EP1554521B1 - Led projector for asymmetrical illumination - Google Patents

Led projector for asymmetrical illumination Download PDF

Info

Publication number
EP1554521B1
EP1554521B1 EP03758006A EP03758006A EP1554521B1 EP 1554521 B1 EP1554521 B1 EP 1554521B1 EP 03758006 A EP03758006 A EP 03758006A EP 03758006 A EP03758006 A EP 03758006A EP 1554521 B1 EP1554521 B1 EP 1554521B1
Authority
EP
European Patent Office
Prior art keywords
light
illumination device
semiconductor light
optics
optical elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03758006A
Other languages
German (de)
French (fr)
Other versions
EP1554521A1 (en
Inventor
Manfred Griesinger
Markus Hartlieb
Wilhelm Kincses
Hans-Georg Leis
Siegfried Rothe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10310263A external-priority patent/DE10310263A1/en
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1554521A1 publication Critical patent/EP1554521A1/en
Application granted granted Critical
Publication of EP1554521B1 publication Critical patent/EP1554521B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/322Optical layout thereof the reflector using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to an LED headlamp which has an asymmetrical illumination characteristic and a method for operating such a headlamp according to the preamble of claims 1 and 10.
  • a vehicle headlamp should be designed so that it shapes the light emitted by it so that as a result of the superposition the exiting light creates a prescribed for vehicle headlights light distribution; In particular, the formation of a clear bright-dark border and an asymmetrical characteristic of the illumination to avoid the glare of oncoming traffic is necessary.
  • the publication US 2001/019486 A1 also discloses a headlight comprising a field of individual radiator elements based on semiconductor light sources. In this case, it is possible in each case to control a plurality of the individual radiators in groups so as to radiate light specifically into predefined spatial areas. By suitable interconnection of individual emitters so the lighting characteristics of the headlight can be controlled.
  • the illumination system described in US Pat. No. 6,144,158 A by employing a field of semiconductor lasers or alternatively a deflection device for the light beam of a single semiconductor laser, produces an illumination characteristic which has the clear light-dark boundary required in road traffic and an asymmetrical characteristic.
  • a laser light source which is necessary for the light bundling and which is less robust and expensive than shaking, has a disadvantageous effect on the possibilities of economically feasible realization.
  • a realized on the basis of cost-effective LED light sources headlight is known from the document DE 100 05 795 A1.
  • a variable in its luminous characteristic headlight realized by a field of individual emitters with at least one arranged in front of each individual emitter optics.
  • Each of these optics can be moved in relation to the individual elements in all three spatial directions in order to influence the respective light beam emitted by the individual light element. In this way, variable control of the beam emitted by the headlight can be achieved.
  • the object of the invention is therefore to find an inexpensive to manufacture lighting device which has an asymmetric lighting characteristic, which at the same time has a clear bright-dark boundary and thereby exploits as possible the entire output from the semiconductor light source radiation power.
  • the illumination optics is formed by a field (array) of single optics.
  • the individual optics are designed as flat as possible in an inventive manner, so that the light entrance opening of the optics has an elongated, substantially rectangular shape.
  • each individual optics has a central region perpendicular to the light entry surface, the projection of which in a two-dimensional plane corresponds to a cylindrical 2-dimensional cartoval.
  • a kartoval is a geometric surface which, as the interface of a refractive medium, collects the light emanating from one focal point, even for large aperture angles in a second focal point.
  • the light exit surface of the optic formed in the form of a Kartoval is combined with a parabolic reflector.
  • FIG. 1 shows the beam geometry on which the calculation is based.
  • Light beam 20 is intended here to represent that light which emerges perpendicularly from the light source 60 without refraction at the edge 10 of the optical system from its light exit surface.
  • Light beam 21 exits at an angle ⁇ from the semiconductor light source and impinges on the inside of the wall 10 at an angle d ⁇ against the normal. For this reason, the light beam 21 is refracted and exits at an angle ⁇ from the optics at the light exit surface.
  • the wall 10 Since the wall 10 has the contour of a Kartoval in an inventive manner, the light beam 21 is deflected in such a way that it runs parallel to the unbroken light beam 20 after exiting the optics.
  • sin ⁇ sin ⁇ n
  • FIG. 3 shows the beam path of the light beams 21a-d for a point source 60 and the resulting critical angle ⁇ g .
  • the illumination optics which essentially have the shape of a two-dimensional Kartoval, are combined with a parabolic reflector. This reflector should also have the property of converting the light emanating from the focal point into a parallel bundle.
  • the inventive optics is made quite flat, wherein the light entrance opening F has a substantially rectangular cross section, wherein a Dimension of the cross-section is substantially smaller than the other; as will be explained below with reference to Figure 10, is the rectangular cross-section is advantageously made so narrow that just a semiconductor light source 60 can be attached to the entire surface of the optics.
  • a 3-dimensional edge image of this optical system is depicted in four different views in FIG. 4 a.
  • the illustrations above all emphasize the edges of the optics, as shown in hatched form the side surfaces A, B and 10 (light exit opening).
  • FIG. 5 shows the projection of the side face E of the optics according to the invention, in which case the contour of the kartoval shaped central region and of the parabolic reflector adjoining the outside thereof clearly appears.
  • the reflector is now designed so that at the corresponding to the surfaces C and D regions 40a and 40b of the contour at the light exit of the beam 23a refraction takes place in such a way that the emerging from the optics beams 23a and 21 run parallel.
  • the course of the light beam 23a should thereby be influenced by turning the parabolic contour 41a corresponding to the outer surfaces A and B of the optics in the direction towards 41b.
  • the parabola contour 41 is to be rotated inwards by the necessary angle in order to avoid that a light beam 23x emerges from the optics, which does not run parallel to the other parallel beam.
  • FIG. 6 shows as a result of a calculation the energy distribution of the light emerging from the optical system according to the invention.
  • the intensity distribution in the x-direction and the y-direction is shown in the form of a curve. It is thus clear that the light beam emerging from the optics is strongly bundled in the y-direction. Also in the x-direction, the light intensity emitted by the optics is clearly localized.
  • the horizontal width of the light spot can be influenced by tilting the side surfaces E of the optics in such a way that the optic tapers from the light exit surface G towards the light entry surface F.
  • a corresponding geometry is shown in Figure 7, which shows a side view from the direction of the side surface A and B respectively. It is clear that in this profitable embodiment of the invention, the height extent F l of the light entrance surface F of the optics smaller as the height extent G l whose light exit surface 10 is.
  • Such elements, especially with parabolic side surfaces are known from solar technology (CPC, Compound Parabolic Concentrator).
  • the curved course of the side face E for a parabolic curvature is indicated by a dashed line.
  • a suitably parabolically shaped reflector for optimal utilization of the light emitted by the light source can be adapted to a cartouched central region formed in this way.
  • the cross-section whose light entry surface F deviates from the generally rectangular shape has a trapezoidal shape, as shown in FIG.
  • the side surfaces of this trapezoidal shape are inclined by the angle ⁇ and ⁇ relative to the horizontal. It is conceivable that the two inclination angles ⁇ and ⁇ in their amount equal or to choose different from each other.
  • FIG. 9 shows the result of a calculation of the energy distribution of the light emerging from the advantageous optic with inclined side surfaces. In the calculation, the inclination angles ⁇ and ⁇ were set to 5 ° and 7 °, respectively.
  • the intensity profile of the light emerging from a substantially vertically arranged optical system is again shown in false color representation.
  • the intensity distribution at specific positions in the x-direction and y-direction is shown in the form of a curve.
  • the radiation characteristic of the optics in the far field contrary to the case shown in Figure 6, a significant curvature perpendicular to the radiation direction.
  • this radiation characteristic also shows a clear light / dark transition. In this simulation as well, it was assumed that the light source is centered with respect to the light entrance surface F of the optics.
  • FIG. 10 shows the projection of the light entry surface F of the inventive optical system, in this case with a rectangular cross section, with a semiconductor light source 60 adjoining centrally in the middle.
  • the semiconductor light source 60 is applied centrally on the light entry surface as shown in FIG.
  • the thickness dimension of the optics is selected in a profitable manner so that it exceeds the dimensions of the semiconductor light source 60 as little as possible. In this way, optics with optimally small footprint, whereby it is possible to accommodate a variety of optics within a lighting source according to the invention in a small space and thus to achieve maximum light output.
  • the semiconductor light source 60 By moving the semiconductor light source 60 along the connecting line between the points P1 and P2, it is achieved that the light from the optics emerges asymmetrically. It is conceivable either to position the semiconductor light source 60 fixedly at an arbitrary position along this connecting line, in order to achieve the desired asymmetrical radiation characteristic, or to arrange the optic slidably over the semiconductor light source 60, so that the desired asymmetry of the light emission by suitable displacement of the optics can be achieved with respect to the semiconductor light source 60. Alternatively, it is also conceivable to arrange a plurality of semiconductor light sources at the light entry surface F of the individual optics along the connecting line between P1 and P2 instead of a displaceable optic. Thus, the light emerging from the optics can be changed in its luminous characteristic advantageously without mechanical adjustment, simply by selective electrical control and selection.
  • the optics In the arrangement of the optics to the illumination device according to the invention, it is conceivable in an advantageous manner individually to arrange the individual semiconductor light sources 60 to the respective optics arranged in a field so that the illumination device has an asymmetric radiation characteristic. Additionally or alternatively, however, it is also conceivable to achieve the asymmetrical radiation characteristic by arranging custom-shaped optics adapted to the desired light emission; in this case, it is conceivable that part of the optics having a rectangular light entrance surface F (corresponding to FIG. 10) and another part of the optics to perform with trapezoidal light entry surfaces F (corresponding to Figure 8). Also, in a profitable manner, the optics at least in part accordingly be executed the embodiment shown in Figure 7.
  • the individual optics within the illumination device are assigned to a plurality of semiconductor light sources, pivoting of the illuminated cone emitted by the device or, in general, a change in the asymmetrical illumination properties of the illumination device can be effected by one of the plurality of optics associated with each Semiconductor light sources is driven.
  • Such alternating activation of the light sources mounted on a single optics leads to the same beam pivoting as is the case in the prior art for displaceably arranged lens optics, without, however, having to resort to a prone, less robust mechanism.
  • this advantageous embodiment also offers the possibility of individually controlling the individual optics within a group of optics without any outlay; this is not economically viable in the case of a mechanically variable deflection device.
  • the lighting device is designed so that the semiconductor light sources independently of the other individually or in groups can be controlled dimmed or activated or deactivated to light targeted and situation adapted to the environment can.
  • the inventive lighting device is suitable for use as a headlight in a motor vehicle to illuminate the environment in front of the vehicle asymmetrically.
  • the individual optics associated with the headlamp are aligned with respect to the road surface such that the x-axes of the optics are substantially parallel thereto; i.e. the individual optics should be arranged essentially vertically (corresponding to, for example, FIG. 4).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The invention relates to a novel projector which has an asymmetrical illumination characteristic, and a clear light-dark limit, and uses almost the entire radiation power outputted from the semiconductor light source. To this end, the projector consists of a field of individual semiconductor light sources which are provided with optical elements having a novel form. Said optical elements have as flat a form as possible, such that the light admission inlet of the optical element has an elongated, essentially rectangular form. Furthermore, the optical elements comprise a central region, perpendicular to the light admission surface (F), the projection of said central region into a two-dimensional plane corresponding to a cylindrical two-dimensional cartesian oval. According to the invention, in order to better use the light emitted from the semiconductor light source, the light emergence surface (G) of the optical element, in the form of a cartesian oval, is combined with a parabolic reflector (A, B).

