) * 1979-05-16 1981-09-22 Harris Corporation Adaptive predistortion technique for linearizing a power amplifier for digital data systems
US4700151A (en) * 1985-03-20 1987-10-13 Nec Corporation Modulation system capable of improving a transmission system
FR2644638B1 (fr) * 1989-03-14 1991-05-31 Labo Electronique Physique
US5049832A (en) * 1990-04-20 1991-09-17 Simon Fraser University Amplifier linearization by adaptive predistortion
US5066923A (en) * 1990-10-31 1991-11-19 Motorola, Inc. Linear transmitter training method and apparatus
GB2265269B (en) * 1992-03-02 1995-08-30 Motorola Ltd Radio transmitter with linearization training sequence
GB2272133B (en) * 1992-11-02 1996-06-12 Motorola Inc Radio system
JP2967699B2 (ja) * 1995-03-06 1999-10-25 日本電気株式会社 送信装置
US5748678A (en) * 1995-07-13 1998-05-05 Motorola, Inc. Radio communications apparatus
US5732333A (en) * 1996-02-14 1998-03-24 Glenayre Electronics, Inc. Linear transmitter using predistortion
US5760646A (en) * 1996-03-29 1998-06-02 Spectrian Feed-forward correction loop with adaptive predistortion injection for linearization of RF power amplifier
US5892397A (en) * 1996-03-29 1999-04-06 Spectrian Adaptive compensation of RF amplifier distortion by injecting predistortion signal derived from respectively different functions of input signal amplitude
FR2752313B1 (fr) * 1996-08-07 1998-11-13 Alcatel Telspace Procede et dispositif de modelisation des caracteristiques am/am et am/pm d'un amplificateur, et procede de predistorsion correspondant
US5913172A (en) * 1996-11-15 1999-06-15 Glenayre Electronics, Inc. Method and apparatus for reducing phase cancellation in a simulcast paging system
US5920808A (en) * 1996-12-12 1999-07-06 Glenayre Electronics, Inc. Method and apparatus for reducing key-up distortion by pre-heating transistors
US5923712A (en) * 1997-05-05 1999-07-13 Glenayre Electronics, Inc. Method and apparatus for linear transmission by direct inverse modeling
US5867065A (en) * 1997-05-07 1999-02-02 Glenayre Electronics, Inc. Frequency selective predistortion in a linear transmitter
US5959499A (en) * 1997-09-30 1999-09-28 Motorola, Inc. Predistortion system and method using analog feedback loop for look-up table training
US6075411A (en) * 1997-12-22 2000-06-13 Telefonaktiebolaget Lm Ericsson Method and apparatus for wideband predistortion linearization
US5959500A (en) * 1998-01-26 1999-09-28 Glenayre Electronics, Inc. Model-based adaptive feedforward amplifier linearizer
FI982738A (fi) * 1998-12-17 2000-06-18 Nokia Networks Oy Lähettimen linearisointi
US6043707A (en) * 1999-01-07 2000-03-28 Motorola, Inc. Method and apparatus for operating a radio-frequency power amplifier as a variable-class linear amplifier
US6369648B1 (en) * 1999-04-21 2002-04-09 Hughes Electronics Corporation Linear traveling wave tube amplifier utilizing input drive limiter for optimization
IT1313906B1 (it) * 1999-06-15 2002-09-26 Cit Alcatel Precorrezione digitale adattiva di non-linearita' introdotte daamplicatori di potenza.
JP4256057B2 (ja) * 1999-09-30 2009-04-22 株式会社東芝 非線形補償器
KR20010064900A (ko) * 1999-12-20 2001-07-11 서평원 적응성 선왜곡 선형화 장치
DE19962340B4 (de) * 1999-12-23 2005-11-03 Robert Bosch Gmbh Sender zum Versenden von Signalen über Funkkanäle und Verfahren zum Senden von Signalen über Funkkanäle
DE19962341C1 (de) * 1999-12-23 2001-08-23 Bosch Gmbh Robert Sender zum Versenden von Signalen über Funkkanäle und Verfahren zum Senden von Signalen über Funkkanäle
US6674808B1 (en) * 1999-12-28 2004-01-06 General Dynamics Decision Systems, Inc. Post-amplifier filter rejection equalization
US6396350B2 (en) * 2000-02-09 2002-05-28 Paradigm Wireless Systems, Inc. Power booster method and apparatus for improving the performance of radio frequency linear power amplifiers
US6741662B1 (en) * 2000-04-17 2004-05-25 Intel Corporation Transmitter linearization using fast predistortion
US20020171485A1 (en) * 2001-05-18 2002-11-21 Spectrian Corporation Digitally implemented predistorter control mechanism for linearizing high efficiency RF power amplifiers
US6928122B2 (en) * 2001-06-07 2005-08-09 Motorola, Inc. Amplifier predistortion system and method
US7203247B2 (en) * 2001-07-23 2007-04-10 Agere Systems Inc. Digital predistortion technique for WCDMA wireless communication system and method of operation thereof
US20030063686A1 (en) * 2001-07-25 2003-04-03 Giardina Charles Robert System and method for predistorting a signal using current and past signal samples
