EP1558447A2 - Verfahren zur herstellung eines lithographischen druckplattenvorläufers - Google Patents

Verfahren zur herstellung eines lithographischen druckplattenvorläufers

Info

Publication number
EP1558447A2
EP1558447A2 EP03756489A EP03756489A EP1558447A2 EP 1558447 A2 EP1558447 A2 EP 1558447A2 EP 03756489 A EP03756489 A EP 03756489A EP 03756489 A EP03756489 A EP 03756489A EP 1558447 A2 EP1558447 A2 EP 1558447A2
Authority
EP
European Patent Office
Prior art keywords
coating
precursor
web
temperature
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03756489A
Other languages
English (en)
French (fr)
Other versions
EP1558447B1 (de
Inventor
Eric AGFA-GEVAERT VERSCHUEREN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa NV
Original Assignee
Agfa Gevaert NV
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert NV, Agfa Gevaert AG filed Critical Agfa Gevaert NV
Priority to EP03756489A priority Critical patent/EP1558447B1/de
Publication of EP1558447A2 publication Critical patent/EP1558447A2/de
Application granted granted Critical
Publication of EP1558447B1 publication Critical patent/EP1558447B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/036Chemical or electrical pretreatment characterised by the presence of a polymeric hydrophilic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1083Mechanical aspects of off-press plate preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • B41C1/1016Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials characterised by structural details, e.g. protective layers, backcoat layers or several imaging layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/02Cover layers; Protective layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/14Location, type or constituents of the non-imaging layers in lithographic printing formes characterised by macromolecular organic compounds, e.g. binder, adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/02Positive working, i.e. the exposed (imaged) areas are removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/06Developable by an alkaline solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/22Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by organic non-macromolecular additives, e.g. dyes, UV-absorbers, plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/26Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions not involving carbon-to-carbon unsaturated bonds
    • B41C2210/262Phenolic condensation polymers, e.g. novolacs, resols