Description

Die Erfindung betrifft einen LED-Scheinwerfer, welcher eine asymmetrischer Ausleuchtungscharakteristik aufweist und ein Verfahren zum Betrieb eines solchen Scheinwerfers gemäß dem Oberbegriff der Patentansprüche 1 und 10.The invention relates to an LED headlamp which has an asymmetrical illumination characteristic and a method for operating such a headlamp according to the preamble of claims 1 and 10.

Das Steuern eines Fahrzeugs im Verkehr ist eine anspruchsvolle, hoch dynamischen Aufgabe. Sie stellt erhebliche Anforderungen an visuelle Wahrnehmung, kognitive Verarbeitung und motorische Koordination des Fahrers. In der Literatur findet sich ein allgemeiner Konsens, dass etwa 90 Prozent der im Straßenverkehr relevanten Informationen durch den Sehsinn aufgenommen werden. Dementsprechend wichtig ist eine gute Ausleuchtung des Verkehrsraumes bei Dämmerung und Dunkelheit und bei Witterungssituationen, in denen das natürliche Licht nicht ausreicht. Die gegenwärtig noch gültigen ECE-Vorschriften für das asymmetrische Abblendlicht auf europäischen Straßen stellen einen Kompromiss zwischen guter Sicht und möglichst geringer Behinderung anderer Verkehrsteilnehmer dar. Ein Fahrzeugscheinwerfer ist dahingehend zu gestalten, dass er das von ihm ausgesandte Licht so formt, dass als Ergebnis der Überlagerung des austretenden Lichts eine für Fahrzeugscheinwerfer vorgeschriebene Lichtverteilung entsteht; insbesondere ist die Ausbildung einer deutlichen Hell-Dunkelgrenze und eine asymmetrische Charakteristik der Ausleuchtung zur Vermeidung der Blendung des Gegenverkehrs notwendig.Driving a vehicle in traffic is a demanding, highly dynamic task. It places considerable demands on visual perception, cognitive processing and motor coordination of the driver. There is a general consensus in the literature that about 90 percent of information relevant to road traffic is absorbed by the sense of sight. Accordingly, it is important to have a good illumination of the traffic area at twilight and in darkness and in weather situations in which the natural light is insufficient. The currently valid ECE regulations for asymmetric low beam on European roads represent a compromise between good visibility and the least possible obstruction of other road users. A vehicle headlamp should be designed so that it shapes the light emitted by it so that as a result of the superposition the exiting light creates a prescribed for vehicle headlights light distribution; In particular, the formation of a clear bright-dark border and an asymmetrical characteristic of the illumination to avoid the glare of oncoming traffic is necessary.

Auch aus der Offenlegungsschrift US 2001/019486 A1 ist ein Scheinwerfer bestehend aus einem Feld von Einzelstrahlerelementen auf Basis von Halbleiterlichtquellen bekannt. Hierbei ist es möglich jeweils mehrere der Einzelstrahler in Gruppen anzusteuern um so Licht gezielt in vordefinierte Raumbereiche abzustrahlen. Durch geeignete Zusammenschaltung von Einzelstrahlern kann so die Beleuchtungscharakteristik des Scheinwerfers gesteuert werden.The publication US 2001/019486 A1 also discloses a headlight comprising a field of individual radiator elements based on semiconductor light sources. In this case, it is possible in each case to control a plurality of the individual radiators in groups so as to radiate light specifically into predefined spatial areas. By suitable interconnection of individual emitters so the lighting characteristics of the headlight can be controlled.