US6931080B2 (en) * 2001-08-13 2005-08-16 Lucent Technologies Inc. Multiple stage and/or nested predistortion system and method
US7003051B2 (en) * 2001-10-16 2006-02-21 Intel Corporation Time delay estimation in a transmitter
US7058369B1 (en) * 2001-11-21 2006-06-06 Pmc-Sierra Inc. Constant gain digital predistortion controller for linearization of non-linear amplifiers
FR2835120B1 (fr) * 2002-01-21 2006-10-20 Evolium Sas Procede et dispositif de preparation de signaux destines a etre compares pour etablir une pre-distorsion sur l'entree d'un amplificateur
US6731168B2 (en) * 2002-02-06 2004-05-04 Intersil Americas, Inc. Power amplifier linearizer that compensates for long-time-constant memory effects and method therefor
US7085330B1 (en) * 2002-02-15 2006-08-01 Marvell International Ltd. Method and apparatus for amplifier linearization using adaptive predistortion
US20030179830A1 (en) * 2002-03-25 2003-09-25 Eidson Donald B. Efficient, high fidelity transmission of modulation schemes through power-constrained remote relay stations by local transmit predistortion and local receiver feedback
CA2457404C (fr) * 2002-03-26 2010-07-13 Her Majesty In Right Of Canada As Represented By The Minister Of Indusy Technique d'estimation de fonction de circuit de predistorsion a bande de base fondee sur le type pour circuits non lineaires
US6853246B2 (en) * 2002-04-18 2005-02-08 Agere Systems Inc. Adaptive predistortion system and a method of adaptively predistorting a signal
US6985704B2 (en) * 2002-05-01 2006-01-10 Dali Yang System and method for digital memorized predistortion for wireless communication
US6680649B2 (en) * 2002-06-07 2004-01-20 Telefonaktiebolaget Lm Ericsson (Publ) Coordinate rotation of pre-distortion vector in feedforward linearization amplification system
US6891902B2 (en) * 2002-07-02 2005-05-10 Intel Corporation System and method for adjusting a power level of a transmission signal
US7116726B2 (en) * 2002-08-12 2006-10-03 Cubic Corporation Method and apparatus for transferring multiple symbol streams at low bit-error rates in a narrowband channel
US20040057533A1 (en) * 2002-09-23 2004-03-25 Kermalli Munawar Hussein System and method for performing predistortion at intermediate frequency
US7403573B2 (en) * 2003-01-15 2008-07-22 Andrew Corporation Uncorrelated adaptive predistorter
US7289773B2 (en) * 2003-01-23 2007-10-30 Powerwave Technologies, Inc. Digital transmitter system employing self-generating predistortion parameter lists and adaptive controller
US6975167B2 (en) * 2003-07-03 2005-12-13 Icefyre Semiconductor Corporation Adaptive predistortion for a transmit system with gain, phase and delay adjustments
US20050032472A1 (en) * 2003-08-08 2005-02-10 Yimin Jiang Method and apparatus of estimating non-linear amplifier response in an overlaid communication system
US7342976B2 (en) * 2004-01-27 2008-03-11 Crestcom, Inc. Predistortion circuit and method for compensating A/D and other distortion in a digital RF communications transmitter
US7430248B2 (en) * 2004-01-27 2008-09-30 Crestcom, Inc. Predistortion circuit and method for compensating nonlinear distortion in a digital RF communications transmitter
US7099399B2 (en) * 2004-01-27 2006-08-29 Crestcom, Inc. Distortion-managed digital RF communications transmitter and method therefor
US7542517B2 (en) * 2004-02-02 2009-06-02 Ibiquity Digital Corporation Peak-to-average power reduction for FM OFDM transmission
US7113036B2 (en) * 2004-04-15 2006-09-26 Agere Systems Inc. Method and apparatus for adaptive digital predistortion using nonlinear and feedback gain parameters
US7336716B2 (en) * 2004-06-30 2008-02-26 Intel Corporation Power amplifier linearization methods and apparatus using predistortion in the frequency domain
US20060039498A1 (en) * 2004-08-19 2006-02-23 De Figueiredo Rui J P Pre-distorter for orthogonal frequency division multiplexing systems and method of operating the same
KR100882529B1 (ko) * 2005-04-20 2009-02-06 삼성전자주식회사 광대역 무선통신시스템에서 피크 전력 대 평균 전력비를감소하기 위한 장치 및 방법
US7479828B2 (en) * 2005-11-15 2009-01-20 Alcatel-Lucent Usa Inc. Selecting samples for amplifier digital predistortion estimation
US7466197B2 (en) * 2005-11-15 2008-12-16 Alcatel-Lucent Usa Inc. Selecting samples for amplifier digital predistortion estimation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004045179A1 *