Definitions

  • the present invention relates to a heat-sensitive lithographic printing plate precursor that comprises a phenolic resin.
  • Lithographic printing typically involves the use of a so-called printing master such as a printing plate which is mounted on a cylinder of a rotary printing press.
  • the master carries a lithographic image on its surface and a print is obtained by applying ink to said image and then transferring the ink from the master onto a receiver material, which is typically paper.
  • ink as. well as an aqueous fountain solution also called dampening liquid
  • the lithographic image which consists of oleophilic (or hydrophobic, i.e. ink-accepting, water-repelling) areas as well as hydrophilic (or oleophobic, i.e. water-accepting, ink-repelling) areas.
  • so- called driographic printing the lithographic image consists of ink- accepting and ink-abhesive (ink-repelling) areas and during driographic printing, only ink is supplied to the master.
  • Printing masters are generally obtained by the image-wise exposure and processing of an imaging material called plate precursor.
  • plate precursor an imaging material
  • pre-sensitized plates which are suitable for UV contact exposure through a film mask
  • heat-sensitive printing plate precursors have become very popular in the late 1990s.
  • thermal materials offer the advantage of daylight stability and are especially used in the so-called computer-to-plate method wherein the plate precursor is directly exposed, i.e. without the use of a film mask.
  • the material is exposed to heat or to infrared light and the generated heat triggers a (physico-) chemical process, such as ablation, polymerization, insolubilization by crosslinking of a polymer, heat- induced solubilization, or particle coagulation of a thermoplastic polymer latex.
  • a chemical process such as ablation, polymerization, insolubilization by crosslinking of a polymer, heat- induced solubilization, or particle coagulation of a thermoplastic polymer latex.
  • thermal plates form an image by a heat-induced solubility difference in an alkaline developer between exposed and non-exposed areas of the coating.
  • the coating typically comprises an oleophilic binder, e.g. a phenolic resin, of which the developer solubility is either reduced (negative working) or increased (positive working) by the image-wise exposure.
  • the solubility differential leads to the removal of the non-image (non-printing) areas of the coating, thereby revealing the hydrophilic support, while the image (printing) areas of the coating remain on the support.
  • Typical examples of such plates are described in EP-As 625728, 823327, 825927, 864420, 894622 and 901902.
  • the industrial manufacturing of printing plate precursors involves the steps of unwinding a coil of the support material in web form which is typically aluminum, coating one or more layers on the web, drying the coating by blowing hot air on the web and finally rewinding the coated web on a core or immediately cutting the coated web in sheets which are then stacked and packaged.
  • all these steps are carried out "on-line", i.e. on a moving web in a single continuous operation without any intermediate storage.
  • thermal plate precursors comprising phenolic resins is that their sensitivity is not stable over time because the coating gradually becomes more resistant against the developer and therefore more heat needs to be applied during the image-wise exposure for triggering the imaging mechanism.
  • a high sensitivity e.g.
  • WO 99/21715 proposes a heat treatment by leaving the material shortly after coating in an oven at 40 to 90°C for an extended period, which is at least 4 hours and most preferably at least 48 hours.
  • US 6,251,559 suggests that shorter treatments are possible by heating the cut sheets individually or in a spaced-apart array at a higher temperature, i.e. above the glass transition temperature of the composition. The elevated temperature preferably does not exceed 150°C.
  • 6,251,559 and WO 99/21715 can only be effected "off-line", i.e. a coil or a stack of sheets is placed in an oven and left there during the required time. Off-line storage however is to be avoided for several reasons. Besides additional cost and logistic implications, it is quite clear that a coil or stack cannot be heated uniformly since the interior of the coil or stack wilil go through a different temperature profile than the exterior. Therefore, there is a need for a method that provides an effective heat treatment which can be implemented on-line, before winding the web on a coil or cutting the web into sheets .
  • This object is realized by the method of claim 1, having the characterizing feature that the dried coating is subjected to a short heating step.
  • the long heat treatments which have been disclosed in the prior art and which can only be carried out off-line, are replaced by an on-line heating step which increases the web temperature up to at least 150°C, preferably at least 170°C, during a period of 0.1 to 60 seconds, more preferably from 1 to 30 seconds.
  • the method of the present invention allows to manufacture heat- sensitive printing plate precursors having a stable sensitivity within a couple of weeks instead of several months after manufacturing. No additional aging is required, but it is self evident that embodiments wherein a short on-line heating step according to the present invention is combined with an additional off-line heat treatment, are nevertheless within the scope of the present invention.
  • Figure 1 shows the web temperature profile during a preferred method of making a heat-sensitive lithographic printing plate precursor according to the present invention.
  • Figure 2 shows a schematic representation of an apparatus for performing a suitable example of the method of the present invention .
  • the heat-sensitive lithographic printing plate precursor of the present invention contains a hydrophilic support and a coating comprising a phenolic resin provided thereon.
  • the coating may consist of one or more layer (s) of which examples are discussed below.
  • the phenolic resin can be present in one or more layers of said coating.
  • any reference herein to the temperature of the precursor is considered as a reference to the temperature of the support as well as of the coating : typically, the coating is very thin, in the order of magnitude of one or a few micrometer, whereas the support has a typical thickness of between 0.1 and 0.5 millimeter; therefore the support, which is preferably a metal support, acts as a large heat sink towards the coating and the temperature of the coating is equal to or very close to the temperature of the support, irrespective whether the heating and cooling steps discussed herein are carried out by supplying heat or cold to the coated side or the back side of the precursor, or both.
  • thermocouple device which can be read out remotely, to the back side of the web as it moves through all the sections of the coating facility. In that way, a precise temperature profile can be recorded during all steps of the method of the present invention.
  • all temperatures reported herein are web temperatures obtained from said thermocouple.
  • the web temperature value is essentially equal to the temperature of the dry coating that is provided on the web.
  • Any coating method can be used for applying one or more coating solutions to the hydrophilic surface of the support.
  • a multi-layer coating can be applied by coating/drying each layer consecutively or by the simultaneous coating of several coating solutions at once.
  • Drying is typically carried out by blowing hot air onto the coating, typically at a temperature of at least 70°C, suitably 80-15O°C and especially 90-140°C. Also other heat sources, e.g. infrared lamps or microwave radiation, can be used in the drying step.
  • the drying time may typically be 15-600 seconds. However it is not necessary (and may not even be possible) to remove all the solvent in the drying step. Indeed the residual solvent content may be regarded as an additional composition variable by means of which the coating composition may be optimized.
  • the end of the drying step is therefore defined herein as the moment at which the coating becomes self-supporting and dry to the touch.