Das in US 6 144 158 A beschriebene Beleuchtungssystem erzeugt durch den Einsatz eines Feldes von Halbleiterlasern oder alternativ einer Ablenkvorrichtung für den Lichtstrahl eines einzelnen Halbleiterlasers eine Beleuchtungscharakteristik, welche über die im Straßenverkehr geforderte deutliche Hell-Dunkel-Grenze und eine asymmetrische Charakteristik verfügt. Nachteilig in Bezug auf die Möglichkeiten einer wirtschaftlich sinnvollen Realisierung wirkt sich hierbei jedoch die Verwendung einer für die Lichtbündelung notwendigen, gegenüber Erschütterungen aber wenig robusten und teuren Laserlichtquelle aus.The illumination system described in US Pat. No. 6,144,158 A, by employing a field of semiconductor lasers or alternatively a deflection device for the light beam of a single semiconductor laser, produces an illumination characteristic which has the clear light-dark boundary required in road traffic and an asymmetrical characteristic. However, the use of a laser light source which is necessary for the light bundling and which is less robust and expensive than shaking, has a disadvantageous effect on the possibilities of economically feasible realization.

Ein auf Basis kostengünstiger LED-Lichtquellen realisierter Scheinwerfer ist aus der Schrift DE 100 05 795 A1 bekannt. Dabei wird ein in seiner Leuchtcharakteristik variabler Scheinwerfer, durch ein Feld von Einzelemittern mit wenigstens einer vor jedem Einzelemitter angeordneten Optik realisiert. Jede dieser Optiken kann gegenüber den Einzelelementen in allen drei Raumrichtungen verschoben werden, um den jeweiligen von dem einzelnen Lichtelement ausgesandten Lichtstrahl zu beeinflussen. Auf diese Weise läst sich eine variable Steuerung des von dem Scheinwerfer ausgesandten Strahlenbündels erreichen.A realized on the basis of cost-effective LED light sources headlight is known from the document DE 100 05 795 A1. In this case, a variable in its luminous characteristic headlight, realized by a field of individual emitters with at least one arranged in front of each individual emitter optics. Each of these optics can be moved in relation to the individual elements in all three spatial directions in order to influence the respective light beam emitted by the individual light element. In this way, variable control of the beam emitted by the headlight can be achieved.

Auf Grund der für die verwandten LED-Optik typische, einen großen Öffnungswinkel aufweisende, rotationssymmetrische Lichtverteilung läst sich jedoch keine den Vorschriften des Straßenverkehrs entsprechende und eine deutliche Hell-Dunkelgrenze aufweisende Lichtverteilung schaffen.Due to the typical for the related LED optics, a large opening angle having rotationally symmetric light distribution but can not create the rules of road traffic and a clear light-dark boundary having light distribution.

Aufgabe der Erfindung ist es daher, eine kostengünstig zu fertigende Beleuchtungsvorrichtung zu finden, die über eine asymmetrische Beleuchtungscharakteristik verfügt, welche zugleich eine deutliche Hell-Dunkelgrenze aufweist und dabei möglichst die gesamte von der Halbleiterlichtquelle abgegebene Strahlungsleistung ausnutzt.The object of the invention is therefore to find an inexpensive to manufacture lighting device which has an asymmetric lighting characteristic, which at the same time has a clear bright-dark boundary and thereby exploits as possible the entire output from the semiconductor light source radiation power.

Die Aufgabe wird durch eine Beleuchtungsvorrichtung und ein Verfahren zum Betrieb einer solchen Vorrichtung geeignetes Verfahren mit den Merkmalen der Patentansprüche 1 und 10 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung werden durch die untergeordneten Ansprüche aufgezeigt. Die Erfindung wird nachfolgen im Detail anhand von Ausführungsbeispielen und Figuren erläutert.The object is achieved by a lighting device and a method for operating such a device suitable method having the features of claims 1 and 10. Advantageous embodiments and further developments of the invention are shown by the subordinate claims. The invention will be explained in detail below with reference to embodiments and figures.

Die Beleuchtungsoptik wird durch ein Feld (Array) von Einzeloptiken gebildet. Hierbei werden die einzelnen Optiken in erfinderischer Weise möglichst flach ausgeführt, so dass die Lichteintrittsöffnung der Optiken eine längliche, im wesentlichen rechteckige Form aufweist. Dabei weist jede einzelne Optik senkrecht zur Lichteintrittsfläche einen Zentralbereich auf, dessen Projektion in eine zweidimensionale Ebene einem zylindrischen 2-dimensionalen Kartovals entspricht. Ein Kartoval ist eine geometrische Fläche, die als Grenzfläche eines brechenden Mediums das von einem Brennpunkt ausgehende Licht auch für große Öffnungswinkel in einem zweiten Brennpunkt sammelt. Um das von der Halbleiterlichtquelle ausgehende Licht noch besser zu nutzen, wird im Rahmen der Erfindung die in Form eines Kartovals geformte Lichtaustrittsfläche der Optik, mit einem parabolischen Reflektor kombiniert.The illumination optics is formed by a field (array) of single optics. Here, the individual optics are designed as flat as possible in an inventive manner, so that the light entrance opening of the optics has an elongated, substantially rectangular shape. In this case, each individual optics has a central region perpendicular to the light entry surface, the projection of which in a two-dimensional plane corresponds to a cylindrical 2-dimensional cartoval. A kartoval is a geometric surface which, as the interface of a refractive medium, collects the light emanating from one focal point, even for large aperture angles in a second focal point. In order to make better use of the light emanating from the semiconductor light source, in the context of the invention the light exit surface of the optic formed in the form of a Kartoval is combined with a parabolic reflector.

Im nachfolgenden wird mittels Figuren und anhand der mathematischen Herleitung der Geometrie der erfindungsgemäßen Optik die vorteilhaften Ausbildungen der Erfindung im Detail diskutiert. Hierbei wird ausgehend von einer vorteilhaften Verwendung der Optiken innerhalb von Scheinwerfern nur der Fall betrachtet, dass der zweite Brennpunkt, in welchem die von der Lichtquelle ausgehenden Lichtstrahlen zusammentreffen, im Unendlichen liegt, d.h. das Strahlenbündel wird in ein paralleles Strahlenbündel umgewandelt. Auf diese Weise wird die mathematische Behandlung des Systems stark vereinfacht. Weitere Figuren dienen der eingehenden Erläuterung der vorteilhaften Ausgestaltungen und Weiterbildungen der Erfindung.

Figur 1
zeigt die der Brechung an der Lichtaustrittsfläche der Optik zugrunde liegende Strahlengeometrie.
Figur 2
stellt die aus der Berechnung resultierende Konturlinie eines Kartovals dar.
Figur 3
repräsentiert den von einer Punktquelle ausgehende Strahlengang und zeigt den aus der Geometrie der Optik resultierenden Grenzwinkel der Reflektion auf.
Figur 4
zeigt eine 3-dimensionale Ansicht einer erfindungsgemäßen Optik.
Figur 4a
bildet die in Figur 4 gezeigte Optik als 3-dimensionales Kantenbild in vier unterschiedlichen Ansichten ab.
Figur 5
zeigt eine Querschnitt durch die erfindungsgemäße Optik mit der notwendigen Anpassung des parabolischen Kontur des Reflektors.
Figur 6
zeigt die Energieverteilung des aus der erfindungsgemäßen Optik austretenden Lichtes.
Figur 7
zeigt schematisch den Teil einer alternativen Ausführungsform der Optik auf Basis eines ,compund parabolic reflector'.
Figur 8
zeigt schematisch eine weiter alternative Ausführungsform der Optik (mit Blick auf die Lichteintrittsfläche), mittels welcher der von der Optik ausgehende Lichtkegel gezielt gekrümmt werden kann.
Figur 9
zeigt die Energieverteilung einer alternativen Optik entsprechend Figur 8.
Figur 10
beschreibt die Positionierung von Halbleiterlichtquellen an der erfindungsgemäßen Optik
In the following, the advantageous embodiments of the invention will be discussed in detail by means of figures and based on the mathematical derivation of the geometry of the optical system according to the invention. Here, starting from an advantageous use of the optics within headlamps, only the case is considered that the second focal point, in which the light beams emanating from the light source coincide, lies at infinity, ie the beam is converted into a parallel beam. In this way, the mathematical Treatment of the system greatly simplified. Further figures serve to explain in detail the advantageous embodiments and further developments of the invention.
FIG. 1
shows the beam geometry underlying the refraction at the light exit surface of the optics.
FIG. 2
represents the contour line of a Kartoval resulting from the calculation.
FIG. 3
represents the beam path emanating from a point source and shows the limit angle of the reflection resulting from the geometry of the optics.
FIG. 4
shows a 3-dimensional view of an optical system according to the invention.
FIG. 4a
forms the optics shown in Figure 4 as a 3-dimensional edge image in four different views.
FIG. 5
shows a cross section through the optical system according to the invention with the necessary adjustment of the parabolic contour of the reflector.
FIG. 6
shows the energy distribution of the light emerging from the optical system according to the invention.
FIG. 7
schematically shows the part of an alternative embodiment of the optics based on a 'compund parabolic reflector'.
FIG. 8
schematically shows a further alternative embodiment of the optics (with a view of the light entry surface), by means of which the light cone emanating from the optics can be purposefully curved.
FIG. 9
shows the energy distribution of an alternative optics according to FIG. 8.
FIG. 10
describes the positioning of semiconductor light sources on the optics according to the invention