Also Published As

Publication number Publication date
CA2504477A1 (fr) 2004-05-27
WO2004045179A1 (fr) 2004-05-27
US20060018400A1 (en) 2006-01-26
US7593477B2 (en) 2009-09-22
AU2003289713A1 (en) 2004-06-03
FR2846812A1 (fr) 2004-05-07
FR2846812B1 (fr) 2005-01-28

Similar Documents

Publication Publication Date Title
EP0775394B1 (fr) Procede d'adaptation de l'interface air, dans un systeme de radiocommunication vers des mobiles
EP0230691B1 (fr) Dispositif d'asservissement de la puissance d'emission d'un faisceau hertzien
EP1878185B1 (fr) Procédé de codage d'un signal multiporteuse de type OFDM/OQAM utilisant des symboles à valeurs complexes, signal, dispositifs et programmes d'ordinateur correspondants
EP1446928B1 (fr) Pre-distortion adaptative d'un generateur d'un signal radiofrequence module en phase ou frequence et en amplitude
FR2527871A1 (fr) Systeme de radiocommunications, a sauts de frequence
EP0802656A2 (fr) Signal numérique à blocs de référence multiples pour l'estimation de canal, procédés d'estimation de canal et récepteurs correspondants
WO2004095791A1 (fr) Procede de transmission de donnees radio mettant en oeuvre plusieurs motifs de pilotes distincts, procede de reception, systeme, mobile et station de base correspondants
FR2827453A1 (fr) Procede de modulation et emetteur pour systeme de communications
EP2767020B1 (fr) Procede et systeme de communication utilisant des schemas de modulation et de codage dynamiques sur des canaux de communication hf large bande
FR2900775A1 (fr) Systeme de communication uwb cooperatif de type non-coherent
FR3076972A1 (fr) Procede de synchronisation de signaux au sein d'un dispositif sans contact communiquant avec un lecteur par une modulation active de charge, et dispositif correspondant
EP1248384B1 (fr) Procede de contrôle de la puissance d'émission
EP1311097A1 (fr) Procédé d'écrêtage d'un signal de composition des signaux modulant plusieurs porteuses
EP3709590B1 (fr) Méthode d'adaptation de liaison utilisant une constellation de modulation polaire
EP1559254A1 (fr) Sequence d'apprentissage pour la linearisation d'un amplificateur rf
EP1559192B1 (fr) Procede et dispositif d'apprentissage d'un dispositif de linearisation d'un amplificateur rf, et terminal mobile incorporant un tel dispositif
EP2446554B1 (fr) Procedes d'emission pour un reseau sans fil et procede de reception correspondant
EP1311062B1 (fr) Procédé d'optimisation du rendement d'un amplificateur destiné à amplifier simultanement plusieurs porteuses modulées
EP1202470B1 (fr) Procédé et dispositif de contrôle de la puissance d'émission d'un téléphone mobile cellulaire
EP3780529A1 (fr) Dispositif et procédé pour la signalisation de communications à travers un spectre fragmenté
WO2001063823A1 (fr) Systeme de synchronisation d'un systeme de telecommunication numerique a acces multiple
FR3002395A1 (fr) Procedes et dispositifs de transmission et de reception d'un signal multiporteuse reduisant le rapport puissance crete a puissance moyenne, programme et signal correspondants.
EP2368328B1 (fr) Procédé démission d'impulsions dans un canal de transmission
EP4300821A1 (fr) Dispositif de communication comprenant un amplificateur de puissance et procédé de mise en oeuvre
FR3118384A1 (fr) Forme d'onde a resilience adaptative

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS SECURE NETWORKS

17Q First examination report despatched

Effective date: 20080126

R17C First examination report despatched (corrected)

Effective date: 20090126

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090505