  • the heating step starts after the end of the drying step, preferably immediately thereafter.
  • the precursor is first allowed to cool between the drying and the heating step but this is not required.
  • heat is supplied to the dry coating so that the temperature of the coating is maintained at a higher value than if the precursor would be kept under ambient conditions (the temperature of the ambient air is set herein by definition at 20°C) . So the temperature of the precursor during the heating step can be lower than at the end of the drying step. More preferred, the temperature of the coating during the heating step is maintained at a value which is higher than the temperature of the coating at the end of the drying step.
  • the web temperature of the precursor is increased up to at least 150°C, preferably at least 170°C, during a period of 0.1 to 60 seconds, more preferably from 1 to 30 seconds.
  • the upper web temperature limit during the heating step is defined by the temperature threshold that is required to trigger the imaging mechanism of the coating. Said upper limit is therefore dependent on the particular composition of the coating, but is typically about 200 °C or more preferably about 250 °C . Heating at still higher temperature may induce irreversible chemical or physical changes in the coating which would render the precursor unsuitable for image recording. Heating can be carried out e.g. by blowing hot air and/or steam onto the lithographic printing plate precursor, by irradiating the precursor with infrared light or microwaves, or by contacting the precursor with a heated roller. Combinations of these methods are also suitable.
  • the hot air and/or steam has a temperature of more than 150 °C, preferably at least 170 °C.
  • the infrared light may irradiate the coating, the back side of the support or both. If the infrared light irradiates the coating, then it has a wavelength and/or intensity which does not trigger the imaging mechanism of the coating.
  • the heated roller which is preferably thermostatically controlled, may likewise be contacted against the coating, the back side of the support or both, the back side being preferred.
  • the roller is preferably a metal roller.
  • the precursor is preferably cooled before being wound on a core or cut in individual sheets.
  • the web may be wound on a core or cut into sheets immediately after the heating step and then allowed to cool.
  • the preferred cooling step is a fast, "active" cooling step, i.e. it reduces the temperature of the coating at a higher cooling rate than if the precursor would be kept under ambient conditions.
  • the cooling step is a multi-phase process wherein the active cooling can be interrupted by a "passive" cooling phase, typically in the transition of the temperature interval around the glass transition temperature of the coating as explained below.
  • Passive cooling is meant a cooling step during which the web is cooled at an average cooling rate which is lower than or equal to the cooling rate obtained if the precursor would be kept under ambient conditions.
  • the average cooling rate during the cooling step or during a cooling phase is defined as the ratio of the temperature difference between the beginning and end of the cooling step or phase and the duration of said cooling step or phase.
  • Active cooling can be obtained by various means, e.g. by contacting the precursor against one or more roller (s), preferably metal roller (s) so that the heat of the precursor is readily transferred to the roller (s) .
  • Other cooling methods are of course also possible, e.g. by blowing air onto the precursor.
  • a metal cooling roller is however preferred because, due to the intimate contact between the cooling roller and the precursor, a temperature decrease which is faster than if the precursor would be kept in ambient conditions, i.e. without contact with a cooling roller, can be induced even if the temperature of the cooling roller is maintained at a value which is higher than the temperature of the ambient air. So active cooling can be obtained by contacting the precursor, just after the heating step, against a metal cooling roller which has a temperature of e.g. 50 to 120 °C . Cooling rollers consisting of other materials, e.g. with a lower heat-capacity or heat-conductivity can also be used. The cooling roller can be contacted against the back side or the coated side of the web, or both.
  • a preferred minimum value of the average cooling rate is 0.5°C/s, more preferably l°C/s and even more preferably 3°C/s.
  • a very high average cooling rate e.g. more than 30°C/s, is to be avoided because the beneficial effect of the heating step can be reduced or even eliminated when the cooling occurs very fast. The reason therefore probably is related to the high content of amorphous state if the phenolic resin is rapidly cooled below its glass transition temperature (Tg) .
  • Tg glass transition temperature of the phenolic resin in the composition as it has been coated, dried and heated, i.e. the glass transition temperature of the coating comprising the phenolic resin. Said Tg value can readily be measured by the known calorimetric methods. If the coating comprises a high amount of .
  • the relaxation to a more crystalline state which inevitably occurs in the days or weeks after the coating then could explain the shift towards lower sensitivity that can be observed during the aging of the material.
  • cooling phase 1 rapid cooling to decrease the temperature of the precursor down to a value Tl, which is higher than Tg of the phenolic resin.
  • cooling phase 2 slower cooling to decrease the temperature of the precursor to a value T2 below Tg.
  • cooling phase 3 again rapid cooling down to about ambient temperature .
  • the first rapid cooling phases may involve a very high average cooling rate, e.g. at least 10°C/s, more preferably 10 to 20°C/s or even more than 20°C/s.
  • the transition of the temperature interval around Tg is made at a low average cooling rate, i.e. the web temperature of the precursor is reduced in the interval Tl to T2 at an average cooling rate which is lower than in phase 1, e.g. lower than 10°C/s.
  • Preferred values of Tl and T2 are
  • the rapid cooling in phase 1 progresses until the temperature of the precursor is just above Tg of the phenolic resin, then a slow cooling is set in from just above Tg to just below Tg and then, finally, another rapid cooling phase can be applied without inducing a significant impact on the aging behavior.
  • the range between "just above” and “just below” Tg as used herein is e.g. the range from Tg+5°C to Tg-5°C, more preferably from Tg+2°C to Tg-2°C.
  • the average cooling rate in the second cooling phase may be higher or lower than the cooling rate corresponding to ambient conditions, i.e. without the use of cooling means such as a roller.
  • a preferred average cooling rate in the second cooling phase ranges from 0.1°C/s to 5°C/s, more preferably 0.2°C/s to 3°C/s; values between l°C/s and 2°C/s produce excellent results.
  • Phenolic resins such as the commercially available novolacs have a typical Tg between 75 and 95°C, more typically between 80 and 90°C.
  • a typical example of a preferred web temperature profile according to the invention is shown in Fig. 1, wherein the Tg of the phenolic resin is 84°C.
  • the drying was carried out with hot air having a temperature of 130°C and hot air at 160°C was used for the heating step.
  • a rapid cooling was obtained from >150°C down to 100°C in a few seconds, followed by a slower cooling from 100° to 70°C in a period of 16 seconds (i.e. at an average cooling rate of 1.9°C/s) and finally again a rapid cooling phase to reach about ambient temperature in a few seconds .
  • the above described heating and cooling steps provide a material which is characterized by a stable sensitivity after an aging period which is significantly shorter than if the material has not been subjected to these steps, e.g. a couple of weeks compared to several months.
  • the coating of materials according to the invention also show a significant improvement of the resistance towards mechanical damage. More particularly, the rub resistance is highly enhanced by the above described cooling process wherein the interval around Tg is passed slowly.
  • the methods of the present invention can be carried out in a coating facility of which a typical example is shown in Figure 2.