Nachfolgend wird zur Verdeutlichung der Form eines Kartovals die mathematische Herleitung dessen Konturkurve aufgezeigt. Figur 1 zeigt hierzu die der Berechung zu Grunde liegende Strahlengeometrie. Dabei sind ausgehend von einer Lichtquelle 60 schematisch zwei Lichtstrahlen 20 und 21 aufgezeigt. Lichtstrahl 20 soll hierbei dasjenige Licht repräsentieren, welches senkrecht ausgehend von der Lichtquelle 60 ohne Brechung an der Bewandung 10 der Optik aus deren Lichtaustrittsfläche austritt. Lichtstrahl 21 hingegen tritt unter einem Winkel ϕ aus der Halbleiterlichtquelle aus und trifft an der Innenseite der Bewandung 10 unter einem Winkel dϕ gegen die Normale auf. Aus diesem Grunde wird der Lichtstrahl 21 gebrochen und tritt unter einem Winkel α aus der Optik an deren Lichtaustrittsfläche aus. Da die Bewandung 10 in erfinderischer Weise die Kontur eines Kartovals aufweist, wird der Lichtstrahl 21 derart umgelenkt, dass er nach Austritt aus der Optik parallel zu dem ungebrochen Lichtstrahl 20 verläuft. Aus dieser Geometrie des in Figur 1 aufgezeigten Strahlenqanqs folgt die Beziehung α β = ϕ

Figure imgb0001
ϕ ist dabei der Polarkoordinatenwinkel, α der Austrittswinkel aus dem brechenden Medium und β der Einfallswinkel im Medium. Nach dem Brechungsgesetz gilt: sin α sin β = n
Figure imgb0002
In the following, the mathematical derivation of the contour curve is shown to illustrate the shape of a Kartoval. FIG. 1 shows the beam geometry on which the calculation is based. In this case, starting from a light source 60 schematically two light beams 20 and 21 are shown. Light beam 20 is intended here to represent that light which emerges perpendicularly from the light source 60 without refraction at the edge 10 of the optical system from its light exit surface. Light beam 21, however, exits at an angle φ from the semiconductor light source and impinges on the inside of the wall 10 at an angle dφ against the normal. For this reason, the light beam 21 is refracted and exits at an angle α from the optics at the light exit surface. Since the wall 10 has the contour of a Kartoval in an inventive manner, the light beam 21 is deflected in such a way that it runs parallel to the unbroken light beam 20 after exiting the optics. The relationship follows from this geometry of the beam square shown in FIG α - β = φ
Figure imgb0001
φ is the polar coordinate angle, α is the exit angle from the refractive medium, and β is the angle of incidence in the medium. After the refraction law applies: sin α sin β = n
Figure imgb0002

Zunächst wird in Abhängigkeit von ϕ der erforderliche Einfallswinkel β berechnet, um das Licht parallel gerichtet aus dem Element austreten zu lassen. Aus (1.1) und (1.2) folgt: sin ( ϕ + β ) sin β = n

Figure imgb0003
und daraus berechnet sich die gesuchte Funktion: β = arctan sin ϕ n cos ϕ
Figure imgb0004
First, the required angle of incidence β is calculated as a function of φ in order to let the light emerge in parallel from the element. From (1.1) and (1.2) follows: sin ( φ + β ) sin β = n
Figure imgb0003
and from this the required function is calculated: β = arctan sin φ n - cos φ
Figure imgb0004

Diese Funktion gibt den Einfallswinkel β als Funktion des Polarkoordinatenwinkels ϕ an. Im nächsten Schritt erfolgt sodann die Berechnung der Kontur. Aus der Figur 1 folgt d r d ϕ = r tan β

Figure imgb0005
This function indicates the angle of incidence β as a function of the polar coordinate angle φ. In the next step, the contour is calculated. From Figure 1 follows d r d φ = r tan β
Figure imgb0005

Mit G1. (1.4) folgt hieraus die Differentialgleichung d r r = sin ϕ n cos ϕ d ϕ

Figure imgb0006
With G1. (1.4) the differential equation follows from this d r r = sin φ n - cos φ d φ
Figure imgb0006

Diese Gleichung lässt sich in einer analytischen Form durch Substitution lösen: r r 0 = n cos ϕ 0 n cos ϕ

Figure imgb0007
This equation can be solved in an analytic form by substitution: r r 0 = n - cos φ 0 n - cos φ
Figure imgb0007

Dies ist die gesuchte Gleichung in Polarkoordinaten der in Figur 2 dargestellten Konturlinie 11 des Kartovals. r 0 ist hierbei der dem Winkel ϕ0 zugeordnete Radius, der zur Festlegung der absoluten Dimension der Kontur dient. Selbstverständlich lässt sich die in Polarkoordinaten beschriebene Gleichung 1.7. auch in das kartesische Koordinatensystem transferieren, woraus sich nachfolgende Gleichung (1.8) ergibt: ( n + 1 ) 2 n 2 r 0 2 ( x r 0 n + 1 ) 2 + ( n + 1 ) ( n 1 ) r ( 0 ) 2 y 2 = 1

Figure imgb0008
This is the sought equation in polar coordinates of the contour line 11 of the Kartovals shown in Figure 2. Here, r 0 is the radius associated with the angle φ 0 , which serves to determine the absolute dimension of the contour. Of course, the equation 1.7 described in polar coordinates can be used. into the Cartesian coordinate system, resulting in equation (1.8) below: ( n + 1 ) 2 n 2 r 0 2 ( x - r 0 n + 1 ) 2 + ( n + 1 ) ( n - 1 ) r ( 0 ) 2 y 2 = 1
Figure imgb0008

Eine Optik die eine Austrittsfläche in Form eines gemäß Gleichung 1.8. beschriebenen Kartovals ausweist, kann das Licht einer Punktquelle jedoch nur in einem eingeschränkten Winkelbereich parallelisieren. Dieser Winkelbereich wird durch den Grenzbereich der Totalreflexion vorgegeben. In Figur 3 sind der Strahlengang der Lichtstrahlen 21a-d für eine Punktquelle 60 und der resultierende Grenzwinkel ϕ g aufgezeigt. Durch die Kontur der Lichtaustrittsfläche der Optik in Form eines Kartovals wird erreicht, dass alle innerhalb des zweifachen des Grenzwinkels ϕ g von der Lichtquelle 60 austretenden Lichtstrahlen 21a-d und 22 parallel aus der Optik austreten. Der Grenzwinkel ϕ g ist gegeben durch das Brechungsgesetz (1.2), wobei der Austrittswinkel α=90° ist. Damit wird sin β = 1 n

Figure imgb0009
und der Grenzwinkel ϕ g =90°-β. Für n=1,5 ergibt sich somit ein Grenzwinkel von 48,2°. Strahlung, die außerhalb dieses Öffnungswinkels liegt, kann mit diesem Element nicht sinnvoll ausgenutzt werden. Da Halbleiterlichtquellen in der Regel in einen weitaus größeren Winkelbereich emittieren, geht mit solchen Elementen ein großer Teil des Lichts verloren. Deshalb wird zur Umgehung dieser Problematik im Rahmen der Erfindung die im wesentlichen die Form eines zweidimensionalen Kartovals aufweisende Beleuchtungsoptik mit einem parabelförmigen Reflektor kombiniert. Dieser Reflektor sollte ebenfalls die Eigenschaft aufweisen, dass von dem Brennpunkt ausgehende Licht in ein paralleles Bündel zu wandeln. Dies führt zu dem in Figur 4 dargestellten Element, mit den Seitenflächen A,B und E und der Lichteintrittsfläche F. Wie aus Figur 4 ersichtlich, ist die erfinderische Optik recht flach ausgeführt, wobei die Lichteintrittsöffnung F einen im wesentlichen rechteckigen Querschnitt aufweist, wobei eine Dimension des Querschnitts wesentlich kleiner ist, als die andere; wie nachfolgend anhand von Figur 10 noch erläutert, ist wird der rechteckige Querschnitt in vorteilhafter Weise so schmal ausgeführt, dass gerade noch eine Halbleiterlichtquelle 60 an der Optik vollflächig angebracht werden kann. Zum besseren Klarstellung der 3-dimensionalen Ausgestaltung der in Figur 4 dargestellten erfinderischen Optik ist ein 3-dimensionales Kantenbild dieser Optik in vier unterschiedlichen Ansichten in Figur 4a abgebildet. Dabei heben die dortigen Abbildungen vor allem die Kanten der Optik, so wie in schraffierter Form die Seitenflächen A, B und 10 (Lichtaustrittsöffnung) hervor.An optic which has an exit surface in the form of a according to equation 1.8. However, the light of a point source can only parallelize in a limited angular range. This angular range is given by the limit of total reflection. FIG. 3 shows the beam path of the light beams 21a-d for a point source 60 and the resulting critical angle φ g . By the contour of the light exit surface of the optics in the form of a Kartovals is achieved that all within twice the critical angle φ g emerging from the light source 60 light beams 21a-d and 22 emerge in parallel from the optics. The critical angle φ g is given by the refraction law (1.2), wherein the exit angle α = 90 °. This will be sin β = 1 n
Figure imgb0009
and the critical angle φ g = 90 ° -β. For n = 1.5, this results in a critical angle of 48.2 °. Radiation that is outside of this opening angle can not be meaningfully exploited with this element. Since semiconductor light sources usually emit in a much larger angular range, with such elements a large part of the light is lost. Therefore, in order to circumvent this problem in the context of the invention, the illumination optics, which essentially have the shape of a two-dimensional Kartoval, are combined with a parabolic reflector. This reflector should also have the property of converting the light emanating from the focal point into a parallel bundle. This leads to the element shown in Figure 4, with the side surfaces A, B and E and the light entrance surface F. As shown in Figure 4, the inventive optics is made quite flat, wherein the light entrance opening F has a substantially rectangular cross section, wherein a Dimension of the cross-section is substantially smaller than the other; as will be explained below with reference to Figure 10, is the rectangular cross-section is advantageously made so narrow that just a semiconductor light source 60 can be attached to the entire surface of the optics. For a better clarification of the 3-dimensional configuration of the inventive optical system illustrated in FIG. 4, a 3-dimensional edge image of this optical system is depicted in four different views in FIG. 4 a. Here, the illustrations above all emphasize the edges of the optics, as shown in hatched form the side surfaces A, B and 10 (light exit opening).

In besonders vorteilhafter Weise ist es denkbar die Außenflächen A und B des parabolischen Reflektors entweder zu verspiegeln oder aber total reflektierend auszugestalten. Hierdurch wird eine möglichst optimale Lichtausbeute der Halbleiterlichtquelle erreicht, da annähernd das gesamte von der Lichtquelle ausgehende Licht in ein gemeinsames paralleles Strahlenbündel gewandelt wird.In a particularly advantageous manner, it is conceivable either to mirror the outer surfaces A and B of the parabolic reflector or to make it totally reflective. As a result, the best possible light output of the semiconductor light source is achieved, since approximately the entire light emitted by the light source is converted into a common parallel beam.

Figur 5 zeigt die Projektion der Seitenfläche E der erfindungsgemäßen Optik, hierbei tritt deutlich die Kontur des kartoval geformten Zentralbereichs und des daran außen anschließenden parabolischen Reflektors zum Vorschein. In idealer Weise wird nun der Reflektor so gestaltet, dass an den zu den Flächen C und D korrespondierenden Bereichen 40a und 40b der Kontur beim Lichtaustritt des Strahls 23a eine Brechung dergestalt stattfindet, dass die aus der Optik austretenden Strahlen 23a und 21 parallel laufen. Der Verlauf des Lichtstrahls 23a sollte dabei durch Drehen der zu den Außenflächen A und B der Optik korrespondierenden Parabelkontur 41a in Richtung hin zu 41b beeinflusst werden. Hierzu ist die Parabelkontur 41 um den notwendigen Winkel nach innen zu drehen, um zu vermeiden, dass ein Lichtstrahl 23x aus der Optik austritt, welcher nicht parallel zu dem anderen parallelen Strahlenbündel läuft.FIG. 5 shows the projection of the side face E of the optics according to the invention, in which case the contour of the kartoval shaped central region and of the parabolic reflector adjoining the outside thereof clearly appears. Ideally, the reflector is now designed so that at the corresponding to the surfaces C and D regions 40a and 40b of the contour at the light exit of the beam 23a refraction takes place in such a way that the emerging from the optics beams 23a and 21 run parallel. The course of the light beam 23a should thereby be influenced by turning the parabolic contour 41a corresponding to the outer surfaces A and B of the optics in the direction towards 41b. For this purpose, the parabola contour 41 is to be rotated inwards by the necessary angle in order to avoid that a light beam 23x emerges from the optics, which does not run parallel to the other parallel beam.

Bei der erfinderischen Ausgestaltung der Optiken des Beleuchtungssystems findet die Ablenkung und Ausrichtung des Lichts vorwiegend in vertikaler Ebene statt, das heißt das Licht wird zu einem horizontal verlaufenden Streifen gebündelt. Figur 6 zeigt als Ergebnis einer Berechnung die Energieverteilung des aus der erfindungsgemäßen Optik austretenden Lichtes. Im oberen Teil der Figur ist in Falschfarbdarstellung der Intensitätsverlauf des von einer horizontal angeordneten Optik ausgehenden Lichtes aufgezeigt. Daneben und darunter ist in Kurvenform die Intensitätsverteilung in x-Richtung und y-Richtung aufgezeigt. Es wird hierdurch deutlich, dass der aus der Optik austretende Lichtstrahl in y-Richtung stark gebündelt ist. Auch in x-Richtung ist die von der Optik ausgehende Lichtintensität deutlich örtlich begrenzt. Bei der Figur 6 zu Grunde liegenden Simulation wurden davon ausgegangen, dass die Lichtquelle mittig bzgl. der Lichteintrittsfläche F der Optik angebracht ist, wie später noch detailliert erläutert, ist es jedoch auch denkbar die Lichtquelle an anderer Position an der Lichteintrittsfläche F zu installieren um hierdurch gezielt Beleuchtungscharakteristik der Optik zu beeinflussen.In the inventive embodiment of the optics of the illumination system, the deflection and alignment of the light takes place predominantly in a vertical plane, that is, the light is focused into a horizontally extending strip. FIG. 6 shows as a result of a calculation the energy distribution of the light emerging from the optical system according to the invention. In the upper part of the figure is shown in false color representation of the intensity profile of the outgoing light from a horizontally arranged optics. Alongside and below, the intensity distribution in the x-direction and the y-direction is shown in the form of a curve. It is thus clear that the light beam emerging from the optics is strongly bundled in the y-direction. Also in the x-direction, the light intensity emitted by the optics is clearly localized. In the simulation underlying FIG. 6, it was assumed that the light source is arranged centrally with respect to the light entry surface F of the optics, as explained in detail later, but it is also conceivable to install the light source at a different position on the light entry surface F in order to thereby specifically to influence lighting characteristics of the optics.