  • the support 1 is unwound from a coil 2, then applied with one or more layers with coater 3, the coating is subsequently dried in a multi-section drier 4-5-6-7, heat-treated by heat source 8, which is e.g. an infrared light source or a nozzle blowing hot air, then cooled by roller 9 and finally wound up on core 13.
  • Heat source 8 which is e.g. an infrared light source or a nozzle blowing hot air
  • Roller 9 is preferably maintained at a temperature just above Tg of the phenolic resin and nozzle 10 just below Tg so that the transition of the temperature interval around Tg is slow.
  • the formation of the lithographic image by the plate precursor of the present invention is due to a heat-induced solubility differential of one or more layers of the coating during processing in the developer.
  • the developer solubility of the layer comprising the phenolic resin is changed by the exposure.
  • One or more additional layer (s) may contribute to the imaging process.
  • the coating may further comprise layer (s) which do not contribute to the imaging mechanism, e.g. a layer of which the solubility in the developer does not substantially change upon exposure.
  • An example thereof is a protective layer which is provided at the top of the coating and which may dissolve in the developer at both exposed and non-exposed areas.
  • layers which are provided between the support and the image-forming layers are typically not contributing to the imaging process.
  • the solubility differentiation between image (printing, oleophilic) and non-image (non-printing, hydrophilic) areas of the lithographic image is characterized by a kinetic rather than a thermodynamic effect, i.e. the non-image areas are characterized by a faster dissolution in the developer than the image-areas.
  • the non-image areas dissolve completely in the developer before the image areas are attacked so that the latter are characterized by sharp edges and high ink-acceptance.
  • the time difference between completion of the dissolution of the non- image areas and the onset of the dissolution of the image areas is preferably longer than 10 seconds, more preferably longer than 20 seconds and most preferably longer than 60 seconds, thereby offering a wide development latitude.
  • the printing plate precursor is negative-working, i.e. the image areas correspond to the exposed areas.
  • a suitable negative-working coating comprises a phenolic resin and a latent Bronsted acid which produces acid upon heating or IR radiation. These acids catalyze crosslinking of the coating in a post-exposure heating step and thus hardening of the exposed regions . Accordingly, the non-exposed regions can be washed away by a developer to reveal the hydrophilic substrate underneath.
  • the printing plate precursor is positive-working.
  • one or more layers of the coating are capable of heat-induced solubilization, i.e. they are resistant to the developer and ink-accepting in the non-exposed state and become soluble in the developer upon exposure to heat or infrared light to such an extent that the hydrophilic surface of the support is revealed thereby. So after exposure and development, the exposed areas are removed from the support and define hydrophilic, non-image (non-printing) areas, whereas the unexposed areas are not removed from the support and define an oleophilic image (printing) area.
  • the support of the lithographic printing plate precursor has a hydrophilic surface or is provided with a hydrophilic layer.
  • the support may be a sheet-like material such as a plate or it may be a cylindrical element such as a sleeve which can be slid around a print cylinder of a printing press.
  • the support is a metal support such as aluminum or stainless steel.
  • the support can also be a laminate comprising an aluminum foil and a plastic layer, e.g. polyester film.
  • a particularly preferred lithographic support is an electrochemically grained and anodized aluminum support. Graining and anodization of aluminum is well known in the art.
  • the anodized aluminum support may be treated to improve the hydrophilic properties of its surface.
  • the aluminum support may be silicated by treating its surface with a sodium silicate solution at elevated temperature, e.g. 95°C.
  • a phosphate treatment may be applied which involves treating the aluminum oxide surface with a phosphate solution that may further contain an inorganic fluoride.
  • the aluminum oxide surface may be rinsed with a citric acid or citrate solution. This treatment may be carried out at room temperature or may be carried out at a slightly elevated temperature of about 30 to 50 °C.
  • a further interesting treatment involves rinsing the aluminum oxide surface with a bicarbonate solution.
  • the aluminum oxide surface may be treated with polyvinylphosphonic acid, polyvinylmethylphosphonic acid, phosphoric acid esters of polyvinyl alcohol, polyvinylsulfonic acid, polyvinylbenzenesulfonic acid, sulfuric acid esters of polyvinyl alcohol, and acetals of polyvinyl alcohols formed by reaction with a sulfonated aliphatic aldehyde It is further evident that one or more of these post treatments may be carried out alone or in combination.
  • the support can also be a flexible support, which is provided with a hydrophilic layer, hereinafter called ⁇ base layer'.
  • the flexible support is e.g. paper, plastic film, thin aluminum or a laminate thereof.
  • Preferred examples of plastic film are polyethylene terephthalate film, polyethylene naphthalate film, cellulose acetate film, polystyrene film, polycarbonate film, etc.
  • the plastic film support may be opaque or transparent.
  • the base layer is preferably a cross-linked hydrophilic layer obtained from a hydrophilic binder cross-linked with a hardening agent such as formaldehyde, glyoxal, polyisocyanate or a hydrolyzed tetra-alkylorthosilicate .
  • hydrophilic base layers for use in accordance with the present invention are disclosed in EP-A- 601 240, GB-P- 1 419 512, FR-P- 2 300 354, US-P- 3 971 660, and US-P- 4 284 705.
  • the phenolic resin is preferably a binder having acidic groups with a pKa of less than 13 to ensure that it is soluble or at least swellable in aqueous alkaline developers.
  • the binder is a polymer or polycondensate having free phenolic hydroxyl groups, as obtained, for example, by reacting phenol, resorcinol, a cresol, a xylenol or a trimethylphenol with aldehydes, especially formaldehyde, or ketones.
  • the polymers may additionally contain units of other monomers which have no acidic units.
  • the phenolic resin is a novolac, a resole or a polyvinylphenol .
  • the novolac is preferably a cresol/formaldehyde or a cresol/xylenol/formaldehyde novolac, the amount of novolac advantageously being at least 50% by weight, preferably at least 80% by weight, based in each case on the total weight of all binders.
  • the amount of the phenolic resin is advantageously from 40 to 99.8% by weight, preferably from 70 to 99.4% by weight, particularly preferably from 80 to 99% by weight, based in each case on the total weight of the nonvolatile components of the coating.
  • the dissolution behavior of the phenolic resin in the developer can be fine-tuned by optional solubility regulating components. More particularly, development accelerators and development inhibitors can be used. These ingredients can be added to the layer which comprises the phenolic resin and/or to (an) other layer (s) of the coating.
  • Development accelerators are compounds which act as dissolution promoters because they are capable of increasing the dissolution rate of the phenolic resin.
  • cyclic acid anhydrides, phenols or organic acids can be used in order to improve the aqueous developability .
  • the cyclic acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 3, 6-endoxy-4-tetrahydro-phthalic anhydride, tetrachlorophthalic anhydride, maleic anhydride, chloromaleic anhydride, alpha-phenylmaleic anhydride, succinic anhydride, and pyromellitic anhydride, as described in U.S. Patent No.
  • Examples of the phenols include bisphenol A, p-nitrophenol, p- ethoxyphenol, 2, 4, 4 ' -trihydroxybenzophenone, 2, 3, 4-trihydroxy- benzophenone, 4-hydroxybenzophenone, 4, 4 ' , 4"-trihydroxy- triphenylmethane, and 4, 4 ' , 3", 4"-tetrahydroxy-3, 5, 3 ' , 5 ' - tetramethyltriphenyl-methane, and the like.