In besonders vorteilhafter Weise kann die horizontale Breite des Lichtflecks dadurch beeinflusst werden, dass die Seitenflächen E der Optik dergestalt geneigt werden, dass sich die Optik von der Lichtaustrittsfläche G hin zur Lichteintrittsfläche F verjüngt. Eine entsprechende Geometrie ist in Figur 7 dargestellt, welche eine Seitenansicht aus Richtung der Seitenfläche A bzw. B zeigt. Dabei wird deutlich, dass in dieser gewinnbringenden Ausgestaltung der Erfindung die Höhenausdehnung F l der Lichteintrittsfläche F der Optik kleiner als die Höhenausdehnung G l deren Lichtaustrittsfläche 10 ist. Solche Elemente, insbesondere auch mit parabelförmigen Seitenflächen sind aus der Solartechnik bekannt (CPC, Compound parabolic Concentrator). Es gilt die Beziehung: sin α 1 sin α 2 = K l F l

Figure imgb0010

wobei a1 und a2 den jeweiligen Winkelbereich beschreiben, innerhalb dessen die Lichtstrahlen (25, 26) durch die Optik aufgenommen, beziehungsweise unter welchen diese dann aus die Optik austreten. Aus der Gleichung (1.8) ergibt sich, dass durch eine Vergrößerung der Austrittsfläche der Winkelbereich, in den das Licht emittiert wird, verkleinert wird. In besonders gewinnbringender Weise bietet es sich an auch in Strahlrichtung einen möglichst großen Akzeptanzwinkel zu schaffen, um optische Verluste zu vermeiden. Dies kann entweder durch Verspiegelung erreicht werden oder durch die entsprechende Gestaltung der Krümmung der Seitenflächen E, so dass dort Totalreflexion entsteht. In Figur 7 ist beispielhaft mit gestrichelter Linie der Krümmungsverlauf der Seitenfläche E für eine parabolische Krümmung angedeutet. Entsprechend der oben beschriebenen und auch in Figur 5 dargestellten Vorgehensweise kann an einem solchermaßen geformten kartovalen Zentralbereich erfindungsgemäß ein geeigneter parabolisch geformter Reflektor, zur optimalen Ausnutzung der von des von der Lichtquelle emittierten Lichts, angepasst werden.In a particularly advantageous manner, the horizontal width of the light spot can be influenced by tilting the side surfaces E of the optics in such a way that the optic tapers from the light exit surface G towards the light entry surface F. A corresponding geometry is shown in Figure 7, which shows a side view from the direction of the side surface A and B respectively. It is clear that in this profitable embodiment of the invention, the height extent F l of the light entrance surface F of the optics smaller as the height extent G l whose light exit surface 10 is. Such elements, especially with parabolic side surfaces are known from solar technology (CPC, Compound Parabolic Concentrator). The relationship applies: sin α 1 sin α 2 = K l F l
Figure imgb0010

where a1 and a2 describe the respective angular range within which the light beams (25, 26) are received by the optics, or under which these then emerge from the optics. From the equation (1.8), it follows that enlarging the exit surface reduces the angular range in which the light is emitted. In a particularly profitable manner, it is also possible to create the greatest possible acceptance angle in the beam direction in order to avoid optical losses. This can be achieved either by mirroring or by the corresponding design of the curvature of the side surfaces E, so that there total reflection occurs. In FIG. 7, by way of example, the curved course of the side face E for a parabolic curvature is indicated by a dashed line. According to the procedure described above and also shown in FIG. 5, according to the invention a suitably parabolically shaped reflector for optimal utilization of the light emitted by the light source can be adapted to a cartouched central region formed in this way.

In einer weiteren vorteilhaften Ausgestaltung der erfinderischen Optik weist der Querschnitt deren Lichteintrittsfläche F abweichend von der allgemein rechteckigen Form eine Trapez-Form auf, wie in Figur 8 dargestellt. Dabei sind die Seitenflächen dieser Trapezform um die Winkel α und β gegenüber der Horizontalen geneigt. Dabei ist es denkbar die beiden Neigungswinkel α und β in ihrem Betrag gleich oder aber unterschiedlich voneinander zu wählen. Entsprechend den Abbildungen in Figur 6 zeigt Figur 9 das Ergebnis einer Berechnung der Energieverteilung des aus der vorteilhaften Optik mit geneigten Seitenflächen austretenden Lichtes. Der Berechnung wurden die Neigungswinkel α und β zu 5° bzw. zu 7° gewählt. Im oberen Teil der Figur ist wieder in Falschfarbdarstellung der Intensitätsverlauf des von einer im wesentlichen vertikal angeordneten Optik ausgehenden Lichtes aufgezeigt. Daneben und darunter ist in Kurvenform die Intensitätsverteilung an bestimmten Positionen in x-Richtung und y-Richtung aufgezeigt. Wie aus der Figur deutlich erkennbar ist, weist die Strahlungscharakteristik der Optik im Fernfeld, entgegen dem in Figur 6 dargestellten Fall, eine deutliche Krümmung senkrecht zur Strahlungsrichtung auf. Andererseits zeigt auch diese Strahlungscharakteristik einen deutlichen Hell/Dunkel-Übergang. Auch bei dieser Simulation wurde davon ausgegangen, dass die Lichtquelle mittig bzgl. der Lichteintrittsfläche F der Optik angebracht ist.In a further advantageous embodiment of the inventive optical system, the cross-section whose light entry surface F deviates from the generally rectangular shape has a trapezoidal shape, as shown in FIG. The side surfaces of this trapezoidal shape are inclined by the angle α and β relative to the horizontal. It is conceivable that the two inclination angles α and β in their amount equal or to choose different from each other. Corresponding to the illustrations in FIG. 6, FIG. 9 shows the result of a calculation of the energy distribution of the light emerging from the advantageous optic with inclined side surfaces. In the calculation, the inclination angles α and β were set to 5 ° and 7 °, respectively. In the upper part of the figure, the intensity profile of the light emerging from a substantially vertically arranged optical system is again shown in false color representation. Alongside and underneath, the intensity distribution at specific positions in the x-direction and y-direction is shown in the form of a curve. As can be clearly seen from the figure, the radiation characteristic of the optics in the far field, contrary to the case shown in Figure 6, a significant curvature perpendicular to the radiation direction. On the other hand, this radiation characteristic also shows a clear light / dark transition. In this simulation as well, it was assumed that the light source is centered with respect to the light entrance surface F of the optics.

In Figur 10 zeigt die Projektion der Lichteintrittsfläche F der erfinderischen Optik, in diesem Fall mit einem rechteckigen Querschnitt, mit einer mittig daran anschließender Halbleiterlichtquelle 60. Im allgemeinen Fall wird die Halbleiterlichtquelle 60 wie in Figur 110 gezeigt mittig auf der Lichteintrittsfläche aufgebracht. Dabei wird in gewinnbringender Weise die Dickenabmessung der Optik so gewählt, dass sie die Abmessungen der Halbleiterlichtquelle 60 möglichst wenig übersteigt. Auf diese Weise entstehen Optiken mit optimal geringem Platzbedarf, wodurch es möglich wird eine Vielzahl von Optiken innerhalb einer erfindungsgemäßen Beleuchtungsquelle auf kleinstem Raum unterzubringen und so eine maximale Lichtleistung zu erzielen.10 shows the projection of the light entry surface F of the inventive optical system, in this case with a rectangular cross section, with a semiconductor light source 60 adjoining centrally in the middle. In the general case, the semiconductor light source 60 is applied centrally on the light entry surface as shown in FIG. In this case, the thickness dimension of the optics is selected in a profitable manner so that it exceeds the dimensions of the semiconductor light source 60 as little as possible. In this way, optics with optimally small footprint, whereby it is possible to accommodate a variety of optics within a lighting source according to the invention in a small space and thus to achieve maximum light output.