  • Examples of the organic acids include sulfonic acids, sulfinic acids, alkylsulfuric acids, phosphonic acids, phosphates, and carboxylic acids, as described in, for example, JP-A Nos.
  • organic acids include p-toluenesulfonic acid, dodecylbenzenesulfonic acid, p-toluenesulfinic acid, ethylsulfuric acid, phenylphosphonic acid, phenylphosphinic acid, phenyl phosphate, diphenyl phosphate, benzoic acid, isophthalic acid, adipic acid, p-toluic acid, 3, 4-dimethoxybenzoic acid, 3,4,5- trimethoxybenzoic acid, 3, , 5-trimethoxycinnamic acid, phthalic acid, terephthalic acid, 4-cyclohexene-l, 2-dicarboxylic acid, erucic acid, lauric acid, n-undecanoic acid, and ascorbic acid.
  • the amount of the cyclic acid anhydride, phenol, .or organic acid contained in the coating is preferably in the
  • the coating also contains developer resistance means, also called development inhibitors, i.e. one or more ingredients which are capable of delaying the dissolution of the unexposed areas during processing.
  • developer resistance means also called development inhibitors, i.e. one or more ingredients which are capable of delaying the dissolution of the unexposed areas during processing.
  • the dissolution inhibiting effect is preferably reduced by heating, so that the dissolution of the exposed areas is not delayed and a large dissolution differential between exposed and unexposed areas can thereby be obtained.
  • developer resistance means can be added to a layer which comprises the phenolic resin or to another layer of the material .
  • the compounds described in e.g. EP-A 823 327 and W097/39894 act as dissolution inhibitors due to interaction, e.g. by hydrogen bridge formation, with the alkali-soluble binder (s) in the coating.
  • Inhibitors of this type typically comprise a hydrogen bridge forming group such as nitrogen atoms, onium groups, carbonyl (-CO-) , sulfinyl (-SO-) or sulfonyl (-S0 2 -) groups and a large hydrophobic moiety such as one or more aromatic nuclei.
  • Other suitable inhibitors improve the developer resistance because they delay the penetration of the aqueous alkaline developer into the layer comprising the phenolic resin.
  • the barrier layer preferably comprises a polymeric material which is insoluble in or impenetrable by the developer, e.g. acrylic (co-) polymers, polystyrene, styrene-acrylic copolymers, polyesters, polyamides, polyureas, polyurethanes, nitrocellulosics, epoxy resins and silicones.
  • the solubility of the barrier layer in the developer or the penetrability of the barrier layer by the developer can be increased by exposure to heat or infrared light.
  • inhibitors of the latter type include water-repellent polymers such as a polymer comprising siloxane and/or perfluoroalkyl units.
  • the precursor comprises a barrier layer which contains such a water-repellent polymer in a suitable amount between 0.5 and 25 mg/m 2 , preferably between 0.5 and 15 mg/m 2 and most preferably between 0.5 and 10 mg/m 2 . Higher or lower amounts are also suitable, depending on the hydrophobic/oleophobic character of the compound.
  • the water- repellent polymer is also ink-repelling, e.g. in the case of polysiloxanes, higher amounts than 25 mg/m 2 can result in poor ink- acceptance of the non-exposed areas.
  • the polysiloxane may be a linear, cyclic or complex cross-linked polymer or copolymer.
  • the term polysiloxane compound shall include any compound which contains more than one siloxane group -Si (R, R' ) -0-, wherein R and R' are optionally substituted alkyl or aryl groups.
  • Preferred siloxanes are phenylalkylsiloxanes and dialkylsiloxanes .
  • the number of siloxane groups in the (co) olymer is at least 2, preferably at least 10, more preferably at least 20. It may be less than 100, preferably less than 60.
  • the water-repellant polymer is a block-copolymer or a graft-copolymer of a poly (alkylene oxide) and a polymer comprising siloxane and/or perfluoroalkyl units.
  • a suitable copolymer comprises about 15 to 25 siloxane units and 50 to 70 alkyleneoxide groups .
  • Preferred examples include copolymers comprising phenylmethylsiloxane and/or dimethylsiloxane as well as ethylene oxide and/or propylene oxide, such as Tego Glide 410, Tego Wet 265, Tego Protect 5001 or Silikophen P50/X, all commercially available from Tego Chemie, Essen, Germany.
  • Such a copolymer acts as a surfactant which upon coating, due to its bifunctional structure, tends to position itself at the interface between the coating and air and thereby forms a separate top layer even when applied as an ingredient of the same solution as the phenolic resin. Simultaneously, such surfactants act as a spreading agent which improves the coating quality.
  • the water-repellent polymer can be applied in a second solution, coated on top of the layer which comprises the phenolic resin. In that embodiment, it may be advantageous to use a solvent in the second coating solution that is not capable of dissolving the ingredients present in the first layer so that a highly concentrated water-repellent phase is obtained at the top of the material.
  • the coating preferably also contains a compound which absorbs infrared light and converts the absorbed energy into heat.
  • the IR absorbing compound may be present in the same layer as the phenolic resin, in the optional barrier layer discussed above or in an optional other layer.
  • the dye or pigment is concentrated in or near the barrier layer, e.g. in an intermediate layer between the oleophilic and the barrier layer.
  • said intermediate layer comprises the IR absorbing compound in an amount higher than the amount of IR absorbing compound in the oleophilic or in the barrier layer.
  • the concentration of the IR absorbing compound in the coating is typically between 0.25 and 10.0 wt.%, more preferably between 0.5 and 7.5 wt.%.
  • IR absorbing compounds are dyes such as cyanine and merocyanine dyes or pigments such as carbon black.
  • suitable IR absorbers are described in e.g. EP-As 823327, 978376, 1029667, 1053868, 1093934; WO 97/39894 and 00/29214.
  • a preferred compound is the following cyanine dye :
  • the protective layer generally comprises at least one water-soluble polymeric binder, such as polyvinyl alcohol, polyvinylpyrrolidone, partially hydrolyzed polyvinyl acetates, gelatin, carbohydrates or hydroxyethylcellulose, and can be produced in any known manner such as from an aqueous solution or dispersion which may, if required, contain small amounts, i.e. less than 5% by weight, based on the total weight of the coating solvents for the protective layer, of organic solvents.
  • the thickness of the protective layer can suitably be any amount, advantageously up to 5.0 ⁇ m, preferably from 0.1 to 3.0 ⁇ m, particularly preferably from 0.15 to 1.0 ⁇ m.
  • the coating and more specifically the one or more layer (s) which comprise the phenolic resin may further contain additional ingredients.
  • additional ingredients are e.g. additional binders, especially sulfonamide and phthalimide groups containing polymers, to improve the run length and chemical resistance of the plate.
  • additional binders especially sulfonamide and phthalimide groups containing polymers
  • examples of such polymers are those described in EP-A 933682, EP-A 894622 and WO 99/63407.
  • colorants can be added such as dyes or pigments which provide a visible color to the coating and which remain in the coating at unexposed areas so that a visible image is produced after exposure and processing.
  • contrast dyes are the amino-substituted tri- or diarylmethane dyes, e.g. crystal violet, methyl violet, victoria pure blue, flexoblau 630, basonylblau 640, auramine and malachite green.
  • any known method can be used.
  • the above ingredients can be dissolved in a solvent mixture which does not react irreversibly with the ingredients and which is preferably tailored to the intended coating method, the layer thickness, the composition of the layer and the drying conditions.
  • Suitable solvents include ketones, such as methyl ethyl ketone (butanone) , as well as chlorinated hydrocarbons, such as trichloroethylene or 1, 1, 1-trichloroethane, alcohols, such as methanol, ethanol or propanol, ethers, such as tetrahydrofuran, glycol-monoalkyl ethers, such as ethylene glycol monoalkyl ether, e.g.
  • 2-methoxy-l-propanol or propylene glycol monoalkyl ether and esters, such as butyl acetate or propylene glycol monoalkyl ether acetate. It is also possible to use a mixture which, for special purposes, may additionally contain solvents such as acetonitrile, dioxane, dimethylacetamide, dimethylsulfoxide or water .
  • the end-user can image-wise expose the lithographic printing plate precursor directly with heat, e.g. by means of a thermal head, or indirectly by infrared light, preferably near infrared light.
  • the infrared light is preferably converted into heat by an IR light absorbing compound as discussed above.
  • the heat-sensitive lithographic printing plate precursor of the present invention is preferably not sensitive to visible light, i.e. no substantial - 1 !
  • the coating is not sensitive to ambient daylight, i.e. visible (400-750 nm) and near UV light (300-400 nm) at an intensity and exposure time corresponding to normal working conditions so that the material can be handled without the need for a safe light environment .
  • “Not sensitive" to daylight shall mean that no substantial change of the dissolution rate of the coating in the developer is induced by exposure to ambient daylight.
  • the coating does not comprise photosensitive ingredients, such as (quinone) diazide or diazo (nium) compounds, photoacids, photoinitiators, sensitizers etc., which absorb the near UV and/or visible light that is present in sun light or office lighting and thereby change the solubility of the coating in exposed areas.
  • photosensitive ingredients such as (quinone) diazide or diazo (nium) compounds, photoacids, photoinitiators, sensitizers etc., which absorb the near UV and/or visible light that is present in sun light or office lighting and thereby change the solubility of the coating in exposed areas.
  • the printing plate precursor of the present invention can be exposed to infrared light by means of e.g. LEDs or a laser.
  • the light used for the exposure is a laser emitting near infrared light having a wavelength in the range from about 750 to about 1500 nm, such as a semiconductor laser diode, a NdrYAG or a
  • NdiYLF laser The required laser power depends on the sensitivity of the image-recording layer, the pixel dwell time of the laser beam, which is determined by the spot diameter (typical value of modern plate-setters at 1/e 2 of maximum intensity : 10-25 ⁇ m) , the scan speed and the resolution of the exposure apparatus (i.e. the number of addressable pixels per unit of linear distance, often expressed in dots per inch or dpi; typical value : 1000-4000 dpi) .
  • ITD plate- setters for thermal plates are typically characterized by a very high scan speed up to 500 m/sec and may require a laser power of several Watts.
  • XTD plate-setters for thermal plates having a typical laser power from about 200 mW to about 1 W operate at a lower scan speed, e.g. from 0.1 to 10 m/sec.
  • the known plate-setters can be used as an off-press exposure apparatus, which offers the benefit of reduced press down-time.
  • XTD plate-setter configurations can also be used for on-press exposure, offering the benefit of immediate registration in a multi-color press . More technical details of on-press exposure apparatuses are described in e.g. US 5,174,205 and US 5,163,368.
  • the non-image areas of the coating are removed by immersion in a conventional aqueous alkaline developer, which may be combined with mechanical rubbing, e.g. by a rotating brush.
  • a conventional aqueous alkaline developer which may be combined with mechanical rubbing, e.g. by a rotating brush.
  • any water-soluble protective layer present is also removed.
  • Silicate-based developers which have a ratio of silicon dioxide to alkali metal oxide of at least 1 are preferred to ensure that the alumina layer (if present) of the substrate is not damaged.
  • Preferred alkali metal oxides include Na 2 0 and K 2 0, and mixtures thereof.
  • the developer may optionally contain further components, such as buffer substances, complexing agents, antifoams, organic solvents in small amounts, corrosion inhibitors, dyes, surfactants and/or hydrotropic agents as well known in the art.
  • the development is preferably carried out at temperatures of from 20 to 40 °C in automated processing units as customary in the art.
  • alkali metal silicate solutions having alkali metal contents of from 0.6 to 2.0 mol/1 can suitably be used. These solutions may have the same silica/alkali metal oxide ratio as the developer (generally, however, it is lower) and likewise optionally contain further additives .
  • the required amounts of regenerated material must be tailored to the developing apparatuses used, daily plate throughputs, image areas, etc. and are in general from 1 to 50 ml per square meter of recording material .
  • the addition can be regulated, for example, by measuring the conductivity as described in EP-A 0 556 690.
  • the plate precursor according to the invention can, if required, then be post-treated with a suitable correcting agent or preservative as known in the art.
  • a suitable correcting agent or preservative as known in the art.
  • the layer can be briefly heated to elevated temperatures (“baking") .
  • the resistance of the printing plate to washout agents, correction agents and UV-curable printing inks also increases.
  • Such a thermal post-treatment is described, inter alia, in DE-A 14 47 963 and GB-A 1 154 749.
  • the processing of the plate precursor may also comprise a rinsing step, a drying step and/or a gumming step.
  • the printing plate thus obtained can be used for conventional, so-called wet offset printing, in which ink and an aqueous dampening liquid is supplied to the plate.
  • Another suitable printing method uses so-called single-fluid ink without a dampening liquid.
  • Single- fluid inks which are suitable for use in the method of the present invention have been described in US 4,045,232; US 4,981,517 and US 6,140,392.
  • the single-fluid ink comprises an ink phase, also called the hydrophobic or oleophilic phase, and a polyol phase as described in WO 00/32705.
  • composition was coated on a web of a conventional grained and anodized aluminum support at a wet coating thickness of 26 ⁇ m and a speed of 16 m/min :
  • the coating was dried with air having a temperature of 135°C and then subjected to a heating and a cooling step. During the heating step, air having the temperature indicated in Table 1 was blown onto the coating during 1.2 s. In comparative Example 1, the hot air nozzles were switched off. Immediately thereafter, the back side of the web was contacted with a metal cooling roller having the temperature indicated in Table 1. With a cooling roller at 57°C, the temperature of the heated coating is reduced to a value below Tg very rapidly (>30°C/s) . With a cooling roller at 75°C, the temperature interval around Tg is passed at a much lower rate.
  • the materials were then imaged on a Creo Trendsetter 3244 (830 nm) at various energy density settings .
  • the exposed plates were processed in an Agfa Autolith PN85 processor operating at a speed of 0.84 m/min using Agfa Ozasol EP26 developer at 25°C and finally gummed with Agfa Ozasol RC795.
  • the IR-sensitivity was defined as the minimum energy density that is required to obtain a 50% light absorption, measured on the developed plate at the wavelength maximum of the dye, in areas which have been exposed with a dot area of a 50% screen (@200 lpi) .
  • the sensitivity was determined on fresh material and on material aged at ambient conditions during the number of days as indicated in Table 1.
  • Example 4 and 5 were coated, dried and cooled as discussed above for Example 1 and 2 respectively, with the proviso that the hot air heating treatment in Example 2 was replaced in Example 5 by subjecting the coating to IR radiation (two 12 kW lamps) whereby the web temperature was increased to 150°C during 2.8 seconds.
  • the web temperature of the comparative Example 4 (IR lamps switched off) at the same moment was 60°C.
  • Table 2 demonstrates that Example 5 shows a highly improved aging behavior compared to Example 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
EP03756489A 2002-10-04 2003-09-12 Verfahren zur herstellung eines lithographischen druckplattenvorläufers Expired - Lifetime EP1558447B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03756489A EP1558447B1 (de) 2002-10-04 2003-09-12 Verfahren zur herstellung eines lithographischen druckplattenvorläufers