Durch Verschieben der Halbleiterlichtquelle 60 entlang der Verbindungslinie zwischen den Punkten P1 und P2 wird erreicht, dass das Licht aus der Optik asymmetrisch austritt. Dabei ist es denkbar entweder die Halbleiterlichtquelle 60 fix an einer beliebigen Stelle entlang dieser Verbindungslinie zu positionieren, um die gewünschte asymmetrische Strahlungscharakteristik zu erzielen, oder aber die Optik verschieblich über der Halbleiterlichtquelle 60 anzuordnen, so dass die gewünschte Asymmetrie der Lichtausstrahlung durch geeignete Verschiebung der Optik gegenüber der Halbleiterlichtquelle 60 erzielt werden kann. Alternativ ist es auch denkbar, anstelle einer verschieblichen Optik an der Lichteintrittsfläche F der einzelnen Optik entlang der Verbindungslinie zwischen P1 und P2 gleich mehrere Halbleiterlichtquellen anzuordnen. So kann in vorteilhafter Weise ohne mechanische Verstellung, einfach durch gezielte elektrische Ansteuerung und Auswahl das aus der Optik austretende Licht in seiner Leuchtcharakteristik verändert werden.By moving the semiconductor light source 60 along the connecting line between the points P1 and P2, it is achieved that the light from the optics emerges asymmetrically. It is conceivable either to position the semiconductor light source 60 fixedly at an arbitrary position along this connecting line, in order to achieve the desired asymmetrical radiation characteristic, or to arrange the optic slidably over the semiconductor light source 60, so that the desired asymmetry of the light emission by suitable displacement of the optics can be achieved with respect to the semiconductor light source 60. Alternatively, it is also conceivable to arrange a plurality of semiconductor light sources at the light entry surface F of the individual optics along the connecting line between P1 and P2 instead of a displaceable optic. Thus, the light emerging from the optics can be changed in its luminous characteristic advantageously without mechanical adjustment, simply by selective electrical control and selection.

Bei der Anordnung der Optiken zu der erfindungsgemäßen Beleuchtungsvorrichtung ist es in vorteilhafter Weise denkbar, die einzelnen Halbleiterlichtquellen 60 zu den jeweiligen, in einem Feld angeordneten Optiken individuell so anzuordnen, dass die Beleuchtungsvorrichtung eine asymmetrische Abstrahlungscharakteristik aufweist. Ergänzend oder Alternativ ist es aber auch denkbar die asymmetrische Strahlungscharakteristik durch eine Anordnung von an die gewünschte Lichtausstrahlung angepasste, individuell geformte Optiken zu erzielen, dabei ist es denkbar ein Teil der Optiken mit rechteckiger Lichteintrittsfläche F (entsprechend Figur 10) und einen anderen Teil der Optiken mit trapezförmigen Lichteintrittsflächen F (entsprechend Figur 8) auszuführen. Auch können in gewinnbringender Weise die Optiken zumindest in Teilen entsprechend der in Figur 7 aufgezeigten Ausgestaltung ausgeführt sein.In the arrangement of the optics to the illumination device according to the invention, it is conceivable in an advantageous manner individually to arrange the individual semiconductor light sources 60 to the respective optics arranged in a field so that the illumination device has an asymmetric radiation characteristic. Additionally or alternatively, however, it is also conceivable to achieve the asymmetrical radiation characteristic by arranging custom-shaped optics adapted to the desired light emission; in this case, it is conceivable that part of the optics having a rectangular light entrance surface F (corresponding to FIG. 10) and another part of the optics to perform with trapezoidal light entry surfaces F (corresponding to Figure 8). Also, in a profitable manner, the optics at least in part accordingly be executed the embodiment shown in Figure 7.

Sind wenigstens einigen der Einzeloptiken innerhalb der Beleuchtungsvorrichtung gleich mehrere Halbleiterlichtquellen zugeordnet, so kann auf einfache Weise, mittels elektronischer Steuerung ein Verschwenken des von der Vorrichtung ausgesandten Leuchtkegels oder generell eine Änderung der asymmetrischen Beleuchtungseigenschaften der Beleuchtungsvorrichtung erwirkt werden, indem jeweils eine der mehreren einer Optik zugeordneten Halbleiterlichtquellen angesteuert wird. Eine solche wechselweise Ansteuerung der an einer einzelnen Optik angebrachten Lichtquellen führt zu der selben Strahlschwenkung wie dies aus dem Stand der Technik für verschieblich angeordnete Linsenoptiken der Fall ist, ohne jedoch auf eine anfällige, wenig robuste Mechanik zurückgreifen zu müssen. Des weiteren bietet diese vorteilhafte.Ausgestaltung auch die Möglichkeit, die einzelnen Optiken innerhalb einer Gruppe von Optiken ohne Aufwand individuell zu steuern, dies ist bei einer mechanisch variablen Ablenkvorrichtung wirtschaftlich sinnvoll nicht realisierbar.If at least some of the individual optics within the illumination device are assigned to a plurality of semiconductor light sources, pivoting of the illuminated cone emitted by the device or, in general, a change in the asymmetrical illumination properties of the illumination device can be effected by one of the plurality of optics associated with each Semiconductor light sources is driven. Such alternating activation of the light sources mounted on a single optics leads to the same beam pivoting as is the case in the prior art for displaceably arranged lens optics, without, however, having to resort to a prone, less robust mechanism. Furthermore, this advantageous embodiment also offers the possibility of individually controlling the individual optics within a group of optics without any outlay; this is not economically viable in the case of a mechanically variable deflection device.

Besonders gewinnbringend wird die Beleuchtungsvorrichtung so ausgestaltet, dass die Halbleiterlichtquellen unabhängig von den anderen einzeln oder in Gruppen gemeinsam angesteuert gedimmt oder aktiviert bzw. deaktiviert werden können, um gezielt und situationsangepasst die Umgebung ausleuchten zu können.Particularly profitable, the lighting device is designed so that the semiconductor light sources independently of the other individually or in groups can be controlled dimmed or activated or deactivated to light targeted and situation adapted to the environment can.

In besonders vorteilhafter Weise eignet sich die erfinderische Beleuchtungsvorrichtung zur Verwendung als Scheinwerfer in einem Kraftfahrzeug, um die Umgebung vor dem Fahrzeug asymmetrisch auszuleuchten.In a particularly advantageous manner, the inventive lighting device is suitable for use as a headlight in a motor vehicle to illuminate the environment in front of the vehicle asymmetrically.

In gewinnbringender Weise werden bei der Verwendung in einem Kraftfahrzeug die einzelnen dem Scheinwerfer zugeordneten Optiken, so in Bezug auf die Straßenoberfläche ausgerichtet, dass die x-Achsen der Optiken im wesentlichen parallel zu dieser verlaufen; d.h. die Einzeloptiken sollten im wesentlichen senkrecht stehend (entsprechend beispielsweise Figur 4) angeordnet werden.Advantageously, when used in a motor vehicle, the individual optics associated with the headlamp are aligned with respect to the road surface such that the x-axes of the optics are substantially parallel thereto; i.e. the individual optics should be arranged essentially vertically (corresponding to, for example, FIG. 4).