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP02102413 2002-10-04
EP02102413 2002-10-04
US41998802P 2002-10-21 2002-10-21
US419988P 2002-10-21
EP03756489A EP1558447B1 (de) 2002-10-04 2003-09-12 Verfahren zur herstellung eines lithographischen druckplattenvorläufers
PCT/EP2003/050621 WO2004030923A2 (en) 2002-10-04 2003-09-12 Method of marking a lithographic printing plate precursor

Publications (2)

Publication Number Publication Date
EP1558447A2 true EP1558447A2 (de) 2005-08-03
EP1558447B1 EP1558447B1 (de) 2007-08-15

Family

ID=35306279

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03756489A Expired - Lifetime EP1558447B1 (de) 2002-10-04 2003-09-12 Verfahren zur herstellung eines lithographischen druckplattenvorläufers

Country Status (6)

Country Link
EP (1) EP1558447B1 (de)
JP (1) JP2006501505A (de)
CN (1) CN100448689C (de)
AU (1) AU2003299180A1 (de)
DE (1) DE60315692T2 (de)
WO (1) WO2004030923A2 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060234161A1 (en) 2002-10-04 2006-10-19 Eric Verschueren Method of making a lithographic printing plate precursor
EP1605309A1 (de) * 2004-06-10 2005-12-14 Degraf S.P.A. Verfahren und Apparat zum Trocknen von Druckplatten für den Flexodruck
JP4732108B2 (ja) * 2005-10-06 2011-07-27 富士フイルム株式会社 平版印刷版の製造方法
DE602006009919D1 (de) 2006-08-03 2009-12-03 Agfa Graphics Nv Flachdruckplattenträger
JP4954758B2 (ja) * 2007-03-19 2012-06-20 新日本製鐵株式会社 耐食性および塗料密着性に優れためっき鋼板の製造方法
ES2344668T3 (es) 2007-11-30 2010-09-02 Agfa Graphics N.V. Metodo para tratar una plancha de impresion litografica.
EP2098376B1 (de) 2008-03-04 2013-09-18 Agfa Graphics N.V. Verfahren zur Herstellung eines Lithographiedruckplattenträgers
ES2365885T3 (es) 2008-03-31 2011-10-13 Agfa Graphics N.V. Un método para tratar una plancha de impresión litográfica.
ATE553920T1 (de) 2009-06-18 2012-05-15 Agfa Graphics Nv Lithographiedruckplattenvorläufer
EP2329951B1 (de) 2009-12-04 2012-06-20 AGFA Graphics NV Lithographiedruckplattenvorläufer
EP2668039B1 (de) 2011-01-25 2015-06-03 AGFA Graphics NV Vorläufer einer lithografischen druckplatte
ES2427137T3 (es) 2011-02-18 2013-10-29 Agfa Graphics N.V. Precursor de plancha de impresión litográfica
CN104870193B (zh) 2013-01-01 2017-12-22 爱克发印艺公司 (乙烯、乙烯醇缩醛)共聚物和它们在平版印刷版前体中的用途
EP2933278B1 (de) 2014-04-17 2018-08-22 Agfa Nv (Ethylen-,Vinylacetal-)Copolymere und ihre Verwendung in Lithographiedruckplattenvorläufern
ES2617557T3 (es) 2014-05-15 2017-06-19 Agfa Graphics Nv Copolímeros (de etileno, vinilacetal) y su uso en precursores de plancha de impresión litográfica
ES2660063T3 (es) 2014-06-13 2018-03-20 Agfa Nv Copolímeros (de etileno, vinilacetal) y su uso en precursores de plancha de impresión litográfica
EP2963496B1 (de) 2014-06-30 2017-04-05 Agfa Graphics NV Lithografiedruckplattenvorläufer mit (Ethylen-, Vinylacetal-) Copolymeren
EP3032334B1 (de) 2014-12-08 2017-10-18 Agfa Graphics Nv System zur Reduzierung von Ablationsrückständen
EP3130465B1 (de) 2015-08-12 2020-05-13 Agfa Nv Wärmeempfindlicher lithografiedruckplattenvorläufer
EP3157310A1 (de) 2015-10-12 2017-04-19 Agfa Graphics Nv Erfassungsblatt zur perforation elektrischer platten, wie etwa leiterplatten
EP3170662B1 (de) 2015-11-20 2019-08-14 Agfa Nv Flachdruckplattenvorläufer
BR112018068709A2 (pt) 2016-03-16 2019-01-15 Agfa Nv método para processar uma chapa de impressão litográfica
EP3637188A1 (de) 2018-10-08 2020-04-15 Agfa Nv Sprudelnder entwicklervorläufer zur verarbeitung eines lithografischen druckplattenvorläufers
EP3778253A1 (de) 2019-08-13 2021-02-17 Agfa Nv Verfahren zur verarbeitung einer lithografiedruckplatte
WO2021193423A1 (ja) * 2020-03-23 2021-09-30 東レ株式会社 円筒状印刷版および印刷物の製造方法
EP4239411A1 (de) 2022-03-04 2023-09-06 Eco3 Bv Verfahren und vorrichtung zum verarbeiten eine lithografiedruckplattenvorläufers
EP4382306A1 (de) 2022-12-08 2024-06-12 Eco3 Bv Make-ready-verfahren für eine lithographische druckmaschine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323682A (ja) * 1992-05-18 1993-12-07 Konica Corp 印刷版の製版方法
US5372915A (en) 1993-05-19 1994-12-13 Eastman Kodak Company Method of making a lithographic printing plate containing a resole resin and a novolac resin in the radiation sensitive layer
RU2153986C2 (ru) 1996-04-23 2000-08-10 Хорселл Грэфик Индастриз Лимитед Термочувствительная композиция и способ ее применения для изготовления литографической печатной формы
JP3814961B2 (ja) 1996-08-06 2006-08-30 三菱化学株式会社 ポジ型感光性印刷版
EP0864420B2 (de) 1997-03-11 2005-11-16 Agfa-Gevaert Wärmempfindliches Aufzeichnungselement zur Herstellung von positiv arbeitenden Flachdruckformen
JP3779444B2 (ja) 1997-07-28 2006-05-31 富士写真フイルム株式会社 赤外線レーザ用ポジ型感光性組成物
GB9722861D0 (en) * 1997-10-29 1997-12-24 Horsell Graphic Ind Ltd Improvements in relation to the manufacture of lithographic printing forms
EP0901902A3 (de) 1997-09-12 1999-03-24 Fuji Photo Film Co., Ltd. Positiv arbeitende lichtempfindliche Zusammensetzung für Infrarot Bebilderung
US6007240A (en) * 1998-04-14 1999-12-28 Ta Instruments, Inc. Method and apparatus for modulated-temperature thermomechanical analysis
US6251559B1 (en) * 1999-08-03 2001-06-26 Kodak Polychrome Graphics Llc Heat treatment method for obtaining imagable coatings and imagable coatings
JP4233199B2 (ja) * 2000-06-30 2009-03-04 富士フイルム株式会社 平版印刷版の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004030923A2 *