Claims (13)

  1. Illumination device, in particular for use in a motor vehicle, which is formed by an array of individual optical elements that are in each case assigned at least one semiconductor light source, in particular a light emitting diode,
    the optical elements having, perpendicular to the light entry area, a central region whose projection into a two-dimensional plane corresponds to a geometrical area, which, as an interface of a refractive medium, collects the light emerging from a focal point at a second focal point even for large aperture angles,
    characterized
    in that the light entry opening (F) of the optical elements have an elongate, essentially rectangular form,
    and in that said central region is combined with a parabolic reflector.
  2. Illumination device according to Claim 1,
    characterized
    in that the outer areas A and B of the reflector are rotated in the direction of the central region of the optical element such that all beams emerging from the optical element are substantially parallel.
  3. Illumination device according to either of Claims 1 and 2,
    characterized
    in that the outer areas A and B of the reflector are embodied such that they are mirror-coated or totally reflective.
  4. Illumination device as claimed in one of the preceding claims,
    characterized
    in that the side areas E of the optical element are inclined in such a way that the optical element tapers from the light exit area G towards the light entry area F.
  5. Illumination device as claimed in Claim 4,
    characterized
    in that the side areas are formed, in particular by means of mirror-coating or curvature, such that a large acceptance angle is produced in the beam direction.
  6. The illumination device as claimed in one of the preceding claims,
    characterized
    in that the light entry area of the individual optical elements has a trapezoidal form.
  7. Illumination device as claimed in one of the preceding claims,
    characterized
    in that at least one of the individual optical elements is assigned a plurality of semiconductor light sources.
  8. Illumination device as claimed in one of the preceding claims,
    characterized
    in that the individual semiconductor light sources are switched individually.
  9. Illumination device as claimed in one of the preceding claims,
    characterized
    in that the optical elements and the semiconductor light sources are arranged such that they are displaceable with respect to one another.
  10. Method for driving an illumination device as claimed in one of the preceding claims,
    characterized
    in that the semiconductor light sources are driven individually in a manner dependent on the desired radiation characteristic,
    the semiconductor sources in this case being entirely or partly activated.
  11. Method as claimed in Claim 10,
    characterized
    in that, for the case where a plurality of semiconductor light sources are assigned to an individual optical element, these are driven in a manner dependent on the desired radiation characteristic.
  12. Method as claimed in either of Claims 10 and 11,
    characterized
    in that the lenses and the semiconductor light sources are displaced relative to one another for the purpose of changing the emission characteristic of the illumination device.
  13. Use of the illumination device as claimed in one of the preceding claims as a motor vehicle headlight for asymmetrical illumination of the surroundings in front of a motor vehicle.
EP03758006A 2002-10-24 2003-10-17 Led projector for asymmetrical illumination Expired - Fee Related EP1554521B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10249819 2002-10-24
DE10249819 2002-10-24
DE10310263 2003-03-10
DE10310263A DE10310263A1 (en) 2002-10-24 2003-03-10 LED floodlight for asymmetrical illumination
PCT/EP2003/011516 WO2004038285A1 (en) 2002-10-24 2003-10-17 Led projector for asymmetrical illumination

Publications (2)

Publication Number Publication Date
EP1554521A1 EP1554521A1 (en) 2005-07-20
EP1554521B1 true EP1554521B1 (en) 2006-07-05

Family

ID=32178278

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03758006A Expired - Fee Related EP1554521B1 (en) 2002-10-24 2003-10-17 Led projector for asymmetrical illumination

Country Status (5)

Country Link
US (1) US20060098447A1 (en)
EP (1) EP1554521B1 (en)
JP (1) JP2006504249A (en)
DE (1) DE50304161D1 (en)
WO (1) WO2004038285A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004010922U1 (en) 2004-07-12 2005-11-24 Leica Geosystems Ag tilt sensor
EP1920285A4 (en) * 2005-07-28 2010-11-03 Light Prescriptions Innovators Free-form lenticular optical elements and their application to condensers and headlamps
TW200735327A (en) * 2005-12-14 2007-09-16 Koninkl Philips Electronics Nv Collimation arrangement and illumination system and display device using the same
WO2007100837A2 (en) * 2006-02-27 2007-09-07 Illumination Management Solutions, Inc. An improved led device for wide beam generation
US7829899B2 (en) 2006-05-03 2010-11-09 Cree, Inc. Multi-element LED lamp package
US10234689B1 (en) 2018-03-09 2019-03-19 Mitsubishi Electric Research Laboratories, Inc. Compound optics with freeform optical surface

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2254961A (en) * 1937-08-21 1941-09-02 George M Cressaty Unitary lens system
US3228288A (en) * 1961-10-20 1966-01-11 Square D Co Interlocking cap and lens for indicator lights
JPH08339704A (en) * 1995-06-12 1996-12-24 Nippondenso Co Ltd Light device for use with vehicle
AU8795498A (en) * 1997-08-07 1999-03-01 Decoma International Inc. Thin light managing system for directing and distributing light from one or morelight sources and method for making optics structures for use in the system
US6273596B1 (en) * 1997-09-23 2001-08-14 Teledyne Lighting And Display Products, Inc. Illuminating lens designed by extrinsic differential geometry
DE10005795C2 (en) * 2000-02-10 2003-06-12 Inst Mikrotechnik Mainz Gmbh Headlamp with a number of individual light emitters
DE10009782B4 (en) * 2000-03-01 2010-08-12 Automotive Lighting Reutlingen Gmbh Lighting device of a vehicle

Also Published As

Publication number Publication date
JP2006504249A (en) 2006-02-02
DE50304161D1 (en) 2006-08-17
EP1554521A1 (en) 2005-07-20
US20060098447A1 (en) 2006-05-11
WO2004038285A1 (en) 2004-05-06

Similar Documents

Publication Publication Date Title
EP2910847B1 (en) Light module of a motor vehicle headlight and headlight with such a light module
EP3714205B1 (en) Light module for a motor vehicle headlamp
EP2492580B1 (en) Lighting device for installation in a motor vehicle
EP1864053B1 (en) Motor vehicle headlight
EP2799761B1 (en) Light module for a motor vehicle headlamp
DE102009008631B4 (en) Projection module for a motor vehicle headlight
EP3510320B1 (en) Vehicle headlight
EP3351849B1 (en) Led module and lighting device for a motor vehicle with a plurality of such led modules
EP2063170B1 (en) Illumination device for a vehicle
EP2357398B1 (en) Light module for a lighting device of a motor vehicle
DE102012202290B4 (en) Light module for a glare-free motor vehicle high beam
DE602006000872T2 (en) Automotive headlamp with substantially vertical extension
EP2420728B1 (en) Projection headlamp with targeted weakened light intensity gradients at the light-dark border
EP2789901B1 (en) Light module of a motor vehicle lighting device
DE102011078653B4 (en) Attachment optics for the bundling of emitted light of at least one semiconductor light source
DE102012211144B3 (en) Light module i.e. LED light module, for headlight of motor vehicle, has LED whose lighting emitting surface is extended toward light discharging portion, so that emitting light comprises basic light distribution with light-dark borders
EP2730836B1 (en) Light module for a headlight of a motor vehicle
DE102013226624A1 (en) lighting device
EP3301350B1 (en) Light module for a motor vehicle headlamp
WO2004059207A1 (en) Led headlight for a motor vehicle
DE102017107781A1 (en) Primary optical unit for a light module
DE102015219211A1 (en) Light module for a vehicle lighting device
EP1554521B1 (en) Led projector for asymmetrical illumination
DE10312364B4 (en) Headlamp for creating a clear cut-off on the road
DE102004032095A1 (en) Motor vehicle headlight has electronically movable macro mirror surface and gives a combination of both static and dynamic light distributions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50304161

Country of ref document: DE

Date of ref document: 20060817

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060924

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DAIMLERCHRYSLER AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070410

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101104

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101021

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111017

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111017

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160331

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50304161

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503