Also Published As

Publication number Publication date
CN100448689C (zh) 2009-01-07
AU2003299180A1 (en) 2004-04-23
DE60315692D1 (de) 2007-09-27
WO2004030923A3 (en) 2004-05-13
JP2006501505A (ja) 2006-01-12
WO2004030923A2 (en) 2004-04-15
CN1688450A (zh) 2005-10-26
EP1558447B1 (de) 2007-08-15
DE60315692T2 (de) 2008-06-05

Similar Documents

Publication Publication Date Title
EP1558447B1 (de) Verfahren zur herstellung eines lithographischen druckplattenvorläufers
EP1551642B1 (de) Verfahren zur herstellung eines lithographischen druckplattenvorläufers
EP1551643B1 (de) Verfahren zur herstellung einer lithografischen druckplatte
EP1506854B1 (de) Verfahren zum Nacheinbrennen von lithographischen Druckplatten
EP1594696B1 (de) Wärmeempfindlicher lithographischer druckplattenvorläufer
EP1738902A1 (de) Verfahren zur Herstellung eines lithographischen Druckplattenvorläufer
US7195859B2 (en) Method of making a lithographic printing plate precursor
US20040048195A1 (en) Heat-sensitive lithographic printing plate precursor
EP1462247B1 (de) Positiv-arbeitender, wärmeempfindlicher Flachdruckplattenvorläufer
US20060000377A1 (en) Method of marking a lithographic printing plate precursor
US20050136356A1 (en) Heat-sensitive lithographic printing plate precursor
EP1396338B1 (de) Wärmeempfindlicher Flachdruckplattenvorläufer
US20040191678A1 (en) Positive working heat-sensitive lithographic printing plate precursor
EP1256444A1 (de) Positivarbeitende lithographische Druckplattenvorläufer
US20070003875A1 (en) Method for preparing a lithographic printing plate precursor
US7294447B2 (en) Positive-working lithographic printing plate precursor
EP1462252A1 (de) Positiv arbeitender wärmeempfindlicher lithographischer Druckplattenvorläufer
EP1543959B1 (de) Wärmeempfindlicher lithographischer Druckplattevorläufer
EP1295717B1 (de) Wärmeempfindlicher positiv arbeitender Flachdruckplattenvorläufer
US20070003869A1 (en) Heat-sensitive lithographic printing plate-precursor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050504

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB NL

17Q First examination report despatched

Effective date: 20061012

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGFA GRAPHICS N.V.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD OF MAKING A LITHOGRAPHIC PRINTING PLATE PRECURSOR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60315692

Country of ref document: DE

Date of ref document: 20070927

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080516

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60315692

Country of ref document: DE

Owner name: AGFA NV, BE

Free format text: FORMER OWNER: AGFA GRAPHICS N.V., MORTSEL, BE

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: AGFA NV; BE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: AGFA GRAPHICS N.V.

Effective date: 20180126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: AGFA NV, BE

Effective date: 20180628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190730

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190731

Year of fee payment: 17

Ref country code: DE

Payment date: 20190731

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190731

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60315692

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200912